
Akdeniz, Aslihan; van Veelen, Matthijs

Working Paper

Mutation-selection equilibria for the ultimatum game

Tinbergen Institute Discussion Paper, No. TI 2021-074/I

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Akdeniz, Aslihan; van Veelen, Matthijs (2021) : Mutation-selection equilibria for
the ultimatum game, Tinbergen Institute Discussion Paper, No. TI 2021-074/I, Tinbergen Institute,
Amsterdam and Rotterdam

This Version is available at:
https://hdl.handle.net/10419/248758

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/248758
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 
TI 2021-074/I 
Tinbergen Institute Discussion Paper  
 

 
 
Mutation-selection Equilibria for the 
Ultimatum Game 
 

 
Aslihan Akdeniz1  
Matthijs van Veelen1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 University of Amsterdam 
 



 
 
 
Tinbergen Institute is the graduate school and research institute in economics of 
Erasmus University Rotterdam, the University of Amsterdam and Vrije Universiteit 
Amsterdam. 
 
Contact: discussionpapers@tinbergen.nl  
 
More TI discussion papers can be downloaded at https://www.tinbergen.nl  
 
Tinbergen Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 598 4580 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
 

mailto:discussionpapers@tinbergen.nl
https://www.tinbergen.nl/


Mutation-selection equilibria for the

ultimatum game

Aslıhan Akdeniz1,2 and Matthijs van Veelen1,2

1University of Amsterdam, The Netherlands.
2Tinbergen Institute, The Netherlands.

8th August 2021

Abstract

Rand et al. (2013) present a finite population
model to explain the evolution of fair behaviour in
the ultimatum game. They find that mutation and
selection can balance at population states that re-
semble human behaviour, in that responders on av-
erage evolve sizable thresholds for rejection, and pro-
posers make proposals that on average more than
meet the threshold. Their mutation however is
global, and therefore biased. We show that when
mutations are local, thresholds as well as proposals
are considerably lower. In order to still arrive at
averages in the simulations that match the averages
we observe in the lab, we would have to resort to
intensities of selection that are so low, that a match
between the averages over time in the simulations
and the averages found in experiments stops being
an indication that the data are in line with what the
model predicts.
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1 Introduction1

The ultimatum game (Güth et al., 1982) is a classic. It is played between a2

proposer and a responder. The proposer makes a proposal how to distribute3

a given amount of money between herself and the responder. The responder4

then accepts or rejects the proposal. In case she rejects, neither player gets any5

money. For simplicity, we will begin by assuming that there is a minimum step6

size, like cents, and that all o↵ers can only be made in euros (or some other7

currency) and cents.8

A natural assumption could be that when they have to make a decision, both9

players only look at how much money they get themselves, and always choose10

the alternative in which they get the most. If the responder does that, then she11

will accept any proposal in which she is o↵ered more than nothing, and she will12

be indi↵erent between accepting and rejecting the proposal in which she gets 0.13

The proposer, then, can be assumed to anticipate that, and o↵er the smallest14

possible amount that the responder accepts (either 0 or 1 cent).15

If we imagine how natural selection would act on strategies for this game16

– in the absence of commitment, repetition, population structure, mutations,17

or noise – we would come to the same conclusion. For every strategy in which18

the responder rejects some proposal in which she was o↵ered a positive amount,19

there is a strategy that does better by accepting it. Responders therefore will20

evolve to accept all proposals in which they get positive amounts, while there21

is no selection pressure for or against accepting proposals in which responders22

get nothing. In reaction to this, proposers evolve to o↵er to the responder the23

smallest positive amount, or zero, if the responders accept zero too.24

Yet this is not what subjects in the lab do. Proposers on average make25

proposals in which the responder gets around 40% of the total money amount26

(Oosterbeek et al., 2004). Moreover, the way rejection rates depend on the o↵er27

suggests that most responders have thresholds, or minimal acceptable o↵ers28

(MAO’s), that on average are a bit below what proposers, on average, o↵er.29

There is a variety of possible explanations for these findings. Commitment to30

rejection may have evolved in order to influence the proposals that proposers31

make (Akdeniz and van Veelen, 2021; Nowak et al., 2000). Rejections can also32

be caused by inequity aversion (Bolton and Ockenfels, 2000; Fehr and Schmidt,33

1999), the evolution of which would still require an ultimate explanation, for34

instance based on population structure. Another explanation could be that our35

behavour has evolved for a repeated version of this game, as papers reviewed in36
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Debove et al. (2016) suggest. The explanation that we explore in this paper, is37

one based on the asymmetry between proposers and responders regarding how38

strong the selection pressure is against the di↵erent disadvantageous mutations39

(Rand et al., 2013).40

Before considering mutations, it is worthwhile to discuss Gale et al. (1995),41

which is based on the same asymmetry, but has noise in how individuals execute42

their strategy instead of mutations. Imagine a population where proposers make43

proposals in which they get almost all of the money, while responders are o↵ered44

the remainder, and in which responsers moreover accept those proposals, but45

not less. Proposers now would stand to loose much more from overasking (or46

undero↵ering) than responders do from rejecting. That implies that in such47

a population, if there is a little bit of noise on both behaviours, this hurts48

proposers that make proposals close to the threshold of responders much more49

than it hurts responders with thresholds close to the o↵er of proposers. This50

can push the o↵ers made by proposers upwards, which then further reduces the51

selection against strategies that reject small o↵ers.52

For the same reasons, selection against disadvantageous mutations can be53

asymmetric. In a population where proposers earn a lot and responders earn54

little, mutations that make proposers reduce their o↵er below the threshold of55

responders are genuinely costly, and will be selected away pretty fast, or pretty56

surely, while mutations that make responders shift their threshold above what57

proposers o↵er will be less costly, and linger for much longer, or have a fair58

chance of not being weeded out. The relative abundance of mildly disadvant-59

ageous mutations can then change the selection pressure, and, in this case, move60

o↵ers to responders upwards.61

In the remainder of the paper, we will see that this is indeed possible; muta-62

tions can indeed create a gap between average o↵ers and average MAO’s, and63

in combination with asymmetric selection pressure, this can push both of them64

up from 0. We will however also see that in the simulations by Rand et al.65

(2013), the average o↵er is pushed up mainly for a di↵erent reason. In their66

model, mutations are global, which has two e↵ects. On the one hand it re-67

duces how much the proximity of average o↵ers and average MAO’s matters for68

the asymmetry in selection pressures. If mutations are local, creating a bit of69

space between your o↵er and the average MAO helps a lot to avoid rejection. If70

mutations are global, however, creating the same amount of space increases the71

probability of having the proposal accepted only marginally. That makes it less72

worthwhile to create distance between your o↵er and the average MAO, which73
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reduces the e↵ect of asymmetric selection pressure. On the other hand, global74

mutations are biased. This bias pushes o↵ers and MAO’s towards the middle75

of the strategy space – and given that selection brings o↵ers and MAO’s down,76

the bias pushes them back up. This bias is relatively powerful when selection is77

weak and mutations are frequent.78

If we make mutations local, then the bias in mutations is reduced signific-79

antly. Below, we will see that changing from global to local mutations reduces80

the average o↵ers and the average MAO’s more or less across the board, which81

implies that the reduction of the bias makes o↵ers and MAO’s come down much82

more than the local concentration of the mutants, together with the asymmetry83

in selection pressures, makes them go back up.84

Both with global and with local mutations, high mutation rates and low85

intensities of selection push the o↵ers and MAO’s up. In order to get to average86

o↵ers and average MAO’s that match those found in experiments, with local87

mutations one therefore would have to resort to higher mutation rates or lower88

intensities of selection compared to global mutations – or a combination of both.89

Here, that would mean that the mutation rate would have to be unrealistically90

high, or the intensities of selection would have to be so low, that in the dynamical91

model, the average o↵er and the average MAO in the population are too variable92

across time to be predictive (even if, when also averaged over time, the average93

of the average o↵ers, and the average of the average MAO’s match the averages94

in empirical data).95

Because we do not think that a bias in mutations constitutes a good basis for96

an explanation for behaviour in the ultimatum game, we argue that the version97

with local mutations is preferable.98

2 The model in Rand et al. (2013)99

Rand et al. (2013) consider a finite population model, in which 100 individuals100

play ultimatum games in both roles. Every individual has a strategy that spe-101

cifies the o↵er they make in the role of proposer, and their MAO in the role of102

responder. These o↵ers and thresholds range from 0 to 1, in some simulations103

in steps of 1/12, in other simulations (including the ones we will be focusing104

on) continuously. Each generation, every individual plays the ultimatum game105

with every other individual, once as a proposer and once as a responder. The106

resulting payo↵ is the average of the payo↵s over all 99 pairings.107
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The population is updated according to a Moran process. One agent is picked108

at random to die, and individual i 2 {1, ..., 100} is picked with probability109

proportional to exp (w⇡i) to reproduce, where w is the intensity of selection,110

and ⇡i is the average payo↵ of individual i. Mutations happen at rate u at111

reproduction; with probability 1 � u, the new individual inherits the strategy112

from the reproducing individual, and with probability u, the new individual113

carries a randomly selected strategy. If o↵ers and MAO’s vary continuously,114

both the new o↵er and the new MAO are drawn from a uniform distribution on115

[0, 1]; if they vary in steps of 1/12, all possible strategies have equal probability.116

The setup implies that there are two variables one can vary: the mutation117

rate u, and the intensity of selection w.118

3 Our version(s)119

There is one general, inconsequential di↵erence between their simulations and120

ours, and that is that we use a Wright-Fisher instead of a Moran process. The121

Wright-Fisher process is computationally more e�cient, but other than that, it122

perfectly reproduces the findings in Rand et al. (2013) for global mutations.123

The more important, and consequential di↵erence is that in our version,124

mutations are local. We study two local alternatives for the local mutation125

process.126

3.1 Local, co-occurring mutations127

In the first one, mutations on both dimensions (o↵er and MAO) are co-occurring,128

as they are in Rand et al. (2013). That means that if a mutation happens, then129

both a new o↵er and a new MAO are drawn. The only di↵erence with Rand130

et al. (2013) is that they are drawn from a local distribution, instead of a global131

one. If the old o↵er is p, then the new o↵er is p+�p, where �p is drawn from132

a uniform distribution on [�0.1, 0.1]. There are two exceptions. The first is133

a result of the fact that we do not allow for values below 0. Therefore, when134

p +�p < 0, the new o↵er is 0. Similarly, we also do not allow for values over135

1, and therefore, if p+�p > 1, the new o↵er is 1. This implies that mutations136

are unbiased for trait values in [0.1, 0.9], and become a little biased if they drop137

below 0.1 or go over 0.9 (in which case the bias is still small compared to the138

bias with uniform mutations in Rand et al., 2013). The same procedure applies139

to the MAO.140
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3.2 Local, independent mutations141

In the second version, mutations in the o↵er or the MAO happen independently.142

At any reproduction event, the o↵er mutates with probability u, and so does143

the MAO. That means that with probability u2 mutations of the o↵er and of144

the MAO co-occur, and with probability 2u (1� u) only one of them mutates.145

Mutations still happen locally, as described above.146

The di↵erences between these two versions are relatively small (see the ap-147

pendix). Because the second version is a bit more elegant, this is the one that148

we will use below, when we compare global and local mutations.149

4 Global versus local mutation150

The way we compare global versus local mutation will be centered around the151

simulations reported in Figure 2 in Rand et al. (2013). These figures give an152

answer to the question which combinations of the intensity of selection and the153

mutation rate put the average o↵er and the average MAO in the range of the154

averages in empirical findings. There are two ways to rephrase that question,155

or to visualize the answer. The first is: for a given mutation rate, one could156

ask how low the intensity of selection would have to be in order to get the157

o↵ers and MAO’s up to levels found in experiments. The second is: for a given158

intensity of selection, one could ask how high the mutation rate would have to159

be in order to get o↵ers and MAO’s up to the levels found in experiments. We160

will compare the di↵erent mutation processes by looking at how the answers to161

these questions change if we switch from global to local mutations.162

4.1 Fixed mutation rates, decreasing intensity of selection163

Figure 1 represents the first way to pose the question, or the first way to visualize164

the answer. Here we fix mutation rates, and look at the average o↵ers and the165

average MAO’s in the dynamics for a variety of intensities of selection. Thereby166

we do the same as in Figure 2 in Rand et al. (2013), with one change, and167

that is that we inverted the horizontal axis. In Rand et al. (2013), the figures168

begin with low intensities on the left and high intensities on the right. We do169

the opposite. The reason for that is that we want to make it clear that the170

benchmark is the subgame perfect equilibrium, with o↵ers and MAO’s close to171

0, and that we investigate ways to arrive at dynamics with substantial average172
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(A) (B)

(C) (D)

(E) (F)

Figure 1: Average o↵ers and MAO’s at u = 0.001, u = 0.01, and u = 0.1. In red the
average o↵ers and MAO’s with global mutation, as in Rand et al. (2013), and in blue the same,
but for local, independent mutations. Both the average o↵ers and the average MAO’s are lower
with local mutations. In order to get o↵ers, or MAO’s, up to similar levels with local and global
mutations, one would have to move to lower intensities of selection with local mutations.
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o↵ers and substantial average MAO’s. Reducing the intensity of selection is one173

such way.174

From the simulations, we learn that there are two important di↵erences175

between global and local mutations. The first is that with the bias significantly176

reduced, the average o↵ers and MAO’s stay low for longer, and start getting into177

the range of the experiments later on in the sequence of ever lower intensities of178

selection. Here it is important to note that on the right hand side of the graph,179

with low intensities of selection, average o↵ers and average MAO’s end up at180

0.5 in both versions. The reason why this eventually happens for any possible181

modeling choice, is that 0.5 is halfway the parameter space, and therefore this182

must be the average over time in the limit of weak selection, where relative183

payo↵s stop mattering. In Section 5 we discuss this in more detail, including184

reasons why the dynamics lose predictive power as selection becomes weaker.185

The second remarkable di↵erence is especially visible in Fig. 1E and 1F for186

u = 0.1. Here we see that on the left side of the graph, at high intensities of187

selection, there is almost no gap between o↵er and MAO for global mutation,188

while there is a visible gap there for local mutations. The latter is consistent189

with the idea that, given that there is a consistent inflow of mutations, proposers190

benefit from creating some space between their o↵er and the average MAO in191

the population, and responders benefit from creating some space between their192

MAO and the average o↵er in the population. Both of these pressures contribute193

to the gap, but asymmetrically, because at low average MAO’s, proposers have194

more to lose from rejections than responders do from rejecting. All else equal,195

this makes proposers want to create more distance than responders do, and that196

can result in both averages moving up a little.197

If we then start on the left hand side of the graph, and move a little to the198

right, then first the e↵ect of reducing the intensity of selection is that this keeps199

mutants around for longer, creating a wider distribution of o↵ers and MAO’s,200

thereby selecting strategies that on average keep more distance – which in turn201

leads to higher o↵ers and MAO’s due to the asymmetry in selection pressures.202

Later on, when selection gets even weaker, the gaps gets smaller again. Why203

this happens, is discussed in Section 5.204

With global mutations, on the other hand, there is hardly any gap at first.205

Here, the moving up of the o↵ers and MAO’s as selection gets weaker is pre-206

dominantly the result of the bias getting countered less by selection. Only if the207

bias has a su�ciently large e↵ect, because of further reduced intensities, do we208

see a divergence between o↵ers and MAO’s.209
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Both di↵erences indicate that the dynamics for local mutations capture the210

selection e↵ect that we are interested in. This selection e↵ect is driven by211

asymmetry in fitness e↵ects, and not by bias in mutations.212

4.2 Fixed intensity of selection, increasing mutation rates213

In Figure 2 we fix intensities of selection, and look at a the average o↵ers and214

MAO’s in the dynamics for a variety of mutation rates. The simulations suggest215

the same; if we go from global to local mutations, and thereby reduce the bias,216

the average o↵ers and the average MAO’s go down. In Fig. 2E and 2F we217

see that they stay low for longer, and that even at the maximum mutation218

rate, where everybody mutates to a meaningful element of the trait space, only219

the average o↵er and the average MAO with global mutations, and not local220

mutations, reach the averages from experiments. In Fig. 2C and 2D they do,221

but with local mutations, it requires unreasonably large mutation rates. In Fig.222

2A and 2B all averages are smaller deviations from 0.5. In Section 5 we will223

describe why the dynamics for such low intensities of selection lose predictive224

power.225

With global mutations, both average o↵ers and average MAO’s inevitably get226

to 0.5 as mutation rates increase. The reason is that when mutations are global,227

then at u = 1, when both the o↵er and the MAO mutate at every reproduction228

event, it becomes irrelevant who is reproducing. The parents therefore stop229

passing on any genetic information; every new individual is a mutant, and all230

mutants are drawn from the same distribution, regardless of what the parents231

are. Therefore, at u = 1, on both dimensions, the population at any point in232

time just becomes a collection of independent random draws from [0, 1].233

With local mutations, average o↵ers and average MAO’s do not necessarily234

get to 0.5 as the mutation rate increases. In this case, parents still pass on ge-235

netic information, because even if everyone mutates, these mutations are drawn236

from a distribution that is centered around the trait value of the parent. That237

makes it possible for the average o↵er and the average MAO to stay below 0.5,238

even if the mutation rate is 1.239

5 Predictions for weak selection240

In the previous section, we have seen that both with global and with local241

mutations, high mutation rates and low intensities of selection push average242
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(A) (B)

(C) (D)

(E) (F)

Figure 2: Average o↵ers and MAO’s at w = 1, w = 0.1, and w = 0.01. In red the average
o↵ers and MAO’s with global mutation, as in Rand et al. (2013), and in blue the same, but for
local, independent mutations. For w = 0.01 everything gets close to 0.5. For w = 0.1 one can get
to the averages observed in experiments, but with local mutations it requires very high mutation
rates. For w = 1 and local mutations, even a mutation rate of u = 1 is not high enough.
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o↵ers and the average MAO’s up from 0. There are however limitations to how243

far these parameters can be pushed, and still constitute a meaningful prediction.244

To see why, we look at the dynamics for low intensity of selection.245

When the intensity of selection is 0, the dynamics in the model by Rand et al.246

(2013) become symmetric, in the sense that any transition from one population247

state to the other is equally likely as its mirror image. More precisely, if pi248

denotes the o↵er of player i in the role of proposer, and qi is the MOA of249

player i in the role of responder, then a population state is characterized by250

vectors p = [p1, ..., pN ] and q = [q1, ..., qN ], where N is the population size.251

Symmetry means that a transition from population state (p,q) to population252

state (p0,q0) is equally likely as its mirror image, going from population state253

(1� p,1� q) to population state (1� p
0,1� q

0), where 1 is a vector of 1’s.254

This symmetry implies that if we average the population states over time, we will255

find a symmetric distribution. The average o↵er over this distribution therefore256

will be 0.5, and the average MAO will also be 0.5, and both of these are a257

consequence of the fact that 0.5 is halfway the strategy set that the population258

moves around in – with probabilistic symmetry.259

All of this implies that the fact that it is possible to get the average o↵er or260

the average MAO up to any value between 0 and 0.5 by choosing a su�ciently261

low intensity of selection is not necessarily something that reflects anything to do262

with selection. Selection pulls both of them down, and if one reduces selection263

ever more, one can reduce how much both are dragged down. The fact that one264

can get them to average at a values arbitrarily close to 0.5 by almost eliminating265

selection, however, is a somewhat arbitrary result of the shape of the strategy266

set, and not of what selection does to the strategies in it.267

In order to see other reasons why the model with weak selection poorly268

predicts the empirical observations, we will look in some detail simulation runs269

for s few selected parameter combinations.270

5.1 Weak selection, low mutation rate, global mutation271

The left hand side of Fig. 3 depicts a few aspects of a run with global mutation,272

a low intensity of selection (w = 0.001), and a low mutation rate (u = 0.001).273

Panel A shows how the average o↵er and the average MAO change over time274

for a part of a simulation run. Here it is important to note that the average275

o↵er and the average MAO move around quite a bit, and not in overwhelming276

synchrony (in fact, there is hardly any correlation). Panel C gives a snapshot277
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(A) (B)

(C) (D)

(E) (F)

Figure 3: Global mutation, w = 0.001, and u = 0.001 (left) and u = 0.1 (right). The top
panels give the average o↵er and MAO over time for a part of the run. The middle panels give the
distribution of strategies at some random moment in the simulation run. The bottom panels give
the average distribution over time, where we collected strategies within intervals of length 0.05.
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of the distribution at some moment in time, and here we find both traits to278

be at fixation, as is expected to be the case for most of the time with such a279

low mutation rate. Panel E averages these distributions (like the one given in280

panel C) across time, producing the average distribution over time. As is to281

be expected, this is quite close to the uniform distribution on [0, 1], which is282

the distribution that all mutants come from. The average o↵er and the average283

MAO of the average distribution (both are averages of averages) are horizontal284

lines in panel A, and vertical lines in panel E.285

The fact that the average o↵er and the average MAO move around quite a286

bit over the course of a run limits the predictive power of the model for this com-287

bination of low intensity of selection and a low mutation rate. Any average that288

we find in experiments would be close to the average in the simulations at some289

points in time, but it would be far away from the averages that the simulations290

produce at many other points in time. Also, at most points in time, there is not291

much variation; the variation in panel E is generated by the variability across292

time, not by the variation at any moment in time. The prediction of this model293

therefore is that we should observe a close to monomorphic population, where294

the probability with which we would observe a certain average is the result of a295

draw from the uniform distribution – which is not the same as observing that296

whole distribution in one population at the same moment in time. The fact297

that the MAO of everyone in the population is regularly also above the o↵ers298

of everyone in the population (almost 50% of the time) also implies that if we299

really believe in weak selection, we should also conclude that if we now find300

the average MAO to be below the average o↵er, then this is just a coincidence,301

and it could also have been the other way around. Also it would make it very302

unlikely that between di↵erent populations they would correlate, and that the303

first always turns out to be below the second (Henrich and Boyd, 2001; Henrich304

et al., 2001; 2006).305

All of these observations imply that this model does not have much pre-306

dictive power when selection is weak, and the mutation rate is moderate to307

low. Therefore, we have to be careful not to draw conclusions on the basis of a308

comparison of a distribution of o↵ers and MAO’s that we find at a given mo-309

ment in time in an experiment, and the average distribution over time from the310

dynamics in the model.1311

1
In order to have an indication how stable or unstable the distributions are over time, we

can calculate the variance in average o↵ers, or MAO’s, over time. If pt is the average o↵er in
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5.2 Weak selection, high mutation rate, global mutation312

The right hand side of Fig 3 depicts the same aspects for a run, also with global313

mutation, and also with a low intensity of selection (w = 0.001), but with a314

high mutation rate (u = 0.1). Here, the averages in the population do not315

move around as much, and the shape of the distribution at any point in time is316

relatively close to the distribution of the inflow of mutants, which is a uniform317

distribution over [0, 1]. Given the low intensity of selection, this makes sense.318

With much less variability over time, this produces a much sharper prediction:319

the distribution should be close to uniform on [0, 1] at all times. This however320

does not match the empirical evidence either, because the distributions that we321

find in experiments typically are not that close to uniform. Moreover, as before,322

the average o↵er and the average MAO move close to independently, and this323

does not predict the average o↵er to be above the average MAO.324

5.3 Weak selection, local mutation325

Most overall properties of the dynamics are similar with local mutations. With326

weak selection and low mutation rates, the populations are typically also close327

to monomorphic. Over time, they also move around quite a bit, but the muta-328

tions being local makes the average move around in much smaller steps, and329

therefore also much slower (see the left hand side of Fig. 4). The distribution330

over time is not the same as the ”distribution that all mutants come from”,331

because with local mutation, there is no such constant mutant distribution. Be-332

cause the average is a random walk, restricted to [0, 1], the distribution still333

ends up looking like a uniform distribution with some deviations at and close334

to the boundaries, where it spends some extra time. For weak selection and335

high mutation rates, the mutations being local gives random e↵ects much more336

amplitude, but otherwise, also these simulations are similar to the ones with337

global mutations.338

the population at time t, and p =
1
T

PT
t=1 p

t
, then

1

T

TX

t=1

�
pt � p

�2

is the variance. Simulations with a high variance have little predictive power. The variance

of proposals calculated from a run with u = 0.001 and w = 0.001 is around 0.06 for global

and 0.12 for local mutations. The variance of MAO’s is around 0.07 for global and 0.08 for

local mutations. As a benchmark, one can compare these to the variance if one just randomly

draws an o↵er or MAO from a uniform distribution on [0, 1] every period. In that case, the

variance is
R 1
0 (x� 0.5)2 =

1
3

h
(x� 0.5)3

i1
0
=

1
12 ⇡ 0.083.
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(A) (B)

(C) (D)

(E) (F)

Figure 4: Local mutation, w = 0.001, and u = 0.001 (left) and u = 0.1 (right). The top
panels give the average o↵er and MAO over time for a part of the run. The middle panels give the
distribution of strategies at some random moment in the simulation run. The bottom panels give
the average distribution over time, where we collected strategies within intervals of length 0.05.
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6 Discussion339

We have shown that, in a mutation-selection model of the ultimatum game,340

changing from global to local mutations reduces the bias in the mutations. The341

dynamics with local mutations moreover capture the e↵ect of the di↵erence342

between how costly the “mistakes” of proposers’ under-o↵ering versus respon-343

ders’ rejecting are. The change from global to local mutations comes with lower344

average o↵ers and lower average MAO’s. That means that in order to get aver-345

age o↵ers and average MAO’s up to the levels found in experiments, one would346

have to resort to unrealistically high mutation rates – where mutations moreover347

always result in meaningful mutant strategies – or intensities of selection that348

are so low, that the o↵ers and MAO’s, when averaged over time, become poor349

indicators of what the model would predict at any moment in time.350

There are a few ways to deal with the mismatch between what is found in lab351

experiments in the ultimatum game and what evolves in the mutation-selection352

model with local mutations. One is to accept that this model would not predict353

the behaviour in WEIRD populations, but try consider non-WEIRD populations354

that show lower o↵ers and lower MAO’s. Here it is important to realize that355

the mutation rates required are still rather high, given that a mutation here356

means that the mutant is a meaningful strategy, and that the game behaviour357

among non-WEIRD societies is also highly variable (Henrich et al., 2005; 2006).358

Another way to deal with the mismatch between the empirical evidence and359

the theoretical predictions is to model the genetics underlying the behaviour360

di↵erently. It is possible that, with alternative specifications, one would not361

need excessively high mutation rates. With this in mind, one could also argue362

that the quantitative predictions from the model are not to be taken as seriously363

as the original paper does. It seems that the middle ground might have to be364

somewhere between recognizing (i) that the asymmetry in costliness of mistakes365

matters, but (ii) that getting close to fair o↵ers of 50% on the basis of cost366

asymmetries fails short of explaining the evolution of fairness in the ultimatum367

game.368

Another conclusion could be that mutations are not the (only) reason why369

humans reject unequal proposals, and that the answer lies in commitment (Ak-370

deniz and van Veelen, 2021; Frank, 1988). In the ultimatum game, if the re-371

sponder can commit to rejecting unfair o↵ers, and if proposer knows this, then372

it will be in the proposer’s own best interest to accommodate this, and propose373

a fair split of the money. Committing to rejecting disadvantageous proposals374

16



can therefore help the responder by inducing the proposer to make more gen-375

erous proposals. Akdeniz and van Veelen (2021) review the explanations for376

the evolution of fairness in the ultimatum game that are commonly studied in377

the literature, such as population structure and repeated interactions; and ar-378

gue how commitment can better explain a wide range of empirical phenomena,379

including a preference for fairness in the ultimatum game.380

17



References381

Aslıhan Akdeniz and Matthijs van Veelen. The evolution of morality and the382

role of commitment. Evolutionary Human Sciences, pages 1–53, 2021.383

Gary E Bolton and Axel Ockenfels. ERC: A theory of equity, reciprocity, and384

competition. American Economic Review, 90(1):166–193, 2000.385

Stephane Debove, Nicolas Baumard, and Jean-Baptiste André. Models of the386
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Appendix A: Co-occurring versus independent mutations

(A) (B)

(C) (D)

(E) (F)

Figure A.1: Average o↵ers and MAO’s at u = 0.001, u = 0.01, and u = 0.1. In red the

average o↵ers and MAO’s with local, co-occurring mutations, and in blue the same, but for local,

independent mutations.
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