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Abstract

To investigate how economies, financial markets or institutions can deal with stress, we

nowadays often analyze the effects of shocks conditional on a recession or a bear market.

MSVAR models are ideally suited for such analyses because they combine gradual move-

ment with sudden switches. In this paper, we develop a comprehensive framework with

methods to conduct these analyses. We first derive first and second moments conditional on

only a set of regime probabilities. Next, we propose generalized impulse response functions

of first and second moments to shocks originating from the regime process, the structural

innovations and the variables themselves. By formulating the MSVAR as an extended

linear non-Gaussian VAR for the combination of the regime process and the level and

squares of the observable variables, all results are in closed-form, which eases a detailed

investigation. We illustrate our methods with an application to stock and bond return

predictability. Our results show how regime switching combined with predictor variables

influences means, volatilities and (auto-)correlations. The impulse response functions show

that the effect of shocks becomes highly nonlinear, and that they propagate via different

channels. During bear markets, shocks have stronger effects on means and volatilities and

die out more slowly.
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1 Introduction

Analyses of the economic vulnerabilities of countries, financial institutions or investments nowa-

days often take the form of investigating how they are affected by shocks, conditional on the

economy or financial system being already in a bad state. Markov Switching VAR (MSVAR)

models are a promising class of models to conduct these analyses with. MSVAR models combine

the gradual movement of economic and financial variables with sudden switches between a typ-

ically small number of regimes. For example, Hubrich and Tetlow (2015) propose an MSVAR

model to capture the effect of financial crises on macro variables.

In this paper, we develop a comprehensive toolkit with new methods to conduct exactly

these kinds of analyses with MSVAR models. In particular, we address the question how shocks

affect the observable variables yt in an MSVAR model from the point in time t onward, given

that the latent discrete regime process St−1 is in a specific regime or has a given distribution at

time t− 1. To answer this question we need conditional expectations of the form E[yt+h|St−1],

h ≥ 0. Whereas the conditional expectations E[yt+h|St−1,yt−1] are relatively straightforward

to derive, the conditional expectations that do not condition on yt−1, are more complicated, as

the substitution of the VAR recursion requires expectations of the form E[yt−k|St−1], k > 1. We

derive these expectations, and show how to use them to compare the dynamics of an economy

or financial market in different regimes, and to set up a formal impulse response analysis in the

same way as for standard VAR models.

We base our comprehensive and complete analysis of moments, shocks and spillovers in

MSVAR models on a VAR model whose parameters switch according to a latent homogeneous

first order Markov chain with a fixed number of regimes, as in Bianchi (2016). The central part

of our methods is formed by the joint specification of the processes followed by the level of the

variables and their squares, and the latent state process. We show that this extended vector of

variables follows a linear VAR(1) model with non-Gaussian innovations. Though non-Gaussian,

this extended VAR model is Markovian, which is the driving force of our results.

As our first theoretical result we derive expressions for the expectations of this extended VAR

process for different horizons conditional on a specific regime or regime distribution at time t.

They allow us to calculate expectations E[yt+h|St−1] and (co)variances Var[yt+h|St−1] for h ≥ 0,

but also autocovariances Cov[yt+h,yt+k|St−1] for h, k ≥ 0. Here we extend Timmermann (2000),

who considers univariate processes with a slightly different specification than the processes we

consider. We also extend Bianchi (2016) who derives moments conditional on a specific regime

prevailing forever, E[yt+h|St−1 = St−2 = . . .], which essentially ignores any current or past

regime switching, though he does allow for future regime switching.

Second, we present a complete framework with analytical expressions for impulse response
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analysis (IRA) for both the level and the squared process. We allow for different sources of

shocks in line with the generalized impulse response analysis of Koop et al. (1996), that is, in

the structural innovations, the regime process, and the observable variables. Because the model

has Markov switching features, the effect of shocks become time and size dependent. The

analytical expressions for the impulse response functions that we find, make it straightforward

to analyze the responses to shocks, and how they are affected by the model parameters, the

regime distribution or parameter uncertainty.

Third, we define the variance impulse response function to analyze the effect that shocks

have on the forecast (co)variances. We show how they can be derived from the extended VAR

specification that includes the squared process for the observable variables. In a standard VAR

model, the forecast (co)variances are not affected by shocks at all, and in standard Markov

Switching models, the effects at horizons h > 0 run completely via the updating of the forecast

regime probabilities. To the contrary, in MSVAR models the interaction of the VAR and Markov

switching features makes the effect of shocks on future (co)variances larger and highly nonlinear.

As our final theoretical result we show how our framework for impulse response analysis

can be used to construct a Generalized Forecast Error Variance Decomposition (GFEVD) for

different horizons as in Lütkepohl (2005); Pesaran and Shin (1998). Because the effect of shocks

depend on their sizes and the regime distribution, the GFEVD shows the same dependence.

This result implies that spillover indexes in the style of Diebold and Yılmaz (2009, 2012, 2014)

become time varying as well, with large shocks having potentially different effects than small

ones.

In the empirical part of our paper, we use our theoretical results to analyze the risk-return

trade-off of stocks and bonds with the T-Bill rate and the dividend-to-price ratio as predictors.

We base this part on an MSVAR model with one lag and two regimes. Though simple, this

model accommodates both return predictability and the presence of regimes. Many authors

have documented the importance of return predictability for long-term portfolio allocation (see

Campbell and Viceira, 1999; Campbell et al., 2003; Barberis, 2000, amongst others). Also the

presence and implications of regime switching have been well documented (see Ang and Bekaert,

2002; Guidolin and Timmermann, 2006a,b, 2007, 2008; Guidolin, 2011). Moreover, Guidolin and

Hyde (2012a,b, 2014) show that simple VAR-models with different number of predictors and

lags cannot beat simple Markov switching models. Our model with 2 regimes and a VAR(1)

component is supported by Guidolin and Ono (2006) who shows that it outperforms models

with only VAR or Markov switching features.

In line with these earlier papers, we find a low and a high volatility regime. We use our

theoretical results to determine the implied expected values, which are high for stocks but low
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for bonds in the low volatility regime, and reversed in the high volatility regime. We also show

that the implied means that results under the assumption that a particular regime has prevailed

forever differ considerably and lead to misleading implications. For stocks, the high volatility

regime would falsely imply a higher mean than the low volatility regime. Our analysis also

shows how the predictability varies over the regimes.

We then investigate how shocks to the different variables at time t impact the expectations

and volatilities of stock and bond returns at different horizons and depend on the regime dis-

tribution at t − 1. Our results for the expected returns show three channels via which shocks

propagate in this system: a direct channel that follows from the VAR-part of the model, an

indirect channel via the contemporaneous correlation of the variables with propagation via the

VAR-part, and a channel that follows from the updating of the forecast regime probabilities

based on the shock with propagation via the Markov chain of the model. Because the param-

eters that govern the first two channels depend on the regime, and the updating in the third

channel is nonlinear, the total effect is nonlinear. Moreover, the channels can reinforce or coun-

teract each other. We show how these aspects depend on the model parameters, the regime

distribution and the size of the shock.

Our analysis of the impact of shocks on the volatilities show that here we can discern four

channels via which the shocks can propagate. First, a shock in one variable at time t lowers

the forecast variance for other variables at t. Second, the updating of the probability for the

different regimes may change the likelihood of the low and high volatility regimes. However,

part of the variance stems from the possibility of a regime switch itself, which can also change.

Finally, because the propagation of the shock differs per regime, the path that is implied by

the shock is different for each regime, and this further contributes to the variance. This last

channel depends positively on the size of the shock, and can be compared to the effect that

shocks have in GARCH-models. Also here the effects are highly nonlinear, and the channels

can reinforce or counteract each other. These effects on the variances stand in stark contrast

with standard VAR models where these effects are completely absent, or with standard Markov

switching models, where only the first three channels are present, and effects die out quickly.

We conclude that MSVAR models are a useful tool for investigating economic and financial

processes under stress. Our proposed methods can be used to characterize the forecast distri-

bution of the variables for any point in the future, taking a specific current regime distribution

as starting point. Similarly, they can also be used to investigate how the variables respond to

shocks. Our empirical analysis shows that the combination of low and high volatility regimes

with return predictability leads to rich and interesting dynamics. Next to the correlation be-

tween stock and bond returns being higher starting from the high volatility regime, we also find
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that predictability is stronger. Consequently, shocks die out more slowly, and have stronger and

more prolonged effects on both the expectation and volatilities of returns.

Our theoretical results are closely related to Krolzig (2006), who was among the first to

analyze MSVAR models, and Bianchi (2016) who also analyzes moments of MSVAR models.

Krolzig (2006) focuses on expectations conditional on both past observations and the regime

distribution. Bianchi (2016) extends the focus to first and second moments that are conditional

on past observations and the regime distribution. We contribute to this set of results by deriving

the first and second moments that only take the regime distribution at a particular point in

time as given. Timmermann (2000) derives similar results for univariate processes. Though it

is appealing and easy to calculate these moments with the assumption that a particular regime

has prevailed infinitely long and will prevail in the future, this approach ignores the very regime

switching that the model is designed to capture, and, as we show, can lead to quite different

implications.

Our results for the impulse response analysis also extend Krolzig (2006) and Bianchi (2016).

Krolzig (2006) investigates the responses of expected values to shocks to the regime process, or

the structural innovations for a given regime path. Bianchi (2016) conducts an impulse response

analysis for first and second moments under the assumption that a regime has prevailed infinitely

long, and is known at the time of the shock. Our approach is more general and shows how regime

switching makes the response nonlinear, and how the responses depend on the sign and size of

the shock, and the information set at the time before the shock. We also extend Karamé (2010,

2012, 2015) who includes the effect of regime switching by simulations, as we show how the IRA

can be done completely in closed form.

Our empirical analysis contributes to the large literature about the effect of regime switching

and return predictability on the risk and return characteristics of assets for different horizons.

We show that MSVAR models inherit the well-known effects of standard models with only

Markov switching or only VAR components. Our analysis of the implications for the risk-

return trade-off complements Campbell and Viceira (2005) who investigate the term-structure

of risk and return for VAR models and Taamouti (2012) for Markov switching models without

a VAR component. Next to exhibiting the features of both models, their combination makes

the (co)variances respond to shocks in a way akin to GARCH models, which neither of the

contributing parts exhibit. This finding shows the relevance and the added value of MSVAR

models for analyses of financial markets.

The remainder of this article is structured as follows. In Section 2 we introduce the general

formulation of MSVAR models, and derive their moments. In Section 3 we propose a general

framework for first and second order impulse response analysis. In section 4 we apply these
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methods to study the risk and return characteristics of stocks and bonds. Section 5 concludes.

2 MSVAR models and their moments

We consider a vector of n variables yt that follow a VAR model of order 1, whose parameters

are subject to Markov switching. The switching results from a latent Markov chain St that can

be in one out of m regimes, numbered 1 to m. We formulate the model as

yt = cSt +ΦStyt−1 +ΛStεt εt ∼ N(0, In) , (1)

where cSt is an n-vector containing the regime-specific intercepts, ΦSt is an n× n matrix with

the regime-specific autoregressive coefficients, ΛSt is a regime-specific n × n lower-triangular

matrix, and In is the n×n identity matrix. The n-vector εt contains the structural innovations.

Conditional on the regime, the variance of εt is given by Var[εt|St] = ΣSt = ΛStΛ
′
St
. We assume

that the innovations are independent over time, E[εtεt+l] = O, for all l ̸= 0.

The regime process St follows a first order Markov chain with transition matrix P , where

pij = Pr[St = i|St−1 = j]. (2)

Formulating the transition matrix such that the columns sum to one is more convenient for the

results in this paper. We assume that the Markov chain is irreducible and ergodic. We assume

that the processes St and εt+l are independent for all l. We use ξit to denote a generic probability

for state i = 1, . . . ,m to occur at time t, and collect these in the vector ξ. ξ̄i = Pr[St = i] denotes

the ergodic probability for state i. They satisfy P ξ̄ = ξ̄. The initial regime probabilities ξ0 can

be part of the model specification or equated to the ergodic probabilities.

It is straightforward to introduce more lags in eq. (1). By writing the resulting higher-order

VAR in its companion form our results for the VAR(1)-case can still be used. In a similar way,

the regime process St can be extended to a higher-order Markov process, which can then be

written as a first order Markov chain over a larger set of states. It is also possible to adapt

the coefficients in eq. (1) to different independent Markov processes as in Hubrich and Tetlow

(2015).

Models of this form have been studied extensively by Krolzig (2013), who introduces the

shorthand notation MSIAH(m)-VAR(l) for a VAR of order l with Markov Switching in the

Intercept, Autoregressive coefficients and Heteroskedasticity, driven by a Markov chain of order

m. The model in eq. (1) is hence an MSIAH(m)-VAR(1) model. Bianchi (2016) also studies

the MSIAH(m)-VAR(1) model, and his approach to deriving conditional and unconditional

moments is the starting point for our analysis. Timmermann (2000) focuses on a slightly
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different type of Markov-Switching model, in which the regime-specific mean E[yt|St] is part

of the model specification instead of the regime-specific intercept in eq. (1). We derive the

expression for the regime-specific mean in section 2.4. Moreover, he focuses on the single-

variable case.

The core of our methodology consists of an extended state space formulation that encom-

passes the level and the quadratic processes of the observable variables, and the regime process.

We show that it takes the form of linear VAR with non-Gaussian innovations. We derive ex-

plicit expressions for the VAR part as well as the innovations. Whereas result for the VAR part

have been derived before in Krolzig (2006) and Bianchi (2016), the innovation part is new and

necessary for the generalized impulse response analysis that we propose. To give a complete

framework for analyzing the moments of MSVAR models, we restate some of the results of these

earlier papers.

2.1 The state space formulation for the level process

We rewrite the model given by eqs. (1) and (2) to make explicit that the Markov chain implies

a selection of the VAR coefficients from a larger but fixed set of coefficients. To do so, we define

the random m-vector st with sit = I(St = i), where I denotes the indicator function. Hence,

the ith element of st equals 1 if St = i and zero otherwise. Consequently, we can formulate the

Markov chain as a linear VAR (see Hamilton, 1994)

st = Pst−1 + ut, (3)

where ut is a martingale difference sequence (MDS). Its conditional variance is equal to

E[utu
′
t|st−1] = diag(Pst−1)− Pst−1s

′
t−1P

′.

Next, we define the random vectors y∗
t = st ⊗ yt, which combines the latent state process

St with the observable process yt, and ỹt =
(
y∗
t
′, s′t
)′
by stacking y∗

t and st. As inTimmermann

(2000) and Bianchi (2016), we define the bdiag operator, which produces for a series of n × l

matrices Ai, i = 1, . . . ,m, the block-diagonal mn×ml-matrix

bdiagmi=1(Ai) = bdiag(A1,A2, . . . ,Am) =


A1 On×l · · · On×l

On×l A2 · · · On×l

...
...

. . .
...

On×l On×l · · · Am

 . (4)

Then we can prove the following proposition.
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Proposition 1. Let yt follow the MS-VAR process as specified in eqs. (1) and (2). Define

y∗
t = st ⊗ yt and ỹt =

(
y∗
t
′, s′t
)′
. Then y∗

t follows the process

y∗
t = CPst−1 +Φ(P ⊗ In)y∗

t−1 + ε
∗
t , (5)

with C = bdiagmi=1(ci), Φ = bdiagmi=1(Φi), and

ε∗t = Λ(P ⊗ In)(st−1 ⊗ εt) +Cut +Φ(ut ⊗ yt−1) +Λ(ut ⊗ εt),

with Λ = bdiagmi=1(Λi), and ut as defined in eq. (3). ỹt follows the process

ỹt =

(
y∗
t

st

)
= Φ̃ỹt−1 + ε̃t, (6)

with

Φ̃ =

(
Φ(P ⊗ In) CP

Om×nm P

)
.

and ε̃t = (ε∗t
′,u′

t)
′. Moreover, ε∗t and ε̃t are MDS.

This proposition is due to Krolzig (2006), though he does not derive the expression for ε∗t .

It shows that ỹt follows a first-order linear VAR with non-Gaussian innovations. Even though

the innovations are non-Gaussian, the representation is quite useful in analysing the properties

of MSVAR models, because it is Markovian. For example, we can write ỹt+h as the sum of ỹt

and the innovations between t and t+ h,

ỹt+h|ỹt =
h−1∑
j=0

Φ̃j ε̃t+k−j + Φ̃
hỹt.

This expression is useful for the calculation of expectations and impulse response analysis. For

the latter we will also use the explicit expression for ε∗t .

The variable ỹt contains all information of yt and St. We can obtain yt from ỹt by summing

the appropriate elements,

yt = G̃yỹt, (7)

where G̃y =
(
Gy, On×m

)
has dimensions n× (n+ 1)m and Gy = ı′m ⊗ In. It also follows that

yt = Gyy
∗
t . We obtain st by selecting the last m elements of ỹt, which we can write as

st = G̃sỹt, (8)

with G̃s =
(
Om×nm, Im

)
. We also define G̃yi = e

′
iG̃y, Gyi = e

′
iGy, and G̃sj = e

′
jG̃s to obtain

a particular variable yi or regime sj, where ei and ej denote the appropriate unit vectors.
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Based on the Markovian property in eq. (6), we directly find the expectation of ỹt+h for

h ≥ 0 conditional on yt and state probabilities ξt as

E[ỹt+h|yt, ξt] = Φ̃h

(
ξt ⊗ yt
ξt

)
. (9)

Using eq. (7) the conditional expectation of yt+h follows as E[yt+h|yt, ξt] = G̃y E[ỹt+h|yt, ξt].
This result corresponds with eq. (5) in Bianchi (2016).1 We can use the relation yt = Gyy

∗
t to

calculate the first moments from the recursion

E[y∗
t+h|yt, ξt] = Φ(P ⊗ In) E[y∗

t+h−1|yt, ξt] +C E[st+h|ξt] (10)

with initial condition E[y∗t |yt, ξt] = ξt ⊗ yt, which is useful when a series of expectations is

required.

The matrix Φ̃ is not convergent (ie., limh→∞ Φ̃
h ̸= O), because it has at least one eigenvalue

equal to one. The eigenvalues of Φ̃ are given by the eigenvalues of Φ(P ⊗ In) and P , due to

the particular block structure of Φ̃. Because the columns of P sum to one, P has at least one

eigenvalue equal to one (see Hamilton, 1994, Ch 22), and hence so has Φ̃.

2.2 The state space formulation for the level and the quadratic pro-

cess

To determine second moments and the effect of shocks on (co)variances and correlation, we need

to analyze the quadratic process zt = yt ⊗ yt. As before, we also define the random vectors

z∗t = st⊗zt, which now combines the latent state process St with the quadratic process zt, and

z̃t =
(
z∗t

′,y∗
t
′, s′t
)′

by stacking z∗t , y
∗
t and st. We can then prove the following proposition.

Proposition 2. Let yt follow the MS-VAR process as specified in eqs. (1) and (2). Define

zt = yt ⊗ yt, z∗t = st ⊗ zt and z̃t =
(
z∗t

′,y∗
t
′, s′t
)′
, with y∗

t as defined in proposition 1. Then zt

follows the process

zt = γSt + ωSt + ΨStyt−1 + ΥStzt−1 + ζt, (11)

where γSt = cSt ⊗ cSt, ωSt = vec (ΣSt), ΨSt = ΦSt ⊗ cSt + cSt ⊗ΦSt, ΥSt = ΦSt ⊗ΦSt, and

ζt =(ΛSt ⊗ cSt + cSt ⊗ΛSt)εt + (ΛSt ⊗ΦSt)(εt ⊗ yt−1)+

(ΦSt ⊗ΛSt)(yt−1 ⊗ εt) + (ΛSt ⊗ΛSt)(εt ⊗ εt − vec (In)).

1Bianchi (2016) does not define the VAR of eq. (6) but starts from its expectation.
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z∗t follows the process

z∗t = (Γ +Ω)Pst−1 + Ψ (P ⊗ In)y∗
t−1 + Υ (P ⊗ In2)z∗t−1 + ζ

∗
t , (12)

with Γ = bdiagmi=1(γi), Ω = bdiagmi=1(ωi), Ψ = bdiagmi=1(Ψi), and Υ = bdiagmi=1(Υi), and

ζ∗t =(Γ +Ω)ut + Ψ (ut ⊗ yt−1) + Υ (ut ⊗ zt−1)+

bdiagmi=1(Λi ⊗ ci + ci ⊗Λi)(st ⊗ εt) + bdiagmi=1(Λi ⊗Φi)(st ⊗ εt ⊗ yt−1)+

bdiagmi=1(Φi ⊗Λi)(st ⊗ yt−1 ⊗ εt) + bdiagmi=1(Λi ⊗Λi)(st ⊗ (εt ⊗ εt − vec (In))).

z̃t follows the process

z̃t =


z∗t

y∗
t

st

 = Υ̃ z̃t−1 + ζ̃t, (13)

with

Υ̃ =


Υ (P ⊗ In2) Ψ (P ⊗ In) (Γ +Ω)P

O Φ(P ⊗ In) CP

O O P

 ,

and ζ̃t = (ζ∗t
′, ε∗t

′,u′
t)

′, with ε∗t as defined in proposition 1. Morover, ζt, ζ
∗
t and ζ̃t are MDS.

This proposition shows that z̃t, so the combination of the state variable, measurement

variables, and their squares, also follows a first-order linear VAR with non-Gaussian innovations.

Its Markovian property makes it again useful to analyze both first and second moments of

MSVAR models. Υ̃ is also non-convergent because of the presence of P .

The variable z̃t contains all information of zt, yt and St, which we can obtain by summations

of the form,

at = H̃az̃t, for a = z,y, s, (14)

where H̃z =
(
Hz,On2×m(n+1)

)
withHz = ι′m⊗In2 , H̃y = (On×mn2 , G̃y) = (On×mn2 ,Gy,On×m),

and H̃s = (Om×mn2 , G̃s) = (Om×mn(n+1), Im). Also, zt = Hzz
∗
t . It means that we can ana-

lyze both second and first moments and shocks to it by analyzing z̃t, and we do not need to

additionally analyze ỹt.

The conditional expectation of z̃t + h for h > 0 conditional on yt and state probabilities ξt

follows directly as

E[z̃t+h|yt, ξt] = Υ̃ h


ξt ⊗ yt ⊗ yt
ξt ⊗ yt
ξt

 . (15)
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We can extract second moments from this result as E[yt+h ⊗ yt+h|yt, ξt] = E[zt+h|yt, ξt] =

H̃zE[z̃t+h|yt, ξt], which corresponds with eq. (9) in Bianchi (2016), and first moments as

E[yt+h|yt, ξt] = H̃yE[z̃t+h|yt, ξt]. The vectorized variance matrix then follows as

vec (Var[yt+h]) = E[yt+h ⊗ yt+h|yt, ξt]− E[yt+h|yt, ξt]⊗ E[yt+h|yt, ξt]

= H̃zE[z̃t+h|yt, ξt]− H̃yE[z̃t+h|yt, ξt]⊗ H̃yE[z̃t+h|yt, ξt]. (16)

When a series of expectations is required, the relation zt = Hzz
∗
t can be used with the

recursion

E[z∗t+h|yt, ξt] =Υ (P ⊗ In2) E[z∗t−h−1|yt, ξt]+

Ψ (P ⊗ In) E[y∗
t−h−1|yt, ξt] + (Γ +Ω) E[st+h|ξt],

(17)

in combination with eq. (10), and initial conditions E[z∗t−h−1|yt, ξt] = ξt⊗yt⊗yt, E[y∗t |yt, ξt] =
ξt ⊗ yt.

We use a similar approach to determine autocovariances and covariances for different leads

or lags. We define the lead processes of order k ≥ 0, zt+k,t = yt+k ⊗ yt, and combine the lead

and level process with the latent state process, z∗t+k,t = st+k ⊗ zt+k,t and y
∗
t+k,t = st+k ⊗ yt.

Because zt+k,t = vec(ytyt+1), it gives rise to Cov(yt,yt+1). The process for zt,t+k can be derived

by premultiplying zt+k,t by the appropriate vectorized transpose matrix. We use them in the

following proposition.

Proposition 3. Let yt follow the MS-VAR process as specified in eqs. (1) and (2). Define

zt+k,t = yt+k ⊗ yt, z∗t+k,t = st+k ⊗ zt+k,t and y
∗
t+k,t = st+k ⊗ yt for h ≥ 0. The process defined

by z̃t+k,t =
(
z∗t+k,t

′,y∗
t+k,t

′, s′t+k

)′
follows

z̃t+k,t =

(
Φ̃⊗ In O

O P

)
z̃t+k−1,t +

(
ε̃t+k ⊗ yt
ut+k

)
, k ≥ 1 (18)

with Φ̃ as in proposition 1 and the second term a MDS.

This proposition shows that z̃t+k,t also follows a first order linear VAR with non-Gaussian

innovations. When k = 0, y∗
t,t = y∗

t , zt,t = zt and and z∗t,t = z∗t result as defined in the

previous propositions. The process zt+k,t can be obtained by zt+k,t = H̃zz̃t+k,t. The conditional

expectation of z̃t+h+k,t+h for h > 0 conditional on yt and state probabilities ξt follows as

E[z̃t+h+k,t+h|yt, ξt] =

(
Φ̃k ⊗ In O

O P k

)
E[z̃t+h|yt, ξt]

=

(
Φ̃k ⊗ In O

O P k

)
Υ̃ h


ξt ⊗ yt ⊗ yt
ξt ⊗ yt
ξt

 . (19)
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We can use the recursion in eq. (18) and the structure of Φ̃ to write the conditional expectation

of z∗t+h+k,t+h recursively as

E[z∗t+h+k,t+h|yt, ξt] = (Φ⊗In)(P ⊗In2) E[z∗t+h+k−1,t+h|yt, ξt]+(CP k⊗In) E[y∗
t+h|yt, ξt], (20)

where we use thatΦ(P⊗In)⊗In = (Φ⊗In)(P⊗In⊗In) = (Φ⊗In)(P⊗In2), E[y∗
t+h+k−1,t+h|yt, ξt] =

E
[
E[st+h+k−1 ⊗ yt+h|y∗

t+h]
∣∣yt, ξt] = (P k−1 ⊗ In) E[y

∗
t+h|yt, ξt] and E[y∗

t+h|yt, ξt] follows from

proposition 1. This result corresponds with proposition 3 in Bianchi (2016). When a Markov

Switching model without a VAR component is considered (i.e. an MSIH, or MSI model), the

first terms vanishes because Φ = O, and the autocovariance structure is completely driven by

the transition matrix.

2.3 Stationarity and unconditional moments

Stationarity of (V)ARMA processes with Markov Switching has been investigated before by

Yang (2000); Francq and Zaköıan (2001); Zhang and Stine (2001); Stelzer (2009) and Bianchi

(2016). Based on their results, the MS-VAR process as specified in eqs. (1) and (2) is second-

order stationary if and only if the spectral radius of the matrix Υ (P ⊗ In2) is smaller than

1, where Υ is defined in proposition 2. When this condition is satisfied, the first and second

moment exist, and follow as

ȳ = lim
t→∞

E[yt|y0, ξ0] = Gyȳ
∗, (21)

z̄ = lim
t→∞

E[zt|y0, ξ0] =Hzz̄
∗, (22)

where

ȳ∗ = lim
t→∞

E[y∗
t |y0, ξ0] =

(
Inm −Φ(P ⊗ In)

)−1
Cξ̄. (23)

z̄∗ = lim
t→∞

E[z∗t |y0, ξ0] =
(
In2m − Υ (P ⊗ In2)

)−1(
(Γ +Ω)ξ̄ + Ψ (P ⊗ In)ȳ∗), (24)

and ξ̄ are the ergodic probabilities of the regime process. The unconditional expectation of

zt+k,t then also exists and is given by

z̄k = lim
t→∞

E[zt+k,t|y0, ξ0] =Hzz̄
∗
k, (25)

where z̄∗k = limt→∞ E[z∗t+k,t|y0, ξ0] follows together with ȳ∗
k = limt→∞ E[y∗

t+k,t|y0, ξ0] from

eq. (19) as(
z̄∗k

ȳ∗
k

)
=
(
Φ̃k ⊗ In

)(z̄∗
ȳ∗

)
. (26)

Cavicchioli (2017a,b) derives conditions for and expressions of unconditional third and fourth

order moments.
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2.4 Regime-specific moments

We now turn to first and second moments when the regime or regime probabilities are given.

These expectations correspond with situations where the current regime or regime distribution

is given, but no information about the history of the regimes is available. In other words, we

calculate the expectation or variance of yt given a particular regime St or regime distribution ξt,

but without any information about how the process arrived there. To derive these expectations,

we need to define the “time-reversed” Markov chain.

Definition 1. Let St be the irreducible, ergodic Markov chain defined in eq. (2). Then the

corresponding time-reversed Markov chain is governed by the transition matrixQ with elements

qij = Pr[St−1 = i|St = j] = pji
ξ̄i
ξ̄j
, (27)

where ξ̄i = Pr[St = i] denotes the ergodic probability for state i.

The expression for qij follows from the application of Bayes’ rule. We can also write Q =

diag(ξ̄)P ′ diag(ξ̄)−1, which shows that the matrices P and Q′ are similar, and hence have the

same characteristic equation. We use this definition in the following lemma and propositions.

Lemma 1. Let yt follow the MS-VAR process as specified in eqs. (1) and (2). Let Q be the

transition matrix of the time-reversed Markov chain of the proces St, and let Υ = bdiagmj=1(Φj⊗
Φj). Then the matrices Υ (P ⊗ In2) and Υ (Q′ ⊗ In2) are similar.

This lemma implies that yt combined with the original state process St governed by P or

combined with the time-reversed process governed by Q have many properties in common. The

matrices Υ (P ⊗ In2) and Υ (Q′ ⊗ In2) have the same characteristic equation, because they are

similar. As a consequence, they have the same eigenvalues. We use this property in the proofs

of the next propositions.

Proposition 4. Let yt follow the MS-VAR process as specified in eqs. (1) and (2), and assume

that it is second-order stationary. Let µj = E[yt|St = j], and stack these conditional expectations

in the mn× 1 vector µ =
(
µ′

1, . . .µ
′
m)

′. Then

µ =
(
Inm −Φ(Q′ ⊗ In)

)−1
c, (28)

where c =
(
c′1, . . . , c

′
m

)′
, Φ = bdiagmi=1(Φi), and Q is the transition matrix of the time-reversed

Markov chain of the proces St. The expectation of yt conditional on the state distribution ξt

follows as

E[yt|ξt] = (ξ′t ⊗ In)µ, (29)
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The expectation of yt+h for h ≥ 0 conditional on the current state distribution ξt follows as

E[yt+h|ξt] = G̃y E[ỹt+h|ξt] with

E[ỹt+h|ξt] = Φ̃h

((
diag(ξt)⊗ In

)
µ

ξt

)
, (30)

with ỹt+h and Φ̃ defined in proposition 1 and G̃y as in (7).

Proposition 5. Let yt follow the MS-VAR process as specified in eqs. (1) and (2), and assume

that that it is second-order stationary. Let zt = yt ⊗ yt, µj = E[yt|St = j], νj = E[zt|St = j]

with stacked versions µ =
(
µ′

1, . . .µ
′
m)

′ and ν =
(
ν ′
1, . . .ν

′
m)

′. Then

ν =
(
In2m − Υ (Q′ ⊗ In2)

)−1(
γ + ω + Ψ (Q′ ⊗ In)µ

)
, (31)

where γ = (γ ′
1, . . . ,γ

′
m)

′ with γj = cj ⊗ cj, ω = (ω′
1, . . . ,ω

′
m)

′ with ωj = vec(Σj), Υ =

bdiagmj=1(Φj ⊗ Φj), Ψ = bdiagmj=1(Φj ⊗ cj + cj ⊗ Φj), Q is the transition matrix of the time-

reversed Markov chain of the proces St, and µ is given in proposition 4. The expectation of zt

conditional on the state distribution ξt follows as

E[zt|ξt] = (ξ′t ⊗ In2)ν. (32)

The expectation of zt+h for h ≥ 0 conditional on the current state distribution ξt follows as

E[zt+h|ξt] = H̃z E[z̃t+h|ξt] with

E[z̃t+h|ξt] = Υ̃ h


(
diag(ξt)⊗ In2

)
ν(

diag(ξt)⊗ In
)
µ

ξt

 , (33)

with z̃t+h and Υ̃ defined in proposition 2.

These propositions complement the results of Bianchi (2016). He derives conditional steady

states of the form limτ→∞ E[yt|St = · · · = St−τ = j] and limτ→∞ E[zt||St = · · · = St−τ = j],

which essentially correspond with a situation without any regime switching. Our results give

the expectation conditional on knowing the current state, but without any knowledge about

the past, and without past observations. They can be used for analyses when one wants to

assume that, say, the economy is a recession, or the stock market is bearish, without specifying

particular values on key indicators, and without the assumption that the state process has been

in that particular state indefinitely long. We propose a framework for such analyses in the next

section.
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The propositions are also related to Timmermann (2000), who considers state-dependent

autoregressive dynamics in his section 4 of the form

yt = µSt +ΦSt−1(yt−1 − µSt−1) +ΛStεt,

though limited to the one-dimensional case. The main differences with our results are that the

dynamics in the AR-part of the model depend on the current state in our model (that is, ΦSt

in eq. (1)), whereas they depend on the prior state in his, and that the autoregressive part is

driven by past values yt−1 in our specification, and by deviations of past values from state-

specific means yt−1 − µSt−1 in his. As a consequence, the expectations µj = E[yt|St = j] are

part of the model specification. The expressions for the second moments and their derivation

are similar in spirit to our propositions and proofs.

Combining the results of proposition 3 with proposition 5 completes the necessary building

blocks to analyze the regime-specific autocovariances, for which we need the expectation of

(future values of) the process zt+k,t = yt+k ⊗ yt conditional on the state process.

Proposition 6. Let yt follow the MS-VAR process as specified in eqs. (1) and (2), and assume

that it is second-order stationary. Define zt+k,t = yt+k ⊗ yt. Then the expectation of zt+h+k,t+h

for h ≥ 0 conditional on the current state distribution ξt follows as

E[zt+h+k,t+h|ξt] = H̃z

(
Φ̃k ⊗ In O

O P k

)
E[z̃t+h|ξt], (34)

with Φ = bdiagmi=1(Φi) and E[z̃t+h|ξt] as in proposition 5.

The expression in this proposition concerns the general case h ≥ 0, and simplifies when h = 0.

In line with the results based on proposition 3, we can calculate E[zt+k,t|ξt] = Hz E[z
∗
t+k,t|ξt]

with the recursion

E[z∗t+k,t|ξt] = (Φ⊗ In)(P ⊗ In2) E[z∗t+k−1,t|ξt] + (CP k ⊗ In) E[y∗
t |ξt], (35)

with E[z∗t,t|ξt] = E[z∗t |ξt] = (diag(ξt)⊗ In2)ν and E[y∗
t |ξt] = (diag(ξt)⊗ In)µ.

The combination of proposition 4 and proposition 6 gives the autocovariances as

Cov[yt+h,yt+h+k|ξt] = E[yt+h+ky
′
t+h|ξt]− E[yt+h+k|ξt] E[y′

t+h|ξt]. (36)

The autocorrelations can be found by scaling them by the appropriate variances based on the

conditional expectations of the squared processes in proposition 5.

The propositions of this section enable us to derive the autocovariance structure of MSIH-

models as a special case.
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Corollary 1. Let yt follow the MS-VAR process as specified in eqs. (1) and (2) with Φi = O

for i = 1, . . . ,m , and assume that it is second-order stationary. Then

vec
(
Cov[yt,yt+k|ξt]

)
= (ι′m ⊗ In2)

(
CP k

(
diag(ξt)− ξtξ′t

)
⊗ In

)
µ. (37)

This corollary shows that even when Markov-switching models do not have a (V)AR-

component in their specification, the switching component leads to non-zero autocovariance.

When ξt = ei, that is, regime i occurs with probability 1, ξtξ
′
t = eie

′
i = diag(ei), and hence

Cov[yt,yt+k|ei] = O.

3 Impulse responses analysis

The results of the previous section enable an analysis of the static properties of MSVAR models.

To further understand what the implications of these models are for the behavior of the variables,

we now turn to their dynamic properties. Therefore we present a framework to analyze how

shocks propagate in MSVAR models. We use the state space formulation of the previous section

to derive the first order as well as the second order impulse response functions.

3.1 The Generalized Impulse Response Function

The VAR-representation in proposition 1 fits naturally with the definition of the Generalized

Impulse Response Function (GI) of Koop et al. (1996),

GI ỹ(h, εt,ut, It−1) = E[ỹt+h|εt,ut, It−1]− E[ỹt+h|It−1] = Φ̃
hε̃t, (38)

where h gives the horizon, and It denotes the information set at time t. We have specified the

GI for the extended process ỹ, from which we can easily derive the GI for y and s, using

GI a(h, εt,ut, It−1) = G̃aGI ỹ(h, εt,ut, It−1), for a = y, s, (39)

with G̃a as in eqs. (7) and (8).

Our approach allows for three specifications of the information set. In the first one, it

contains both the most recent observation yt−1 and a given set of probabilities for each regime

ξt−1. In the second one, a series of past observations Yt−1 = {yτ}t−1
τ=0 is present, and we calculate

ξt−1 = E[st−1|Yt−1, ξ0] or ξt−1 = E[st−1|Yt−1] if ξ0 is not specified. In the third one, only the

set of probabilities for each regime ξt−1 is given, and we use E[yt−1|ξt−1] for yt−1. To simplify

our notation, we assume in this section that the information set is given in terms of yt−1 and

ξt−1, though the one may actually be calculated as the expectation of (a series of) the other.
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In the generalized impulse response analysis typically one or a few of the innovations are

specified. In an MS-VAR model, there are three types of innovations that can be jointly or

separately specified. Following directly from the model specification are regime innovations ut

and innovations εit.
2 They can also be specified with respect to the observed variables, which

we denote by ηit = yit − E[yit|It−1]. As a consequence, we define three GI functions depending

on the type of innovation.

Proposition 7. Let yt follow the MS-VAR process as specified in eqs. (1) and (2), and let

the Generalized Impulse Response Function for ỹt be defined by eq. (38) and the results in

proposition 1. Let the vector yt−1 be part of It−1 or calculated as E[yt−1|It−1]. Let the vector

with regime probabilities ξt−1 be part of It−1 or calculated as E[st−1|It−1]. Let the matrices

C,Φ,Λ, and Φ̃ be defined as in proposition 1. When the shock originates from the regime

process, the corresponding GI satisfies

GI uỹ(h,ut, It−1) = GI ỹ(h, ∅,ut, It−1) = Φ̃
h

(
Cut +Φ(ut ⊗ yt−1)

ut

)
. (40)

When the shock is specified in terms of the structural innovation εit, the corresponding GI

satisfies

GI εiỹ (h, εit, It−1) = GI ỹ(h, εit, ∅, It−1) = Φ̃
h

(
εitΛ(Pξt−1 ⊗ ei)

0m

)
. (41)

When the shock is specified as ηit = yit − E[yit|It−1], the corresponding GI satisfies

GI yiỹ (h, ηit, It−1) = E[ỹt+h|yit, It−1]− E[ỹt+h|It−1] = Φ̃
h

(
E[ε∗t |yit, It−1]

E[ut|yit, It−1]

)
. (42)

The second conditional expectation satisfies E[ut|yit, It−1] = E[st|yit, It−1]− E[st−1|It−1] with

E[st|It−1] = Pξt−1,

E[st|yit, It−1] =
1

f ′Pξt−1

f ⊙ Pξt−1, ,

where f is a vector of size m whose element j is equal to the pdf of the marginal distribution

of yit under regime j, yit|St = j ∼ N(e′i(cj +Φjyt−1), e
′
iΣjei). The first conditional expectation

satisfies

E[ε∗t |yit, It−1] = C E[ut|yit, It−1] +Φ(E[ut|yit, It−1]⊗ yt−1) +ΛE[st ⊗ εt|yit, It−1],

2The vector ut cannot be chosen freely but should satisfy the restriction that Pξt−1 + ut is in the unit

simplex. A necessary condition is that
∑m

j=1 ui = 0.
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with last term

E[st ⊗ εt|yit, It−1] =


E
[
s1t
∣∣yit, It−1

]
E
[
εt
∣∣yit, St = 1, It−1

]
...

E
[
smt

∣∣yit, It−1

]
E
[
εt
∣∣yit, St = m, It−1

]
 ,

and

E
[
εt
∣∣yit, St = j, It−1

]
= Λ−1

j

(
yit − e′i(cj +Φjyt−1)

e′iΣjei
Σjei

)
.

The impulse response function GI uỹ shows the effect of shocks to the regime process. It

can be used to assess the consequences of a switch to a particular regime. If the switch is to

a particular regime j, ie. st = ej, with ej the standard basis vector for dimension j, we can

substitute ut = ej − Pξt−1.

The impulse response function GI εiỹ is in line with the traditional framework of Sims (1980).

However, shocks in εit are not very interesting because they translate to different shocks in

the different regimes depending on the regime-specific matrices ΛSt . Only when the regime at

t is known with certainty, one can interpret and compare the resulting GIRF for shocks of εi

standard deviations. Bianchi (2016) uses this particular setting for his impulse response analysis

of a system of macroeconomic variables.

The impulse response function GI yiỹ shows that shocks in a particular variable yi generate a

contemporaneous response in two ways. The term E[ut|yit, It−1] captures the effect of the shock

on the inference of the regime process. Though εt and ut are independent, yt and ut are not,

and hence E
[
ut|yit, It−1

]
is not necessarily zero. The effect on the inferred regime has a direct

effect on the expectation of the regime specific innovations E[ε∗t |yit, It−1]. However, shocks in

yit may be correlated with shocks in the other variables, also depending on the regime, and

this effect is captured by the term E[st ⊗ εt|yit, It−1]. The proposition shows how to derive the

effects for the different regimes.

Our set of GI functions complement the impulse response analyses (IRA) proposed by other

authors. The differences with our IRA relate to the information about the regimes at the time

of the shock, and the nature of the shock. In our IRA, the shock occurs at time t, can have

three sources, and information about the regimes pertains to t − 1. If the shock occurs in the

structural innovation εit or the observable yit, the regime in which the shock occurs is hence

not known. To the contrast, in Ehrmann et al. (2003) shocks can only occur in the structural

innovations, the regime at the time of the shock is known, and assumed to prevail up to the

forecast horizon h. Karamé (2010, 2012) relaxes this last assumption, and allows for regime

switching after the time of the shock. Krolzig (2006) also assumes that the regime at the time

of the shock is known, but specifies the shock in one variable while assuming that the other
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variables are not shocked. Karamé (2015) specifies shocks similarly to Krolzig (2006), but does

not assume that the regime at the time of the shock is known. The first order IRA in Bianchi

(2016) is in line with Karamé (2010), though with the additional assumption that the regime

process has spent “a significant amount of time” in a particular regime, i.e., no regime switches

have occured until the time of the shock. We argue that our setting is a realistic one, because

(i) shocks can signal a regime switch, and (ii) we do not require further assumptions on the

regime process, only its distribution at t− 1.

Our approach is closest to Karamé (2015), but we consider both shocks to the structural

innovations, and to one observable variable yit without the assumption that the other variables

are not shocked. Another important difference is that we can express the GI in closed form due

to the extended VAR specification in proposition 1, whereas he reverts to simulations. The GIs

in Krolzig (2006) and Bianchi (2016) are also in closed form.

3.2 Second order responses

Because of its nonlinear nature, shocks in a Markov Switching model also affect higher order

moments, whereas these are unaffected in a the setting of a linear VAR. A shock may signal an

increase or a decrease of the future variance of the system, depending on the information set as

well as the sign and the size of the shock. The framework we have developed so far allows for

a straightforward analyses of these effects.

The VAR-respresentation for the extended squared process in proposition 2 gives rise to

GI z̃(h, εt,ut, It−1) = E[z̃t+h|εt,ut, It−1]− E[z̃t+h|It−1] = Υ̃
hζ̃, (43)

which extends eq. (38). It is important to note that ζ̃t results as a combination of the inno-

vations in the state probabilities ut and the structural innovations εt. Because z̃t contains all

information regarding the level, squared and state processes zt, yt, and St, we can derive their

GIs from GI z̃ by

GIa(h, εt,ut, It−1) = H̃aGIz̃(h, ζ̃t, It−1), for a = z,y, s, (44)

as in eq. (14). As an extension of proposition 7 for the first order impulse responses, we define

separate GIs for z̃ based on the origin of shocks.

Proposition 8. Let yt follow the MS-VAR process as specified in eqs. (1) and (2), and let

the Generalized Impulse Response Function for z̃t be defined by eq. (43) and the results in

proposition 2. Let the vector yt−1 be part of It−1 or calculated as E[yt−1|It−1]. Let the vector

with regime probabilities ξt−1 be part of It−1 or calculated as E[st−1|It−1]. Let the matrices
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C,Φ,Λ, and Φ̃ be defined as in proposition 1, and Γ , Ω, Ψ , Υ and Υ̃ as in proposition 2.

When the shock originates from the regime process, the corresponding GI satisfies

GI uz̃ (h,ut, It−1) = GI z̃(h, ∅,ut, It−1) = Υ̃
h


(Γ +Ω)ut + Ψ (ut ⊗ yt−1) + Υ (ut ⊗ zt−1)

Cut +Φ(ut ⊗ yt−1)

ut

 .

(45)

When the shock is specified in terms of the an innovation εit, the corresponding GI satisfies

GI εiz̃ (h, εit, It−1) = GI z̃(h, εit, ∅, It−1) = Υ̃
h


E[ζ∗t |εit, It−1]

εitΛ(Pξt−1 ⊗ ei)
0m

 , (46)

with

E[ζ∗t |εit, It−1] =εit bdiag
m
j=1(Λj ⊗ cj + cj ⊗Λj)(Pξt−1 ⊗ ei)+

εit bdiag
m
j=1(Λj ⊗Φj)(Pξt−1 ⊗ ei ⊗ yt−1)+

εit bdiag
m
j=1(Φj ⊗Λj)(Pξt−1 ⊗ yt−1 ⊗ ei)+

(ε2it − 1) bdiagmj=1(Λj ⊗Λj)(Pξt−1 ⊗ ei ⊗ ei).

When the shock is specified as ηit = yit − E[yit|It−1], the corresponding GI satisfies

GI yiz̃ (h, ηit, It−1) = E[z̃t+h|yit, It−1]−E[z̃t+h|It−1] = Φ̃
h


E[z∗t |yit, It−1]− E[z∗t |It−1]

E[ε∗t |yit, It−1]

E[ut|yit, It−1]

 , (47)

where the last two conditional expectations have been defined in proposition 7, and

E[z∗t |yit, It−1] =


E
[
s1t|yit, It−1

]
E
[
zt|yit, St = 1

]
...

E
[
smt|yit, It−1

]
E
[
zt|yit, St = m

]


and

E[zt|yit, St = j, It−1] = vec (Var[yt|yit, St = j, It−1])−

E[yt|yit, St = j, It−1]⊗ E[yt|yit, St = j, It−1].

with

E
[
yt|yit, St = j, It−1

]
= E

[
yt|St = j, It−1

]
+

yit − e′i(cj +Φjyt−1)

e′iΣjei
Σjei,

Var[yt|yit, St = j, It−1] = Σj −
1

e′iΣjei
Σjeie

′
iΣj.
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Whereas many authors have studied the analysis of first order impulse responses, Bianchi

(2016) is the first to address second order IRA. Similar to his first order IRA, he assumes that

the shock occurs in a structural innovation, that the regime at the time of the shock is known,

and that the process has not encountered a regime switch before the shock. In our proposition,

we extend his analysis to the case where the regime at the time of the shock is unknown, and

where the shock can occur in the regime process or an observable variable. We do not make the

assumption that the process has been in a particular regime for an infinitely long time.

The results for the squared process zt are of course mostly interesting to determine how

shocks influence the (co)variance or correlation of the different variables. Therefore, we intro-

duce the variance impulse response function

VI y(h, εt,ut, It−1) = Var[yt+h|εt,ut, It−1]− Var[yt+h|It−1] (48)

It is related to GI z̃ by

vecVI y(h, εt,ut, It−1)

=E[zt+h|εt,ut, It−1]− E[yt+h|εt,ut, It−1]⊗ E[yt+h|εt,ut, It−1]−

(E[zt+h|It−1]− E[yt+h|It−1]⊗ E[yt+h|It−1])

=GI z(h, εt,ut, It−1)−GI y(h, εt,ut, It−1)⊗GI y(h, εt,ut, It−1)−

E[yt+h|It−1]⊗GI y(h, εt,ut, It−1)−GI y(h, εt,ut, It−1)⊗ E[yt+h|It−1].

Variance or volatility impulse responses show up for any model of heteroskedasticity. Hafner

and Herwartz (2006) introduce the concept in relation to multivariate GARCH models.

3.3 Conditional Variance Decompositions

We can analyze the dynamics of an MS-VAR model by decomposing the variance of the forecast

error (see Lütkepohl, 2005; Pesaran and Shin, 1998), and transforming the result into spillover

indexes developed by Diebold and Yılmaz (2009, 2012). However, in contrast to linear Gaussian

VAR models, regime switching models produce decompositions and indexes that are both time-

varying and depend on the size of the shocks. The GIs in eqs. (40) to (42) vary over time

because of their dependence on It−1. When shocks are defined directly with respect to yt as in

eq. (42), their effect on this expectation is nonlinear and asymmetric. Small or positive shocks

typically lead to a different update on the prevailing regime than big or negative shocks.

As a starting point, we propose to quantify the shocks yit as a proportion δ of the square

root of the one-step-ahead forecast variance

vit = var[yit|It−1] = E[y2it|It−1]− E[yit|It−1]
2, (49)
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where E[y2it|It−1] and E[yit|It−1] follow from eq. (15). This leads to the standardized generalized

impulse response function

ψyi
a (h, δ, It−1) = G̃aGI yiỹ (h, ηit = δ

√
vit, It−1), a = y, s (50)

which gives the effect of a shock of δ standard deviations to yit on yt+h or st+h. Following

Lanne and Nyberg (2016), we define the generalized forecast error variance decomposition as

the proportion of the total of impulse responses of variable yj or regime sj which is accounted

for by the GI of variable yi conditional on It and innovation size δ standard deviations as

θyiaj(h, δ, It−1) =

∑h
l=0(e

′
jψ

yi
a (l, δ, It−1))

2∑h
l=0

∑n
k=1(e

′
jψ

yk
a (l, δ, It−1))2

, a = y, s. (51)

Lanne and Nyberg (2016) propose this definition as an alternative to Pesaran and Shin (1998)

who use δ var[yit+h|It−1] in the denominator, to ensure that
∑n

i=1 θ
yi
aj
(h, δ, It−1) = 1.

4 Application to investments

In this section, we use our theoretical results to analyze the risk-return trade-off for stocks

and bonds. MSVAR models are well suited for such analyses, as they comprise the insights

from two strands of literature. First, the literature on return predictability, for example in the

seminal papers by Campbell and Viceira (1999); Campbell et al. (2003) and Barberis (2000),

shows that state variables such as the dividend-to-price ratio and the short rate, have persistent

effects on the expected returns and (co)variances. This predictability is typically captured by a

VAR(1)-model. Second, the presence of regime switching in asset returns and their pronounced

implications for investments have been widely documented.3 MSVAR models accommodate

both features. In their analysis of these models for US stock and bond returns, Guidolin and

Ono (2006) show than an MSIH(4)-VAR(1) model works best, and yields better predictions

than simpler VAR or MSIH models.

Based on these findings in the literature, we analyze the risk and returns of US stocks and

bond returns with the dividend-to-price ratio and the short rate as predictor variables. We inves-

tigate means, (co)variances and the impact of shocks for the different regimes. Our base model

is an MSIAH(2)-VAR(1) model, so a VAR model of order 1, with intercepts, autoregressive

parameters and (co)variances that switch between two regimes. We compare its implications

to those of restricted models to determine the impact of predictability by predictor variables

3Notably Ang and Bekaert (2002), Guidolin and Timmermann (2006a,b, 2007, 2008). See Guidolin (2011)

for a survey.
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and regime switching. To be precise, the comparison with a simple Markov switching model

for stocks and bonds with two regimes (an MSIH(2) model) shows the impact of predictability,

whereas the comparison with a simple VAR(1) for the returns and predictor variables shows the

effect of regime switching. We keep the model specifications simple, because we do not aim for

the best fitting model.

4.1 Data and estimation results

We base our analysis on monthly observations taken from CRSP. As stock returns we take value-

weighted returns including dividends on the S&P500. We calculate the log dividend-to-price

ratio at month t as the log of the sum of the dividends over the past 12 months minus the log

of the level of the index at the end of month t. As bonds returns we take the monthly return

series from the CRSP Fixed-Term Index of 10-year Treasury bonds. As the short rate, we take

the yield on 1-month Treasury Bills as supplied by the CRSP Risk-Free Rates Files. The data

set runs from January 1952 to December 2018 (804 observations).

[Table 1 about here.]

The summary statistics in table 1 show that both stocks and bonds yield on average positive

excess returns, with equity volatility being twice as high as bond volatility. All variables exhibit

non-zero skewness, indicating deviations from normality that a standard linear VAR cannot

capture. The kurtosis of stock and bond returns also point at deviations from normality. Panel

b shows that the T-bill rate and the D/P ratio are highly persistent, and may even exhibit a unit

root. Correlations are overall close to zero, with the exception of the T-bill rate and the D/P

ratio. The autocorrelations and cross-correlations paint a rich picture that Markov-switching

models without a VAR term may find difficult to emulate. In particular, we find larger lead and

lag than contemporaneous correlations between stocks and bonds. As expected, we see a small

but positive correlation between stock returns and the lagged D/P ratio. The lagged T-bill rate

is negatively correlated with both stock and bond returns.

We report the parameters estimates of the MSIH(2) Model in table 2. The estimation uses

the Expectation-Maximation algorithm of Dempster et al. (1977), see also Hamilton (1990).

The estimation period starts with February 1952 to account for the lag in the other models.

The results clearly show low and high volatility regimes, whose volatilities differ by a factor two.

Excess stock returns are large and positive (about 1% per month) in the low volatility regime,

and large and negative (about -0.5% per month) when volatility is high, so we can also classify

the regimes as bullish and bearish. For bonds we see the opposite pattern with returns close to

zero in the low volatility regime and large positive returns in the high volatility regime. These
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return differences indicate that investors see bonds as safe haven during high volatility periods.

Correlations are low and do not differ much between the regimes. Both regimes are persistent

as indicated by the high values for p11 and p22.

[Table 2 about here.]

The estimation results for the VAR(1) model are in table 3. The autoregressive coefficients

show the typical results found in the literature about predictability and its effect on long-run

asset allocation. We see weak but significant predictability of stock and bond returns by their

past values. Both the T-bill rate and D/P ratio are strongly persistent, with autoregressive

coefficients close to 1. The lagged T-bill rate (D/P ratio) has a strong negative (positive)

effect on excess stock returns, but neither predict excess bond returns. The combination of

their predictive effect with their strong persistence leads to the long-term effects on means and

(co)variances presented by Campbell and Viceira (2005). Correlations are generally low, except

between stock returns and D/P ratio, which is by construction.

[Table 3 about here.]

[Table 4 about here.]

The parameter estimates for the MSIAH(2)-VAR(1) model in table 4 show that the features

of the two restricted models remain present. As for the MSIH(2) model, we see low and high

volatility regimes that are persistent. Conform the results for the VAR(1) model, we observe

predictability between stock and bond returns, and from the T-bill rate and D/P ratio to stock

returns. However, predictability varies over the regimes. In the low volatility regime, stocks

and bonds exhibit negative autocorrelation, whereas it is positive in the high volatility regime.

The effect of the T-bill rate on stock returns is significant in the low vol regime, but not in

the high vol regime. To the contrary, the effect of the D/P ratio is concentrated in the high

volatility regime. Next, the persistence of the T-Bill rate and D/P ratio are very strong in

the low volatility regime. Together, these differences can produce substantial differences in the

return distributions and predictability in the different regimes. We analyze their implications

in the next subsections.

4.2 Regime-specific moments

We use the results of section 2.4 to get more insights in the behavior of the variables conditional

on a specific regime. We present the means, volatilities, and correlations of each variable

conditional on the prevailing regime being 1 or 2 in table 5, and turn to the implications for the
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autocovariance structure in table 6. We also calculate these moments under the much stronger

assumption that the process has been in the current regime forever. This assumption simplifies

the calculations considerably to the standard results for VAR models and circumvents the need

of Propositions 4–6. However, ruling out any past regime switches is unrealistic, and may be

too strong if regimes are short-lived. The comparison of both results shows the consequences of

both assumptions. For completeness we also include the unconditional moments.

Table 5 shows that the effect of regime switching is mostly confined to stock and bonds, even

though the parameter estimates in table 4 for the T-Bill rate and D/P ratio vary considerably

over the regimes. As for the MSIH(2) model, the MSIAH(2)-VAR(1) model yields a regime with

a high mean for stocks and a low mean for bonds and low volatilities for both, and one with the

opposite pattern. Whereas the differences between the regime-specific volatilities implied by

both models are minor, the differences between the means for stocks are more substantial,

at 1.00% vs. 0.75% in regime 1, and -0.48% vs. -0.67% in regime 2. Consequently, the

unconditional mean is also substantially lower. Of course, the differences in these moments

may be related to different identification of bull and bear markets, as the MSIAH(2)-VAR(1)

model has a larger dimension.4 The inclusion of the predictor variables has a negative effect

on the steady state mean of stocks, as well as its regime-specific means. The correlations also

vary over the different regimes. Stocks and bonds are more strongly correlated in regime 2,

indicating less diversification benefits. Correlations with the predictor variables are generally a

bit lower. As an exception, the correlation between the T-Bill rate and D/P ratio is large at

0.455 and shows no switching. The unconditional correlations implied by the different models

are comparable, and generally lie between the regime-specific correlations.

[Table 5 about here.]

To illustrate the differences between moments conditional on the current regime and mo-

ments conditional on the current regime having prevailed infinitely long, we also report these

latter moments with the label “MSIAH(2)-VAR(1) inf.” For the means, these differences are

huge and would lead to very different implications. If the first regime has prevailed infinitely

long, the resulting means for stocks and bonds are 0.22% and 0.02%; for regime two we find

0.26% and 0.28%. Interpreting the regimes based on these calculations, so ignoring the effect

of Markov switching, would make the first regime seem less attractive, and the second regime

more. We would also conclude that the state variables show regime switching. Surprisingly,

the differences between the volatilities are much smaller. For the correlations they are again

4The correlation between the smoothed probabilities for the bull regimes in the two models is equal to 0.64,

indicating that the models do not identify the regimes identically.
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larger. Though the moments are easy to calculate under the “infinitely long” assumption, the

assumption is not realistic and consequently, the resulting moments do not reflect a particular

aspect of the data. That also means that the different values for the means we calculate under

this assumption do not have a clear meaning or interpretation.

The first order autocorrelation matrices in table 6 show quite some differences between the

regimes. Stocks exhibit negative autocorrelation in regime 1, but positive autocorrelation in

regime 2. Perhaps more consequential are the differences in magnitude. The auto- and cross-

correlation coefficients between stocks and bonds are considerably larger in regime 2. Together,

these increases make regime 2 more risky than regime 1, on top of its higher volatility of the

assets. The correlation between stock returns at t + 1 and the D/P ratio at t increases from

0.022 in regime 1 to 0.102 in regime 2, indicating that predictability of stock returns in regime

2 is considerably stronger. The autocorrelations of the T-bill rate and the D/P ratio are a bit

lower in regime 2.

[Table 6 about here.]

Comparing the regime-conditional results in panel (a) with the unconditional ones in panel

(c) shows the impact of combining a VAR structure with Markov switching. Incorporating only

Markov switching as in the MSIH(2) model leads to some unconditional autocorrelation, but

the coefficients are much lower than those resulting from the VAR(1) and MSIAH(2)-VAR(1)

models, and more importantly, they indicate weaker autocorrelation than what we find in the

data in table 1. Also, as we show in corollary 1, the regime-conditional correlations of any

plain MSIH model are zero. The unconditional autocorrelations of the VAR(1) and MSIAH(2)-

VAR(1) models are comparable, and correspond well with the empirical autocorrelations. They

lie again between the results for the two regimes in panel (a). But since the VAR(1) model

does not exhibit different regimes, it means that it would miss the differences implied by the

different regimes.

Panel (b) of table 6 reports the autocorrelation matrices calculated under the assumption

that a regime prevails forever. They can be calculated by considering that specific regime as

a VAR on its own. However, ignoring regime switches leads again to quite different results.

The autocorrelations between stocks and bonds become more extreme. For example, if regime

1 (2) would prevail forever, the autocorrelation of stocks is -0.101 (0.158) compared to -0.060

(0.112) when regimes can switch. The autocorrelations between the state variables at t and

stock and bond returns at t+ 1 in the lower-left part of the matrices tend to be lower in panel

(b), indication that the implied predictive effect of the state variables would be lower when

regime switching is ignored. Similar as in table 5, the differences in the behavior of the state

variables in the different regimes seem larger when regimes can prevail forever.
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We conclude that both Markov switching and predictability have profound implications for

the risk-return trade-off. Our results show the presence of a bull regime where average returns

are high for stocks but low for bonds, volatilities and correlations are low, and predictability

is weak. We also find a bear regime where average returns are low for stocks but high for

bonds, volatilities and correlations are higher, and predictability is stronger. The differences

with the implications from the simpler MSIH(2) or VAR(1) models are substantial for some

key indicators. In particular the combination of Markov Switching with a VAR model indicates

that the bearish regime is riskier than indicated by the simpler models. So investors should pay

close attention to the detrimental risk-return trade-off in the bear market regime, as well as the

different time-series dynamics. We also show that the assumption that one particular regime

has prevailed forever gives quite different moments than the assumption that a regime prevailed

only at t.

4.3 Impulse Response Analysis

We continue our analysis by investigating how shocks in the different variables affect the risk-

return trade-off at different horizons. As we showed in the derivation of the GIRFs, shocks in

Markov Switching models have a nonlinear effect where both the sign and the size of the shock

matter, contrary to the VAR(1) model where the effect of shocks is linear in the size of the shock.

Though the MSIAH(2)-VAR(1) model comprises four variables, we concentrate on the impulse

responses of stocks and bonds, because these are the variables that investors are interested in.

We consider the T-Bill rate and the D/P ratio as sources of shocks, but are less interested in

these state variables themselves. To disentangle the effects of the Markov-Switching and the

VAR components in the MSIAH(2)-VAR(1) model, we also conduct an analysis based on the

simpler MSIH(2) model.

4.3.1 First Order Impulse Responses

Our theoretical results show that we can distinguish three channels through which shocks affect

the levels. The first one is the direct channel that follows from the VAR-part of the model.

A shock to one variable yit influences all variables from t + 1 onwards because of the VAR

nature of the model. Next, we distinguish the indirect channel that shows up in the generalized

framework of Koop et al. (1996) because of the contemporaneous correlation of the variables. A

shock to the variable yit affects the expectation of all variables in yt, which then also propagates

because of the VAR structure. The third channel runs via the updating of the regime forecasts.

A shock to the variable yit also affects the regime distribution from t onwards because of the

Markov switching part of the model. How much the different channels contribute depends on
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the model parameters, the size of the shock and the regime distribution at t−1. For our analysis

we assume that the regime process at t− 1 is in regime 1, 2 or in the steady state distribution,

and we use proposition 7 to determine the Generalized Impulse Response Functions for t + h

with h = 0, 1, . . . , 12. In the discussion below we focus on h = 0, 1, 6. We specify the shocks as

δ standard deviations, which also reflect the regime distribution at t− 1 as in eq. (49).

We start with the third channel, which we can identify by the GIRF for the regime process.

Figure 1 shows how shocks in the different variables affect the forecast probability of regime 1

for different horizons and regime distributions at t − 1. The regime process is in regime 1 in

the top row, regime 2 in the middle row and the steady state in the bottom row. The straight

dashed lines in the subfigures in the first three columns give the forecast probability for t + h

without the shock, whereas the solid lines give the effect of shocks. The difference between

the solid and dashed lines gives the GI yis (h, ηit, It−1) defined in section 3.1. For all horizons

and regime distributions, small shocks are likely to signal that regime 1 prevails, whereas large

shocks indicate regime 2. The curves for shocks to stock and bond returns and the D/P ratio

resemble each other, because the differences between the volatilities of their innovations in the

different regimes in table 4 are approximately equal to a factor 2. The location of their peaks

is different, and reflect the differences between the mean forecasts. The curve for the T-Bill

rate is more peaked and concentrated, because the difference between the regime volatilities

is almost a factor 4. For each variable, there are two shock sizes that yield no update on the

regime probabilities, i.e. GI yis (h, ηit, It−1) = 0. And since GI yis (h, ηit, It−1) = P h E[ut|yit, It−1],

these shock sizes are the same for each h.

[Figure 1 about here.]

Comparing the subfigures in the different rows shows that the effect of large shocks is larger

when the low volatility regime prevails at t − 1, and the effect of small shocks is larger when

the high volatility regime prevails. This result is of course driven by how likely a shock signals

a regime switch. Comparing the subfigures in the different columns shows that the shocks die

out relatively quickly with only small effects remaining after six months.

The subfigures in the rightmost column show the decomposition of the forecast error variance.

These proportions do not depend on the horizon h, because the numerator and denominator in

eq. (51) change proportionally for different values of h. Because there are four different sources

of shocks, that are equally informative when the shocks become infinitely large in magnitude,

we observe an asymptote at 1/4 for all sources. The proportion for each variable converges

faster to the asymptote when the high volatility regime prevails at t − 1, because the forecast

probability for the low volatility converges faster to zero. Because the curve for the T-Bill rate
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is more peaked in the impulse response columns, the proportion of the forecast error variance

that can be attributed to it is generally largest, except for the small ranges of shock sizes where

the T-Bill rate leads to only small updates in the forecast probability. Negative shocks are more

informative stemming from stocks, and positive shocks from bonds.

Figure 2 shows the effect of shocks on stock returns. The leftmost subfigures show the

combined effect of channels two and three. Expected stocks returns are affected by shocks to

the other variables because they are correlated, and because shocks lead to an update of the

regime forecast. When shocks originate from bond returns or the T-bill rate, their effect is

nonlinear. Contemporaneously, shocks to the D/P ratio have an almost linear effect because

the correlation with shocks to stock returns is large and about the same in both regimes.

[Figure 2 about here.]

The effect of shocks also depends on the sign of the shock. The blue line in fig. 2a shows

that a large negative shock to bonds at t when the low volatility regime prevails at t − 1 has

a relatively large negative effect on stocks, because the positive correlation between stocks and

bonds, and the inferred switch to the high volatility regime amplify each other. For positive

shocks, the effects work in opposite direction and mitigate each other. Because the correlation

between shocks to the T-bill rate and stock returns is negative, the green line reflects that

positive shocks to the T-bill rate have a larger effect on expected stock returns than negative

ones. Both lines in fig. 2d are closer to linear because the effect of switching is smaller in the

high volatility regime. As can be expected, the results for the steady state at t−1 in the bottom

row are in between the results for regime 1 and 2.

The more substantial deviations for linearity show up for the expected returns at horizons

of 1 and 6 months. Shocks have an effect at longer horizons because of the VAR parts in

the different regimes, and the updates of the regime probability. These different channels can

reinforce each other or work in opposite directions. For example, fig. 2b shows a positive relation

between large shocks to the stocks return at t and its expectation at t + 1, but a negative one

for small shocks. This pattern is in line with the signs of the AR coefficients in table 4.

Shocks to the other variables affect expected stock returns via the three channels: the VAR-

effects in the different regimes, the VAR-effect of the other variables combined with the contem-

poraneous effect of the shock, and the update of the regime probabilities. Based on eq. (42),

the total effect from a shock to variable i equals GI yiy (1, ηit, It−1) = Gy(ΦE[ε∗t |yit, It−1] +

CP E[ut|yit, It−1]). The first effect is captured by the rows in Φ that correspond with yi,

the second effect with the rows in Φ that correspond with the stock returns combined with the

contemporaneous effect in E[ε∗t |yit, It−1], whereas the third effect runs completely via the second
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term. With this knowledge we can explain why shocks to bond returns at t have a stronger

effect on stock returns at t+1 than shocks to stock returns themselves. Shocks to stock returns

translate almost one-on-one to oppositie shocks in the D/P ratio because of their strong corre-

lation. In particular in regime 2, their effects on stock returns at t + 1 are almost equal (see

table 6), so they offset each other to a large extent. Shocks to bond returns also have a positive

effect on stock returns at t + 1, in particular in regime 2, but because they are not strongly

correlated with the other innovations, they are not dampened. Also here, the curve shows the

effect of regime switching by its nonlinearity. We further see that the effect of shocks to the

T-Bill rate on stock returns at t+1 runs largely via the updating of the regime probability, and

that the effect of shocks to the D/P ratio mirrors those of shocks to stock returns themselves

because of their strong negative contemporaneous correlation.

The nonlinear effects of regime switching are less dominant in fig. 2e than in fig. 2b, in line

with the smaller effects on the forecast probabilities in fig. 1. The results for the regime process

being in the steady state in fig. 2h are in between those for the low and high volatility regime.

The subfigures for the longer horizon of 6 months in the right panels of fig. 2 show the

familiar long-lasting effects of persistent state variables. Shocks to the T-bill rate and the D/P

ratio die out slowly, though their magnitude is substantially lower than at t or t + 1. The

effect of shocks to stock returns also dissipate slowly because of the high negative correlation

with innovations in the D/P ratio. The slow mean-reversion of the D/P-ratio also explains why

the effects of shocks to stock returns and the D/P ratio switch signs. nonlinear effects remain

present to the extent of shocks affecting the regime probabilities as in fig. 1.

For investors, this means that the estimates in table 4, which correspond with the average

effect at h = 0, does not present the full picture. Because of the VAR nature of the model,

shocks die out more slowly, and the Markov switching component makes their effect nonlinear.

Smaller shocks to stock returns are expected to be reversed in the next period, but not so for

large shocks, or any shocks in the high volatility regime. Shocks to bond returns have a small

positive contemporaneous effect on stock returns, but their effect dies out slowly, reducing the

diversification opportunities. We also conclude that the high volatility regime is riskier but also

bit easier to predict and understand, because the effect of regime switching is less here.

The generalized decompositions of the forecast error variances for stock returns in fig. 3

confirm these conclusions. By construction, the largest proportion at t comes from shocks to

stock returns themselves, though the strong correlation between innovations in stock returns

and the D/P ratio leads to a high proportion for the D/P ratio, too. At longer horizons, the

proportions due to the other variables increase. In particular when the low volatility regime

prevails at t− 1, the proportions depend nonlinearly on the shock size. Negative shocks to the
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D/P ratio are more consequential than positive shocks, and for bond returns shocks that are

large in magnitude explain a larger proportion than small shocks. These effects are less obvious

when the high volatility regime prevails because the effect of regime switching is smaller.

[Figure 3 about here.]

The responses of expected bond returns in fig. 4 also show a combination of direct and

indirect VAR effects combined with the nonlinearity induced by the Markov switching part.

The contemporaneous effects of shocks to the other variables in the left column are small and

highly nonlinear because the probability update channel dominates. Because the VAR-effects

are also not very strong, the nonlinear effect of this channel is still quite present at t + 1, and

because the VAR-effects fade out faster than the probability updating, the effects of shocks at

t + 6 are highly nonlinear (though small in magnitude). And since the effect of shocks on the

forecast probabilities is larger when the low volatility regime prevails, the nonlinearity of this

channel is strongest in the top row, and weakest in the middle row. The effect of shocks to stock

returns (and to the D/P ratio because of their strong negative correlation) is larger than shocks

to bond returns themselves, because a one-standard deviation shock to stock returns has a larger

%-effect than the same shock to bond returns. Shocks to the T-Bill rate do have a strong effect

on bond returns contemporaneously or at short horizons, but become more important at longer

horizons as they die out very slowly.

[Figure 4 about here.]

The consequences for investors of this impulse response analysis for bond returns is a bit

more positive than for stock returns. Shocks have a less persistent effect on bond returns, and

more importantly, when shocks originate from stock returns they revert. The contemporaneous

effect of these shocks is positive, but it becomes negative in the next period, indicating some

protection.

The GFEVD in fig. 5 reflect the low correlations with and the weak VAR effect from the other

variables. Typically more than 90% of the forecast variance in bond returns can be attributed

to own shocks. The effect via the probability update channel causes the proportions attributed

to other variables to increase when shocks are large in magnitude, in particular when the low

volatility regime prevails at t− 1.

[Figure 5 about here.]
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4.3.2 Second Order Impulse Responses

Our analysis of the first order impulse responses shows how shocks effect the return part of the

risk-return trade-off. We now turn to the second order impulse responses for the risk part. We

use the law of total variance to discern the four different channels through which shocks affect

the variance of yt+h,

Var[yt+h|yit, It−1] =
m∑
j=1

Var[yt+h|St+h = j, yit, It−1] Pr[St+h = j|yit, It−1]+

m∑
j=1

Pr[St+h = j|yit, It−1](1− Pr[St+h = j|yit, It−1])×

E[yt+h|St+h = j, yit, It−1] E[yt+h|St+h = j, yit, It−1]
′.

The first channel runs via the effect that the shock in yit has on the regime-specific variances

at t + h. When h = 0, the contemporaneous correlation of the variables leads to a decrease

in the variance of the other variables. Next and as before, shocks lead to an updating of the

regime forecasts Pr[St+h = j|yit, It−1], and hence the forecast for the low or the high volatility

regime. On top of this effect, the variability of the regime process also contributes to the total

variance via the term Pr[St+h = j|yit, It−1](1 − Pr[St+h = j|yit, It−1]). The final channel stems

from the difference between the autoregressive components in the different regimes. Shocks

propagate differently in the different regimes, which is captured by the term E[yt+h|St+h =

j, yit, It−1] E[yt+h|St+h = j, yit, It−1]
′. We investigate again how much the different channels

contribute, and how the effects depend on the size of the shock and the regime distribution at

t− 1.

Figure 6 shows the effect of shocks on the forecast volatility of stock returns for different

initial regimes and horizons. The figures in the left panels show the contemporaneous effect of

shocks. In both regimes, the variance conditional on a shock is lower than the original variance,

but the shock also leads to an updating of the regime forecast. The first effect dominates when

shocks originate from the D/P ratio, because of its strong negative correlation with innovations

in stocks returns. When shocks originate from bond returns or the T-Bill rate, the updating of

the regime forecast and the increased variability of the regime process dominate and generally

lead to an increase of the volatility. This third channel of increased variability explains why

large shocks to bond returns and the T-Bill rate have approximately the same effect on the

volatility, whereas the effect of small shocks differs, but not as much as in fig. 1. Large shocks

indicate a switch to the high volatility regime with a high degree of certainty, whereas small

shocks make a switch to the low volatility regime more likely without completely removing the
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uncertainty. This remaining uncertainty counteracts the effect of switching to the low volatility

regime, and explains why the difference between the effects of bond returns and the T-Bill rate

at δ = 0 is smaller in fig. 6d than in fig. 1e.

[Figure 6 about here.]

The middle and right panels of fig. 6 for horizons of one and six months show that shocks

mostly have an upward effect on the volatility, independent of the regime distribution at t− 1.

Only for small shocks do we see a small decrease in the forecast volatility. Moroever and contrary

to their contemporaneous effect, the effect of large shocks increases when they become larger.

This increase comes in via the fourth channel. To understand this effect, we have to realize that

no matter the shock size at t, there is always uncertainty about the regimes at longer horizons.

Consequently, the shock can propagate via either of the two regimes, and the difference between

these two paths is increasing in the size of the shock, which in turn has an upward effect on the

variance. This is a big difference with both MSIH models and VAR models where the effect on

the volatility is bounded or constant. Because the shocks die out, the effects of shocks on the

volatility at t+ 6 is much smaller, but the same channels as at t+ 1 remain present. For small

shocks, the second and third channels we discerned at t operate in about the same way.

The effects of shock on the volatility of bond returns fig. 7 are less pronounced than for

stock returns, though we see the presence of the same four channels. The correlations between

innovations to bond returns and the other variables is weaker than for stock returns, which

means that the first channel is weaker. The second channel depends on the difference between

the volatilities in the regimes, which is about the same for stock and bond returns. The third

channel depends on the Markov switching part, which is the same for all variables. Finally, the

fourth channel depends on the predictability and the differences therein between the different

regimes, and this aspect is again weaker for bond returns. As a consequence, we see an increasing

effect of large negative and positive shocks on the volatility of bond returns at t + 1, but it is

much smaller than for stock returns.

[Figure 7 about here.]

Figures 8 and 9 provide a good view of the persistence of the effects on the volatilities for

the different sources of the shocks and regime distributions at time t − 1. The dashed gray

lines show the forecast volatility in the absence of shocks, whereas the solid colored lines show

the effect of shocks for sizes of -2, -1, 0, 1 and 2 standard deviations. All subfigures show that

the effect of shocks is prolonged. They take longer to die out in volatilities than in returns,
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comparing the effects at t, t+ 1 and t+ 6 in figs. 2 and 4.5 At t+ 3 about half of the effect at

t+ 1 is still present, though at t+ 12, so after a year, most of the effect is gone.

The figures also show that the effect is asymmetric. The effect of shocks is increasing in

the (absolute) size of the shock, but shocks of the same size that differ in sign affect volatilities

differently, and also decay differently as can be concluded from the intersection of the lines. For

example, fig. 8b shows that a shock to stock returns of -2 standard deviations at t has a smaller

effect on the forecast stock volatility at t + 1 than shocks of +1 and +2 standard deviations,

but a larger effect from t + 3 onwards. Because shocks to stock returns and to the D/P ratio

are highly correlated, the effect of shocks to the D/P ratio on stock volatility is negative at t

but positive at long horizons for larger shock sizes, as shows by figs. 8j to 8l.

[Figure 8 about here.]

[Figure 9 about here.]

Of course, shocks also affect the forecast correlations at different horizons. We plot the

effects of shocks on the forecast stock-bond correlations over time for the different sources and

regime distributions in fig. 10. The different subfigures show that shocks to stocks or bond

returns themselves lead to intricate dynamics. Whereas the size of the effects decreases over

time, they often change from positive to negative or vice versa. Shocks that originate from the

state variables follow a more straightforward pattern.

[Figure 10 about here.]

Summarizing, our analyses show that shocks can lead to an increase or a decrease of risk.

However, the increases are more substantial than the decreases, and the decreases only occur

for a limited domain of small shocks. Moreover, the effects of shocks on the second moments are

prolonged. These results stand in stark contrast with the implications of VAR models where

shocks do not affect second moments at all. They are also stronger than what we observe

for simpler models with just Markov Switching, indicating that the combination of VAR and

Markov Switching properties amplify the effect of shocks.

Combining the results for risk with those for the return part of the previous subsection

shows that our framework presents a unified way of analysing the effects of shocks. Shocks can

have positive or negative effects on the expected returns, depending on their sign and size. The

effects are nonlinear, but less so in the high volatility regime. Shocks can also have positive

and negative effects on the volatility and correlation of stocks and bond returns. In the high

5We plot the effect of shocks on forecast stock and bond returns over time in figs. C.1 and C.2 in Appendix C.
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volatility regime, shocks easily lead to a further and prolonged increase of volatility forecasts.

Shocks can hence lead to a deterioration of the risk-return trade-off by decreasing expected

returns and increasing risk and decreasing diversification opportunities.

5 Conclusion

In this paper, we propose a unified framework that enables the calculation of moments and the

analysis of impulse responses for MSVAR models in a setting where only the distribution of the

regimes at a particular point in time is given. As the crucial step of our framework we show

that the processes of the level of the observable variables, their squares and the latent regime

indicator can be combined such that they form a linear VAR(1) with innovations that form a

non-Gaussian martingale difference sequence. Whereas the VAR(1)-part has been shown before

by Bianchi (2016); Krolzig (2006), we also derive and use the specification of the MDS-part.

As our main theoretical contribution, we show how to use this extensive VAR(1) formulation

to derive its first and second moments conditional on the regime distribution at one particular

point in time t only, so without any assumption on the values of the observable variables or the

regime distribution up to t. In this derivation, we use the time-reversed version of the regime

process, and show that the same stationarity conditions apply as for the original MSVAR. We

then derive closed form expressions for impulse responses in the framework of Koop et al. (1996).

Shocks affect forecasts of both the first and second moment in this model, and hence we propose

the Variance Impulse Response Function next to the traditional Generalized Impulse Response

Function for the first moment. We also show how the Generalized Forecast Error Variance

Decomposition can be constructed.

We apply our methods for an analysis of the risk-return trade-off of investments in stocks

and bonds, where we include predictability by the T-Bill rate and dividend-to-price ratio, and

switching between bull and bear markets. We use our theoretical results to characterize the

regimes. Consistent with the stylized facts, we find a bull regime with a high (low) mean for

returns on stocks (bonds), and low volatility for both, and a bear regime where these features

are reversed. Next to that, we show that the predictability also varies over the regimes, with

stronger effects in the bear regime. The impulse response analysis for first and second moments

shows that the effect of shocks is asymmetric, nonlinear, and regime-dependent. We use our

framework to discern the different channels via which the shocks propagate, which further helps

understanding the shocks and linking them to the different features of the model. While the

effect of shocks on the expected returns can be positive or negative in both regimes, shocks tend

to have an upward effect on risk by increasing volatilities and correlations, in particular when
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they are large or occur in the bear regime.

We conclude that our theoretical and empirical results are useful for modern risk manage-

ment. The tools we propose can be used directly to investigate what happens when a shock hits

in a bad situation. In our empirical application this setting corresponds with a shock hitting

during a bear market, but of course a similar analysis can be done for financial institutions

during a crisis regime, or countries during a recession. Because all results are available in closed

form, the tools are easy to use without the need for simulations or numerical approximations.
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Table 1: Summary statistics

(a) Marginal moments

Mean Volatility Skewness Kurtosis

Stock returns 0.51 4.17 -0.67 5.48
Bond returns 0.13 2.07 0.20 4.56
T-bill rate 0.34 0.25 0.88 4.10
D/P ratio -3.53 0.40 -0.29 2.30

(b) contemporaneous and lag-1 correlations

Stock Bond T-bill D/P Stock Bond T-bill D/P
returns returns rate ratio returns returns rate ratio

Stock returns 1 0.085 -0.097 -0.044 0.052 -0.150 -0.095 -0.051
Bond returns 1 -0.009 -0.015 0.114 0.061 -0.065 -0.025
T-bill rate 1 0.433 -0.077 -0.003 0.983 0.437
D/P ratio 1 0.059 -0.005 0.430 0.994

This table show the means, volatilities (both in %), skewness and kurtosis, and correlations of excess log stock and
bond returns, the log T-bill rate and the log d/p ratio. The left four columns of panel b show the contemporaneous
correlations. The right four columns show the lag-1 correlations with the lagged variables on the rows. The
sample period runs from January 1952 to December 2018 (804 observations).
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Table 2: Parameter estimates MSIH(2) Model

Regime 1 Regime 2

Stock Bond Stock Bond
returns returns returns returns

Intercept 0.999 −0.008 −0.480 0.405
(0.149) (0.071) (0.397) (0.184)

Volatilities and correlations

Stock returns 3.084 5.633
(0.123) (0.241)

Bond returns 0.073 1.450 0.119 2.935
(0.050) (0.057) (0.056) (0.149)

Transition and Initial Probabilities

Regime 1 Regime 2 Initial

Regime 1 0.944 0.111 1
(0.015) (0.029) −

Regime 2 0.056 0.889 0
(0.015) (0.029) −

This table shows the parameter estimates for a Markov Switching model with switches in the means and vari-
ances between two regimes. The parameters have been estimated by the Expectation Maximization algorithm.
Standard errors calculated by the outer product of the gradient are in parentheses. The estimation period runs
from February 1952 to December 2018 (803 observations). We report estimated volatilities on the diagonals in
the middle panel, and estimated correlations in the lower triangle. We do not report a standard error for the
parameter ζ = Pr[s1] because it is at the boundary of its domain.
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Table 3: Parameter estimates VAR(1) Model

Stock Bond T-bill rate D/P ratio
returns returns

Intercept 5.381 0.126 0.017 −0.044
(1.535) (0.982) (0.021) (0.017)

VAR(1) matrix

Stock returns 0.035 −0.079 0.0005 −0.0003
(0.031) (0.016) (0.0003) (0.0003)

Bond returns 0.223 0.075 −0.0069 −0.0020
(0.068) (0.030) (0.0006) (0.0008)

T-bill rate −2.057 −0.135 0.981 0.012
(0.698) (0.327) (0.006) (0.007)

D/P ratio 1.195 −0.023 0.003 0.989
(0.401) (0.254) (0.006) (0.004)

Volatilities and correlations

Stock returns 4.114
(0.085)

Bond returns 0.086 2.050
(0.030) (0.044)

T-bill rate −0.086 −0.009 0.044
(0.034) (0.029) (0.001)

D/P ratio −0.935 −0.093 0.091 0.044
(0.072) (0.031) (0.036) (0.001)

This table shows the parameter estimates for a VAR(1) model. The parameters have been estimated by maximum
likelihood. Standard errors calculated by the outer product of the gradient are in parentheses. The estimation
period runs from February 1952 to December 2018 (803 observations). The VAR(1) matrix reports the lagged
variables on the rows. We report estimated volatilities on the diagonal in the lower panel, and estimated
correlations in the lower triangle.
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Table 5: Regime-conditional and unconditional first and second moments

Means conditional on Regime 1 Volatilities conditional on Regime 1

Stocks Bonds T-Bill D/P Stocks Bonds T-Bill D/P

MSIH(2) 1.00 -0.01 3.08 1.45
MSIAH(2)-VAR(1) 0.75 0.01 0.40 -3.58 3.23 1.56 0.28 0.34
MSIAH(2)-VAR(1) inf. 0.22 0.02 0.49 -4.35 3.21 1.56 0.18 0.34

Means conditional on Regime 2 Volatilities conditional on Regime 2

MSIH(2) -0.48 0.40 5.63 2.94
MSIAH(2)-VAR(1) -0.67 0.37 0.40 -3.54 5.49 2.83 0.29 0.33
MSIAH(2)-VAR(1) inf. 0.26 0.28 0.44 -3.24 5.50 2.84 0.32 0.32

Unconditional means Unconditional volatilities

MSIH(2) 0.50 0.13 4.18 2.08
VAR(1) 0.40 0.15 0.31 -3.68 4.17 2.08 0.25 0.39
MSIAH(2)-VAR(1) 0.28 0.13 0.40 -3.57 4.18 2.08 0.28 0.34

Regime-conditional correlations

Regime 1

MSIH(2) MSIAH(2)-VAR(1) MSIAH(2)-VAR(1) inf.

Bonds 0.073 0.037 0.032
T-Bill -0.114 -0.043 -0.073 -0.028
D/P -0.097 -0.024 0.455 -0.065 -0.015 0.351

Regime 2

MSIH(2) MSIAH(2)-VAR(1) MSIAH(2)-VAR(1) inf.

Bonds 0.119 0.140 0.138
T-Bill -0.063 -0.032 -0.069 -0.036
D/P -0.035 -0.036 0.455 -0.066 -0.037 0.510

Unconditional Correlations

MSIH(2) VAR(1) MSIAH(2)-VAR(1)

Bonds 0.085 0.085 0.084
T-Bill -0.091 -0.011 -0.085 -0.037
D/P -0.065 -0.014 0.512 -0.074 -0.024 0.454

This table gives the regime-conditional and unconditional means, volatilities and correlations for the MSIH(2),
VAR(1) and MSIAH(2)-VAR(1) models with parameter values reported in Tables 2 to 4. The regime-
conditional mean E[yt|St] follow from proposition 4, whereas the regime conditional volatilities and corre-
lations are calculated from Var[yt|St] based on proposition 5. The rows and blocks labeled “MSIAH(2)-
VAR(1) inf.” report the moments conditional on the given regime prevailing infinitely long in the past, i.e.
limτ→∞ E[yt|St = · · · = St−τ = j], and limτ→∞ Var[yt|St = · · · = St−τ = j]. The unconditional moments follow
from eqs. (21) to (24).
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Table 6: Auto- and cross-correlations at (lead) order 1

(a) Conditional on current regimes

Regime 1 Regime 2
Stocks Bonds T-Bill D/P Stocks Bonds T-Bill D/P

Stocks -0.060 -0.096 -0.117 -0.089 0.112 -0.181 -0.051 -0.052
Bonds 0.094 0.010 -0.059 -0.033 0.149 0.089 -0.120 -0.056
T-Bill -0.092 -0.038 0.994 0.456 -0.041 -0.024 0.972 0.458
D/P 0.022 -0.016 0.454 0.994 0.102 -0.016 0.449 0.987

(b) Conditional on regimes prevailing forever

Regime 1 Regime 2
Stocks Bonds T-Bill D/P Stocks Bonds T-Bill D/P

Stocks -0.101 -0.097 -0.082 -0.054 0.158 -0.188 -0.051 -0.094
Bonds 0.098 -0.005 -0.042 -0.024 0.154 0.112 -0.134 -0.058
T-Bill -0.066 -0.028 0.995 0.352 -0.036 -0.024 0.971 0.513
D/P 0.031 -0.010 0.351 0.995 0.103 -0.012 0.501 0.983

(c) Unconditional

MSIH(2) VAR(1) MSIAH(2)-VAR(1)
Stocks Bonds Stocks Bonds T-Bill D/P Stocks Bonds T-Bill D/P

Stocks 0.023 -0.013 0.049 -0.151 -0.087 -0.069 0.049 -0.153 -0.080 -0.079
Bonds -0.013 0.007 0.114 0.062 -0.067 -0.025 0.115 0.061 -0.086 -0.037
T-Bill -0.072 -0.005 0.983 0.515 -0.068 -0.032 0.987 0.455
D/P 0.043 -0.003 0.507 0.993 0.049 -0.012 0.450 0.991

This table gives regime-conditional and unconditional auto- and cross-correlations with lead 1 for the MSIH(2),
VAR(1) and MSIAH(2)-VAR(1) models with parameter values reported in tables 2 to 4. The regime-
conditional correlations in panel (a) are calculated from Cov[yt,yt+1|St] based on eq. (36), and the condi-
tional volatilities based on proposition 5. The regime-conditional correlations in panel (b) are calculated from
limτ→∞ Cov[yt,yt+1|St+1 = St = · · · = St−τ = j], and the corresponding volatilities in table 5. The un-
conditional correlations are calculated from Cov[yt,yt+1] based on eqs. (25) and (26), and the unconditional
volatilities in table 5.
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Figure 2: The effects of shocks on expected stock returns in the MSIAH(2)-VAR(1)
model

(a) At t, regime 1 at t− 1
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(b) At t+ 1, regime 1 at t− 1
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(c) At t+ 6, regime 1 at t− 1
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(d) At t, regime 2 at t− 1
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(e) At t+ 1, regime 2 at t− 1
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(f) At t+ 6, regime 2 at t− 1
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(g) At t, steady state at t− 1
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(h) At t+ 1, steady state at t− 1
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(i) At t+ 6, steady state at t− 1
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This figure shows the Generalized Impulse Response Functions (GIRF) for stock returns at time t, t + 1 and
t+6 in the MSIAH(2)-VAR(1) model, conditional on the regime process being in regime 1 (top row), 2 (middle
row) or the steady state (bottom row) at time t− 1. The lines show the the GIRF as a function of shocks equal
to δ times the forecast standard deviation of stock returns in red, bond returns in blue, the T-bill rate in green
and the D/P ratio in orange for horizons h = 0, 1, 6 as in eq. (50).
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Figure 3: The forecast error variance decomposition of stock returns in the MSIAH(2)-
VAR(1) model

(a) At t, regime 1 at t− 1
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(c) At t+ 6, regime 1 at t− 1
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(d) At t, regime 2 at t− 1
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(e) At t+ 1, regime 2 at t− 1
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(f) At t+ 6, regime 2 at t− 1
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(g) At t, steady state at t− 1
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(h) At t+ 1, steady state at t− 1
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(i) At t+ 6, steady state at t− 1
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This figure shows the Generalized Forecast Error Variance Decomposition (GFEVD) for stock returns at time t,
t+ 1 and t+ 6 in the MSIAH(2)-VAR(1) model, conditional on the regime process being in regime 1 (top row),
2 (middle row) or the steady state (bottom row) at time t− 1. The lines show the the GFEVD as a function of
shocks equal to δ times the time t forecast standard deviation of stock returns in red, bond returns in blue, the
T-bill rate in green and the D/P ratio in orange for horizons h = 0, 1, 6 as in eq. (51).
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Figure 4: The effects of shocks on expected bond returns in the MSIAH(2)-VAR(1) model

(a) At t, regime 1
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(b) At t+ 1, regime 1
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(c) At t+ 6, regime 1
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(d) At t, regime 2
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(e) At t+ 1, regime 2

-3

-2

-1

0

1

2

3

-4 -2 0 2 4 6 8

(f) At t+ 6, regime 2
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(g) At t, steady state at t− 1
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(h) At t+ 1, steady state at t− 1
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(i) At t+ 6, steady state at t− 1

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

-4 -2 0 2 4 6 8

This figure shows the Generalized Impulse Response Functions (GIRF) for bond returns at time t, t + 1 and
t+6 in the MSIAH(2)-VAR(1) model, conditional on the regime process being in regime 1 (top row), 2 (middle
row) or the steady state (bottom row) at time t− 1. The lines show the the GIRF as a function of shocks equal
to δ times the forecast standard deviation of bond returns in red, bond returns in blue, the T-bill rate in green
and the D/P ratio in orange for horizons h = 0, 1, 6 as in eq. (50).
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Figure 5: The forecast error variance decomposition of bond returns in the MSIAH(2)-
VAR(1) model

(a) At t, regime 1 at t− 1
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(h) At t+ 1, steady state at t− 1
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(i) At t+ 6, steady state at t− 1
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This figure shows the Generalized Forecast Error Variance Decomposition (GFEVD) for bond returns at time t,
t+ 1 and t+ 6 in the MSIAH(2)-VAR(1) model, conditional on the regime process being in regime 1 (top row),
2 (middle row) or the steady state (bottom row) at time t− 1. The lines show the the GFEVD as a function of
shocks equal to δ times the time t forecast standard deviation of bond returns in red, bond returns in blue, the
T-bill rate in green and the D/P ratio in orange for horizons h = 0, 1, 6 as in eq. (51).
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Figure 6: The effects of shocks on the forecast volatility of stock returns in the MSIAH(2)-
VAR(1) model
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(f) Response at t+ 6, regime 2
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(h) Response at t+ 1, steady state
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This figure shows the impulse responses for the forecast volatility of stock returns at time t, t + 1 and t + 6 in
the MSIAH(2)-VAR(1) model, conditional on the regime process being in regime 1, 2 or the steady state at time
t−1. The straight dashed gray lines give the forecast volatility without a shock. The solid lines show the forecast
volatility conditional on a shock of δ times the forecast standard deviation of stock returns i = 1 in red, bond
returns i = 2 in blue, the T-bill rate i = 3 in green and the D/P ratio in orange, vol

[
y1,t+h

∣∣St−1, yit−E[yit|St−1] =

δ vol[yit|St−1]
]
. The difference between the dashed and the solid lines gives the volatility impulse function.
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Figure 7: The effects of shocks on the forecast volatility of bond returns in the MSIAH(2)-
VAR(1) model

(a) Response at t, regime 1
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(g) Response at t, steady state at
t− 1
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(h) Response at t+ 1, steady state
at t− 1
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(i) Response at t + 6, steady state
at t− 1
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This figure shows the impulse responses for the forecast volatility of bond returns at time t, t + 1 and t + 6 in
the MSIAH(2)-VAR(1) model, conditional on the regime process being in regime 1, 2 or the steady state at time
t−1. The straight dashed gray lines give the forecast volatility without a shock. The solid lines show the forecast
volatility conditional on a shock of δ times the forecast standard deviation of stock returns i = 1 in red, bond
returns i = 2 in blue, the T-bill rate i = 3 in green and the D/P ratio in orange, vol

[
y2,t+h

∣∣St−1, yit−E[yit|St−1] =

δ vol[yit|St−1]
]
. The difference between the dashed and the solid lines gives the volatility impulse function.
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Figure 8: The effects of shocks on the forecast volatility of stock returns over time

(a) To stocks, regime 1 at t− 1
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This figure shows the impulse responses for the forecast volatility of stock returns over time in the MSIAH(2)-
VAR(1) model, conditional on the regime process being in regime 1, 2 or the steady state at time t−1. The dashed
gray lines give the forecast volatility without a shock. The solid lines show the forecast volatility conditional on
a shock of δ times the forecast standard deviation to stock returns (first row), bond returns (second row), the
T-bill rate (third row), and the D/P ratio (fourth row), with δ equal to -2 (red line), -1 (orange line), 0 (green
line), 1 (blue line), and 2 (violet line). The difference between the dashed and the solid lines gives the volatility
impulse function. The forecast horizon runs from 0 through 12 months.
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Figure 9: The effects of shocks on the forecast volatility of bond returns over time
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(k) To D/P ratio, regime 2 at t− 1
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This figure shows the impulse responses for the forecast volatility of bond returns over time in the MSIAH(2)-
VAR(1) model, conditional on the regime process being in regime 1, 2 or the steady state at time t−1. The dashed
gray lines give the forecast volatility without a shock. The solid lines show the forecast volatility conditional on
a shock of δ times the forecast standard deviation to stock returns (first row), bond returns (second row), the
T-bill rate (third row), and the D/P ratio (fourth row), with δ equal to -2 (red line), -1 (orange line), 0 (green
line), 1 (blue line), and 2 (violet line). The difference between the dashed and the solid lines gives the volatility
impulse function. The forecast horizon runs from 0 through 12 months.
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Figure 10: The effects of shocks on the forecast correlation of stock and bond returns
over time
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This figure shows the impulse responses for the forecast correlation of stock and bond returns over time in the
MSIAH(2)-VAR(1) model, conditional on the regime process being in regime 1, 2 or the steady state at time
t − 1. The dashed gray lines give the forecast correlation without a shock. The solid lines show the forecast
correlation conditional on a shock of δ times the forecast standard deviation to stock returns (first row), bond
returns (second row), the T-bill rate (third row), and the D/P ratio (fourth row), with δ equal to -2 (red line),
-1 (orange line), 0 (green line), 1 (blue line), and 2 (violet line). The difference between the dashed and the solid
lines gives the correlation impulse function. The forecast horizon runs from 0 through 12 months.
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A Proofs for Section 2 (MSVAR models and their mo-

ments)

The equation numbers in this section are copied from the main text with an appendix prefix.

Proposition 1. Let yt follow the MS-VAR process as specified in eqs. (1) and (2). Define

y∗
t = st ⊗ yt and ỹt =

(
y∗
t
′, s′t
)′
. Then y∗

t follows the process

y∗
t = CPst−1 +Φ(P ⊗ In)y∗

t−1 + ε
∗
t , (A.5)

with C = bdiagmi=1(ci), Φ = bdiagmi=1(Φi), and

ε∗t = Λ(P ⊗ In)(st−1 ⊗ εt) +Cut +Φ(ut ⊗ yt−1) +Λ(ut ⊗ εt),

with Λ = bdiagmi=1(Λi), and ut as defined in eq. (3). ỹt follows the process

ỹt =

(
y∗
t

st

)
= Φ̃ỹt−1 + ε̃t, (A.6)

with

Φ̃ =

(
Φ(P ⊗ In) CP

Om×nm P

)
.

and ε̃t = (ε∗t
′,u′

t)
′. Moreover, ε∗t and ε̃t are MDS.

Proof. From the definition of y∗
t follows

y∗
t = st ⊗ yt = Cst +Φ(st ⊗ yt−1) +Λ(st ⊗ εt).

The multiplication of the coefficient matrices C, Φ and Λ with st ensures that the correct

regime-dependent coefficients are selected. Substitution of eq. (3) for st yields

y∗
t = CPst−1 +Φ(Pst−1 ⊗ yt−1) + ε

∗
t

= CPst−1 +Φ(P ⊗ In)y∗
t−1 + ε

∗
t .

and

ε∗t = Λ(P ⊗ In)(st−1 ⊗ εt) +Cut +Φ(ut ⊗ yt−1) +Λ(ut ⊗ εt).

Equation (5) shows how y∗
t depends on past values. Stacking y∗

t and st in the vector ỹt gives

ỹt =

(
y∗
t

st

)
=

(
Φ(P ⊗ In) CP

O P

)(
y∗
t−1

st−1

)
+

(
ε∗t

ut

)
= Φ̃ỹt−1 + ε̃t,
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with Φ̃ and ε̃t as defined in the proposition. Next,

E[ut|ỹt−1] = E[ut|st−1] = 0,

because conditional on st−1, st is independent of yt−1. We also have E[ε∗t |ỹt−1] = 0, because εt

is independent of St, St−1 and hence ut, E[εt] = 0 and E[ut|ỹt−1] = 0. This establishes that ε̃t

is an MDS.

Proposition 2. Let yt follow the MS-VAR process as specified in eqs. (1) and (2). Define

zt = yt ⊗ yt, z∗t = st ⊗ zt and z̃t =
(
z∗t

′,y∗
t
′, s′t
)′
, with y∗

t as defined in proposition 1. Then zt

follows the process

zt = γSt + ωSt + ΨStyt−1 + ΥStzt−1 + ζt, (A.11)

where γSt = cSt ⊗ cSt, ωSt = vec (ΣSt), ΨSt = ΦSt ⊗ cSt + cSt ⊗ΦSt, ΥSt = ΦSt ⊗ΦSt, and

ζt =(ΛSt ⊗ cSt + cSt ⊗ΛSt)εt + (ΛSt ⊗ΦSt)(εt ⊗ yt−1)+

(ΦSt ⊗ΛSt)(yt−1 ⊗ εt) + (ΛSt ⊗ΛSt)(εt ⊗ εt − vec (In)).

z∗t follows the process

z∗t = (Γ +Ω)Pst−1 + Ψ (P ⊗ In)y∗
t−1 + Υ (P ⊗ In2)z∗t−1 + ζ

∗
t , (A.12)

with Γ = bdiagmi=1(γi), Ω = bdiagmi=1(ωi), Ψ = bdiagmi=1(Ψi), and Υ = bdiagmi=1(Υi), and

ζ∗t =(Γ +Ω)ut + Ψ (ut ⊗ yt−1) + Υ (ut ⊗ zt−1)+

bdiagmi=1(Λi ⊗ ci + ci ⊗Λi)(st ⊗ εt) + bdiagmi=1(Λi ⊗Φi)(st ⊗ εt ⊗ yt−1)+

bdiagmi=1(Φi ⊗Λi)(st ⊗ yt−1 ⊗ εt) + bdiagmi=1(Λi ⊗Λi)(st ⊗ (εt ⊗ εt − vec (In))).

z̃t follows the process

z̃t =


z∗t

y∗
t

st

 = Υ̃ z̃t−1 + ζ̃t, (A.13)

with

Υ̃ =


Υ (P ⊗ In2) Ψ (P ⊗ In) (Γ +Ω)P

O Φ(P ⊗ In) CP

O O P

 ,

and ζ̃t = (ζ∗t
′, ε∗t

′,u′
t)

′, with ε∗t as defined in proposition 1. Morover, ζt, ζ
∗
t and ζ̃t are MDS.
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Proof. Substitution of eq. (1) in the definition of zt yields

zt = yt ⊗ yt =
(
cSt +ΦStyt−1 +ΛStεt

)
⊗
(
cSt +ΦStyt−1 +ΛStεt

)
,

and working out the multiplication gives eq. (11). We use that ΛStεt⊗ΛStεt = (ΛSt⊗ΛSt)(εt⊗
εt) = vec (ΛStεtε

′Λ′
St
) and E[εtε

′
t] = In such that E[ΛStεt⊗ΛStεt|St] = vec (ΣSt) = ωSt . From

the definition of z∗t follows

z∗t = st ⊗ zt = (Γ +Ω)st + Ψ (st ⊗ yt−1) + Υ (st ⊗ zt−1) + st ⊗ ζt.

Substitution of eq. (3) yields

z∗t = (Γ +Ω)Pst−1 + Ψ (Pst−1 ⊗ yt−1) + Υ (Pst−1 ⊗ zt−1) + ζ
∗
t

(Γ +Ω)Pst−1 + Ψ (P ⊗ In)y∗
t−1 + Υ (P ⊗ In2)z∗t−1 + ζ

∗
t ,

which is eq. (12). Stacking z∗t , y
∗
t and st in the vector z̃t gives

z̃t =


z∗t

y∗
t

st

 =


Υ (P ⊗ In2) Ψ (P ⊗ In) (Γ +Ω)P

O Φ(P ⊗ In) CP

O O P



z∗t−1

y∗
t−1

st−1

+


ζ∗t

ε∗t

ut

 = Υ̃ z̃t−1 + ζ̃t,

with Υ̃ and ζ̃t as defined in the proposition. Next, E[ζt|yt−1] = 0, because E[εt|yt−1] = 0, and

E[εtε
′
t|yt−1] = In. Also, E[ζ∗t |yt−1, st−1] = 0 because εt is independent of St, St−1 and hence

ut, E[εt] = 0 and E[ut|ỹt−1] = 0. Because ε∗t is also an MDS, it follows that ζ̃t is an MDS.

Proposition 3. Let yt follow the MS-VAR process as specified in eqs. (1) and (2). Define

zt+k,t = yt+k ⊗ yt, z∗t+k,t = st+k ⊗ zt+k,t and y
∗
t+k,t = st+k ⊗ yt for h ≥ 0. The process defined

by z̃t+k,t =
(
z∗t+k,t

′,y∗
t+k,t

′, s′t+k

)′
follows

z̃t+k,t =

(
Φ̃⊗ In O

O P

)
z̃t+k−1,t +

(
ε̃t+k ⊗ yt
ut+k

)
, k ≥ 1 (A.18)

with Φ̃ as in proposition 1 and the second term a MDS.

Proof. We use that(
z∗t+k,t

y∗
t+k,t

)
= ỹt+k ⊗ yt =

(
Φ̃ỹt+k−1 + ε̃t+k

)
⊗ yt = (Φ̃⊗ In)(ỹt+k−1 ⊗ yt) + ε̃t+k ⊗ yt,

where we have substitued eq. (6) in the second equality. Combining this result with st+k =

Pst+k−1 + ut+k gives the result in eq. (18). The second term is an MDS, since ε̃t+k and ut+k

are MDS, and consequently E[ε̃t+k ⊗ yt|yt+k−l, St+k−l] = 0 for all k ≥ 1, l ≥ 1.
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Lemma 1. Let yt follow the MS-VAR process as specified in eqs. (1) and (2). Let Q be the

transition matrix of the time-reversed Markov chain of the proces St, and let Υ = bdiagmj=1(Φj⊗
Φj). Then the matrices Υ (P ⊗ In2) and Υ (Q′ ⊗ In2) are similar.

Proof. Use Q = diag(ξ̄)P ′ diag(ξ̄)−1 to find

Υ (Q′ ⊗ In2) = Υ

((
diag(ξ̄)−1P diag(ξ̄)

)
⊗ In2

)
= Υ

(
diag(ξ̄)⊗ In2

)−1(
P ⊗ In2

)(
diag(ξ̄)⊗ In2

)
=
(
diag(ξ̄)⊗ In2

)−1
Υ
(
P ⊗ In2

)(
diag(ξ̄)⊗ In2

)
,

which shows that Υ (P ⊗ In2) and Υ (Q′ ⊗ In2) are similar. The last equality uses the fact that

Υ is a block-diagonal matrix, and
(
diag(ξ̄) ⊗ In2

)−1
is diagonal, which allows to switch the

order of multiplication.

Proposition 4. Let yt follow the MS-VAR process as specified in eqs. (1) and (2), and assume

that it is second-order stationary. Let µj = E[yt|St = j], and stack these conditional expectations

in the mn× 1 vector µ =
(
µ′

1, . . .µ
′
m)

′. Then

µ =
(
Inm −Φ(Q′ ⊗ In)

)−1
c, (A.28)

where c =
(
c′1, . . . , c

′
m

)′
, Φ = bdiagmi=1(Φi), and Q is the transition matrix of the time-reversed

Markov chain of the proces St. The expectation of yt conditional on the state distribution ξt

follows as

E[yt|ξt] = (ξ′t ⊗ In)µ, (A.29)

The expectation of yt+h for h ≥ 0 conditional on the current state distribution ξt follows as

E[yt+h|ξt] = G̃y E[ỹt+h|ξt] with

E[ỹt+h|ξt] = Φ̃h

((
diag(ξt)⊗ In

)
µ

ξt

)
, (A.30)

with ỹt+h and Φ̃ defined in proposition 1 and G̃y as in (7).
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Proof. Start with

E[yt|St = j] = µj = cj +Φj E[yt−1|St = j]

= cj +Φj

m∑
i=1

E[yt−1|St−1 = i] Pr[St−1 = i|St = j]

= cj +Φj

m∑
i=1

µiqij

= cj +Φj

(
µ1 · · · µm

)
q1j
...

qmj


= cj +Φj

(
µ1 · · · µm

)
Qej

= cj +Φj(e
′
jQ

′ ⊗ In)µ.

We can write this system compactly as

µ = c+Φ(Q′ ⊗ In)µ.

Under the assumption of stationarity, lemma 1 implies that Φ(Q′ ⊗ In) is convergent, and the

solution follows as

µ =
(
Inm −Φ(Q′ ⊗ In)

)−1
c.

By summing the appropriate elements with weights ξt we find E[yt|ξt] = (ξ′ ⊗ In)µ. To find

the expression for E[ỹt+h|ξt], we first use proposition 1 to establish

E[ỹt+h|ξt] = Φ̃h E[ỹt|ξt] = Φ̃h

(
E[y∗

t |ξt]
ξt

)
,

because E[ε̃t+l|ξt] = 0 for l > 0 and the definition of ỹt. Then,

E[y∗
t |ξt] =


ξ1t E[yt|St = 1]

...

ξmt E[yt|St = m]

 =
(
diag(ξt)⊗ In

)
µ.

Proposition 5. Let yt follow the MS-VAR process as specified in eqs. (1) and (2), and assume

that that it is second-order stationary. Let zt = yt ⊗ yt, µj = E[yt|St = j], νj = E[zt|St = j]

with stacked versions µ =
(
µ′

1, . . .µ
′
m)

′ and ν =
(
ν ′
1, . . .ν

′
m)

′. Then

ν =
(
In2m − Υ (Q′ ⊗ In2)

)−1(
γ + ω + Ψ (Q′ ⊗ In)µ

)
, (A.31)
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where γ = (γ ′
1, . . . ,γ

′
m)

′ with γj = cj ⊗ cj, ω = (ω′
1, . . . ,ω

′
m)

′ with ωj = vec(Σj), Υ =

bdiagmj=1(Φj ⊗ Φj), Ψ = bdiagmj=1(Φj ⊗ cj + cj ⊗ Φj), Q is the transition matrix of the time-

reversed Markov chain of the proces St, and µ is given in proposition 4. The expectation of zt

conditional on the state distribution ξt follows as

E[zt|ξt] = (ξ′t ⊗ In2)ν. (A.32)

The expectation of zt+h for h ≥ 0 conditional on the current state distribution ξt follows as

E[zt+h|ξt] = H̃z E[z̃t+h|ξt] with

E[z̃t+h|ξt] = Υ̃ h


(
diag(ξt)⊗ In2

)
ν(

diag(ξt)⊗ In
)
µ

ξt

 , (A.33)

with z̃t+h and Υ̃ defined in proposition 2.

Proof. Use eq. (11) to find

E[zt|St = j] = νj = γj + ωj + Ψj E[yt−1|St = j] + Υj E[yt−1|St = j]

= γj + ωj + Ψj

m∑
i=1

µiqij + Υj

m∑
i=1

νiqij

= γj + ωj + Ψj(e
′
jQ

′ ⊗ In)µ+ Υj(e
′
jQ

′ ⊗ In2)ν.

We can combine the above equality for νj with the equality for µj from the proof of proposition 4

to form the system(
ν

µ

)
=

(
γ + ω

c

)
+

(
Υ (Q′ ⊗ In2) Ψ (Q′ ⊗ In)

O Φ(Q′ ⊗ In)

)(
ν

µ

)
Under the assumption of second-order stationarity, lemma 1 implies that Υ (Q′ ⊗ In2) and

Φ(Q′ ⊗ In) are convergent, and the solution follows as(
ν

µ

)
=

(
In(n+1)m −

(
Υ (Q′ ⊗ In2) Ψ (Q′ ⊗ In)

O Φ(Q′ ⊗ In)

))−1(
γ + ω

c

)
.

For block-triangular matrices A of the form

A =

(
A1 A2

O A3

)
,

where A1, A2 and A3 have dimensions m1 ×m1, m1 ×m2 and m2 ×m2, and A1 and A3 are

convergent, the inverse of
(
Im1+m2 −A

)
exist and takes the form

(Im1+m2 −A)−1 =

((
Im1 −A1

)−1 (
Im1 −A1

)−1
A2

(
Im2 −A3

)−1

O
(
Im2 −A3

)−1

)
.
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Applying this result to the combined expression for ν and µ leads to the same expression for µ

as in proposition 4, and for ν we find

ν =
(
In2m − Υ (Q′ ⊗ In2)

)−1
(γ + ω)+(

In2m − Υ (Q′ ⊗ In2)
)−1
Ψ (Q′ ⊗ In)

(
Inm −Φ(Q′ ⊗ In)

)−1
c

=
(
In2m − Υ (Q′ ⊗ In2)

)−1
(γ + ω + Ψ (Q′ ⊗ In)µ).

By summing the appropriate elements with weights ξt we find E[zt|ξt] = (ξ′ ⊗ In2)ν. To find

the expression for E[z̃t+h|ξt], we first use proposition 2 to establish

E[z̃t+h|ξt] = Υ̃ h E[z̃t|ξt] = Υ̃ h


E[z∗t |ξt]
E[y∗

t |ξt]
ξt

 ,

because E[ζ̃t+l|ξt] = 0 and E[ε̃t+l|ξt] = 0 for l > 0 and the definition of z̃t. Then,

E[z∗t |ξt] =


ξ1t E[zt|St = 1]

...

ξmt E[zt|St = m]

 =
(
diag(ξt)⊗ In2

)
ν,

and E[y∗
t |ξt] =

(
diag(ξt)⊗ In

)
µ as in the proof of proposition 4.

Proposition 6. Let yt follow the MS-VAR process as specified in eqs. (1) and (2), and assume

that it is second-order stationary. Define zt+k,t = yt+k ⊗ yt. Then the expectation of zt+h+k,t+h

for h ≥ 0 conditional on the current state distribution ξt follows as

E[zt+h+k,t+h|ξt] = H̃z

(
Φ̃k ⊗ In O

O P k

)
E[z̃t+h|ξt], (A.34)

with Φ = bdiagmi=1(Φi) and E[z̃t+h|ξt] as in proposition 5.

Proof. This result follows from

E[zt+h+k,t+h|ξt] = H̃z E[z̃t+h+k,t+h|ξt]

= H̃z E
[
E[z̃t+h+k,t+h|yt, ξt

∣∣ξt]
= H̃z

(
Φ̃k ⊗ In O

O P k

)
E[z̃t+h|ξt],

where we substituted eq. (19) in the last equality.

Corollary 1. Let yt follow the MS-VAR process as specified in eqs. (1) and (2) with Φi = O

for i = 1, . . . ,m , and assume that it is second-order stationary. Then

vec
(
Cov[yt,yt+k|ξt]

)
= (ι′m ⊗ In2)

(
CP k

(
diag(ξt)− ξtξ′t

)
⊗ In

)
µ. (A.37)
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Proof. The derivation of eq. (37) follows as

vec
(
Cov[yt,yt+k|ξt]

)
= E[yt+k ⊗ yt|ξt]− E[yt+k|ξt]⊗ E[yt|ξt]

=Hz E[zt+k,t|ξt]−Gy E[y
∗
t+k|ξt]⊗Gy E[y

∗
t |ξt]

= (ι′m ⊗ In2)(CP k ⊗ In)(diag(ξt)⊗ In)µ− (ι′m ⊗ In)CP kξt ⊗ (ι′m ⊗ In)(diag(ξt)⊗ In)µ

= (ι′m ⊗ In2)
(
CP k diag(ξt)

)
⊗ In)µ− (ι′m ⊗ In)CP kξt ⊗ (ξ′t ⊗ In)µ

= (ι′m ⊗ In2)
(
CP k diag(ξt)

)
⊗ In)µ−

(
(ι′m ⊗ In)CP kξtξ

′
t ⊗ In

)
µ

= (ι′m ⊗ In2)
(
CP k diag(ξt)

)
⊗ In)µ− (ι′m ⊗ In2)

(
CP kξtξ

′
t ⊗ In

)
µ

= (ι′m ⊗ In2)
(
CP k

(
diag(ξt)− ξtξ′t

)
⊗ In

)
µ.

B Proofs for Section 3 (Impulse responses analysis)

The equation numbers in this section are copied from the main text with an appendix prefix.

Proposition 7. Let yt follow the MS-VAR process as specified in eqs. (1) and (2), and let

the Generalized Impulse Response Function for ỹt be defined by eq. (38) and the results in

proposition 1. Let the vector yt−1 be part of It−1 or calculated as E[yt−1|It−1]. Let the vector

with regime probabilities ξt−1 be part of It−1 or calculated as E[st−1|It−1]. Let the matrices

C,Φ,Λ, and Φ̃ be defined as in proposition 1. When the shock originates from the regime

process, the corresponding GI satisfies

GI uỹ(h,ut, It−1) = GI ỹ(h, ∅,ut, It−1) = Φ̃
h

(
Cut +Φ(ut ⊗ yt−1)

ut

)
. (B.40)

When the shock is specified in terms of the structural innovation εit, the corresponding GI

satisfies

GI εiỹ (h, εit, It−1) = GI ỹ(h, εit, ∅, It−1) = Φ̃
h

(
εitΛ(Pξt−1 ⊗ ei)

0m

)
. (B.41)

When the shock is specified as ηit = yit − E[yit|It−1], the corresponding GI satisfies

GI yiỹ (h, ηit, It−1) = E[ỹt+h|yit, It−1]− E[ỹt+h|It−1] = Φ̃
h

(
E[ε∗t |yit, It−1]

E[ut|yit, It−1]

)
. (B.42)
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The second conditional expectation satisfies E[ut|yit, It−1] = E[st|yit, It−1]− E[st−1|It−1] with

E[st|It−1] = Pξt−1,

E[st|yit, It−1] =
1

f ′Pξt−1

f ⊙ Pξt−1, ,

where f is a vector of size m whose element j is equal to the pdf of the marginal distribution

of yit under regime j, yit|St = j ∼ N(e′i(cj +Φjyt−1), e
′
iΣjei). The first conditional expectation

satisfies

E[ε∗t |yit, It−1] = C E[ut|yit, It−1] +Φ(E[ut|yit, It−1]⊗ yt−1) +ΛE[st ⊗ εt|yit, It−1],

with last term

E[st ⊗ εt|yit, It−1] =


E
[
s1t
∣∣yit, It−1

]
E
[
εt
∣∣yit, St = 1, It−1

]
...

E
[
smt

∣∣yit, It−1

]
E
[
εt
∣∣yit, St = m, It−1

]
 ,

and

E
[
εt
∣∣yit, St = j, It−1

]
= Λ−1

j

(
yit − e′i(cj +Φjyt−1)

e′iΣjei
Σjei

)
.

Proof. Equation (40) follows from

GI ỹ(h, ∅,ut, It−1) = Φ̃
h E[ε̃t|ut, It−1] = Φ̃

h

(
E[ε∗t |ut, It−1]

ut

)
.

Based on the expression for ε∗t in proposition 1, and the assumptions that E[εt|It] = 0 and that

εt and ut are independent,

E[ε∗t |ut, It−1] = Cut +Φ(ut ⊗ yt−1).

Equation (41) follows from

GI ỹ(h, εit, ∅, It−1) = Φ̃
h E[ε̃t|εit, It−1] = Φ̃

h

(
E[ε∗t |εit, It−1]

E[ut|εit, It−1]

)
.

In this case, the first expectation reduces to

E[ε∗t |εit, It−1] = εitΛ(P ⊗ In)(ξt−1 ⊗ ei) = εitΛ(Pξt−1 ⊗ ei),

and E[ut|εit, It−1] = 0 because εt and ut are independent.

In the derivations for eq. (42), E[st|It−1] follows from the definition of the regime process,

and E[st|yit, It−1] from the application of the Hamilton (1990)-filter, adjusted for observing only
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a specific yit. In the expression for ε∗t we do not separate st−1 and ut as in proposition 1,

but consider their joint effect Λ(st ⊗ εt) in the last term. Because the vector ε∗t contains the

regime-specific shocks, we first establish for a given regime j

E
[
sjtεt|yit, It−1

]
= E

[
E
[
sjtεt

∣∣yit, St = j, It−1

]∣∣∣∣yit, It−1

]
= E

[
sjt
∣∣yit, It−1

]
E
[
εt
∣∣yit, St = j

]
,

where the second equality follows from the independence of εt and st. The second term satisfies

E
[
εt
∣∣yit, St = j, It−1

]
= Λ−1

j

(
E
[
yt|yit, St = j, It−1

]
− E

[
yt|St = j, It−1

])
= Λ−1

j

(
yit − e′i(cj +Φjyt−1)

e′iΣjei
Σjei

)
.

To arrive at the second equality, we use the fact that yt conditional on regime j follows a normal

distribution, which implies

E
[
yt|yit, St = j, It−1

]
= E

[
yt|St = j, It−1

]
+

yit − e′i(cj +Φjyt−1)

e′iΣjei
Σjei.

Proposition 8. Let yt follow the MS-VAR process as specified in eqs. (1) and (2), and let

the Generalized Impulse Response Function for z̃t be defined by eq. (43) and the results in

proposition 2. Let the vector yt−1 be part of It−1 or calculated as E[yt−1|It−1]. Let the vector

with regime probabilities ξt−1 be part of It−1 or calculated as E[st−1|It−1]. Let the matrices

C,Φ,Λ, and Φ̃ be defined as in proposition 1, and Γ , Ω, Ψ , Υ and Υ̃ as in proposition 2.

When the shock originates from the regime process, the corresponding GI satisfies

GI uz̃ (h,ut, It−1) = GI z̃(h, ∅,ut, It−1) = Υ̃
h


(Γ +Ω)ut + Ψ (ut ⊗ yt−1) + Υ (ut ⊗ zt−1)

Cut +Φ(ut ⊗ yt−1)

ut

 .

(B.45)

When the shock is specified in terms of the an innovation εit, the corresponding GI satisfies

GI εiz̃ (h, εit, It−1) = GI z̃(h, εit, ∅, It−1) = Υ̃
h


E[ζ∗t |εit, It−1]

εitΛ(Pξt−1 ⊗ ei)
0m

 , (B.46)
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with

E[ζ∗t |εit, It−1] =εit bdiag
m
j=1(Λj ⊗ cj + cj ⊗Λj)(Pξt−1 ⊗ ei)+

εit bdiag
m
j=1(Λj ⊗Φj)(Pξt−1 ⊗ ei ⊗ yt−1)+

εit bdiag
m
j=1(Φj ⊗Λj)(Pξt−1 ⊗ yt−1 ⊗ ei)+

(ε2it − 1) bdiagmj=1(Λj ⊗Λj)(Pξt−1 ⊗ ei ⊗ ei).

When the shock is specified as ηit = yit − E[yit|It−1], the corresponding GI satisfies

GI yiz̃ (h, ηit, It−1) = E[z̃t+h|yit, It−1]−E[z̃t+h|It−1] = Φ̃
h


E[z∗t |yit, It−1]− E[z∗t |It−1]

E[ε∗t |yit, It−1]

E[ut|yit, It−1]

 , (B.47)

where the last two conditional expectations have been defined in proposition 7, and

E[z∗t |yit, It−1] =


E
[
s1t|yit, It−1

]
E
[
zt|yit, St = 1

]
...

E
[
smt|yit, It−1

]
E
[
zt|yit, St = m

]


and

E[zt|yit, St = j, It−1] = vec (Var[yt|yit, St = j, It−1])−

E[yt|yit, St = j, It−1]⊗ E[yt|yit, St = j, It−1].

with

E
[
yt|yit, St = j, It−1

]
= E

[
yt|St = j, It−1

]
+

yit − e′i(cj +Φjyt−1)

e′iΣjei
Σjei,

Var[yt|yit, St = j, It−1] = Σj −
1

e′iΣjei
Σjeie

′
iΣj.

Proof. Equation (45) follows from

GI z̃(h, ∅,ut, It−1) = Υ̃
h


E[ζ∗t |ut, It−1]

E[ε∗t |ut, It−1]

ut

 ,

with E[ε∗t |ut, It−1] as in proposition 8. The conditional expectation for ζ∗t follows as

E[ζ∗t |ut, It−1] = (Γ +Ω)ut + Ψ (ut ⊗ yt−1) + Υ (ut ⊗ zt−1),

from proposition 2, and the assumptions that E[εt|It] = 0 and that εt and ut are independent.
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Equation (46) follows from

GI z̃(h, εit, ∅, It−1) = Υ̃
h E[ζ̃t|εit, It−1] = Υ̃

h


E[ζ∗t |εit, It−1]

E[ε∗t |εit, It−1]

E[ut, |εit, It−1]

 ,

with E[ut, |εit, It−1] = 0 and E[ε∗t |εit, It−1] = εitΛ(Pξt−1 ⊗ ei) as derived in proposition 7. The

conditional expectation follows from the expression for ζ∗t in proposition 8.

The derivation of E[ε∗t |yit, It−1] and E[ut|yit, It−1] is given in proposition 7. The derivation

of E[ζ∗t |yit, It−1] uses

E[sjtzt|yit, It−1] = E [E[sjtzt|yit, St = jIt−1]| yit, It−1]

= E[sjt|yit, It−1] E[zt|yit, St = jIt−1].

The derivation of E[zt|yit, St = jIt−1] uses the rules for the conditional distributions of the

multivariate normal distribution.

C Additional empirical results

[Figure C.1 about here.]

[Figure C.2 about here.]

[Figure C.3 about here.]

[Figure C.4 about here.]
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Figure C.1: The effects of shocks on expected stock returns over time
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This figure shows the impulse responses for forecast stock returns over time in the VAR(1) model and in the
MSIAH(2)-VAR(1) model, conditional on the regime process being in regime 1, 2 or the steady state at time
t − 1. The colored lines show the effect of a shock of δ times the forecast standard deviation to stock returns
(first row), bond returns (second row), the T-bill rate (third row), and the D/P ratio (fourth row) as in eq. (50),
with δ equal to -2 (red), -1 (orange), -0.5 (yellow), 0 (green), 0.5 (blue), 1 (indigo) and 2 (violet), and the
horizon from 0 through 12 months. The dashed gray lines gives the effect of a one standard deviation shock in
the VAR(1) model.
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Figure C.2: The effects of shocks on expected bond returns over time
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This figure shows the impulse responses for forecast bond returns over time in the VAR(1) model and in the
MSIAH(2)-VAR(1) model, conditional on the regime process being in regime 1, 2 or the steady state at time
t − 1. The colored lines show the effect of a shock of δ times the forecast standard deviation to stock returns
(first row), bond returns (second row), the T-bill rate (third row), and the D/P ratio (fourth row) as in eq. (50),
with δ equal to -2 (red), -1 (orange), -0.5 (yellow), 0 (green), 0.5 (blue), 1 (indigo) and 2 (violet), and the
horizon from 0 through 12 months. The dashed gray lines gives the effect of a one standard deviation shock in
the VAR(1) model.
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Figure C.3: The effects of shocks on the forecast volatility of stock returns over time in
the MSIH(2) model

(a) To stocks, regime 1 at t− 1
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(c) To stocks, steady state at t− 1
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(d) To bonds, regime 1 at t− 1
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(e) To bonds, regime 2 at t− 1
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(f) To bonds, steady state at t− 1
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This figure shows the impulse responses for the forecast volatility of stock returns over time in the MSIH(2)
model, conditional on the regime process being in regime 1, 2 or the steady state at time t − 1. The dashed
gray lines give the forecast volatility without a shock. The solid lines show the forecast volatility conditional on
a shock of δ times the forecast standard deviation to stock returns (first row) and bond returns (second row),
with δ equal to -2 (red line), -1 (orange line), 0 (green line), 1 (blue line), and 2 (violet line). The difference
between the dashed and the solid lines gives the volatility impulse function. The forecast horizon runs from 0
through 12 months.
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Figure C.4: The effects of shocks on the forecast volatility of bond returns over time in
the MSIH(2) model

(a) To stocks, regime 1 at t− 1
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(b) To stocks, regime 2 at t− 1
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(c) To stocks, steady state at t− 1
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(d) To bonds, regime 1 at t− 1
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(e) To bonds, regime 2 at t− 1
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(f) To bonds, steady state at t− 1
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This figure shows the impulse responses for the forecast volatility of bond returns over time in the MSIH(2)
model, conditional on the regime process being in regime 1, 2 or the steady state at time t − 1. The dashed
gray lines give the forecast volatility without a shock. The solid lines show the forecast volatility conditional on
a shock of δ times the forecast standard deviation to stock returns (first row) and bond returns (second row),
with δ equal to -2 (red line), -1 (orange line), 0 (green line), 1 (blue line), and 2 (violet line). The difference
between the dashed and the solid lines gives the volatility impulse function. The forecast horizon runs from 0
through 12 months.
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