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Abstract

We experimentally examine the impact of a cycle path on the trad-
ing of a copyable information good in networks. A cycle path in a net-
work permits a buyer to become a reseller that can compete against
existing sellers by replicating the good. Theory predicts that the price
of the information good, even with the first transaction where there
is not yet a reseller competing with the original seller, will be lower in
networks with a cycle path than otherwise. However, our experiment
reveals that the observed price for the first transaction is significantly
higher in networks with a cycle path.
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1 Introduction

When information (such as images, videos, texts, computer programs, and

technological innovation) is consumed and benefits consumers, it is defined

as an information good. Information goods, unlike ordinary goods, do not

disappear when consumed and can be easily copied. Given this property of

being copyable, every successful transaction of the information good creates

a new seller and thus may negatively affect any benefit to its originator. In-

deed, noting that information goods are typically exchanged bilaterally in

a network,1 Polanski (2007) and Manea (2021) show that when information

goods are traded in such a way, the distribution of benefit among the par-

ties involved may greatly differ depending on the network structure, namely,

whether the network has a cycle path.

A cycle path is a set of network links in which the starting and ending

points are on the same node. On the one hand, if there is no cycle path,

the seller can enjoy a greater benefit because the resale of information by

the buyer would not introduce competition between the buyer and the seller.

On the other hand, if a cycle path exists, the act of the buyer reselling

the good results in competition between the seller and the buyer. As a

result, the seller’s benefit will be much less (and that for the buyer much

more) than without a cycle path. Moreover, the benefit on the buyer side

extends upstream, even to the first transaction where no resale competitor

to the originator yet exists, because the market participants foresee price

competition in the future.

1For example, when founded in 1999, Napster allowed users to transfer their digital
audio files bilaterally through its peer-to-peer system.
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In this paper, we experimentally verify these theoretical implications.

Namely, we pose the following research questions:

1. Are prices lower in a network with a cycle path compared with one

without?

2. Does the effect of competition with the latter transaction extend up-

stream to the first transaction?

To address these, we set up an experiment in which players trade information

goods in networks. We consider two simple networks, one with a cycle path

and the other without, of three players, originally consisting of one seller

(i.e., the originator) and two buyers, and compare the behavior of the players

across the two networks.

Our main finding is that the prices observed in the network with a cycle

path are inconsistent with theory compared with those observed in the net-

work without a cycle path. Specifically, although competition between the

originator and the reseller lowers the observed prices in the final transaction

in the network with a cycle path, its magnitude is much smaller than that

predicted by theory. In addition, contrary to theory, the prices for the first

transaction tend to be higher in the network with a cycle path.

Moreover, we reveal that learning does not resolve the gap between theory

and the experimental results in the network with a cycle path. Instead, it

could widen the discrepancy in the prices of the first transaction. This is

because as participants gain experience by repeatedly playing the game, the

prices of the first transaction in the network with a cycle path could rise

further given the increasing willingness of buyers to buy the good, which is
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inconsistent with theory.

Our study contributes to the literature on information goods and the net-

work economy, for which there are many early studies concerning the buying

and selling of information goods. For example, Admati and Pfleiderer (1986,

1990) analyzed the trading of information in financial markets, while Raith

(1996) presented a model in which information sharing in an oligopolistic

market arises in equilibrium. Elsewhere, Talor (2004) analyzed the cus-

tomer information market for Amazon and other Internet companies, and

Bergemann et al. (2018) addressed information trading from the viewpoint

of mechanism design.

Many studies that focused on the characteristic that information goods

can be copied were related to copyright. For instance, Liebowitz (1985) and

Basen and Kirby (2005) analyzed how the presence or absence of copyright

affects social benefits and those of the original information supplier, and

Varian (2005) and others conducted copyright research focusing on the digi-

tization of information. However, Muto (1986), Takeyama (1994), and others

conducted research focusing on the externality of information, that is, the

collapse of monopoly as information spreads.

To this body of work, Polanski (2007) introduced graph theory and cre-

ated a model in which information is traded through negotiations between

players linked in a network, revealing that the information externalities de-

pend on the structure of the network. Later, Manea (2021) extended the

theory by Polanski (2007) by defining the equilibrium that holds in more

general situations. As noted above, their key finding is that the distribution

of gains is affected by whether the network containing the seller and the
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buyer has a cycle path.

Unlike existing experimental studies, our experiment deals with informa-

tion good in the network economy. For instance, Gale and Kariv (2009)

investigated the case in which assets were traded through a network and

found that the transaction prices converged to competitive prices. Choi et al.

(2017) investigated path competition in their network experiment and found

that the position of a node greatly affects the gain. However, unlike these

studies, our experiment focuses on the price competition in the trading of an

information good in a network with a cycle path. In this setting, a seller in-

evitably creates a resale competitor when selling the good given its replicable

property.

The remainder of the paper is organized as follows. Section 2 summarizes

the main theoretical results of the model to be tested in the experiment.

Section 3 discusses the experimental design and procedure. We summarize

the data in Section 4, followed by the results of the main analyses in Section 5.

Section 6 concludes.

2 Theory

In this section, we explain the theoretical results of the model to be verified

in the experiment according to Polanski (2007) and Manea (2021).
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2.1 Network Theory Preliminary: Tree Network and

Cycle

The network consists of nodes and links. Let N = {1, 2, .., n} be the set of

nodes in the network. The existence of a connection, or the link, between

nodes i and j (i, j ∈ N) is represented by hij. If the link exists, hij = 1, and

otherwise, hij = 0. We assume the network is undirected, that is, hij = hji

for all i, j. Let H be an n× n matrix whose (i, j) element is hij. A network

G is defined as the set of nodes N and the link matrix H, G = (N,H).

We use the notation ij for the link between i and j. A path connecting

nodes i and j in a network is a sequence of nodes {i0, i1, .., ik̄}, where i0 = i

,ik̄ = j, hikik+1
= 1 for all k ∈ {0, 1, .., k̄ − 1}. A cycle is a path in which the

first and last nodes are the same i0 = ik̄, and from i0 to ik̄−1 are all different

nodes.

A connected component of G is a subnetwork of G induced by any max-

imal set of nodes that are mutually connected by paths in G. A network

is connected if it has a single connected component. A connected network

that does not contain any cycle is called a tree. In this paper, the network

without cycle paths is a Tree, and the network with cycle paths is a Cycle.

2.2 Model

Figure 1 depicts the simplest three-node networks we use to assess the dif-

ference between a Tree (left) and a Cycle (right). Player 1 is connected to

Players 2 and 3 in both the Tree and Cycle. While Players 2 and 3 are not

connected with each other in the Tree, they are connected in the Cycle.
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Figure 1: Tree and Cycle

As mentioned earlier, Player 1 is the originator of the information good,

hence the sole seller at the start of the game. Player 1 gains payoff only by

selling the good to buyer players. Buyer players (i.e., Players 2 and 3) gain

a payoff of 100 from obtaining and consuming the good. Moreover, in the

Cycle, they can copy the information good and sell it to the buyer player that

does not yet possess the good. If the resale transaction is successful, they

earn additional resale benefit. Therefore, in the Cycle, competition between

the originator and a reseller could take place.

We assume, as in Polanski (2007), that at most one transaction occurs per

period between a connected seller and buyer. If there are multiple trading

possibilities, one link is randomly selected with equal probability. Players at

each end of the selected link then negotiate over the transaction price. We

assume that a Nash bargaining solution determines the transaction price in

which the market power of the seller is α and that of the buyer is 1 − α.
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α ∈ (0, 1) is an exogenous variable.

In our experiment, the game is terminated with a probability of 1 − δ

when negotiation fails. This ensures that the experiment concludes within

a reasonable time. As a result, the equilibrium payoffs are subject to the

continuation probability δ.

2.3 Equilibrium Payoff

The equilibrium payoffs are defined by the state of the network at the time

of the transaction. In our three-person network model, these are described

by two states, “Stage 1” and “Stage 2.”

Stage 1 is a state in which Player 1 is the only player owning the infor-

mation, as shown in the top panel of Figure 2. The game starts in this state.

Stage 2 is a state in which one transaction is completed from Stage 1. As a

result, either Player 2 or 3 possesses the information in addition to Player

1. The bottom panel of Figure 2 displays the case in which Players 1 and 2

possess the good, and which is known to Player 3. If a further transaction is

completed in this state, all players in the network will own the information,

and the game ends. Therefore, the network is always in a state of either

Stage 1 or 2 in the middle of the game.

We denote the ex post (i.e., after the link for the current negotiation is

selected) expected payoff of the game by xnst,r, where n = C, T (Cycle, Tree),

st = 1, 2 (Stage 1, Stage 2), r = s, b(seller, buyer). As the Stage 1 payoffs

are derived via backward induction from Stage 2 as shown below, the Stage 1

payoffs include the Stage 2 expected payoffs.
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Stage 1 - Only Player 1 owns the good.

Stage 2 - Two players own the good.

Figure 2: Two States in the Game
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The equilibrium payoffs are derived following the formulation of Polanski

(2007). The expected payoff is defined by the state of the network. The

equilibrium expected payoff is the value obtained by allocating the surplus

generated from the transaction to the threat point payoff according to avail-

able market power. We also assume that the player is rational. That is,

when a transaction produces a positive (negative) total surplus, the proba-

bility of the success of the transaction is 1 (0). To avoid multiple equilibria,

we assume that the transaction surplus is positive in each negotiation.

2.3.1 Stage 2 Payoff in Cycle

In Stage 2 of the Cycle, the threat points in the negotiation are δxC2b for the

buyer and 1
2
δxC2s for the seller. This is because if negotiation fails, while the

buyer player becomes a buyer again in the next negotiation for certain, the

seller player is selected as the next seller only with the probability 1
2
. We

assume that the seller earns no gain if not selected as the seller in the next

negotiation and the buyer purchases the good from the other seller player.2

If the transaction is completed, a total gain of 100 is divided between the

two players. Therefore, the following equations hold.

xC2s =
1

2
δxC2s + α(100− 1

2
δxC2s − δxC2b) (1)

xC2b =δxC2b + (1− α)(100− 1

2
δxC2s − δxC2b) (2)

Eqs. (1) and (2) represent the equilibrium conditions for the seller and

2Given the total surplus is positive, the next negotiation succeeds with probability 1.
The same argument applies below.

10



the buyer, respectively. Using the total gain equation (xC2s + xC2b = 100) and

Eq. (1) or (2), the Stage 2 payoffs are derived as follows.

xC2s =
100(1− δ)α

1− 1
2
δ − 1

2
αδ

(3)

xC2b =
100(1− α)(1− 1

2
δ)

1− 1
2
δ − 1

2
αδ

(4)

2.3.2 Stage 1 Payoff in the Cycle

If a negotiation fails in Stage 1, the buyer player will be the buyer again in

the next negotiation with the probability 1
2
. Otherwise, the player will be

the buyer in Stage 2, premising that the other buyer purchases the good in

the next negotiation and the game proceeds to Stage 2. The seller becomes

the seller in the next negotiation again for certain.

If a negotiation is successful, in addition to the 100 generated by the

resulting transaction, either the seller or the buyer of this negotiation will

become the seller player in the next negotiation in Stage 2 and will earn xC2s,

which occurs with probability 1
2

for each. Therefore, the following equations

hold.

xC1s =δxC1s + α(100 +
1

2
xC2s +

1

2
xC2s − δxC1s −

1

2
δxC1b −

1

2
δxC2b) (5)

xC1b =
1

2
δxC1b +

1

2
δxC2b + (1− α)(100 +

1

2
xC2s +

1

2
xC2s − δxC1s −

1

2
δxC1b −

1

2
δxC2b)

(6)

Eqs. (5) and (6) represent the equilibrium condition for the seller and the

buyer, respectively. Using the total gain equation (xC1s+xC1b = 100+xC2s) and
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Eq. (5) or (6), Stage 1 payoffs are derived as follows.

xC1s ={1− δ +
1

2
αδ}−1[α(1− 1

2
δ)(100 + xC2s)−

1

2
δαxC2b] (7)

xC1b ={1− δ +
1

2
αδ}−1[(1− α)(1− δ)(100 + xC1s) +

1

2
δαxC2b] (8)

2.3.3 Stage 2 Payoff in a Tree

For the case of Stage 2 in the Tree network, even if the transaction fails, the

same transaction is repeated. Thus, the following equations hold.

xT2s =δxT2s + α(100− δxT2s − δxT2b) (9)

xT2b =δxT2b + (1− α)(100− δxT2s − δxT2b) (10)

Eqs. (9) and (10) represent the equilibrium conditions for the seller and

the buyer, respectively. Using the total gain equation (xT2s + xT2b = 100) and

Eq. (9) or (10), Stage 2 payoffs are derived.

xT2s =100α (11)

xT2b =100(1− α) (12)

2.3.4 Stage 1 Payoff in a Tree

If a negotiation fails in Stage 1, the buyer player of the current negotiation

will become the buyer again in the next negotiation with probability 1
2
. Oth-

erwise, the player will be the buyer in Stage 2, premising that the other buyer

purchases the good in the next negotiation and the game proceed to Stage 2.

The seller player of the failed negotiation becomes the seller again for certain
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in the next negotiation.

If a negotiation is successful, in addition to the 100 generated by this

transaction, the seller of the negotiation will be the seller in Stage 2 for

certain and will earn xT2s. Therefore, the following equations hold.

xT1s =δxT1s + α(100 + xT2s − δxT1s −
1

2
δxT1b −

1

2
δxT2b) (13)

xT1b =
1

2
δxT1b +

1

2
δxT2b + (1− α)(100 + xT2s − δxT1s −

1

2
δxT1b −

1

2
δxT2b) (14)

Eqs. (13) and (14) represent the equilibrium conditions for the seller and

the buyer, respectively. Using the total gain equation (xT1s +xT1b = 100 +xT2s)

and Eq. (13) or (14), the Stage 1 payoffs are as follows.

xT1s ={1− δ +
1

2
αδ}−1[α(1− 1

2
δ)(100 + xT2s)−

1

2
δαxT2b] (15)

xT1b ={1− δ +
1

2
αδ}−1[(1− α)(1− δ)(100 + xT1s) +

1

2
δαxT2b] (16)

2.4 Equilibrium Price

The equilibrium price in each stage is computed from the abovementioned

expected payoff. Let pnst be the transaction price of Stage st (st = 1, 2) and
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network type n (n = C, T ). The analytical solutions are as follows.

pC1 ={1− δ +
1

2
αδ}−1[100α(1− 1

2
δ)− (

1

2
− α)(1− δ)xC2s −

1

2
δαxC2b] (17)

pT1 ={1− δ +
1

2
αδ}−1[100α(1− 1

2
δ)− (1− α)(1− δ)xT2s −

1

2
δαxT2b] (18)

pC2 =
100(1− δ)α

1− 1
2
δ − 1

2
αδ

(19)

pT2 =100α (20)

Suppose that δ = 0.9 (as in our experiment) and α = 0.5. α = 0.5

is a reasonable benchmark case where the power of negotiation is equal be-

tween the seller and the buyer, both anonymously matched in the experiment.

Then, the equilibrium prices are pC1 ≈ 26.04 and pT1 ≈ 42.31 for Stage 1, and

pC2 ≈ 15.38 and pT2 = 50 for Stage 2. The Stage 2 equilibrium price in a

Cycle is drastically lower than in a Tree because of competition between the

originator and the reseller.3 Moreover, the effect of competition on the price

in a Cycle also appears upstream in Stage 1, in which a reseller has not yet

appeared in the market. Our primary aim of the experiment is to verify these

theoretical predictions for prices.

3 Experimental Design and Procedure

We conducted six sessions of computer-based online experiments in Octo-

ber 2020.4 We recruited 141 subjects from a subject pool at the Institute

3Polanski (2007) and Manea (2021) analyze the Cycle and Tree equilibria in the case
of δ = 1. When δ = 1, pC1 = pC2 = 0 and pT1 = pT2 = 100α.

4The experiment was programmed and conducted with o-Tree (Chen et al., 2016),
and we used Zoom (https://zoom.us/) to welcome and communicate with participants.
After verifying their names in the waiting room, participants were given an anonymous
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of Social and Economic Research, Osaka University, managed by ORSEE

(Greiner, 2015). The subject pool consists of students, both undergraduate

and graduate, in various fields in the university. Our subjects are paid ac-

cording to their performance in the experiment. Each subject experiences 16

trials in a session, and one trial is selected randomly at the end of the exper-

iment. The points the subject earned in the selected trial is then converted

into Japanese yen (JPY) as a performance-based payment (at the rate of 40

JPY per point). In addition to the performance-based payment, our subjects

were paid a participation fee of 500 JPY. Payments were in the form of an

emailed Amazon gift card.

A session consists of two treatments, each consisting of eight consecu-

tive trials, regarding the network structure, and we denote the treatment

with a Tree structure as “Tree” and that with a Cycle structure as “Cycle.”

The experimental design is a within-subject design, whereby each subject

receives both treatments successively. However, the treatment order is coun-

terbalanced among the subjects to offset the possible order effects, with 66

subjects receiving Tree first and Cycle later. The remaining 75 subjects re-

ceived these treatments in reverse order.5 The number of subjects and the

treatment order in each of the six sessions are presented in Table I.1 in OSM I.

Each treatment consists of eight consecutive trials, and a trial includes

several rounds of negotiations. After the subjects read the experimental

participation ID (sub01, sub02, ..) when entering the meeting room. Their mobile cameras
as well as microphones were off during the experiment.

5As the treatment order is counterbalanced among our subjects, the order effect should
not be a major concern. Nonetheless, we assess the magnitude of the order effects in the
Online Supplementary Material (OSM) II. The results indicate that the potential bias in
our analysis arising from the order effect is zero, or at most marginal.
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instructions and completed a few quizzes that assessed their comprehension

of the rules of the game, the experiments were carried out in the following

procedure.6

At the beginning of the first trial, the position of each subject in the net-

work is randomly determined after considering that there is an equal number

of participants in each of the three positions. This position is held constant

across all 16 trials.7

At the start of a trial, a group of three players occupying each of the

three positions is randomly formed. Player 1 is the originator of the good

and the only seller at the start of every trial. For each round, one negotiable

link, i.e., a link between a seller and a buyer, is selected, and a negotiation

for the transaction of the good starts between the linked seller and buyer.

In the negotiation, the buyer and the seller each simultaneously propose a

bid and an ask once for the transaction, respectively. Then, the bid and the

ask are displayed to both players. If the bid is equal to or higher than the

ask, the transaction is established in the round. Otherwise, the negotiation

in the round fails. If the transaction is established, the price P is determined

as the middle value between the ask and the bid, and the price is announced

to both players in the transaction. The seller of the transaction earns a gain

of P , and the buyer earns a gain of 100 − P . However, both players earn

nothing if the negotiation fails.

6The experimental instructions and screenshots of the actual experiments (translated
from Japanese to English) are provided in OSM VII.

7The position of each subject in the network is kept unchanged through the entire
session, even across the two treatments, to ease the comprehension of the subjects in the
game. In addition, identical positions for the players in each session enable us to control for
individual heterogeneity in the statistical analysis in accordance with the within-subject
experimental design.
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If the transaction is established, the link between the buyer and the seller

is no longer negotiable as the buyer of the transaction becomes an additional

seller. If that player is linked to a remaining buyer, the link becomes nego-

tiable, and that player could sell the information to the remaining buyer if

the link is selected for negotiation hereafter in the trial. Sellers that sold the

good to a buyer remain as sellers.

The round ends once the negotiation is finished regardless of its success

or failure. The experiment proceeds to the next round if the negotiation

is successful. In the case of failure, however, the trial is terminated with

a 10% chance as discussed in Section 2.2. In the next round, a negotiable

link is newly selected to start a negotiation. The same negotiable link as

the previous round can be selected again. A trial also ends if all the players

possess the good, and no further negotiation is needed. The final point for a

subject in the trial is equal to the total points the subject has earned in the

trial.

Once a trial ends, the experiment proceeds to the next trial unless the

terminated trial is the final one. The members of the three-person game are

rematched when a new trial begins.

4 Summary of the Data

We briefly summarize the data by overviewing the sample size, share of suc-

cessful trials, the frequency of negotiations, and the payoffs. Major behav-

ioral data for our subjects are analyzed in Section 5.

The data contains 752 trials of three-person games, which consist of 2,077
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Table 1: Share of Successful Trials

Treatment Share of Successful Trials Share of Partially Successful Trials
(whole transactions) (Stage 1 transaction)

Tree 0.822 0.931
Cycle 0.835 0.918

rounds of negotiations in total. Of the 752 trials, 623 trials (82.8%) were

successful in that both buyers obtained the good. Among the remaining 129

trials, no buyer obtained the good in 57 trials, and only one buyer obtained

the good in 72 trials. We refer to a trial as partially successful if at least one

transaction is established. Thus, the number of partially successful trials is

695 (92.4%).

The likelihood that a trial is finished successfully is almost identical across

the two treatments. As displayed in Table 1, the percentage of trials in which

two whole transactions are successfully established for all three players is

82.2% in Tree and 83.5% in Cycle. The two values do not differ statisti-

cally significantly (p − value = 0.629). Similarly, the percentage of trials

in which at least one transaction is done is 93.1% in Tree, which does not

differ significantly from that in Cycle, which is 91.8% (p− value = 0.492 in

OSM III). These results suggest that we do not need to be concerned with

the unevenness of the sample failure across the two treatments due to sudden

failure amid ongoing negotiations. The detailed discussion and the statistical

analysis are presented in OSM III.

Table 2 presents summary statistics of the number of negotiations per
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Table 2: Number of Negotiations per Trial

Treatment Mean St. Dev. Pctl(25) Median Pctl(75) Pctl(95) Max

Tree 3.579 2.062 2 3 4 7 14
Cycle 3.092 1.581 2 3 4 6 14

Note: Limited to trials in which whole transactions are established among the three players.

trial for each treatment. The average number of negotiations in Tree is

3.579, while that in Cycle is 3.092, which is statistically significantly different

(p− value < 0.01, see OSM IV).

For the percentiles displayed in Table 2, there is little difference up to

the 75 percentile. Half of the trials are concluded within three negotiations,

and 75% finish within four negotiations. A slightly larger number of trials

appear after the 75 percentile in Tree.

One might believe that the speed of learning about the optimal plays of

the game could differ between the two treatments. Because Cycle has more

complicated game rules, subjects require more time to learn the optimal

plays. As a result, the dynamics of the number of negotiations could differ

across the treatments. Our analyses, reported in OSM IV, do not confirm

that the number of negotiations changes as our subjects gain experiences

in Cycle. Moreover, our subjects also tend to negotiate more in the later

trials in Tree. However, we do not find sufficient evidence that the speed of

learning differs across the two treatments. In OSM IV, we also compare the

numbers of negotiations across Stages 1 and 2, but we again do not find a

significant difference.
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Table 3: Mean Payoff of Players

Treatment Originator Buyer
Pooled First Buyer Last Buyer

Tree 101.560 49.220 47.702 50.738
(15.633) (9.588) (9.239) (9.704)

Cycle 78.588 60.706 68.753 52.659
(26.400) (20.761) (25.650) (8.694)

Note: Standard deviations in parentheses.

Table 3 presents the players’ payoff according to the roles they are as-

signed in the game, that is, as originators or buyers. Buyers are further

classified into two distinct types. One is a class of buyers that reached a

buying agreement in Stage 1. We denote this type of buyer as “first buyer.”

The other is the class of buyers that finally bought the good in Stage 2. We

refer to this other type of buyer as “last buyer.”

As displayed in Table 3, the mean payoff of an originator in Tree is 101.56,

which is far larger than that of buyers in the treatment, which is 49.22.

Roughly speaking, an originator is expected to earn twice as much as a

buyer. Among the buyers, a first buyer earns nearly the same as a last buyer

in Tree. The mean payoff of the former is 47.70, and that of the latter is

50.74. While the difference is small, it is statistically significant (Wilcoxon

pairwise test, p − value < 0.01). The almost identical share of the two

buyers is a straightforward result of the theory in Tree, in which any buyer

is equivalently required to buy the good from the originator.

In Cycle, in which transactions between the first and last buyers can

take place, originators earn less than in Tree. The mean payoff of an orig-
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inator is 78.59, which is statistically significantly smaller than that in Tree

(Wilcoxon pairwise test, p − value < 0.01). Naturally, buyers earn more in

the treatment as they obtain the remainder, such that a buyer earns 60.71

on average. Among buyers, a first buyer earns 68.75 on average, which is sta-

tistically significantly larger than in Tree (p− value < 0.01, after controlling

for individual-level fixed effects with cluster-robust standard errors). A last

buyer earns 52.66 on average, which is slightly, but statistically significantly,

larger than in Tree (p− value = 0.029, again after controlling for individual-

level fixed effects with cluster-robust standard errors). The payoff of a first

buyer is significantly larger than that of a last buyer in Cycle on average by

16.09 (Wilcoxon pairwise test, p − value < 0.01). We further discuss the

payoff difference between buyers in Section 5.5.

Although the payoffs differ across the two treatments, it does not neces-

sarily imply that the players also behave differently across the two treatments.

Given a transaction between the first buyer and the last buyer is allowed in

Cycle, the payoff of the originator becomes smaller in Cycle than in Tree,

even if the pricing behavior of the originator (i.e., the values of the proposed

asks) remains unchanged, simply because the originator now has less chance

of selling as the first buyer has a chance to sell too.8 In the following section,

we focus our analysis on transaction prices, bids, and asks to address any

behavioral differences among our subjects across the two treatments.9

8In addition, the standard deviation of the originator’s payoff becomes larger in Cycle
than in Tree simply because they have only a stochastic chance to sell the good in the
treatment. Note that the standard deviations of the prices do not differ so much as shown
in Figures 3 and 4 below.

9The only exception is the payoff of last buyers. The difference in last buyers’ payoff
across the two treatments necessarily implies that the behavior associated with the final
transactions differs.
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Note: Red: data. Green: theory. Error bars show plus-minus one-standard error range.

Figure 3: The Average Price in Stage 2

5 Prices, Bids, and Asks

5.1 Prices in Stage 2

As discussed in Section 2.3, the model is solved by backward induction. With

that in mind, we first discuss the results of Stage 2, then proceed to those of

Stage 1.

Figure 3 plots the mean price in Stage 2 for Tree (49.26) as well as Cy-

cle (47.34), together with their theoretical prediction (50 and 15.38, respec-

tively). While the mean price in Tree is not statistically significantly dif-

ferent from the theoretical prediction (p − value = 0.156), that in Cycle is

far greater (p − value < 0.01). Instead, the mean price in Cycle is only

slightly less than that in Tree, although the difference is statistically signifi-

cant (p− value < 0.01, Model 1 in the third column in Table 4). This result

suggests that the downward pressure in prices induced by competition, which

22



manifests itself as statistical significance, is weak.

Result 1: While the Stage 2 prices in Tree are consistent with theory, those

in Cycle are not, as the Stage 2 prices in Cycle are only slightly smaller

than those in Tree.

Does this discrepancy between the data and theory in Cycle resolve it-

self as our subjects accumulate experience? This is because our subjects

might not have learned the power of competition yet in the early trials of

the treatment, which they might learn in the latter trials. To address this,

we estimate the following linear regression, which includes variables captur-

ing learning effects, by regressing the prices on four explanatory variables,

Cycle, Latter, Cycle × Latter, and a constant. Cycle is a dummy variable

that takes a value of one if the trial belongs to Cycle, otherwise zero. Latter

is a dummy variable that takes a value of one if the trial lies in the latter

half of each treatment (i.e., the 5th to 8th trials), otherwise zero, and this

captures the overall learning effects across the two treatments.

Cycle×Latter is the cross term of Cycle and Latter, which captures addi-

tional impacts on the learning effect specifically appearing in Cycle. The sta-

tistical significance of the variable suggests that learning effects differ across

the two treatments (i.e., the existence of a treatment-specific learning effect).

The learning effect in Tree is captured by the coefficient of the term Latter,

and that in Cycle by the sum of the coefficients of the terms Latter and

Cycle × Latter. We also report the results of a regression in which only

two regressors are included, Cycle and a constant, to overview the treatment

effect over all trials.
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Table 4: Regression Results for Price

Dependent Variable

Price

Stage 1 Stage 2

Model 1 Model 2 Model 1 Model 2

Cycle 1.512∗∗ 0.698 −1.921∗∗∗ −2.221∗∗

(0.687) (0.973) (0.738) (1.039)
Cycle× Latter - 1.627 - 0.656

(1.374) (1.470)
Latter - −0.971 - −2.257∗∗

(0.969) (1.044)
Const. 52.343∗∗∗ 52.829∗∗∗ 49.262∗∗∗ 50.373∗∗∗

(0.484) (0.685) (0.524) (0.732)

Observations 695 695 623 623
R2 0.0069 0.0101 0.0108 0.0220

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

The results of these regressions appear under Model 2 in the fourth col-

umn of Table 4. The coefficient for the term Latter is −2.257, which is

significant (p− value = 0.03), implying that the overall learning effect tends

to lower prices. However, our primary focus here is the value of the coeffi-

cient for the cross term Cycle×Latter, which captures the treatment-specific

learning effect in Cycle. Its value of 0.656 is not significantly different from

zero. This indicates that contrary to our earlier speculation, price competi-

tion between the two sellers in Cycle does not lower prices more in later trials

by which time our subjects should have accumulated experience. Instead, the

positive value of the point estimate, while not significant, implies that the

treatment-specific effect in Cycle could have resisted the overall tendency to
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lower the prices observed with the coefficient for the term Latter. Indeed,

the sum of the coefficients of the terms Latter and Cycle × Latter, that is,

the magnitude of the learning in Cycle, is −1.601, which is not statistically

significant (F-test, p− value = 0.122).10

Result 2: The price competition in Stage 2 in Cycle does not facilitate

subject learning in converging to the equilibrium implied by the theory.

Competition is a strong power to guide economies to equilibria. For

example, Roth et al. (1991) report that prices converge to a competitive

equilibrium in their multiplayer market experiments. However, our results

for Stage 2 suggest that the effect of competition is quite limited. Although

competition between the two sellers lowers the prices in Cycle, the extent of

this is far below the level implied by theory. This limited effect of competi-

tion is similar to that reported in experiments with Bertrand price competi-

tion (Dufwenberg and Gneezy, 2000; Baye and Morgan, 2004) and travelers’

dilemma (Capra et al., 1999) games.

5.2 Prices in Stage 1

As our empirical findings for the prices in Stage 2 deviate from the theoretical

implications for Cycle, those in Stage 1 could deviate too.

Figure 4 illustrates the mean Stage 1 prices for Tree (52.35) and Cycle

(53.86), together with the theoretical predictions (42.31 and 26.04, respec-

tively).

10The insignificance of the learning effect in Cycle is also confirmed, even if we employ
Cycle data only (p− value = 0.103).
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Note: Red: data. Green: theory. Error bars show plus-minus one-standard error range.

Figure 4: The Average Price in Stage 1

In Tree, the mean Stage 1 price is larger than that of Stage 2. Although

the difference (3.08) is small, it is statistically significant (Wilcoxon pairwise

test, p − value < 0.01). The mean price is statistically significantly higher

than the theoretically predicted level (p− value < 0.01).

In Cycle, the mean price in Stage 1 is 53.86, which is larger than that in

Stage 2 by 6.514 (Wilcoxon pairwise test, p − value < 0.01) and is also far

larger than the level implied by theory (p − value < 0.01). This variation

from the theoretical prediction is larger than that in Tree by 17.78. Thus,

similar to the Stage 2 prices, we observe that the Stage 1 prices in Cycle

deviate from theory, and the deviation is far larger than that in Tree.

In addition, the mean Stage 1 price in Cycle is larger than that in Tree

by 1.51 (p− value = 0.028, Model 1 in the first column in Table 4), which is

opposite to the theoretical prediction that prices should be far lower in Cycle

than in Tree.
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Result 3: The Stage 1 prices in Cycle deviate from theory considerably

more than in Tree. In addition, again in contrast to theory, the Stage 1

prices in Cycle are even larger than the prices in Tree.

We now address whether the discrepancy between our experimental data

and the theory in Cycle could be resolved by learning. Similar to the above-

mentioned analysis of Stage 2, we undertake identical linear regression anal-

ysis to address the existence of a learning effect in Stage 1. The result is

presented in Model 2 in the second column of Table 4. The coefficient of

Latter is not significantly different from zero (p− value = 0.316), indicating

that no learning appears in Tree. Moreover, the coefficient of Cycle×Latter

is also not significant (p − value = 0.237), suggesting that there exists no

treatment-specific learning effect in Cycle. Indeed, the sum of the coefficients

of the terms Latter and Cycle × Latter, which is only 0.656, is not signifi-

cantly different from zero (F-test, p − value = 0.502). These results jointly

indicate that there is little evidence for the existence of learning, not only in

Cycle but also in Tree. Thus, as in Stage 2, there is little possibility that the

discrepancy between the theory and the data in Cycle is resolved by learning

in Stage 1.

Result 4: We do not observe any learning effect in the prices in Stage 1.

5.3 First Bids and Asks in Stage 1

We have obtained little evidence of subjects learning to play according to the

theoretical prediction based on our analysis of prices. However, as prices are
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determined jointly by bids and asks, this may mask the effect of learning.

We thus turn our attention to bids and asks separately.

We particularly focus on the bids and asks proposed in the first nego-

tiations of each trial because they carry uncontaminated information. The

first bids and asks are proposed before the player observes any behavior of

the other players in the trial11; thus, they are considered to directly reflect

the player’s initial prospects for the prices in the trial.12 Here we focus our

analysis on the first bids and asks in Stage 1.

Figure 5 plots the dynamics of the first bids and asks in each of the

treatments. Although the first asks present similar dynamics in the two

treatments, the first bids exhibit distinct patterns across these same two

treatments. As the trial proceeds, the bids tend to become lower in Tree,

whereas they tend to become higher in Cycle.

We perform the following linear regression analysis to test this observa-

tion. We regress the first bids and asks on the same four explanatory variables

as our earlier regression for prices (i.e., Cycle, Latter, Cycle × Latter, and

a constant). Now the regression model is a fixed-effect model in which the

subject-level individual heterogeneity is controlled for by individual fixed ef-

fects. In addition, we employ cluster-robust (subject-level) standard errors

for the hypothesis tests. As before, we also report the result of a regression

including only two regressors, Cycle and a constant.

Table 5 presents the regression results for the first bids and asks in Stage 1.

11Recall that players are randomly rematched into groups of three at the beginning of
each trial, but while maintaining their roles.

12One concern is that first bids and asks also reflect the individual heterogeneity of
player, such as negotiation style. For this reason, we control for individual differences in
the following regression analysis.
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Red: Cycle, Blue: Tree.
Solid: bids, Long-dash: asks

Figure 5: Dynamics of the First Bids and Asks

The first column in Table 5 indicates that the first bids in Tree is larger than

in Cycle by 2.302 (p − value = 0.024). The second column displays the

regression result to address the presence of learning effects. The value of

the coefficient of Latter is −3.289, which is significantly different from zero

(p− value < 0.01), indicating that the first bids in Tree have a strong down-

ward trend as observed in Figure 5. For Cycle, the value of the coefficient of

the cross term Cycle × Latter is 4.227, which is significantly different from

zero (p − value < 0.01). This indicates the presence of a treatment-specific

learning effect. The sum of the coefficients of Cycle × Latter and Latter,

which captures the magnitude of the learning effect in Cycle, is 0.938, sug-

gesting the possibility of an upward trend in first bids in Cycle. Although
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Table 5: First Bids and Asks in Stage 1

Dependent Variable

First Bids First Asks

Model 1 Model 2 Model 1 Model 2

Cycle 2.302∗∗ 0.188 0.436 −0.027
(1.006) (1.545) (0.916) (1.541)

Cycle× Latter - 4.227∗∗∗ - 0.926
(1.525) (1.878)

Latter - −3.289∗∗∗ - −1.080
(1.083) (1.499)

Const. 50.297∗∗∗ 51.942∗∗∗ 52.859∗∗∗ 53.399∗∗∗

(0.503) (0.826) (0.458) (0.951)

Observations 752 752 752 752
R2 0.0121 0.0209 0.0003 0.0011

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Cluster-robust standard errors in parentheses.

this value is not statistically significant using pooled data of the two treat-

ments (F-test, p− value = 0.3319), using the data only in Cycle, we confirm

a statistically significant positive upward trend in Cycle, as shown in Fig-

ure 5 (p − value = 0.038, Table V.1 in OSM V). The first bids exhibit

treatment-specific learning in opposite directions across the two treatments.

Unlike the first bids, we do not observe any treatment-specific learning

in the first asks. The third column in Table 5 indicates that the overall

level of the first asks does not differ significantly across the two treatments

(p− value = 0.636). Moreover, in the fourth column, neither the coefficient

of the cross term Cycle×Latter nor the term Cycle is significant (p−value =

0.624 and 0.986, respectively). These results jointly imply that the behavior

of sellers does not differ across the two treatments.
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Red: Cycle. Blue: Tree

Figure 6: Share of Successful Negotiations in the First Trials

Result 5: In Stage 1, buyers become more willing to buy as trials proceed

in Cycle. By contrast, buyers become less willing in Tree. Sellers do

not exhibit any treatment-specific learning.

As we observe distinct treatment-specific learning effects in the first bids

but not the first asks, we expect that the likelihood of success in the first trials

evolves differently across the two treatments as the trials progress. That is,

the first negotiations should more likely succeed in Cycle than in Tree in

later trials. To see this, we plot the dynamics of the likelihood of the success

of negotiations in the first trials in Figure 6. As expected, this likelihood

displays an upward (downward) trend in Cycle (Tree).

To examine the difference, we perform the following linear regression anal-

ysis. We regress a dummy variable reflecting the success of the first trials
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Table 6: Likelihood of Success in the First Negotiations

Dependent Variable

Success

Model 1 Model 2

Cycle 0.064∗ −0.032
(0.036) (0.051)

Cycle× Latter - 0.191∗∗∗

(0.072)
Latter - −0.096

(0.051)
Const. 0.527∗∗∗ 0.574∗∗∗

(0.026) (0.036)

Observations 752 752
R2 0.0041 0.0134

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

on the same four explanatory variables to the earlier regression analysis of

prices (i.e., Cycle, Latter, Cycle×Latter, and a constant). Table 6 presents

the regression results. As shown in the first column, we do not identify any

clear difference in the likelihood of success in the first negotiations across the

treatments. However, in the second column, we observe a strong treatment-

specific learning effect as the coefficient of the cross term Cycle × Latter is

0.191 and is significant (p − value < 0.01). According to these results, the

first negotiations in Cycle are more likely to be successful in later trials by

approximately 19% than in Tree.

The abovementioned findings consistently suggest that buyers become

more willing to buy in the latter trials in Stage 1 in Cycle. It then becomes

difficult that prices in Stage 1 in Cycle will be lower as learning progresses.
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Thus, and once again, we conclude that learning does not help to achieve

equilibrium in Stage 1 in Cycle, at least in the eight trials in our experiments.

Instead, it tends to widen the gap from the equilibria.

One straightforward explanation for the results in Cycle is that, first,

buyers could earn large profits in Stage 2 because, unlike the theoretical pre-

diction, the prices are high in Stage 2. Expecting positive profits in Stage 2,

buyers then compete to purchase the good in Stage 1. As the expected

returns in Stage 2 are gradually learned, a learning effect then appears in

Stage 1.

A puzzle is why the sellers in Cycle do not exploit their advantage in

competition and become more eager to earn profits in Stage 1. As discussed,

the first asks do not differ across the two treatments, nor do they seem

to respond to the upward trend in first bids. It might be the case in our

experiments that those who are competing only become urged, though the

reason behind it is unclear.

5.4 First Bids and Asks in Stage 2

We find that the buyers in Stage 1 in Cycle become more willing to buy the

good. Naturally, a next question would be whether the sellers competing in

Stage 2 learn to be more aggressive. More specifically, we hypothesize that

the first asks proposed by the sellers in Stage 2 in Cycle are lower than those

in Tree. Here, the “first ask” in Stage 2 is defined as the ask proposed in the

round immediately following establishment of the Stage 1 transaction.

To test our hypothesis, we perform linear regression analysis of the first
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Table 7: First Bids and Asks in Stage 2

Dependent Variable

First Bids First Asks

Model 1 Model 2 Model 1 Model 2

Cycle 0.018 −1.166 −3.969∗∗∗ −4.422∗∗∗

(1.060) (1.200) (1.211) (1.635)
Cycle× Latter - 2.391 - 0.915

(1.462) (1.836)
Latter - −1.858∗ - −0.441

(0.954) (1.505)
Const. 48.066∗∗∗ 48.989∗∗∗ 50.144∗∗∗ 50.362∗∗∗

(0.526) (0.794) (0.601) (1.023)

Observations 695 695 695 695
R2 0.0000 0.0043 0.0193 0.0190

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Cluster-robust standard errors in parentheses.

asks and the first bids in Stage 2. The regression models are identical to those

used for Stage 1 (i.e., identical variable definition, fixed-effect models for

controlling subject-level heterogeneity, and cluster-robust standard errors).

The results are presented in Table 7. Consistent with the abovementioned

hypothesis, the first asks in Cycle are significantly lower than those in Tree.

The results in the third column show that the value of the coefficient of

Cycle is −3.969, which is significant (p− value < 0.01).13 This result echoes

our earlier findings for Stage 2 prices that prices tend to be lower in Cycle,

although the magnitude of this is not sufficient to satisfy the theoretical

prediction.

13The difference in the first asks in Stage 2 could also result from differences in asking
behavior between originators and resellers. However, OSM VI shows that this is not the
case.
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However, different from the case of the first bids in Stage 1, we do not

reveal learning effects for the first asks in Stage 2. The fourth column of

Table 7 shows that the coefficient of the term Latter is not significantly

different from zero (p − value = 0.770). The coefficient of the cross term

Cycle×Latter is also not significant (p−value = 0.619), nor is the sum of the

coefficients of Cycle×Latter and Latter (F-test, p− value = 0.630). These

results jointly suggest that there is no learning effect in either treatment in

the first asks in Stage 2. One reason for the difference in this to the first bids

in Stage 1 is that optimal trading in Stage 1 might require more cognitive

ability. To make an appropriate offer in Stage 1, players need to foresee

the expected profit they could obtain in Stage 2, unlike the transactions

in Stage 2. It is then possible that the buyers in Cycle learn the prices

determined in Stage 2 as the trials progress and gradually adapt their bids

in Stage 1.

In addition, similar to the first asks in Stage 1, we do not observe any

significant difference in the first bids across the two treatments in Stage 2. As

shown in the first column of Table 7, the coefficient for Cycle is not significant

(p− value = 0.987). Moreover, in the second column, the coefficient for the

cross term Cycle × Latter as well as the coefficient for the term Cycle are

also not significant (p−value = 0.105 and 0.333, respectively). These results

jointly suggest that the behavior of buyers in Stage 2 is similar across the

two treatments. This aligns with our earlier speculation that those who are

competing only feel urged, though the reason behind it is still puzzling.

Result 6: In Stage 2, sellers are more willing to sell in Cycle than in Tree,
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though the magnitude of this is not sufficient to satisfy the theoret-

ical prediction. Moreover, there is no evidence of learning or buyers

behaving differently across the two treatments.

5.5 Forward-looking Behavior Given the Observed Stage 2

Prices

We have documented a gap between the theoretical prediction and the ex-

periment results in Cycle. Recall that, in theory, the Stage 1 price is low in

Cycle because buyers expect the competition between sellers to push down

the Stage 2 price, and thus the expected profit from reselling the good should

also fall. Therefore, if the price is high in Stage 1, the buyer prefers to let

the current negotiation pass, wishing to be the buyer in Stage 2.

However, the high Stage 1 price observed in the experiment could be

reasonable if subjects expect a high price in Stage 2. The larger the expected

reselling profit in Stage 2, the more willing buyers in Stage 1 are to buy the

good, which in turns raises the Stage 1 price. Here, we address the possibility

that the observed prices in Stage 1 are explained by reasonable profit-seeking

behavior of subjects foreseeing the prevailing high prices in Stage 2.

To assess the reasonable level of the Stage 1 price given the prevailing

Stage 2 price, as denoted by the “pseudo equilibrium Stage 1 price,” we

plug the mean observed Stage 2 prices into Eq. (6). The derived pseudo

equilibrium Stage 1 price is 48.16. The mean Stage 1 price (53.86) is then

higher than its pseudo equilibrium level by 5.73, which is within the extent

that can be explained by the risk-averse behavior of our subjects, as discussed
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in Appendix A. Thus, the observed prices in Stage 1 do not contradict

our subjects pursuing a larger benefit by foreseeing future reselling prices in

Stage 2.

6 Conclusion

This study experimentally examines the trading of information goods in net-

works. Information goods are copyable; hence, a buyer can become a resale

competitor to existing sellers once the good is purchased and if resales chan-

nels are available in the network. We examine whether competition through

reselling lowers the prices of the good in line with theory.

Our experimental treatment is the network structure that permits com-

petition through reselling. In one treatment, Cycle, the network includes a

cycle path, which secures a sales channel for the reseller. Thus, price com-

petition could lower prices between the originator and the reseller in the

network. According to theory, the lowering effect in prices even moves up-

stream to the first transaction where no resale competitor yet exists, because

the market participants foresee competition through reselling in their future

transactions. In the other treatment, Tree, there is no cycle path in the net-

work, and thus resale of the good is not possible. The originator can then

enjoy monopoly power and post higher prices.

We find that the prices observed in Cycle are inconsistent with theory

compared with those observed in Tree. Specifically, although competition

between the originator and the reseller lowers the observed prices in the final

transaction more in Cycle than in Tree, the extent of this is very small com-
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pared with the theoretical prediction. In addition, contrary to the theoretical

prediction, the prices in the first transaction tend to be higher in Cycle than

in Tree.

Furthermore, learning does not resolve the discrepancy between the the-

ory and the data in Cycle as the Stage 1 prices carry signs of further price

increases according to the bidding behavior of the buyers. On the contrary,

in Tree, the bidding behavior suggests signs of further decreases in prices

toward the level implied by the theory.

As we discussed in Section 5.5, the observed prices in Stage 1 of Cycle,

although inconsistent with their theoretical prediction, are consistent with

participants rationally responding to the prevailing high prices in Stage 2.

Thus, there is the possibility that Stage 1 prices could adjust toward their

theoretical level once the Stage 2 prices fall due to competition.

It is possible that the bargaining protocol we employed in our experiment,

namely, the Nash demand game, serves to soften the competitive pressure in

Stage 2 in Cycle. Thus, an obvious direction for future research would be

to consider an alternative trading mechanism, such as a continuous double

auction. Another possibility is that the two players in our experiment are

not sufficient for competition to be effective. For example, in Dufwenberg

and Gneezy (2000), when the number of players was three or more, partici-

pants quickly learned to compete more aggressively in a Bertrand competi-

tion experiment. Thus, other obvious and fruitful future research would be

to consider networks involving a larger number of players.
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A Case for Risk-averse Players

As in Section 5.5, the observed Stage 1 price is higher than the pseudo

equilibrium Stage 1 price by 5.73. Here we show that this difference can be

explained by the risk aversion of players.

To address this, we modify Eq. (6) to consider risk-averse players maxi-

mizing their expected utilities over final payoffs.

1

2
u(100− pC1 ) +

1

2
u(100− pC1 + pC2 ) =

1

2
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2
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δu(100−pC2 )]

(A.1)

where u(·) is the utility function of the players.

Let us specify the utility function with a standard, constant relative risk

aversion utility function with the coefficient of relative risk aversion γ (i.e.,

u(x) = 1
1−γx

1−γ). Substituting the values for the observed prices into pC1 and

pC2 , we obtain γ = 5.11. This value of γ is within the scope of reasonable

degrees of risk aversion in existing studies (for example, Abdulkadri and

Langemeier, 2000).
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Online Supplementary Materials

I Sessions and Treatment Order

Table I.1: Sessions

Subject First Treatment
October 1, 2020 (morning) 21 Cycle
October 1, 2020 (afternoon) 24 Tree
October 2, 2020 (morning) 24 Cycle
October 2, 2020 (afternoon) 18 Tree
October 14, 2020 (morning) 24 Tree
October 15, 2020 (morning) 30 Cycle

II Order Effect

As the treatments are reverse ordered among our subjects by roughly divid-

ing them in half, the order effects should offset each other at the aggregate

level. However, fully documenting the order effects in our data would be

meaningful. In addition, there may be some concern that the remaining un-

evenness of the numbers of subjects between the reverse-ordered sessions (66

subjects starting from Tree, and 75 from Cycle) could be a source of potential

bias, even though the difference in the number of subjects is small.

To address this, we regress the prices on four explanatory variables,

TreeF irst, Cycle, Cycle×TreeF irst, and a constant. TreeF irst is a dummy

variable that takes a value of one if the subject is assigned to the session that

starts with Tree, otherwise zero. This variable captures the existence of an

overall order effect. Cycle is a dummy variable that takes a value of one if
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Table II.1: Order Effect in Prices

Dependent Variable

Price

Stage 1 Stage 2

Model 1 Model 2 Model 1 Model 2

TreeF irst −3.136∗∗∗ −2.339∗∗∗ −2.736∗∗∗ −2.569∗∗

(0.681) (0.957) (0.737) (1.043)
TreeF irst× Cycle - −1.617 - −0.311

(1.357) (1.469)
Cycle - 2.276∗∗ - −1.766∗

(0.925) (0.988)
Const. 54.551∗∗∗ 53.426∗∗∗ 49.532∗∗∗ 50.418∗∗∗

(0.464) (0.651) (0.496) (0.700)

Observations 695 695 623 623
R2 0.0297 0.0387 0.0217 0.0324

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

the trial belongs to Cycle, otherwise zero. TreeF irst × Cycle is the cross

term of TreeF irst and Cycle, whose significance would indicate the presence

of distinct order effects across the two treatments. We also report the results

of a regression including only two regressors, TreeF irst and a constant.

The results of the regressions are presented in Table II.1, with the results

for Stage 1 prices in the first and second columns and those for Stage 2

in the third and fourth columns. These results suggest some order effects

in the price determinations as the coefficients for TreatF irst are uniformly

significantly different from zero to the negative side in both Stages 1 and 2

for both Models 1 and 2 (p− value < 0.05 for all). These results imply that

the prices tend to be lower if the subjects receive Tree first.
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However, we do not confirm a treatment-specific order effect as neither

of the coefficients for the cross term TreeF irst × Cycle in Stage 1 (second

column) or in Stage 2 (the fourth column) statistically significantly differ

from zero (p− value = 0.234 and 0.833 respectively).

Accordingly, the order effect observed in the data only changes the overall

price levels across the treatments, but not the level in a specific treatment.

Thus, the bias should not appear when we compare behavior between the

two treatments, even if there is some discrepancy in the number of subjects

between the reverse-ordered sessions.

III Likelihood of Successful Trials

This section of OSM documents the statistical comparison of the likelihood

of successful trials across the two treatments. Here we examine the treatment

effects and the associated learning effects.

To do this, we perform the following linear regression analysis. We regress

the dummy variable for the success of the trial on the four explanatory vari-

ables, Cycle, Latter, Cycle × Latter, and a constant. Cycle is a dummy

variable that takes a value of one if the trial belongs to Cycle, otherwise

zero. Latter is a dummy variable that takes a value of one if the trial lies in

the latter half of each treatment (i.e., 5th to 8th trials), otherwise zero. This

captures the overall learning effects across the treatments (unless a negatively

significant treatment-specific learning effect exists in Cycle). Cycle×Latter

is the cross term of Cycle and Latter, and this captures any additional im-

pact on the learning effect specifically appearing in Cycle. The statistical
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Table III.1: Likelihood of Successful Trials

Dependent Variable

Success
Whole transactions Stage 1 transaction

Model 1 Model 2 Model 1 Model 2

Cycle 0.013 −0.011 −0.013 −0.016
(0.028) (0.039) (0.019) (0.027)

Cycle× Latter - 0.048 - 0.005
(0.055) (0.039)

Latter - −0.027 - 0.000
(0.039) (0.027)

Const. 0.822∗∗∗ 0.835∗∗∗ 0.931∗∗∗ 0.931∗∗∗

(0.019) (0.028) (0.014) (0.019)

Observations 752 752 752 752
R2 0.0003 0.0013 0.0006 0.0007

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

significance of the variable indicates that the learning effects differ across

the treatments (i.e., the existence of treatment-specific learning effects). The

learning effect in Tree is captured by the coefficient of the term Latter,

and that in Cycle by the sum of the coefficients of the terms Latter and

Cycle× Latter. We also report the result of a regression in which only two

regressors are included, Cycle and a constant, to gauge the treatment effect

over all trials.

The regression results are presented in Table III.1. The results for the

whole transaction are presented in the first and second columns. The coeffi-

cient of Cycle in Model 1 in the first column does not statistically significantly

differ from zero (p− value = 0.629), indicating that the likelihood of success
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does not differ across the two treatments on average over all trials. Moreover,

the coefficient of Cycle×Latter in Model 2 in the second column does not dif-

fer statistically significantly from zero (p− value = 0.385), indicating that a

treatment-specific learning effect does not exist. Indeed, the results of the in-

significant coefficient of Latter (p−value = 0.495) and the insignificant sum

of the coefficients of Latter and Cycle× Latter (F-test, p − value = 0.585)

imply that there exists no learning effect in both treatments.

The results for the first transaction basis are also similar as presented in

the third and fourth columns. The coefficient of Cycle in Model 1 in the third

column does not statistically significantly differ from zero (p−value = 0.492).

The coefficient of Cycle× Latter in Model 2 in the fourth column does not

differ statistically significantly from zero (p−value = 0.891). The coefficient

for Latter is also not significant (p − value = 1.000), nor is the sum of the

coefficients Latter and Cycle× Latter (F-test, p− value = 0.846).

These results suggest that the likelihood of a successful trial does not differ

across the two treatments. In addition, we do not identify any treatment-

specific learning effect, or any learning effects themselves in both treatments.

Thus, we do not need to be unduly concerned about uneven sample dropouts

across the two treatments resulting from sudden ceases in ongoing negotia-

tions.
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IV Number of Negotiations

As discussed above, we do not find any significant difference in the likeli-

hood of successful trials across the two treatments, which eliminates any

concern about uneven sample dropouts across the two treatments. However,

it might be useful to also analyze the numbers of negotiations. Like the case

of the likelihood of successful trials, we examine the treatment effects and

the associated learning effects.

We perform a linear regression analysis similar to the analysis for the

likelihood of successful trials in OSM III, where we regress the number of

negotiations in the trial on the four explanatory variables, Cycle, Latter,

Cycle × Latter, and a constant. We also report the results of a regression

including only two regressors, Cycle and a constant.

Table IV.1 displays the regression results. As shown in the first and third

columns, the coefficients for Cycle differ statistically significantly from zero

on the negative side, indicating that the overall number of negotiations is

smaller in Cycle (p− value < 0.01 for both), as first suggested in Table 2 in

Section 4.

For the learning effects, the results for the whole transaction basis dis-

played in the second column suggest a learning effect in Tree as the coefficient

for Latter is significantly different from zero (0.414, p − value = 0.048 <

0.05). However, the existence of a learning effect in Cycle is less clear as the

sum of the coefficients for Latter and Cycle × Latter is near zero (F-test,

p− value = 0.773), which implies less possibility that a learning effect exists

in Cycle. Nonetheless, the coefficient for Cycle × Latter is not significant
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Table IV.1: Number of Negotiations

Dependent Variable

Number of Negotiations
Whole transactions First transaction

Model 1 Model 2 Model 1 Model 2

Cycle −0.487∗∗∗ −0.253 −0.255∗∗∗ −0.094
(0.147) (0.207) (0.084) (0.118)

Cycle× Latter - −0.473 - −0.321∗

(0.294) (0.168)
Latter - 0.414∗∗ - 0.155

(0.208) (0.119)
Const. 3.579∗∗∗ 3.376∗∗∗ 1.783∗∗∗ 1.707∗∗∗

(0.104) (0.146) (0.060) (0.083)

Observations 623 623 623 623
R2 0.0173 0.0256 0.0146 0.0204

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
Limited to trials with whole transactions among the three players.

(p − value = 0.108), although the value of the point estimate is negative

and large (−0.473), suggesting that while a treatment-specific learning ef-

fect could exist, the evidence for this is not sufficiently strong. For the first

transaction basis, not only do we not identify a significant treatment-specific

learning effect, but we also do not find any significant learning effect in the

treatments. This is because while in the fourth column the coefficient for

Cycle×Latter has a large negative value (−0.321), it is only marginally sig-

nificant (p− value = 0.056). Thus, while a treatment-specific learning effect

could exist, there is insufficient evidence to support it. Indeed, the coefficient

for Latter is not significant (p − value = 0.194), along with the sum of the

coefficients for Latter and Cycle × Latter (p − value = 0.159), suggesting
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that the presence of learning effects themselves is unclear.

Overall, some differences in learning effects across the two treatments

might exist as the large values in the coefficients of the term Cycle×Latter

suggest. However, the evidence for this is not statistically meaningful.

Moreover, we also examine the number of negotiations across the two

stages (first vs. second), which could be different in Cycle in which the ne-

gotiation structure changes drastically across the two stages. We regress the

number of negotiations in each stage of each trial on the four explanatory

variables, SecondST , Latter, SecondST×Latter, and a constant. SecondST

is a dummy variable that takes a value of one if the corresponding negoti-

ations are attempted in Stage 2. Thus, the cross term of SecondST and

Latter captures a stage-specific learning effect. We also report the result of

a regression including only two regressors, SecondST and a constant.

The regression results are presented in Table IV.2. It is a straightforward

result that none of the regressors associated with the term SecondST are

significantly different in Tree (the first and second columns). However, this

also holds even in Cycle, in that the coefficient of SecondST in the third

column is not significant (p − value = 0.681), or are the coefficients for the

cross term SecondST × Latter (p − value = 0.109) and SecondST (p −

value = 0.394). These results suggest that the numbers of negotiations do

not change significantly across the stages, despite the considerable difference

in negotiation structure in Cycle.
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Table IV.2: Comparison of the Number of Negotiations across Stages

Dependent Variable

Number of Negotiations
Tree Cycle

Model 1 Model 2 Model 1 Model 2

SecondST 0.129 −0.038 0.035 −0.103
(0.104) (0.145) (1.529) (0.121)

SecondST × Latter - 0.104 - 0.273
(0.207) (0.170)

Latter - 0.155 - −0.166
(0.147) (0.120)

Const. 1.783∗∗∗ 1.707∗∗∗ 1.529∗∗∗ 1.613∗∗∗

(0.073) (0.103) (0.060) (0.086)

Observations 618 618 628 628
R2 0.0000 0.0069 0.0003 0.0046

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
Limited to trials with whole transactions among the three players.
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V Supplemental Regression Results for the

First Bids in Stage 1

Table V.1: Supplemental Regression Results for the First Bids in Stage 1

Dependent Variable

First Bid

Tree Cycle

Latter −3.639∗∗∗ 1.636∗∗

(1.074) (0.775)
Const. 51.851∗∗∗ 52.047∗∗∗

(0.537) (0.388)

Observations 376 376
R2 0.0124 0.0084

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
Fixed-effect models for controlling subject-

level individual heterogeneity.
Cluster-robust standard errors in parentheses.
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Red: Originator, Green: Reseller (First Buyer)

Figure VI.1: First Asks in the Second Stages

VI First Asks in Stage 2

In Section 5.4, we observe that the first asks in Stage 2 differ significantly

across the two experimental treatments. We could then consider the pos-

sibility that this difference arises because of the distinct roles of the sellers

initially assigned in the experiment, either as an originator or as a buyer.

This is because in Tree, the originator is the only seller even in Stage 2,

while the first buyer could become a reseller in Stage 2 in Cycle.

To assess any behavioral differences between the two types of sellers in

the first asks in Stage 2, we plot the dynamics of the mean value of these

differences across trials in Figure VI.1. As displayed, the asks of originators

are smaller than those of resellers in the early trials; they then converge to
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an almost identical level.

However, we do not statistically confirm a significant difference between

them even in the early trials. Table VI.1 presents regression results to address

the difference of the Stage 2 first asks between the two sellers. In Model 1,

shown in the first column, the coefficient for Originator is not significantly

different from zero (p − value = 0.343), indicating that the overall mean

does not differ between the two types of sellers. Even for the early trials, the

coefficient for Originator in Model 2 in the second column, which captures

the difference in the early trials in the regression model specification, is only

marginally significant (p− value = 0.062).

Accordingly, while the first asks could differ in the early trials, any differ-

ence is not sufficient to be statistically significant. Moreover, this difference,

if any, soon disappears as the trials proceed.
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Table VI.1: First Asks in Stage 2

Dependent Variable

First Ask

Model 1 Model 2

Originator −1.858 −4.184∗

(0.195) (2.218)
Originator × Latter - 4.626∗∗

(1.916)
Latter - −2.723∗

(1.570)
Const. 47.494∗∗∗ 48.886∗∗∗

(1.039) (1.307)

Observations 345 345
R2 0.0071 0.0186

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
Cluster-robust standard errors in parentheses.
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VII English translation of the instructions and

the quiz
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