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Non-technical summary

Research Question

From the start of the COVID-19 pandemic, more timely and granular information on the

state of the economy was sought after. To this end, indices based on higher frequency

time series have been produced in order to arrive at faster and more precise assessments

of economic developments. The series used in the construction of these economic indices

often present methodological challenges that differ substantially from those encountered

in lower frequency data. We analyse the characteristics of higher frequency time series

that cause these methodological challenges in the context of seasonal adjustment.

Contribution

We analyse a characteristic set of higher frequency time series that are used as inputs

to the weekly activity index (WAI) published by the Deutsche Bundesbank since the

beginning of the COVID-19 pandemic. The contribution of this paper is twofold. First,

we seasonally adjust daily truck toll data, hourly electricity consumption data and weekly

Google Trends data on unemployment. We discuss which differences to lower frequency

time series are relevant for seasonal adjustment in general and in light of the COVID-

19 pandemic. Second, we develop a taxonomy of the central features of seasonal higher

frequency time series.

Results

The identified central features can be clustered into three groups of characteristics: basic

time series characteristics, periodic and calendar effects, and outliers and missing values.

This list of features contributes to the evaluation of the seasonal adjustment of higher

frequency time series and should inform the development of quality diagnostics.



Nichttechnische Zusammenfassung

Fragestellung

Mit Beginn der COVID-19 Pandemie stieg der Bedarf an frühzeitigeren und detaillierteren

Informationen zur gesamtwirtschaftlichen Lage. Daher wurden verschiedene Indizes ent-

wickelt, die höherfrequente Zeitreihen nutzen, um die gesamtwirtschaftliche Lage schneller

und präziser einschätzen zu können. Die Nutzung der diesen Indizes zugrundeliegenden

Zeitreihen ist allerdings mit methodischen Herausforderungen verbunden, die sich sub-

stanziell von denen bei niedrigerfrequenten Zeitreihen unterschieden. Wir analysieren die

Charakteristika von höherfrequenten Zeitreihen, die die Ursache für solche methodischen

Herausforderungen im Rahmen der Saisonbereinigung sind.

Beitrag

Wir untersuchen einige typische höherfrequente Zeitreihen, die seit Beginn der COVID-

19 Pandemie Eingang in den Wöchentlichen Aktivitätsindex (WAI) der Deutschen Bun-

desbank finden. Der Beitrag dieser Untersuchung liegt erstens in der Saisonbereinigung

täglicher LKW-Maut-Fahrleistungsdaten, stündlicher Energieverbrauchsdaten und wöch-

entlicher Google Trends Daten zur Arbeitslosigkeit. Wir zeigen dabei, welche Unterschiede

zu niedrigerfrequenten Zeitreihen für die Saisonbereinigung allgemein und vor dem Hin-

tergrund der COVID-19 Pandemie relevant sind. Zweitens entwickeln wir eine Taxonomie

der zentralen Eigenschaften von saisonalen höherfrequenten Zeitreihen.

Ergebnisse

Die identifizierten zentralen Eigenschaften lassen sich in drei Gruppen einteilen: Allge-

meine Zeitreiheneigenschaften, periodische und kalendarische Effekte sowie Ausreißer und

fehlende Werte. Diese Liste an Eigenschaften trägt dazu bei, die Saisonbereinigung von

höherfrequenten Zeitreihen zu evaluieren und liefert eine Grundlage für die Entwicklung

von Qualitätsmaßen.
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Abstract

The COVID-19 pandemic has increased the need for timely and granular information
to assess the state of the economy in real time. Weekly and daily indices have been
constructed using higher frequency data to address this need. Yet the seasonal and
calendar adjustment of the underlying time series is challenging. Here, we analyse
the features and idiosyncracies of such time series relevant in the context of seasonal
adjustment. Drawing on a set of time series for Germany – namely hourly electricity
consumption, the daily truck toll mileage, and weekly Google Trends data – used
in many countries to assess economic development during the pandemic, we discuss
obstacles, difficulties, and adjustment options. Furthermore, we develop a taxonomy
of the central features of seasonal higher frequency time series.
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1 Motivation

During the COVID-19 pandemic, policymakers and economists sought more timely and
granular information on the state of the economy. To this end, higher frequency indices
that track the economic development of a country have been developed. Most prominently,
Lewis, Mertens, and Stock (2020) developed the Weekly Economic Index (WEI) for the
United States that combines several weekly indicators such as U.S. railroad traffic, electric
utility output or unemployment insurance claims. The WEI tracks the output of the U.S.
economy and allows the state of the economy to be monitored on a weekly basis (Lewis,
Mertens, Stock, and Trivedi, 2020, 2021).

The WEI has sparked the development of a series of similar weekly indicators, espe-
cially for European countries (e.g. Delle Monache, Emiliozzi, and Nobili, 2020; Eraslan
and Götz, 2020; Fenz and Stix, 2021; Wegmüller, Glocker, and Guggia, 2021). Lourenço
and Rua (2021) develop a daily variant (DEI) for the Portuguese economy. Woloszko
(2020) constructs country-specific economic indicators for 46 countries based on Google
Trends data.

During the last decade, the number of seasonal adjustment methods for higher fre-
quency time series has seen a considerable increase (Ladiray, Palate, Mazzi, and Proietti,
2018; Webel, 2020). Yet, in the construction of the WEI, DEI and some of the other in-
dices, these methods are not employed. Instead, ad-hoc measures like year-on-year rates
are used to handle the seasonality of the data. This does not usually take into account
calendar effects or the structure of the periodic and seasonal effects such as the varying
number of weeks per year.

The higher frequency time series used in the construction of the economic indices
often present methodological challenges that differ substantially from those encountered
in lower frequency data. In this paper, we therefore analyse and seasonally adjust a set of
higher frequency time series that is typical of the kind of data relied upon by economists
and business cycle analysts during the COVID-19 pandemic. In particular, these series
are used as inputs to the Weekly Activity Index (WAI) devised by Eraslan and Götz
(2020). We focus on the features of such time series that are relevant in the context of
seasonal adjustment.

To this end, Section 2 presents the seasonal adjustment methods employed in this
study. Section 3 analyses and adjusts the daily truck toll mileage, the hourly electricity
consumption and a weekly Google Trends series while Section 4 derives the characteristic
features of higher frequency time series from a seasonal adjustment perspective. Section
5 summarises.

2 Seasonal adjustment methods

The focus of this paper lies on the qualitative assessment of higher frequency time series
and to this end, we employ methods for the seasonal adjustment of such series to guide
our understanding. Although we discuss the seasonal adjustment results and highlight
potential challenges, we do not advocate for any particular method. Instead, the findings
shall carve out features of higher frequency time series that need to be addressed regardless
of the method applied.
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Let {Yt} denote a series of length T with cycle length τ . For monthly series, τ equals
the number of observations per year, i.e. 12. For a daily series with only a weekday
pattern, the recurring pattern has a cycle length of 7. The basic time series decomposition
is then given by

Yt = Tt + St + Ct + It (1)

which includes the trend-cycle (Tt), seasonal (St), calendar (Ct) and irregular component
(It). It can easily be adapted to capture a multiplicative relationship between the com-
ponents by log-transformation of the original time series.1 For multiple periodic effects
with cycle lengths τ1, τ2, ..., the basic time series model can be generalised to

Yt = Tt +
∑
i

S
(τi)
t + Ct + It (2)

Remark 1. In Equation 2 the periodic effects are subsumed as seasonal effects to allow a
parsimonious notation. Here, effects related to calendar constellation are not considered
to be periodic effects, even though the calendar constellation recurs with a cycle length
of 400 years in the Gregorian calendar. However, this recurrence is not exploited in the
modelling of the time series and effects arising from these calendar constellations will not
usually recur in similar intensity every 400 years.

As we will see, for some series, different seasonal effects are interdependent. Likewise,
calender effects and seasonal effects can be related. If all such interactions are relevant,
Equation 2 needs to be augmented so that

Yt = Tt +
∑
i

Sτit + Ct +
∑
i

∑
j>i

S
(τi)
t ∗ S(τj)

t +
∑
i

Sτit ∗ Ct + It. (3)

In line with the methods used for official seasonal adjustment – namely X-13 and Tramo-
Seats – the adjustment of the higher frequency time series presented here combines a
seasonal adjustment routine with a RegARIMA based pre-adjustment. The latter is a
regression model (Reg) with autoregressive integrated moving average (ARIMA) errors
and is used here for the estimation and elimination of calendar effects. The RegARIMA
model is given by

φp(B)φP (Bτ )(1−B)d(1−Bτ )D

(
Yt −

r∑
i=1

βiXit

)
= θq(B)θQ(Bτ )εt (4)

where φ(B) and θ(B) are AR and MA polynomials of order p and q, number of differences
d, and capitals indicating seasonal terms while B is the backshift operator, i.e. B(yt) =
yt−1. The parameter βi captures the impact of the i-th regressor Xit on the time series
Yt and εt is the error term. The ARIMA part of Equation 4 can be abbreviated by
(p d q)(P DQ)τ . Extensions of this model to multiple seasonalities are known and available
(e.g. Svetunkov, 2017), but at the time of writing, these are rarely used in seasonal and
calendar adjustment.

1For a thorough discussion of further decomposition models, see U.S. Census Bureau (2016).
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2.1 Seasonal adjustment of daily time series

The iterative daily seasonal adjustment (DSA) procedure described by Ollech (2018; 2021)
combines the aforementioned RegARIMA model with STL (Seasonal and Trend decom-
position using Loess, Cleveland, Cleveland, McRae, and Terpenning, 1990).

DSA can integrate other seasonal adjustment methods as well, if they are flexible
enough to handle daily data. In this regard, Ollech, Gonschorreck, and Hengen (2021)
discuss the flexibilisation of X-11 to handle higher frequency time series.

STL decomposes a time series into Tt, St and It using a series of Loess regressions
and moving averages to separate out the trend and a periodic pattern from the series.
Loess regressions are locally weighted regressions (Cleveland and Devlin, 1988). Each
observation is regressed on a pre-defined set containing the γτ closest observations. These
observations are weighted, where the weight depends negatively on the distance between
the observations. With a reference observation – i.e. the observation to be regressed on
its neighbouring observations – at time t, the weight of the observation at ti is given by

vi(t) =

[
1−

(
|ti − t|
δγτ (t)

)3
]3

(5)

where δγτ (t) = |ti − tγτ | is the distance between the γthτ farthest ti and t.
STL only extracts one periodic pattern at a time. Therefore, DSA combines multiple

runs of STL with RegARIMA:

• Step I: Adjust intra-weekly seasonality with STL.

• Step II: Calendar- and outlier adjustment with RegARIMA.

• Step III: Adjust intra-monthly seasonality with STL.

• Step IV: Adjust intra-annual seasonality with STL.

The resulting final seasonally adjusted series has thus been adjusted for all seasonal
and moving holiday effects considered. The order of the steps in DSA follows the maxim
to start with the periodic pattern with the shortest cycle length, i.e. the intra-weekly
seasonality. Unlike the methods used for seasonal adjustment of lower frequency time
series, the RegARIMA part is not the first step, as it would necessitate to estimate a
RegARIMA model with multiple seasonal parts. Future versions of DSA may include
such an extension.

For all computations and analyses we use R 4.0.2 (R Core Team, 2021). The seasonal
adjustment of daily time series is computed using the {dsa} package in version 1.1.15.

2.2 Seasonal adjustment of hourly time series

Hourly series are challenging due to the large number of observations included. For
computational reasons, it will often not be possible to estimate a RegARIMA model for
such series, if many regressors need to be included. Here we adapt the DSA procedure to
the case of hourly data as follows:

• Step I: Adjust hour-of-the-week effects with STL.
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• Step II: Calendar- and outlier adjustment with RegARIMA based on daily observa-
tions.

• Step III: Adjust hour-of-the-month effects with STL.

• Step IV: Adjust hour-of-the-year effects with STL.

As with DSA, single steps of the routine used to seasonally adjust hourly data may
be omitted, e.g. only a few series will exhibit a hour-of-the-month effects.

Remark 2. The transformation from hourly to daily observations in step II only serves
to reduce the computational burden. For some series it may be feasible and preferable
to directly estimate the calendar effects in the hourly series. If a distinct moving holiday
impact for each hour of a holiday is assumed, the number of regressors may be extremely
large. This is aggravated if cross-seasonal effects need to be modelled, e.g. if interactions
between fixed holidays, the weekday and potentially the hour are prevalent.

2.3 Seasonal adjustment of weekly time series

On average, a year contains a non-integer number of weeks, namely 52.18. Ladiray et
al. (2018) describe how, in these cases, autoregressive fractionally integrated moving
average (ARFIMA) processes can be exploited that adapt the seasonal differencing part
of Equation 4 to incorporate fractionally integrated processes. The authors develop a
fractional variant of the well-known airline model, i.e. the seasonal ARIMA model of
order (0, 1, 1)(0, 1, 1)τ . For a non-integer seasonal period of τ = bτc + α, with α ∈ [0, 1],
the fractional differencing operator ∇̃τ can be approximated by a first order Taylor series
expansion so that

∇̃τYt ≈ Yt − (1− α)BbτcYt − αBbτc+1Yt (6)

The fractional airline model can be used for linearisation of a time series analogously to
Tramo.2 We combine this pre-processing with a SEATS-type time series decomposition
of the fractional airline model to seasonally adjust weekly time series with τ = 52.18.

3 Exemplary analysis of higher frequency data

We will present a small set of higher frequency time series that have been of high impor-
tance for economic analysis during the COVID-19 pandemic. We will discuss key features
of this series and show how these might be accounted for when conducting calendar and
seasonal adjustment.

3.1 Truck toll mileage index

The Federal Office for Freight Transport in Germany is responsible for a distance-based
toll on trucks, which was implemented in January 2005. The truck toll mileage index has

2The fractional airline model-based estimation and decomposition are included in the R Package {rjdhf}
available on github: https://github.com/palatej/rjdhighfreq. As of version 0.0.4, the Tramo-type
estimation of the model does not allow forecasting of the time series. For weekly time series, we therefore
use seasonal ARIMA models for pre-processing of the time series with τ = 52.
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Figure 1

been developed together with the Federal Statistical Office. It is based on raw mileage
and free of structural breaks resulting from changes in the vehicles that have to pay the
toll. The data are available as a monthly and a daily index (Deutsche Bundesbank, 2020).
The daily time series analysed here is available from 1 January 2005 up to 12 September
2021, and thus contains many observations.

As can be seen from Figure 1 the series is characterised by multiple periodic effects,
namely a strong weekday pattern, with a trough on Sundays and an annual pattern. These
effects are interdependent: the cross-seasonality presents itself as a weekday pattern
that changes throughout the year. In part, this is due to governing laws and regulations:
with only a few exceptions, trucks are not permitted to drive on motorways on Sundays
or on public holidays. During July and August, this is extended to Saturdays as well.
We further observe different patterns around Christmas related to different changes in
consumption behaviour.

Remark 3. Other series contain uncommon periodic effects. Ollech (2021) finds a
monthly recurring pattern in currency in circulation in Germany.

The series is further marked by a weakly positively sloping trend that is halted tem-
porarily in early 2020, as a consequence of the COVID-19 pandemic. After the COVID-
19-induced slowdown we observe breaks in periodic effects, in particular the weekday
pattern. At least temporarily, the difference in the truck mileage between workdays and
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weekend days is less pronounced. The annual seasonal pattern is non-isochronous, i.e.
the number of observations per cycle is not the same for all cycles as years contain either
365 or 366 observations.

Remark 4. Non-isochronicity can impact a time series in a number of ways. We may
observe that the seasonal pattern in longer cycles is just a stretched-out version of the
pattern in shorter cycles. This might be the case, if the seasonal pattern is a smooth pat-
tern in the sense that the seasonal impact of neighbouring values are highly correlated.
In series with a more fluctuating pattern, the seasonal impact of additional observations
in a given cycle, such as February 29 in a leap year, may be less related to adjacent ob-
servations. This may imply that the estimation of the seasonal impact of these additional
observations in longer cycles can not be inferred from observations in the shorter cycle.

Figure 2

For higher frequency time series, it is often possible to observe the impact of holidays
more directly, and thus identify series-specific calendar effects. Figure 2 shows the
truck toll mileage index on All Saints’ Day (November 1) as well as the three days leading
up to and the three days after the holiday. All Saints’ Day is a public holiday in 5 out of
16 German federal states. In these states, all of which are located either in the south or
west of the country, trucks are prohibited from driving on motorways on this day. The
impact of All Saints’ Day is cross-seasonal: the magnitude of the decrease depends on the
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weekday.3 As restrictions already apply to the driving of trucks on Sundays, All Saints’
Day does not have an additional impact on the truck toll mileage index if it falls on a
Sunday. By contrast, there is a considerable reduction if it falls on any given weekday.

If All Saints’ Day falls on a Tuesday (Thursday), the neighbouring Monday (Friday),
i.e. any bridge days, also appear to have a reduced number of trucks on motorways. In
contrast to lower frequency time series, these bridge day effects can be seen and modelled
more directly.

The COVID-19 pandemic, which hit Germany in March 2020, has a twofold impact
on the time series. First, it leads to an abrupt decline in the number of kilometres driven
by trucks. Second, it impacts the observed weekday pattern owing to changes in the
restrictions regarding on which days trucks are allowed to drive on motorways and the
consumption pattern.

To obtain a calendar and seasonally adjusted series, DSA was used with γ7 := 7 and
γ365 := 11 using an additive decomposition. For the seasonal adjustment of the monthly
index, we found a multiplicative decomposition to be more appropriate. Yet due to the
higher volatility of the daily index – which is typical for higher frequency time series
– the seasonal factors from a multiplicative model would inflate strong outliers in many
cases, leading to extreme spikes in the seasonally adjusted series. The series does not
contain day-of-the-month effects4; accordingly, step III of the DSA procedure is omitted.
The choice of a very short filter to estimate the day-of-the-week effect, i.e. γ7 := 7, allows
the day-of-the-week-effect to change during the year, thus making it possible to capture
this particular cross-seasonal effect. As discussed above, this is important, because we
already know that the weekday pattern is different in different parts of the year, due to the
aforementioned driving restrictions. The day-of-the-year effect is captured using γ365 :=
11. This is appropriate because it allows the seasonal effect to change slowly over time, but
does not overreact to single years. An important tool to identify an appropriate parameter
for γτ are visualisations of the seasonal-irregular component (Cleveland and Terpenning,
1982), so-called SI-ratios. These are frequently used to visualise the volatility of the
combined seasonal-irregular series and a plausible trajectory of the seasonal component.

To estimate the impact of moving holiday effects and the interaction between weekdays
and fixed holidays, a RegARIMA model is used. As described by Ollech (2021), this
model combines a non-seasonal ARIMA model with trigonometric terms that capture
deterministic seasonality. For the truck toll mileage index, 30 cosine and sine terms are
used. Ollech (2021) states that multiples of 12 capture intra-monthly pattern, yet here, the
high number of trigonometric terms used instead reflects the complexity of the seasonal
pattern and does not indicate a day-of-the-month effect.

Remark 5. To obtain the unadjusted monthly truck toll mileage index, the daily raw
truck toll mileage is summed up for each month and transformed into an index. If a tem-
poral aggregation is likewise performed on the seasonally adjusted truck toll mileage
index via summation, the resulting time series will contain a length-of-the-month effect –

3Reformation Day, which is the day before All Saints’ Day is a public holiday in all federal states in eastern
Germany. In 2017, Reformation Day used to be a national public holiday. From 2018, Reformation Day
has been a public holiday in the federal states in northern Germany.

4The spectrum of the series (not shown here) indicates that the series is not influenced by any monthly
recurring periodic pattern. Alternatively seasonality tests may be used to check whether there are
significant day-of-the-month effects.
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Table 1: Estimated moving holiday and cross-seasonal effects for the German truck toll
mileage index. Based on time series only adjusted for intra-weekly seasonal effects. A
RegARIMA(2,1,1) model with 2x30 trigonometric terms has been estimated.

Estimate S.E. Estimate S.E.
Carnival Monday −8.6 1.6 NH1 (Mon) −92.5 2.3
Mardi Gras −5.0 1.6 NH1 (Tue) −106.3 2.4
Holy Thursday −20.2 1.5 NH1 (Wed, to 2015) −90.4 3.1
Good Friday −99.7 1.9 NH1 (Wed, from 2015) −118.8 2.7
Holy Saturday −17.3 1.9 NH1 (Thu) −106.7 2.1
Easter Sunday −10.4 1.9 NH1 (Fri) −74.6 1.9
Easter Monday −117.6 1.9 NH1 (Sat) −20.6 1.9
Easter Monday (t+1) −21.4 1.5 Christmas Period (Mon) −32.7 1.6
Ascension (t–1) −13.4 1.5 Christmas Period (Tue) −42.5 1.7
Ascension (to 2015) −109.4 2.2 Christmas Period (Wed) −41.7 1.7
Ascension (from 2016) −119.4 2.3 Christmas Period (Thu) −41.4 1.7
Ascension (t+1) −18.4 1.6 Christmas Period (Fri) −28.7 1.7
Corpus Christi (t–1, to 2015) −7.4 2.0 3d before Christmas (Sun) 22.8 2.1
Corpus Christi (to 2015) −73.8 2.2 Christmas Eve (Sat) 11.7 4.3
Corpus Christi (from 2016) −74.5 2.1 Christmas Eve (Sun) 42.0 4.8
Corpus Christi (t+1) −7.7 1.5 Christmas Day (Sat) 24.9 5.9
Pentecost (t-1) 4.1 1.3 Christmas Day (Sun) 58.4 4.3
Pentecost (to 2015) −107.7 1.9 Boxing Day (Sat) 18.7 3.2
Pentecost (from 2016) −117.6 2.1 Boxing Day (Sun) 30.4 5.8
Pentecost (t+1) −14.2 1.5 10d after Dec 26 (Sat) 14.8 1.8
Labour Day (bridge) −17.9 2.6 10d after Dec 26 (Sun) 30.9 1.9
German Unity (bridge) −2.6 2.9
All Saints’ Day (bridge) −20.6 2.4

1 NH includes the following holidays with fixed dates: Epiphany, Labour Day, Assumption Day, Ger-
man Unity, Reformation Day and All Saints’ Day. The weights of the regional holidays are given by:
Epiphany 0.2, Assumption Day 0.1, Reformation Day (after 2017) 0.2 and All Saints’ Day 0.6.

Note: Ascension and Labour Day 2008 both fell on 1 May. Because the effect is not additive, the
effect has been assigned to Labour Day only, i.e. the regressor for Ascension is 0 on that day.

i.e. months with more days will have a higher value – and thus be seasonal. Using the
average monthly index instead is a simple remedy, but reduces the comparability of the
directly adjusted monthly and daily time series.

The calendar and seasonally adjusted truck toll mileage index is especially volatile
around holidays (see Figure 3). This heteroskedasticity is due to estimation uncertainty
and the fact that truck drivers are restricted by laws with regards to the number of hours
that they are allowed to drive per week and per day. The latter determines the optimal
logistics and thus the interaction between holidays, consumer demands and kilometres
driven by trucks on a given day resulting in the observed local volatility increases.

Table 1 shows the estimated impact of moving holidays and cross-seasonal effects. All
moving holidays that are public holidays at the national or federal state level are included
in the regression. This is extended to the surrounding days, as a transition phase can
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usually be observed, so that both the day before and after a given public holiday show
a decrease. The only exception is the Sunday just before Pentecost Monday, which is
slightly positive compared to a typical Sunday in spring. Additionally, we include the
main event days of the carnival season for which a significant impact can be detected.

The impact of fixed holidays is usually captured by STL in the last step of DSA. Yet,
as discussed above, the interdependency between that impact and the weekday cannot
be captured by STL. Here, we model it using interaction dummies in the RegARIMA
model. The impact of each weekday is combined across all national and federal state-
level holidays to increase the parsimony of the estimated model. Days that are public
holidays only regionally are weighted accordingly (for details on the weights see Table 1
and Deutsche Bundesbank, 2020).

The changes in the weekday pattern after the start of the COVID-19 pandemic in
Germany discussed above recur weekly and may thus be considered to be part of the S(7)-
component. A different view is that as these changes are only temporary and a result of the
irregular nature of the crisis they should be captured in the irregular component and thus
be visible in the calendar and seasonally adjusted series.5 For the period from 23 March to
30 August 2020, i.e. from the beginning of the lockdown until after the summer holidays,
we chose the latter approach. To seasonally adjust this period, forecasted calendar and
seasonal factors are used, which are obtained by restricting the estimation span from
the beginning of the time series to 22 March 2020. For the period after 30 August, we
again use all available data in a controlled current adjustment scheme. This means that
the seasonal and calendar components are re-estimated monthly, but we control weekly,
whether a re-estimation is necessary. This is the case when the forecasted seasonal or
calendar component no longer adequately capture the respective effect, e.g. because the
seasonal pattern has evolved differently then predicted.

Remark 6. Generally, at the beginning of a crisis, it may be a good policy not to re-
estimate the seasonal and calendar components immediately, in order to avoid including
transitory and irregular influences into the seasonal or calendar components. Once the
crisis has stabilised, a controlled current adjustment scheme as discussed above may be
implemented.

3.2 Electricity consumption

The German electricity consumption is compiled by the German Federal Network Agency
using data from the network providers starting in January 2015. The series analysed
here ends on 30 April 2021. Energy consumption is related to industrial production and
GDP. Electricity consumption is therefore of particular interest to business-cycle analysis
(Arora and Shi, 2016; Do, Lin, and Molnár, 2016). For the most recent observations, the
series is subject to unreliable data delivery as some network providers do not always
provide data immediately.

5At the time of writing the ESS Guidelines on Seasonal Adjustment does not discuss this matter and
therefore does not stipulate any action (Eurostat, 2015). It could be sensible to define a minimum
number of cycles that a new periodic pattern need to pass through before it is regarded as a periodic
pattern that needs to be adjusted for.
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Figure 3

Remark 7. More broadly, unreliable data delivery stems from the issue that data providers
are often not legally or contractually obligated to provide data and do not need to adhere
to any standards regarding data quality or deadlines. Furthermore, if the data are merely
a by-product, it may be difficult to analyse the quality of the data.

In the case of electricity consumption, this leads to temporarily missing values that
might require interpolation, either before or as part of the seasonal and calendar adjust-
ment.

Remark 8. Some higher frequency time series do have structurally missing values, e.g.
time series that only contain observations on working days. If this is the case, the data
may be non-equidistant, i.e. the distance in time between observations is not the same
for all neighbouring observations. In other words, the distance between a Monday and a
Tuesday is less than between a Friday and a Monday.

Electricity consumption is available on a 15-minute basis. Ollech (2021) discusses
how the daily electricity consumption can be seasonally adjusted. Here, we will analyse
the hourly electricity consumption. Clearly, for business cycle analysis, it may be ad-
vantageous to focus on a lower frequency aggregation level, such as a weekly series, as
the volatility of the time series tends to decrease with aggregation level. However, dis-
cussing an hourly series will inform our understanding of typical characteristics of higher
frequency time series and thus is relevant for the modelling of daily and weekly series.
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Figure 4

As can be seen from Figure 4, the electricity consumption is characterised by an hour-
of-the-week pattern and – especially if we disregard Christmas and fixed holidays – an
almost sinusoidal annual seasonality. The latter is termed autocorrelational seasonal-
ity, as the seasonal impact of each day of the year strongly correlates with the seasonal
influences visible in the neighbouring observations. A dependence structure such as this
is usually not exploited fully in the seasonal adjustment of lower frequency time series.
Yet, for higher frequency time series it may improve the estimation of the seasonal effects
given the high volatility of the time series and the corresponding estimation uncertainty.

Remark 9. Some series show multilevel periodic effects. Instead of an hour-of-the-
week effect, an hourly series may contain an hour-of-the-day effect and an influence of the
day of the week, if the pattern of the intraday-movements remains the same throughout
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the week and only the level of the series varies from weekday to weekday. By contrast, the
magnitude of the intra-day-movements of the electricity consumption changes throughout
the week, particularly when contrasting working days and weekends.

The difficulty of estimating all relevant effects is aggravated, as the daily electricity
consumption is a relatively short series.6 As a consequence, we cannot observe all
possible calendar and cross-seasonal constellations. To illustrate this point, let us assume
that we want to model the interaction between the weekdays and Labour Day. With
just over five years of observations, not all possible interactions occurred in the time span
considered, and in any case, only very few observations per constellation are included.

At times, higher frequency time series show rather uncommon calendar effects.
The daily electricity consumption is impacted by Daylight Saving Time (DST) – even in
the hourly series.

The start of the COVID-19 pandemic in Germany again evokes a temporarily declining
trend and some slight and gradual changes in the weekly pattern, reflecting the reduction
in output in the production sector and possibly changes in the share of people working
remotely (for a cross-country comparison of the impact of the pandemic on electricity
consumption, see López Prol and O, 2020). For the seasonal adjustment of lower frequency
time series, the pandemic is treated using series of level shifts (LS), additive outliers
(AO) and, less frequently, temporary change outliers (TC) with a pre-specified decay rate
(Eurostat, 2020). The downturn observed for electricity consumption is gradual enough
so that one or multiple level shifts are not necessary to model the crisis based on daily
data. In general, we observe non-traditional outlier pattern more frequently for higher
frequency time series than for monthly or quarterly series. This is neatly illustrated by
the finding that the decay rate of 0.7 for TC, the default for monthly series, is often
unsuitable for daily or weekly series.

To estimate the hour-of-the-week effect – which encompasses 24 · 7 = 168 hours a
week – STL is employed with γ168 := 7, i.e. a very short filter that is tailored towards an
effect that changes throughout the year. More precisely, the difference between the daily
minimum and daily maximum consumption is smaller on the weekend than on working
days. This difference is especially small in winter compared to the rest of the year.7

After the hour-of-the-week effect has been estimated, the adjusted series aggregated
to daily observations serves as input to DSA. We omit the estimation of the day-of-week
and day-of-the-month effect, as these effects are not (or no longer) present in this partially
adjusted series.

Table 2 shows the estimated moving holiday and cross-seasonal effects for this time
series. The cross-seasonal effects included are again interactions between weekday and
fixed holidays. As mentioned, due to the length of the series, not all possible calendar
interactions can be observed and overall, only very few observations per constellation are
available.

As discussed above, a noteworthy calendar effect is Daylight Saving Time. DST has

6For very short series, it may not be advisable to estimate all seasonal and periodic components. An
estimation of the day-of-the-year effect requires at least two years, but for a reliable and sensible esti-
mation usually three or more years of observations are needed. The day-of-the-week effect may often be
estimated using less than two years of data.

7In daily series this translates into a difference between working days and weekends which increases during
the warmer season.
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Table 2: Estimated moving holiday and cross-seasonal effects for German electricity
consumption, in percent. Based on time series adjusted only for hour-of-the week effects
and aggregated to a daily series using daily means. A RegARIMA(5,1,1) model with 2x24
trigonometric terms has been estimated.

Estimate S.E. Estimate S.E.
Carnival Monday −1.5 0.6 Labour Day (bridge) −4.8 1.4
Holy Thursday −1.9 0.7 German Unity (bridge) −7.0 1.0
Good Friday −21.6 0.9 All Saints’ (bridge) −4.6 1.0
Holy Saturday −7.4 0.9 Reformation Day (bridge, after 2017) −6.8 1.5
Easter Sunday −6.3 0.9 National Holidays (Mon-Fri) −17.9 0.4
Easter Monday −24.2 0.9 National Holidays (Sat) −4.7 0.9
Easter Monday (t+1) −3.2 0.7 3d before Christmas (Sat) 1.9 1.1
Ascension (t–1) −1.6 0.7 Christmas Eve (Sat) 4.3 1.8
Ascension −22.2 0.9 Dec 26 (Sat) 5.6 1.2
Ascension (t+1) −9.9 0.7 10d post Dec 26 (Sat) 3.4 0.8
Corpus Christi (t–1) −1.1 0.7 3d before Christmas (Sun) 6.2 1.3
Corpus Christi −14.2 0.9 Christmas Eve (Sun) 8.9 1.6
Corpus Christi (t+1) −6.0 0.7 Christmas Day (Sun) 10.1 1.7
Pentecost (t–1) 1.8 0.6 10d after Dec 26 (Sun) 4.1 0.8
Pentecost −23.3 0.7 Christmas period (Mon-Fri) −5.1 0.7
Pentecost (t+1) −3.1 0.7 Daylight Saving Time Spring 0.5 0.5

Daylight Saving Time Autumn −0.9 0.6

an obvious – albeit small – effect on the time series. Here, the moving holiday and cross-
seasonal effects will be estimated in the series aggregated to a daily series by averaging
the hourly observations. Alternatively, the hourly series could be temporally aggregated
to a daily series by summing up the hourly values. Generally, if a multiplicative time
series model is used, the difference between the estimated effects using daily averages
comparing to those obtained using daily sums is often negligible for calendar constellations
that impact the whole day. For example, electricity consumption is estimated to be 23.3
percent lower on Pentecost based on daily averages (see Table 2). If we used daily sums
instead, the estimated impact were 23.2 percent.

If we consider matters that affect only single hours of a day, such as DST, the dif-
ferences can be considerable. Transforming the hourly to a daily series by taking the
mean will reduce the estimated impact of DST on the series, because DST will mostly be
reduced to capturing the configuration of the hours in a day and the effect on the elec-
tricity consumers. If we used hourly sums instead, the estimated impact of DST would
additionally include a length-of-the-day effect.

After the calendar and cross-seasonal effects have been estimated, they are broken
down into hours, assuming that all hours of the day are influenced in the same way. The
hourly series is then adjusted using these hourly factors.

Finally, the hour-of-the-year effect is estimated using STL in DSA with γ24·365 := 13.
The final adjusted series can be seen in Figure 5.
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Figure 5

3.3 Google Trends: Unemployment

Weekly Google Trends data have to be downloaded in chunks of five years. Each of
these chunks is a random sample of all search queries and therefore subject to noticeable
revisions.8 The chunks are chain-linked together and a value of 100 is added to avoid values
too close to 0, which can lead to extreme seasonal and calendar factors if a multiplicative
model is used.

The series analysed here starts from 10 January 2004 and ends on 10 September 2021.
The chunks of the series were downloaded on 13 September 2021.

The definition of the week does not adhere to the ISO 8601 standard. Instead it is
defined to start on Sunday and end on Saturday. Such date and time conventions are
of relevance for regressor construction. For example, Easter Sunday and Easter Monday
fall in the same week, and their effect cannot be disentangled. In turn, we only need one
regressor that captures the joint effect of Easter Sunday and Easter Monday.

For lower frequency time series, Christmas and New Year are seasonal effects as they
fall in the same period each year. Depending on the modelling strategy, especially if the
data are modified so that every year has 365 observations, this holds for daily data too.

8The average mean revisions are 7.14 points from week to week in the original series and 6.90 points in
the calendar and seasonally adjusted data. The combined seasonal and calendar factor is on average
revised by 0.74 percent in absolute terms.
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Figure 6

For weekly time series, as a consequence of their non-isochronicity and date conventions,
Christmas’ Day can fall in the 51st or 52nd week of the year, while New Year’s Day falls
in week 52, 53 or 1 (ISO 8601 standard) or week 0 or 1 (US convention).

The results of the RegARIMA model estimation are included in Table 3. As discussed,
the construction of the data implies that some holidays always fall in the same week.
Their impact is therefore indistinguishable. The inclusion of appropriate regressors for
the Christmas and New Year’s period can be challenging. Christmas Day always falls in
the same week as either Christmas Eve or New Year’s Eve. If both Christmas Eve and
New Year’s Eve are included as regressors, then, particularly for short series, separating
the impact of Christmas Day from the other two days may be intricate, resulting in an
unstable estimation.

As can be seen from Figure 6 the series is very volatile, especially at the beginning
of the series. It may be difficult to assess the seasonality of the time series visually, but
seasonality tests9 and the coefficients of the ARIMA model indicate seasonality. To obtain
seasonal factors, we rely on the default settings of the fractional airline decomposition.

9We use the seasonality tests recommended by Ollech and Webel (2020) for monthly time series which
are implemented in the {seastests} package in R. Setting the frequency of the time series to 52 ignores
the non-integer type seasonality of the series. However, in practice this works well as an approximation.
Both the QS and the Friedman test reject the null hypothesis of no seasonality at the 0.1-% level of
significance. This also holds true if we only include the last five years of observations.
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Table 3: Estimated ARMA coefficients (in absolute terms) and moving holiday effects
(in percent) for Google Trends, search term: Arbeitslosigkeit [unemployment]. A Re-
gARIMA(0,1,1)(0,1,1) model is estimated.

Estimate S.E. Estimate S.E.
MA −0.87 0.02 SMA −0.75 0.04
Good Friday −5.5 1.2 Christmas Eve −6.7 1.7
Easter −5.4 1.2 New Year’s Eve −5.3 1.6

Note: The week is defined as starting on Sunday and ending on Saturday. Thus, Easter covers both
Sunday and Monday.

As the original data are revised considerably every week, the revision policy of this
weekly series differs from the daily series discussed above. For the Google Trends series we
follow a partial concurrent adjustment scheme, i.e. the calendar and seasonal components
are re-estimated every week, but the order of the RegARIMA model is fixed and is only
re-identified annually. The Appendix includes a discussion of graphical tools that can be
used for weekly time series if a controlled current adjustment scheme is used.

4 Key notions for the adjustment of higher frequency

data

The examples discussed in the previous sections highlight features and idiosyncracies
of higher frequency time series relevant to calendar and seasonal adjustment. Table 4
organises these characteristics into a taxonomy of relevant features.

The basic characteristics cover the most obvious features that concern the whole set
of observations and are relevant for many time series available. The fact that higher
frequency time series contain many observations – especially in comparison to lower fre-
quency time series – is in itself trivial. Yet, it increases the computational burden and may
render some methods inapplicable. Non-isochronicity and non-equidistance will usually
either have to be addressed by adapting the methods used or by transforming the data,
e.g. by interpolation or time-warping.

The periodic and calendar effects encompass concepts that extend the definition of
seasonality and calendar effects in lower frequency time series. As becomes clear from
the examples of daily data, higher frequency time series often contain multiple noticeable
periodic effects that may be interdependent and autocorrelational. For calendar effects,
we may consider including constellations that are not recommended to adjust for in lower
frequency time series, such as bridge days. This may be sensible as the higher number
of observations allow us to observe and estimate such effects more directly. For weekly
series, the impact of bridge days may even be inseparable from the moving holidays, if
they always fall in the same week.

Higher frequency time series are generally more volatile than traditional business-cycle
indicators. This is mostly a result of the fact that irregular influences tend to partially
offset each other over a longer time span and are therefore less pronounced in monthly and
quarterly data. Additionally, many of the higher frequency time series encountered are
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Figure 7

merely a by-product and are not compiled for economic analysis or official statistics and
therefore do not adhere to the same data standards. Accordingly, the methods applied
to higher frequency time series usually need to be robust against outliers and irregular
observations.
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Table 4: Key notions for the adjustment of higher frequency data.

Notion Description

Basic characteristics

Many observations Higher frequency data contain many observations which
can be a challenge for algorithms and users.

Short series Many series contain few years of observations.

Temporal aggregation Feasible temporal aggregation of adjusted series depend
on data type.

Non-isochronicity Number of observations per periodic cycle is not always
the same for all cycles, e.g. number of weeks per year.

Non-equidistance For some series the distance between observations varies,
e.g. banking-daily.

Date and time Conventions regarding the start of the week or year
conventions numbering impact the data structure.

Periodic and calendar effects

Multiple periodic effects Daily time series usually contain day-of-the-week and
day-of-the-year effects.

Uncommon periodic effects Higher frequency series may contain other periodic ef-
fects, such as week-of-the-month effects.

Breaks in periodic effects Periodic effects may change rapidly, e.g. as a consequence
of fundamental changes in the data generating process.

Cross-seasonality The periodic and calendar effects can be interdependent.

Autocorrelational The seasonal impact of adjacent observations may be
seasonality highly dependent.

Multilevel periodic effects Seasonal structure may be hierarchical, e.g. a series with
hour-of-the-day and day-of-the-week effects.

Series-specific calendar Calendar effects can be observed more directly, so regres-
effects sor construction can more easily be tailored to the series.

Uncommon calendar effects Higher frequency series may contain other calendar ef-
fects, such as daylight saving time.

Bridge days Bridge days may have a traceable effect on the series.

Outliers and missing values

Missing values Due to data availability, some series contain (temporar-
ily) missing values, often at the end of the series.

Unreliable data delivery Data producers do not necessarily have an obligation to
deliver data or provide additional information.

Higher volatility The volatility of the time series usually decreases with a
higher temporal aggregation.

Heteroskedasticity The volatility may change over time and may be seasonal.

Non-traditional Observed outlier pattern can be different from lower
outlier patterns frequency series, e.g. slower rate of decay in a TC outlier.
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5 Summary

The contribution of this paper is twofold. First, we performed an illustrative analysis
of a small set of higher frequency time series. We discussed how these data differ from
lower frequency time series and how this is relevant for seasonal adjustment in general
and in light of the COVID-19 pandemic. Second, we developed a taxonomy of the central
features of seasonal higher frequency time series. This list of features can contribute to
the assessment of the seasonal adjustment of higher frequency time series and might serve
as a building block in the development of quality diagnostics.

Further research may evaluate different procedures that allow the seasonal adjustment
of higher frequency time series with respect to their ability to handle all of these features.
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Figure 8

A Appendix

For a controlled current adjustment revision scheme, the results from the calendar and out-
lier adjustment are investigated and, perhaps most importantly, the previously forecasted
seasonal components (ŜF ) are compared to the new seasonal factors (ŜN) obtained after
re-estimation. As reference points for the comparison, the raw seasonal factors (Ŝraw), i.e.
the combined seasonal-irregular component, are included in the analysis. The comparison
is either based on tables or graphics, with the latter often being referred to as the SI
ratios. The idea is to gauge whether ŜN better captures the systematic development of
Ŝraw compared to ŜF . If this is the case to a relevant extent, the previous components
are discarded and the re-estimated results are used. Otherwise ŜF can still be used and
the previously published seasonally adjusted values are not revised.

For integer-type periodic influences the construction of the SI ratios is straightforward.
Each subplot shows the ŜN , Ŝraw and ŜF for a given period, e.g. a subplot for each month
of the year. For series with a non-integer number of observations per year the configu-
ration is more intricate. For weekly series, the estimated seasonal component of a given
observation depends both on observations (multiples of) 52 weeks ago as well as 53 weeks
ago and likewise on future observations. Therefore, Ŝraw should include all weeks that
contribute to the estimation of the seasonal component. For the most recent observations,
this is approximately the sequence of weeks with a step size of 52 and the respective pre-
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vious week. This is shown by way of example in Figure 8. For any period of the seasonal
component, the exact representation of the relevant raw seasonal factors is given by the
sequence (..., Ŝrawt+d2τe, Ŝ

raw
t+b2τc, Ŝ

raw
t+dτe, Ŝ

raw
t+bτc, Ŝ

raw
t , Ŝrawt−bτc, Ŝ

raw
t−dτe, Ŝ

raw
t+b2τc, Ŝ

raw
t+d2τe, ...).
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