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Abstract

In this paper we experimentally compare three implementations of Winter de-
mand commitment bargaining mechanism: a one-period implementation, a two-
period implementation with low and with high delay costs. Despite the different
theoretical predictions, our results show that the three different implementations
result in similar outcomes in all our domains of investigation, namely: coalition
formation, alignment with the Shapley value prediction and axioms satisfaction.
Our results suggest that a lighter bargaining implementation with only one period
is often sufficient in providing allocations that sustain the Shapley value as ap-
propriate cooperative solution concept, while saving unnecessary costs in terms of
time and resources.
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1 Introduction

The aim of the Nash program (Nash, 1953) is to provide a noncooperative foundation of

cooperative solution concepts. Nash started such program designing a noncooperative

game which sustained as equilibrium the Nash solution of his cooperative bargaining

problem (Nash, 1950). Since then, the Nash program had a very long history and it kept

on growing thanks to many theoretical and experimental contributions (the reader is

referred to Serrano, 2005, 2008, 2014, 2020, for an exhaustive literature review). Citing

the first of the aforementioned surveys, and the words of Nash himself, “The idea” of

the Nash program “is both simple and important: the relevance of a concept [...] is

enhanced if one arrives at it from different points of view” (Serrano, 2005, pag. 220). In

fact, “it is rather significant that this different approach yields the same solution. This

indicates that the solution is appropriate for a wider variety of situations” (Nash, 1953,

pag. 136).

Between the many, most of the existing papers contributing to the Nash program are

devoted to sustain the noncooperative foundation of the Shapley value solution (Shap-

ley, 1953) (see, among others, Gul, 1989; Harsanyi, 1981; Hart and Moore, 1990; Kr-

ishna and Serrano, 1995; Winter, 1994; Hart and Mas-Colell, 1996; Perez-Castrillo and

Wettstein, 2001). In fact, thanks to its intuitive and desirable properties, the Shapley

value has seen many applications on a variety of situations, such as cost or payoff shar-

ing, voting power, fair division, and, most recently, on many non-economics focused

contexts such as machine learning, AI models or data analysis (we can cite, between

the less standard applications, the Shapley value implemented to get information about

gene expression thanks to microarray games (Lucchetti et al., 2010)). As a result, the

Shapley value is nowadays and undoubtedly the “most famous” axiomatic cooperative
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solution concept, whose appropriateness is validated by an extensive literature listing its

appealing theoretical properties, and by its many applications.

In Chessa et al. (2021), we aimed to contribute to the Nash program in sustaining the

Shapley value, by providing a comparison between the experimental results of a demand

based (Winter, 1994) versus an offer based (à la Hart and Mas-Colell (1996)) mecha-

nism. Our analysis showed that the Winter mechanism (namely, the Winter demand

commitment bargaining mechanism) better provides allocations that reflect players’ ef-

fective bargaining power, and that satisfy the axioms that characterize the Shapley value.

The efficiency and frequency of grand coalition formation, instead, are not very high.

This finding suggests that the Shapley value is indeed an appealing solution in all such

situations in which some bargaining agents interact by expressing their demands about

the share they wish to obtain from cooperation, and when highlighting players’ effec-

tive bargaining power is a key point. However, in this previous work such results were

obtained under an important simplification in the proposed mechanism as compared to

its more generic theoretical definition, i.e., implementing a one-period version of the

model. In the Winter mechanism, each player one after another becomes a proposer and

makes a demand for herself, of the payoff she is willing to get from a possible collab-

oration. If and when at some point a compatible demand is introduced, which means

that there exists a coalition for which the total demands do not exceed the value of the

coalition, such coalition forms, leaves the game, and the bargaining continues with the

rest of the players, till there is at least one to still have to submit a demand. Players

with unsatisfied demands at the end of the first period get their individual value in the

one-period version of the model.

However, real world applications of demand-based bargaining processes may pro-

vide the players more time to get an agreement. Having more time for agreeing is often
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costly (surely in terms of time and often as well in terms of resources), but it may be

more (or less) effective. Thus, in this paper, our primarily research question is to inves-

tigate the performances of the Winter mechanism when modifying the way the players

interact. In fact, we affirm that for a solution -in our case the Shapley value- to be rele-

vant, players need to agree on it when interacting under different rules. Then, firstly, we

compare a one-period implementation versus a two-period implementation. In the two-

period implementation, if some players are left with unsatisfied demands after the first

period, they have a second chance for cooperating, as the bargaining procedure repeats

for a second time on the set of these players, by canceling their previous demands and

charging them a fixed delay cost. Secondly, we compare the performances of the Winter

mechanism in its two-period implementation when implementing low versus high delay

costs.

The theoretical prediction expects all the three implementations to provide complete

cooperation already in the first period and a power share close to the Shapley value

(in average, as ex ante equilibrium). However, the theoretical ex post equilibrium pay-

off differs between the different implementations, in particular in terms of first mover

advantage. The first mover advantage is expected to be smaller in two-period imple-

mentations than in one-period implementation. But as already observed by Fréchette

et al. (2005), experiments often show that actual bargaining behavior is sometimes not

as sensitive to the different bargaining rules as the theory suggests, and this is what

happens also in our case.

Our results show that the three different implementations of the Winter mechanism

result in similar outcomes in all our domains of investigation, namely: coalition for-

mation, alignment with the theoretical prediction and axioms satisfaction. Moreover,

we observe similar results also when observing the outcome of the first period in a

4



two-period implementation. We interpret this finding as a robustness of the Winter

mechanism in sustaining the Shapley value. Moreover, such results support the imple-

mentation of the Shapley value as an appealing cooperative solution concept in many

real-world applications, both when the decisions have to be taken rapidly, or when the

time for bargaining is longer. Finally, we suggest that a simpler and faster bargaining

is often sufficient in providing allocations that sustain the Shapley value, as a second

chance for reaching an agreement is proved to be ineffective in augmenting the chance

of the players of finding an agreement, or to get closer to the predicted allocation.

The rest of the paper is organized as follows. Section 2 presents the general def-

inition and the properties of a cooperative transferable utility (TU) game, as well as

the Shapley value and its axiomatizations. Section 3 presents the Winter mechanism,

describes the setting of our experiment, and presents our hypotheses. The results are

presented in Section 4. Section 5 concludes.

2 Theoretical model

2.1 Cooperative TU games and solutions

Let N = {1, . . . , n} be a finite set of players. Each subset S ⊆ N is called a coalition,

and N is called the grand coalition. A cooperative TU game (from now on, cooperative

game) consists of a couple (N, v), where N is the set of players and v : 2N → R,

with v(∅) = 0, is the characteristic function, which assigns to each coalition S ⊆ N

the worth v(S), i.e., the value that members of S can achieve by cooperation. If no

ambiguity appears, we consider the set of players N fixed and we write v instead of

(N, v). We denote with GN the set of all games with player set N .
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Players i and j are symmetric in v ∈ GN , if v(S ∪ {i}) = v(S ∪ {j}) for all

S ⊆ N \ {i, j}. Player i is a null player in v ∈ GN if v(S) = v(S \ {i}) for all S ⊆ N .

A game v ∈ GN is said to be monotonic if v(S) ≤ v(T ) for each S ⊆ T ⊆ N ,

superadditive if v(S) + v(T ) ≤ v(S ∪ T ) whenever S ∩ T = ∅, with S, T ⊆ N and

convex if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), for each S, T ⊆ N (strictly convex if

the inequality holds strictly). Another equivalent definition for convexity can be stated

as v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ), for each S ⊆ T ⊆ N \ {i}. In (strictly)

convex games, cooperation becomes increasingly appealing, leading to the formation of

the grand coalition. We may observe that convexity⇒ superadditivity⇒monotonicity.

Given a game v ∈ GN , an allocation is an n-dimensional vector (x1, . . . , xn) ∈ RN

assigning to player i the amount xi ∈ R. For each S ⊆ N , we denote x(S) =
∑

i∈S xi.

The imputation set is defined by

I(v) = {x ∈ Rn|x(N) = v(N) and xi ≥ v({i}) ∀i ∈ N},

i.e., it contains all the allocations that are efficient (x(N) = v(N)) and individually

rational (xi ≥ v({i})∀i ∈ N ).

The core is the set of imputations that are also coalitionally rational, i.e.,

C(v) = {x ∈ I(v)|x(S) ≥ v(S) ∀S ⊆ N}.

An element of the core is stable in the sense that if such a vector is proposed as an

allocation for the grand coalition, no coalition will have an incentive to split off and

cooperate on its own. Intuitively, the idea behind the core is analogous to that behind a

(strong) Nash equilibrium of a noncooperative game: an outcome is stable if no group
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deviation is profitable. For the Nash equilibrium the possible deviation is for a single

player, while in the core we speak about deviations of groups of players.

A solution is a function ψ : GN → RN that assigns an allocation ψ(v) to every game

v ∈ GN . The Shapley value is the most well-known solution concept, which is widely

applied in economic models, and is defined as

φi(v) =
∑

S⊆N,i∈S

(|S| − 1)!(|N | − |S|)!
|N |!

(v(S)− v(S \ {i})) ∀i ∈ N.

The Shapley value assigns every player its expected marginal contribution to the coali-

tion of players that enter before him, given that every order of entrance has equal proba-

bility. This solution concept has been defined as respecting some notion of fairness (see

Section 2.2 for more discussion about its properties), but it is not, on the contrary, nec-

essary stable. However, if the game is superadditive, the Shapley value is an imputation,

and if the game is convex, is the core barycenter (and then, in particular, it belongs to

it).

In our analysis, we will also consider an easier solution concept, the equal divi-

sion solution, which distributes the worth v(N) equally between the players. It is then

defined as

EDi(v) =
v(N)

n
∀i ∈ N.

2.2 Axiomatizations of the game theoretical solutions

In the literature, we find various axiomatic characterizations of the Shapley value. The

most classical one is from Shapley (1953), and it involves Efficiency, Symmetry, Ad-

ditivity and Null player. The one by Young (1985) involves Efficiency, Symmetry and

Strong monotonicity. The characterization by van den Brink (2002), instead, involves
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Efficiency, Null player and Fairness. We list in Table 1 these axioms (for a solution

ψ : GN → RN ).

Table 1: The axioms

Axioms

Efficiency for every v in GN ,
∑
i∈N ψi(v) = v(N)

Symmetry if i and j are symmetric players in game v ∈ GN , then ψi(v) = ψj(v)
Additivity for all v, w ∈ GN , ψ(v + w) = ψ(v) + ψ(w)
Homogeneity for all v ∈ GN and a ∈ R, ψ(av) = aψ(v)
Null player if i is a null player in game v ∈ GN , then ψi(v) = 0
Strong monotonicity if i ∈ N is such that v(S ∪ {i})− v(S) ≤ w(S ∪ {i})− w(S)

for each S ⊆ N , then ψi(v) ≤ ψi(w)
Fairness if i, j are symmetric in w ∈ GN , then ψi(v + w)− ψi(v) = ψj(v + w)− ψj(v)

for all v ∈ GN

3 The experimental setting

3.1 The Winter mechanism

In our experiments, we implemented the bargaining model based on sequential demands

for strictly convex cooperative games presented by Winter (1994). In this model, players

in turns announce publicly their demands, meaning “I am willing to join any coalition

yielding me a payoff of ...” and wait for these demands to be met by other players.

The bargaining starts with a randomly chosen player from N , say player i. This player

announces publicly her demand di and then points a second player who has to give her

demand. Then, the game proceeds by having each player pointing at a new player to

take her turn after introducing a demand herself. If and when at some point a compatible

demand is introduced, which means that there exists a coalition S for which the total
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demand for players in S does not exceed v(S), then the first player with such a demand

selects a compatible coalition S. The players in S get their demands, leave the game, and

the bargaining continues with the rest of the players using the same rule on v restricted

onN\S. In a one-period implementation, players with unsatisfied demands at the end of

the first period get their individual value. In a T-period implementation with |T | > 1, T

finite, instead, if some players are left with unsatisfied demands after the first period, the

bargaining procedure repeats for a second time on the set of these players, by canceling

their previous demands and charging them a fixed delay cost, and so on till periods are

over. A more formal description of the Winter mechanism with T periods (|T | ≥ 1, T

finite) is presented in Appendix A.

For both the one-period and the T-period implementations, this mechanism has a

unique subgame perfect equilibrium which assigns equal probabilities at indifference.

At this equilibrium, the grand coalition forms in the first period and the ex ante expected

equilibrium payoff coincides with the Shapley value. Regarding the ex post equilibrium

payoff, in the one-period implementation, given a specific ordering of the players, each

player’s demand depends on the ordering, but only through the set of her successors and

not through the way these players are ordered. In fact, each player demands the marginal

contribution to the set of her successors. In the two-period implementation (which is our

second case of interest), instead, at equilibrium the first player to make a demand asks

her Shapley value plus the delay cost times the number of remaining players, while the

other players ask their Shapley value minus once the delay cost1. More generally, all

different implementations of the Winter mechanism present, theoretically, a first mover

advantage. We stress that these theoretical results hold under some specific assumptions,

1The ex-post equilibrium of the T-period implementation with |T | > 2 much resembles the case
|T | = 2.
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in addition to the already mentioned strict convexity of the game. In particular, delay

cost must not be too large2.

3.2 The games

For our analysis, we considered the four four-player games shown in Table 2 together

with corresponding Shapley values. The equal division payoff vector is equal toED(vk) =

(25, 25, 25, 25) when k = 1, 2, and ED(vk) = (50, 50, 50, 50) when k = 3, 4.

The choice of the games has been done in order to be capable of testing the axioms

we presented in Section 2.2. In Table 3 we detail for each axiom which game and

thanks to which characteristics is introduced in our analysis to test it. Notice that games

1, 3 and 4 are strictly convex, while game 2 is only convex. All the four games are,

by consequence, monotonic. Therefore, all but game 2 respect the assumption for the

implementation of Winter mechanism. With game 2 being at least convex, however, we

guessed that “strict convexity” could be relaxed and the mechanism could still provide

convincing results3.

We implemented the Winter mechanism with one period, from now on referred to as

one-period (1p) implementation, and the mechanism with two periods and with low and

high delay costs, from now on referred to as two-period low cost (2pL) implementation

and two-period high cost (2pH) implementation respectively. Low delay costs are equal
2We refer to the original paper by Winter (1994) for the detailed description of the assumptions under

which such results hold. As already mentioned, the delay cost must not be too large. Moreovoer, the
results about the ex ante and the ex post equilibria hold for a discrete version of the mechanism, and when
the smallest money unit approaches zero.

3The choice of implementing a game that is not strictly convex, is given by the wish to test the null
player axiom. However, the presence of this null player raises some issues concerning the theoretical
prediction of the equilibrium outcome on such game. For instance in a two-period implementation with
a null player, the delay cost is always too high whatever its size, and the null player making her demand
not as first mover would always prefer to ask zero and leave the game, better than paying the delay cost
and incurring a negative payoff. Then, in the following of the paper and when analyzing game 2, we will
allow the configuration {1} and {2, 3, 4} as equivalent to the grand coalition.
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Table 3: The axioms and the four games

Axioms Games

Efficiency all games
Symmetry games 1 and 4

(symmetry of players 2 and 3)
Additivity games 1, 2 and 3

(game 3 is defined as the sum of games 1 and 2)
Homogeneity games 1 and 4

(game 4 is defined as twice game 1)
Null player game 2

(player 2 is a null player)
Strong monotonicity all games

(the marginal contributions of player 1 are always higher in game 1 than in game 2,
and also higher in game 4 than in game 3)

Fairness games 1, 2 and 3
(game 3 is defined as the sum of games 1 and 2)

to 0.5 for games 1 and 2, and to 1 for games 3 and 4. High delay costs are equal to 2.5

for games 1 and 2, and to 5 for games 3 and 4.

3.3 The procedure

The experiment was conducted at the Institute of Social and Economic Research (ISER),

Osaka University, between January 2019 and August 2019. A total of 264 students, who

had never participated in similar experiments before, were recruited as subjects of the

experiment. 96 for the one-period treatment, and 84 each for the two-period low and

high cost treatments.4 The experiment was computerized with z-Tree (Fischbacher,

2007) and participants were recruited using ORSEE (Greiner, 2015).

To control for potential ordering effects, each participant played all the four games

twice in one of the following four orderings: 1234, 2143, 3412 and 4321. Between

4The difference in the number of participants between the two mechanisms is a result of variations in
the show-up rate among experimental sessions.

12



each play of a game (called a round), players were randomly re-matched into groups

of four players, and participants were randomly assigned a new role within the newly

created group. At the end of the experiment, two rounds (one from the first four rounds

and another from the last four rounds) were randomly selected for payments. Partici-

pants received cash reward based on the point they have earned in these two selected

rounds with an exchange rate of 20 JPY = 1 points in addition to 1500 and 1900 JPY

participation fee for the one-period and the two-period implementations, respectively.

The experiment lasted on average 100 min for the one-period implementation and 130

min for the two-period implementations including the instruction (∼ 15 min), com-

prehension quiz (∼ 5 min), and payment.5 The average earning was 2650 JPY, 3110

JPY, and 2960 JPY for the one-period, 2-period low costs, and two-period high costs

implementations, respectively.

4 Results

4.1 Grand coalition formation and efficiency

At first, we investigate whether the three implementations succeeded in making the play-

ers find an agreement and form the grand coalition. In Figure 1, we present the results

about the grand coalition formation for the 1p, the 2pL and the 2pH implementations

and for the four games.6

5Participants received a copy of instruction slides, and pre-recorded instruction movies were played.
See Appendix B for English translations of the instruction slides and the comprehension quiz.

6The figure is created based on the estimated coefficients of the following linear regressions: gci =
β11pi+β22pLi+β32pHi+µi where gci is a dummy variable that takes the value 1 if the grand coalition
is formed, and zero otherwise, in group i, 1pi (2pLi or 2pH) is a dummy variable that takes value 1 if
the 1p (2pL and 2pH) implementation is used, and zero otherwise. The standard errors are corrected for
within session clustering effect. The statistical tests are based on the Wald test for the equality of the
estimated coefficients of two treatment dummies.
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Figure 1: Proportion of times the grand coalition formed.
(a) Game 1 (b) Game 2, allow (2,3,4)

1p 2pL 2pH
0

0.2
0.4
0.6
0.8

1 n.s. n.s.
n.s.

1p 2pL 2pH
0

0.2
0.4
0.6
0.8

1 n.s. n.s.
n.s.

(c) Game 3 (d) Game 4

1p 2pL 2pH
0

0.2
0.4
0.6
0.8

1 n.s. n.s.
n.s.

1p 2pL 2pH
0

0.2
0.4
0.6
0.8

1 n.s. n.s.
n.s.

Note: Error bars show one standard error range. *** indicates the proportion of times the grand coalition formation was significantly

different at the 1 % significance level (Wald test).

As game 2 is not strictly convex with the presence of the null player 1, we allow the

partition {1}, {2, 3, 4} as a realization of the grand coalition, as this coalition structure

does not affect the total value which has to be shared between the players7

We may observe that, at best, the grand coalition formed slightly more (and often,

much less) than 50% of the times for the four games, with no significant difference

between the implementations. We may conclude that all the three implementations of

the Winter mechanism equally failed in enhancing complete cooperation. Observe that,

even when players were given a second chance in a two-period implementation, they

did not manage to perform better in terms of grand coalition formation. In particular,

Figure 2 illustrates the number of players whose demands were not met in the first

loop. Surprisingly, their number is not higher (and, in same cases, is even significantly

7Remember that the Winter mechanism is theoretically defined for strictly convex games. Player 1, in
this game, has always a zero marginal contribution and, as such, can be left out from any coalition at no
cost for either him/her or the other players.
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Figure 2: Average number of players whose demands were not met in the first loop.

(a) Game 1 (b) Game 2

1p 2pL 2pH
0

0.4
0.8
1.2
1.6

2

1p 2pL 2pH
0

0.4
0.8
1.2
1.6

2 *
*

(c) Game 3 (d) Game 4

1p 2pL 2pH
0

0.4
0.8
1.2
1.6

2 **

1p 2pL 2pH
0

0.4
0.8
1.2
1.6

2

Note: Error bars show one standard error range.***, **, * significant at 1, 5, and 10% significance level, respectively (Wald test).

smaller) in the 2pL and 2pH implementations when compared to the 1p implementation.

We may recall that the theoretical predictions expects the grand coalition to form in the

first loop for the three implementations. However, one may expect players to demand

more in the first loop of a two-period implementation, because of the second chance of

forming a coalition if their requests is not met on the first try.

As a direct consequence of the failure in forming the grand coalition, we report also

a failure in achieving full efficiency, with again no significant difference between the

implementations, regardless of the presence of some delay costs in 2pL and 2pH (see

Figure 3)8. Efficiency is computed as the fraction of the sum of the payoffs obtained

by the four players compared to the value of the grand coalition of the considered game

8The figure is created based on the estimated coefficients of the following linear regressions: Effi =
β11pi + β22pLi + β32pHi + µi where Effi ≡

∑
i πi

v(N) is the efficiency measure for group i, 1pi (2pL
and 2pH) is a dummy variable that takes value 1 for the 1p (2pL or 2pH) treatment, and zero otherwise.
The standard errors are corrected for within session clustering effect. The statistical tests are based on the
Wald test for the equality of the estimated coefficients of two treatment dummies.
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Figure 3: Verification of the efficiency axiom.
(a) Game 1 (b) Game 2
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(c) Game 3 (d) Game 4
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Note: Error bars show one standard error range. *** and ** indicate the proportion of time that verification of the efficiency axiom

was significantly different at the 1 and 5% significance level (Wald test).

(100 for games 1 and 2 and 200 for games 3 and 4).

Therefore, we conclude that

Result 1. The Winter mechanism in its one-period, two-period low cost and two-period

high cost implementations provides mediocre and comparable results in terms of coali-

tion formation and efficiency.

4.2 Payoff shares: ex ante theoretical prediction

According to the ex ante theoretical prediction, the Winter mechanism in all the three

implementations is expected to provide approximately the Shapley value, in average

over the different orderings of the players. We denote by π1p(vk) a vector of payoffs

obtained by the players and by implementing 1p and on game k, with k = 1, 2, 3, 4.

Analogously, we denote by π2pL(vk) a vector of payoffs obtained by the players by
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Figure 4: Mean of the payoffs for the three mechanisms, the horizontal lines indicating
the Shapley values.
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Note: Error bars show one standard error range. ***, **, and * indicate the average normalized payoff being significantly different

from the Shapley value at 1, 5, and 10% significance level (Wald test).

implementing 2pL and by π2pH(vk) a vector of payoffs obtained by the players by im-

plementing 2pH. Figure 4 shows the mean of the payoffs in the four games and for the

three implementations, the horizontal lines indicating the Shapley value for each game9.

As we may observe in Figure 4, as a consequence of the players often failing to

form the grand coalition and, consequently, because of a lack of efficiency, the average

9The error bars are based on the standard errors that are corrected for withing session clustering effect.
These standard errors are obtained running the system of linear regressions described in Section 4.4. The
statistical tests are based on these regressions.
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realized payoff vectors are significantly different from the Shapley value. Therefore,

we focus on investigating whether the proportion of the power share, in lieu of the

absolute payoffs, converges to the Shapley value, by considering the normalized (to

the value of the grand coalition) payoff vectors. Then, in this and in the following

sections we consider the normalized vectors of payoffs with components π̃i
m(vk) =

πmi (vk)∑
j∈N π1p

j (vk)
×vk(N) for each i = 1, 2, 3, 4 and for eachm ∈ {1p, 2pL, 2pH} (remember

that the value of the grand coalition is equal to 100 for games 1 and 2 and equal to 200

for games 3 and 4).

Figure 5 shows the mean of the normalized payoffs in the four games, the horizontal

lines indicating the Shapley values for each game.

The three implementations perform well in implementing, on average, the Shapley

value share. Moreover, we do not report any superiority of one of the three implemen-

tations. Thus, the following result follows.

Result 2. The Winter mechanism in its one-period, two-period low cost and two-period

high cost implementations provides good and comparable results in terms of implemen-

tation of the Shapley value power share.

4.3 Payoff shares: ex post theoretical prediction and first mover ad-

vantage

The ex post theoretical prediction of the Winter mechanism is dependent on the order-

ing in which the players make their demand. In particular, a first mover advantage is

predicted. Furthermore, a higher first mover advantage is expected in the 1p implemen-

tation, followed by the 2pH and, finally by the 2pL implementation. As a result, the

distances between the Shapley value and the ex post theoretical predictions are largest
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Figure 5: Mean of the normalized payoffs for the three mechanisms, the horizontal lines
indicating the Shapley values.
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Note: Error bars show one standard error range. ***, **, and * indicate the average normalized payoff being significantly different

from the Shapley value at 1, 5, and 10% significance level (Wald test).

in 1p implementation, followed by 2pH and then 2pL.

Figure 6 shows the mean of the euclidean distances of the normalized payoff vec-

tors from the Shapley value, as well as from the equal division solution, for the four

games. Such distances are computed as Dis2mφ =
√∑

i(π̃i − φi(v))2 and Dis2ED =√∑
i(π̃i − EDi)2 where φi(v) denotes the Shapley value for player i in game v.10

10The figure is created based on the estimated coefficients of the following linear regressions: Disi =
β11pi + β22pLi + β32pHi + µi where Disi is the relevant distance measure for group i, 1pi (2pLi and
2pH) is a dummy variable that takes value 1 if 1p (2pL or 2pH) treatment is used, and zero otherwise.
The standard errors are corrected for within session clustering effect. The statistical tests are based on the
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Figure 6: Mean of the distances of the normalized payoff vectors from the SPNEs and
the equal division solutions.

(a) Game 1 (b) Game 2
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Note: Error bars show one standard error range. ***, **, and * indicate the distance of the normalized payoff vectors from the

Shapley or from the equal division solution was significantly different at 1, 5, and 10% significance level, respectively (Wald test).

We may observe that, contrary to the ex post theoretical predictions, the distance

of the realized normalized payoffs to the Shapley value in the three implementations

are not significantly different in three out of four games. Only in Game 2, Dis2φ was

significantly larger in 2pH compared to 1p and 2pL. We also observe that the three

implementations perform similarly in terms of distance to the equal division solution

in three out of four games. The only exception is, again, Game 2, in which both 1p

and 2pL are significantly closer to the equal division solution than 2pH. Therefore, we

conclude that

Result 3. The Winter mechanism in its three implementations provide similar results in

terms of the distance between the realized normalized payoffs and the Shapley value as

well as the equal division solution.

Wald test for the equality of the estimated coefficients of two treatment dummies.
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Figure 7: Proportion of times first mover advantage is verified according to the normal-
ized payoff vectors.

(a) Game 1 (b) Game 2
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Note: Error bars show one standard error range.***, **, * significant at 1, 5, and 10% significance level, respectively (Wald test)

Figure 7 shows the proportion of times first mover advantage appears, i.e., when the

first mover obtains a higher normalized payoff than her Shapley value. The three imple-

mentations perform in a similar way, and they do not show any first mover advantage

effect (notice that the first mover takes in average more than predicted by her Shapley

value half of the time, and, consequently, less than predicted the other half of the times).

Figure 8 details these results for each single player and Figure 9 presents the mean of

the amount demanded as first mover. Again, we may observe that the three implementa-

tions perform in a similar way, regardless of the differences of the theoretical prediction.

We can now state the following result.

Result 4. The Winter mechanism in its one-period, two-period low cost and two-period

high cost implementations do not show any first mover advantage effect.
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Figure 8: Frequency of the first mover demanding more than SV
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Note: Error bars show one standard error range. ** and * indicate significant difference between treatments at 5% and 10%

significance level (Wald test).

4.4 Testing for the axioms

From Figure 5 we may notice that both the one-period and the two-period low cost

implementations verify the null player property. In particular, the one-period imple-

mentation satisfies it fully (100% of the times), always assigning a payoff equal to 0 to

the null player 1, in game 2. Instead, the other two implementations assign in average

a negative payoff to the null player, as a consequence of the delay costs. As expected,

small delay costs, as in 2pL, let the mean be close to 0, while on the other side, large

delay costs, as in 2pH, let the final average payoff for player 1 in game 2 be significantly
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Figure 9: Mean of the amount demanded as the first mover
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Note: Error bars show one standard error range. ** indicates significant difference between treatments 5% significance level (Wald

test).

different from 0.

In order to test symmetry, additivity, homogeneity, strong monotonicity and fair-

ness, we perform a set of OLS regressions for the following system of equations, with

dependent variables the average normalized payoffs π̃i, and as independent variables g1,
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g2, g3, g4 and without constant:

π̃1 = a1g1 + a2g2 + a3g3 + a4g4 + u1

π̃2 = b1g1 + b2g2 + b3g3 + b4g4 + u2

π̃3 = c1g1 + c2g2 + c3g3 + c4g4 + u3

π̃4 = d1g1 + d2g2 + d3g3 + d4g4 + u4

where gi is a dummy variable that takes value 1 if the game i is played, and zero oth-

erwise. Various axioms are tested based on the estimated coefficients of these regres-

sions. Symmetry requires b1 = c1 and b4 = c4. Additivity and Homogeneity require

x3 = x1 + x2 and x4 = 2x1 for x ∈ {a, b, c, d}, respectively. Strong monotonicity

requires a1 > a2 and a4 > a3. Finally, fairness requires, b3 − b2 = c3 − c2. In Table 5

in Appendix C, we present the results of Wald test of the verification of these axioms,

together with the null hypothesis (H0).

Symmetry (according to which H0 should not be rejected) is fully confirmed by the

1p and the 2pL implementations, and only for game 4 (then, half of the times) by the

2pH implementation. The additivity and homogeneity (according to which H0 should

not be rejected) are almost always confirmed by the three implementations. The strong

monotonicity (according to which H0 should be rejected) is confirmed by the three im-

plementations. The fairness (according to which H0 should not be rejected) is rejected

by the 1p and the 2pH implementations, but confirmed by the 2pL implementation. Ta-

ble 4 summarizes whether each axiom is satisfied in average (+) or not (–) for the three

implementations. To conclude this section, we can state as follows:

Result 5. The Winter mechanism in its one-period, two-period with low costs and two-

period with highs cost implementations provides good and comparable results in terms
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Table 4: Winter mechanisms, axioms

Axiom 1p 2pL 2pH

Efficiency – – –
Symmetry + + –
Additivity + + +

Homogeneity + + +
Null player property + + –
Strong monotonicity + + +

Fairness – + –

of satisfaction of the axioms.

5 Conclusions

In this paper we provide an experimental comparison of three different implementations

of the Winter demand commitment bargaining mechanism: one-period, two-period with

low costs and two-period with high costs. These three implementations predict the

same ex-ante outcomes, while they differ in terms of ex-post outcomes. Our experiment

shows that, however, these three different implementations provide comparable results

for both ex-ante and ex-post outcomes. No significant difference appeared in any of our

domains of investigation: coalition formation, alignment with the theoretical prediction

and axioms satisfaction.

An example we borrow by Winter (1994) on the bargaining over government forma-

tion may help presenting the implications of our results. Bargaining over government

formation is a process that naturally resembles the demand commitment model with

more than one period. Parliamentarian negotiations are usually based on demands rather

than proposals, and often these demands are not compatible in the first period, and at
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least the second round of requests is implemented to find an agreement. A second round

may be costly in terms of time, and it can make the bargaining process unnecessarily

slow and cumbersome. However, lengthening the bargaining process is often considered

as essential and crucial for parties to match and a coalition to form.

Surprisingly, our experimental results suggest that this could not be always the case.

In fact, our three implementations resulted in similar outcomes in all our domains of

investigation. The take-off message of our paper suggests a mechanism designer to

implement, whenever possible, the lightest possible mechanism for bargaining, as re-

finements may turn out to be costly to implement, but ineffective in terms of quality

of the performances. In fact, players converge to similar outcomes (e.g., total or par-

tial cooperation) without taking advantage of any second chance, and regardless of the

different theoretical predictions, differences that are not matched behaviorally.
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A The Winter Mechanism

We present here more formally the T period Winter mechanism as defined by Winter

(1994). A decision point positionm at period t is given by the vector (St,m1 , St,m2 , dSt,m2
, j),

where:

0 ≤ t ≤ T is the current period of the bargaining,

St,m1 ⊆ N is the set of players remaining in the game,

St,m2 ⊂ St,m1 is the set of players who have submitted demands which are not yet

met,

dSt,m2
= (di)i∈St,m2

is the vector of demands submitted by players in St,m2 , (0 ≤

di ≤ maxS⊆N v(S)), and

j ∈ St,m1 \ St,m2 is the player taking the decision by introducing a demand dj .

Her demand dj is said to be compatible if there exists some S ⊆ St,m2 with v(S ∪

{j})−
∑

i∈S di ≥ dj . Otherwise dj is not compatible.

With j’s decision, the game proceeds now in the following way:

1) If dj is compatible, then j specifies a compatible coalition S, each player

i ∈ S ∪ {j} is paid di − tc (c is the delay cost per period), and nature chooses

randomly a player k 6= j from St,m1 \ St,m2 . The new position is now given by

(t, St,m+1
1 , St,m+1

2 , dSt,m+1
2

, k), with St,m+1
1 = St,m1 \ (S ∪ {j}) and St,m+1

2 =

St,m2 \ (S ∪ {j}) (we remain at time t and we increment the position from m to

m+ 1).

2) If dj is non-compatible, then two cases are distinguished:
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2a) if St,m2 = St,m1 \ {j} (j is the last player to demand in the current period),

then a new player k is chosen randomly from St,m1 and the new position is given

by (St+1,1
1 , ∅, k) (we increment the period from t to t + 1 and we start back at

period m = 1);

2b) if St,m2 ⊂ St,m1 \ {j}, then j specifies a new player k 6= j in St,m1 \ St,m2 and

the new position is (St,m+1
1 , St,m+1

2 , dSt,m+1
2

, k), with St,m+1
1 = St,m1 and St,m+1

2 =

St,m2 ∪ {j} (we remain at time t and we increment the position from m to m+1).

The game starts with randomly chosen a player j ∈ N . Then the initial position is

set to be (N, ∅, d∅, j). It terminates either when there are no more players in the game

(see point 1 above), or when t = T and St,m1 ∪ {j} = St,m2 . In the second case, each

i ∈ St,m1 ∪ {j} is paid v({i})− Tc.

B Translated instructions and comprehension quiz

An English translation of the instruction handout can be downloaded from

• https://bit.ly/33IzgMM for Winter 1 period implementation

• http://bit.ly/3avJPoq for Winter 2 period implementation

An English translation of the comprehension quiz can be downloaded from

http://bit.ly/3oOMVsL

C Verification of Axioms
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