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1 Introduction

An important feature of models with heterogeneous, interacting agents is
that they can explain macro phenomena through simple interactions at the
micro level (Kirman, 1993, 2006). Agent-based models have been particu-
larly successful in explaining the main stylized facts of �nancial markets,
such as fat tails and clustered volatility in asset returns (Arthur et al., 1997,
Lux and Marchesi, 1999 and Hommes, 2002, among others). Du�y (2006)
presents a recent overview of how agent-based models can explain individual
behavior and aggregate phenomena in macroeconomics. The main purpose
of our paper is to explain aggregate price behavior through interactions of
individual learning. In particular, we provide a simple theory of individual
learning through genetic algorithms explaining all stylized facts of aggregate
price �uctuations in the recent learning to forecast laboratory experiments
of Hommes et al. (2007).

Laboratory experiments with human subjects have become an important
tool in economic analysis, complementing theoretical, computational and
empirical work. A recurring observation from experiments is that individ-
uals often do not behave fully rationally, but tend to use simple heuristics,
possibly biased, in making decisions under uncertainty (Tversky and Kah-
neman, 1974). An extensive bounded rationality research program is de-
veloping (e.g. Sargent, 1993) and laboratory experiments are particularly
suited to identify behavioral rules that individuals use in economic decision
making out of an ocean of potential alternatives (e.g. Kahneman, 2003).

Individual expectations, their interaction and the aggregate outcome they
create are at the heart of economics. Du�y (2008), for example, argues
that laboratory experiments are important to study the adaptive process
by which individuals learn and may or may not enforce convergence to a
rational expectations outcome at the macro level. Recently, a number of
learning to forecast experiments have been conducted to study individual
expectation formation and aggregate outcomes, e.g. in Marimon and Sunder
(1994), Gerber et al. (2002), Hommes et al. (2005), Sutan and Willinger
(2005), Adam (2007) and Heemeijer et al. (2008). In these experiments,
subjects must forecast the price of a good, which is determined by market
clearing with feedback from individual expectations. Aggregate demand and
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supply are computerized, e.g. derived from pro�t and utility maximization
given subjects' individual forecasts. An advantage of this experimental
setup is that it provides `clean data' on expectations, ceteris paribus. These
experimental data can therefore be used to test various theories of bounded
rationality, individual expectations and learning at the micro level and test
how their interaction matches aggregate behavior.

Hommes et al. (2007) conducted learning to forecast experiments in what
is perhaps the simplest setting, the classical cobweb `hog cycle' model de-
scribing a standard commodity market with a production lag. Historically,
the cobweb model has served as a simple framework to develop and test
various expectations hypotheses. Ezekiel (1938) started with naive expec-
tations, Nerlove (1958) advocated adaptive expectations, Muth's seminal
paper (Muth, 1961) used the cobweb framework to introduce rational expec-
tations and, more recently, Brock and Hommes (1997), used it to introduce
endogenous selection among heterogeneous expectations rules1.

In their learning to forecast experiments, Hommes et al. (2007) considered
three di�erent treatments, a stable, an unstable and a strongly unstable
treatment. Stable here refers to the stability of the classical cobweb model
under naive expectations2. They observed the following three stylized facts :

1. the sample mean of realized prices was very close to the RE benchmark
in all three treatments ;

2. the sample variance of realized prices, however, depended on the treat-
ment:

a) it was close to the theoretical variance of the RE benchmark in
the stable treatment, while

b) it was signi�cantly higher than the RE benchmark (excess
volatility) in the unstable and strongly unstable treatments;

1The cobweb model has been used in many di�erent applications, ranging from mar-
kets for lawyers (Freeman, 1975), engineers (Freeman, 1976), public school teachers
(Zarkin, 1985), oil (Krugman, 2001), cattle (Rosen et al., 1994) and beef (Chavas,
2000).

2The stability condition states that the ratio between marginal supply and marginal
demand at steady state must be smaller than 1 in absolute value (Ezekiel, 1938).
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3. in all treatments, realized market prices exhibited no signi�cant linear
autocorrelation.

These stylized facts were quite robust over a series of experiments, but
they appeared hard to explain by standard learning mechanisms o�ered
by the theoretical literature. While many adaptive learning rules lead to
eventual convergence to rational expectations and some other learning rules
may generate unstable dynamics and excess volatility, homogeneous expec-
tations models are unable to explain the full set of stylized facts simulta-
neously (Hommes, 2009), suggesting that heterogeneity of forecasting rules
plays a key role in explaining observed aggregate behavior. Hommes (2009)
considers some simple examples with two di�erent forecasting rules (e.g.
fundamentalists versus naive expectations) and evolutionary competition
between them. Although the results in these simple two type heteroge-
neous expectations examples improve compared to the homogeneous case,
they are not capable of explaining all stylized facts simultaneously.

In this paper we propose a simple model for micro behavior in order to
explain the observed experimental results at the macro level. We model
individual learning through genetic algorithms (GAs)3. As it turns out, GA
experiments with a small population of agents match all stylized facts simul-
taneously across di�erent treatments within a market setting that exactly
corresponds to that of the laboratory experiments. While it is certainly
hard to imagine GAs as an accurate description of human learning in the
literal sense, we argue that they may share key properties of the adapta-

3Arifovic (1994) used GA learning to explain the cobweb laboratory experiments of
Wellford (1989), but there are a number of important di�erences with our approach.
Most importantly, subjects assume the role of producers themselves whereas the sub-
jects of Hommes et al. (2007) have to forecast next period's market price. Besides
this major di�erence in the focus of the experiments, a number of additional dif-
ferences exist. For example, Wellford used linear demand and supply curves in the
experimental setup, implying that the market is either stable or explosive (except for
a hairline case). Hommes et al. (2007) use a nonlinear supply curve, so that price
dynamics remains bounded while price cycles become a generic possibility. Moreover,
Arifovic (1994) only tests for di�erences of volatility between the stable and unstable
treatments, while we match price volatility under GA learning directly to the exper-
iments. Furthermore, Arifovic (1994), for example, did not look at the third stylized
fact, the absence of linear predictability. Finally, we also study the average degree of
heterogeneity in individual forecasting and how it varies over time.
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tions of human subjects when exposed to a new situation that they cannot
penetrate theoretically.

We also investigate the degree of heterogeneity in individual forecasting be-
haviour. Heterogeneity in forecasting future asset prices is supported by
evidence from stock market survey data, e.g. Vissing-Jorgensen (2003) and
Shiller (2000), and in in�ation expectations survey data in Branch (2004)
and Mankiw et al. (2003). Moreover, in these survey data heterogeneity
shows substantial variation through time. Consistent with the �ndings in
the laboratory experiments in our GA learning simulations heterogeneity
decreases over time, disappears in the stable treatment but heterogeneity
persists in the (strongly) unstable treatment.

Using the GAs for individual learning, our paper makes another contribu-
tion that goes beyond the limitations of laboratory experiments. Labora-
tory experiments are costly, because subjects must be paid according to
their performance, and typically experimental markets are small because of
capacity limitations. After �tting our GA model to individual learning, we
can easily investigate price behavior in alternative, more realistic market
scenarios through numerical simulations. In particular, we investigate the
occurrence of excess volatility when the number of subjects in the market
becomes large and/or when the number of rules per individual becomes
large. We also investigate how excess volatility depends on a continuum of
parameters such as the ratio of marginal supply and demand.

The paper is organized as follows. Section 2 recalls the learning to forecast
experiments, while Section 3 recalls some basic facts of GA-learning. Sec-
tion 4 compares the stylized facts of the GA simulations to the laboratory
experiments, while Section 5 presents simulations of GA learning in more
realistic market scenarios. Finally, Section 6 concludes.

2 The forecasting experiment

Hommes et al. (2007) report on a set of cobweb experiments with K = 6

participants per session. The participants were asked to predict next pe-
riod's price under very limited information on the structural characteristics
of the market. The realized price pt in the experiments was determined by
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the (unknown) market equilibrium between demand and supply:

D(pt) =
1

K

K∑
i=1

S(pe
i,t) (1)

with pe
i,t the price forecast of participant i at time t. We normalize the

supply side by dividing by the number of �rms to facilitate comparison of
settings with di�erent K. Supply S(pe

i,t) was determined by the nonlinear
schedule

S(pe
i,t) = tanh(λ(pe

i,t − 6)) + 1, (2)

while demand was formalized via a simple linear schedule:

D(pt) = a− dpt + ηt (3)

with ηt a small stochastic shock drawn from a Normal distribution. Both
demand and supply can be derived from pro�t and utility maximization,
and are thus consistent with rational behavior. The resulting equilibrium
price is obtained as:

pt =
a− 1

K

∑K
i=1 S(pe

i,t)

d
+ εt, (4)

where εt = ηt/d. Given the parameters a, d and λ the aggregate realized
price pt depends on individual price expectations as well as the realization
of the stochastic shocks.

Participants were only informed about the basic principles of the cobweb-
type market. They were advisors to producers, whose only job is to ac-
curately forecast the price of the good for 50 subsequent periods. Pay-o�s
were de�ned as a quadratic function of squared forecasting errors, truncated
at 0:4

E = Max{1300− 260(pe
i,t − p∗t )

2, 0}. (5)

Participants were informed that the price would be determined by market
clearing and that it would have to be within the range [0, 10]. Furthermore,
they knew that there was (negative) feedback from individual price forecasts
41300 points corresponded to 0.5 Euro, so that maximum earings were 25 Euro's. Av-
erage earnings ranged from 11.5 to 21 Euro (in about 1.5 hours), over the di�erent
treatments.
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to realized market price in the sense that if their forecast would increase, the
supply would increase and consequently the market price would decrease.
Subjects however did not know how large these feedback e�ects would be,
as they had no knowledge of underlying market equilibrium equations. One
could say that subjects had qualitative information about the market, but
no quantitative details.

Participants thus solely had to rely on time series observations and their
own behavior vis-à-vis their predictions. Due to the nonlinear aggregation of
expectations, the superimposed noise and the ignorance of agents concerning
the structural form and parameters, conscious coordination to some kind
of rational expectations equilibrium would be extremely demanding if not
impossible. This setting is close to the informational assumptions of various
theoretical models in the literature on learning and bounded rationality (e.g.
Sargent, 1993 and Evans and Honkapohja, 2001) so that the experimental
subjects' behavior could be contrasted with various learning rules.

Following the classi�cation of cobweb scenarios under naive expectations,
Hommes et al. (2007) distinguished between three treatments. While the
parameters of the demand function and the parameters of the noise com-
ponent remained unchanged across all treatments at a = 2.3, d = 0.25 and
εt = ηt

d
∼ N(0, 0.5), the slope parameter of the supply function was varied

over a relatively wide range. Treatment 1 had λ = 0.22 which under naive
expectations would guarantee convergence to the homogeneous rational ex-
pectations equilibrium (stable case), treatment 2 had a marginally unstable
supply parameter λ = 0.5 (unstable case), while treatment 3 had a strongly
unstable supply parameter λ = 2 (strongly unstable case). Both the un-
stable and the strongly unstable treatments lead to a 2-cycle under naive
expectations. In all treatments in Hommes et al. (2007) the number of sub-
jects was K = 6, but van de Velden (2001) also ran the same experiments
in the strongly unstable treatment with K = 12 subjects.

Under rational expectations, all individuals would predict pe
t = p∗, that is,

they would predict the price at which demand and supply intersect. Given
that all individuals have rational expectations, realized prices will be given
by

pt = p∗ + εt. (6)
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Given the limited market information one can not expect that all individ-
uals have rational expectations at the outset, but one can hope that in
such a simple, stationary environment individuals would learn to have ra-
tional expectations. The stylized facts of these cobweb experiments have
already been summarized in the introduction. We brie�y recall them here:
(1) the sample mean of realized prices is close to the RE benchmark p∗ in
all three treatments ; (2) the sample variance of realized prices depends on
the treatment: it is close to the RE benchmark in the stable treatment, but
signi�cantly higher in the unstable and strongly unstable treatments; (3) re-
alized market prices do not exhibit signi�cant linear autocorrelations. Item
(3) indicates that even in the unstable and strongly unstable cases, agents
did not leave any linear predictability unexploited. Apparently, the interac-
tion of agents' individual forecasting rules washes out linear predictability
in aggregate price behavior. While this points to a certain e�ciency of their
dispersed e�ects to predict market prices, market prices did �uctuate `ex-
cessively' in the unstable and strongly unstable treatments. In these cases,
price �uctuations exceeded those warranted by the exogenous noise compo-
nent by more than one order of magnitude so that participants' attempts at
learning about the market's behavior did apparently intensify price �uctu-
ations. While these results were quite robust over a series of experiments,
they appeared hard to explain by standard learning mechanisms o�ered by
the theoretical literature.

Our goal here is to model individual learning via genetic algorithms (GAs),
so that the interaction of these rules produces the stylized facts observed in
the experiments simultaneously and across treatments.

3 Learning through Genetic Algorithms

Genetic algorithms have been introduced in the seventies as a stochastic
learning algorithm (Holland, 1975). In order to solve complex optimization
problems with multiple maxima or minima and possible non-continuities
this approach mimics evolutionary operations in nature. One typically
starts out with a randomly initiated population of candidate solutions.
These initial blind trials are typically encoded as chromosomes (strings)
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using a binary alphabet5. After evaluation of the �tness of the members
of the initial population (in terms of the objective function), one applies
the genetic operations of reproduction, crossover, and mutation. For cer-
tain reasons, economic applications have mostly added the election operator
(Arifovic, 1996) as an additional step in the loop of genetic operations be-
tween successive generations of individuals. In the following we provide
details of these operators and their implementation in the present setting:

1. Reproduction: in the transition from one generation to the next, the
�rst step consists in sampling copies of strings from the old generation
depending on their �tness. In conformity with the pay-o� function
used in the laboratory experiments �tness was de�ned as a negative
quadratic function of forecast errors with truncation at zero:

fi(t) = Max{1300− 260(pe
i,t − p∗t )

2, 0}. (7)

The most common reproduction operator is reproduction depending
on relative �tness, i.e. copies are sampled from the old population with
probabilities fi/

∑
j fj biasing the population of new agents towards

strategies with higher �tness. Other algorithms in the literature are
rank-dependent reproduction or tournament selection in which one
draws repeatedly n1 individuals with replacement from the pool and
accepts the n2 < n1 with the highest �tness from the subsample until
the new generation is complete.

2. Crossover : when the pool of members of a new generation is com-
plete, genetic material is exchanged between them in order to �nd
new (possibly better) candidate solutions by recombination of the old
ones. The simplest version is random selection of a pair of parent
strings, determining a cut-o� value within the string and sweeping
part of the genetic material of the parents when creating their o�-
spring. We follow this approach and take the genetic material of each
of both o�spring from the left (right) hand side of their `father' and
the right (left) hand side of their `mother'. This operation takes place

5One could as well encode the population as real-coded chromosomes. However, this
alternative encounters certain technical problems even if the problem at hand is prop-
erly de�ned for real values (Herrera et al., 1998).
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with a probability pcross, while with 1 − pcross the parent strings are
transferred unchanged into the new generation. We note that both
more involved crossover schemes as well as versions with more than
two parents can be found in the literature as well.

3. Mutation: means that any position (bit) within a chromosome might
be �ipped into another value (from `0' to `1' or vice versa in the binary
alphabet). This happens with a probability pmut once the reproduction
and crossover operations are �nished.

4. Election: in most economic applications, the usual range of genetic op-
erators has been extended by the election algorithm. This compares
new chromosomes that have emerged from crossover and mutation
with their parents and only admits them to the population if their
virtual �tness (measured with respect to the environment in which
their parents had to compete) is at least as high as their parents' �t-
ness. This operator serves to prevent agents from adopting clearly
inferior strategies. Most new strategies that emerge in a genetic pro-
cess are far o� the mark and conscious agents would not voluntarily
adopt these new strategies if their trial performance ranks them way
below the previous ones.

In many applications of genetic algorithms, the qualitative outcome is
largely independent of the particular version of an operator that one adopts
(cf. Lux and Schornstein, 2005, for a detailed comparison of various set-ups
within a learning context). One may even skip one or the other of the op-
erators (e.g. crossover or election) without changing the overall qualitative
results. In our simulations like in various previous economic applications,
the results appear to be quite robust under variation of GA parameters and
implementations of operators. Unfortunately, one has to rely exclusively on
simulations since theoretical results for GAs within an interactive context
seem to be essentially out of reach. In our setting with arti�cially intelli-
gent agents, we tried to reproduce the design of the experiments as close
as possible. This applies not only to the parametrization of demand and
supply functions, and the choice of a �tness function identical to the payo�
function in the laboratory experiments but also to the number of agents.
Hence we report below experiments conducted with K = 6 agents using
genetic algorithms to evolve forecasting strategies.
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Economic applications of GAs as a learning device have mostly applied it
in the sense of `social learning': the number of agents in these papers equals
the number of chromosomes and each agent's chromosome type determines
her strategic behavior in the market place (e.g. Arifovic, 1996; Dawid, 1999;
Arifovic and Gencay, 2000; Lux and Schornstein, 2005). When the genetic
operations are applied to this pool of trader-chromosomes, information is
e�ectively shared and incorporated into the entire new generation via the
evolutionary dynamics. This design is certainly at odds with the set-up of
the experimental market in which subjects are separated from each other
and are not allowed to actively exchange information. We, therefore, as-
sumed that each agent in our computer experiment had his own pool of
strategies or forecasting rules which undergo their genetic evolution inde-
pendently from the rules of other agents (cf. LeBaron et al., 1999, for a
similar approach).6 In our experiments reported below, we endowed each
agent with M = 10 di�erent chromosomes encoding pairs (αi, βi) of the
�rst order autoregressive forecasting rule detailed below. The active rule
of each agent, i.e. the rule on which her actual forecast was based, was
determined by random draws with probabilities equal to the relative �tness
obtained in the last round (which is a monotonic function of the proximity
of the forecast to the realized price, cf. eq. 7).

Genetic algorithms require a functional speci�cation of the forecasting rule,
whose �tness-maximizing parameter values would then be searched for via
the evolutionary algorithm.7 The simplest speci�cation of a rule would be
a constant price forecast. A slightly more complex version would use a
constant together with a �rst order autoregressive component:

pe
i,t+1 = αi + βi(pt − αi). (8)

6Vriend (2000) discusses di�erences between social learning and individual learning in
agent-based models.

7Genetic programs, in contrast, would allow for the evolution of arbitrary functional
speci�cations using a set of basic functional elements (Chen and Wang, 2002). Since
we are able to replicate the experimental stylized facts already with the simpler
concept of GAs, we abstain from using the more intricate evolutionary dynamics
of genetic programs.
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This �rst order autoregressive (AR1) rule seems a natural forecasting scheme
as agents could simply implement it via a linear autoregression using the
sample average as their estimate of αi and the �rst order sample autocor-
relation as the estimate of βi. Moreover, the AR1 forecasting rule (8) has a
simple behavioral interpretation, with αi representing an anchor or observed
average price level around which the market price �uctuates, and βi repre-
senting the observed persistence or anti-persistence of price �uctuations8.

As discussed by Hommes (2009) a representative agent model where all
agents employ the same �xed rule, e.g. the rule (8), or where all agents
adopt the same adaptive learning scheme, e.g. sample autocorrelation or
least squares learning, as a uniform learning mechanism for the whole pop-
ulation, can not explain all stylized facts of the experiments simultaneously.
A homogenous adaptive learning rule either always enforces convergence
to RE (i.e. does not explain the second observed stylized fact, the excess
volatility in the strongly unstable case) or, in cases where the adaptive learn-
ing rule leads to excess volatility, it generates anti-persistent price behavior
with signi�cantly negative �rst order autocorrelation, violating the third
stylized fact in the laboratory experiments. In our GA-model, we apply
the same functional scheme in a heterogenous agent framework with genet-
ically evolved sets of parameters αi, βi that could di�er across individuals.
The key question then is whether the interaction of individual forecasting
rules (8) can explain all stylized facts observed in aggregate price behaviour
simultaneously.

In our simulations the two parameters αi and βi are encoded in one string of
length l = 40, the �rst (last) 20 bits representing the parameters αi and βi,
respectively (the number of bits is quite arbitrary and only needs to be large
enough for a su�ciently �ne-grained structure of the resulting real-valued
strategies). αi is restricted to the interval [0,10] just as in the instructions
to participants in the laboratory experiments. The interval for βi is more
arbitrary and had been set symmetrically around zero, βi ε [−2, 2], allowing
for quite strong serial correlation or anti-correlation. The transition from
the binary coded evolutionary process to the real-valued forecasts requires

8In similar cobweb type laboratory experiments Heemeijer et al. (2007) recently es-
timated individual forecasting rules, and many individuals actually used forecasting
rules of the simple form (8).
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to compute:

αi,t = 10
20∑

j=1

aj
i,t

2j−1

220 − 1
, βi,t = −2 + 4

40∑
j=21

aj
i,t

2j−21

220 − 1
(9)

with aj
i,t ∈ {0, 1} the bits at position j(j = 1, . . . , 40) of chromosome i at

time t.

It is well known that short run GA-simulations may be sensitive to the
initialization of the GA's. Therefore, in our (short run) simulations we have
chosen an initialization in line with individual forecasts in the �rst and the
second period of the experiment, as discussed in more detail below.

4 Experiments with Genetic Algorithms

In this section we report the results from GA simulations. Unless reported
otherwise, each of the six agents will be endowed with M = 10 chromosomes
and the crossover probability pcross = 0.6 (but di�erent values yield similar
results). Genetic learning would converge to the rational expectations equi-
librium if uniformly across the population all βi,t would tend to zero and
the αi,t would converge to the RE price p∗. Since the experiments run over
a limited number of rounds, an appropriate alignment of our GA simulation
with the lab settings is required. Note that in order to start the evaluation
of the �tness of agents' strategies, we need two realizations of the market
price: the �rst one serves as the anchor value for the AC strategies in eq.
(8) and the subsequent realization serves to evaluate the quality of the AC
forecast using eq. (9). As a consequence, evolutionary strategies could be
evaluated for the �rst time at t = 3. In order to align the GAs to the lab
experiments, we therefore, choose for periods 1 and 2 forecasts and prices
from the experiments while the GA population of each agent is initialized
randomly. In this way, the `initial conditions' of the GAs are set equal to
those of the lab experiments and our arti�cial agents initially are subject
to the same incentives like the human subjects. As it turns out, this align-
ment typically guarantees greater similarity than, say, a randomized choice
of forecasts at t = 1 and t = 2 (while still qualitative results are pretty much
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the same under di�erent initialization schemes). Obtaining closer proximity
by accurate alignment should be seen as an encouraging �nding: It is worth
emphasizing that this is not a �ne-tuning of our algorithm but rather an
attempt at matching as closely as possible the experimental scenario.

In our simulations, consistent with the laboratory experiments, we �nd that
the market price �uctuates around the RE benchmark with a sample mean
very close to the RE benchmark, but that the level of volatility depends
strongly on the treatment. In the stable case, the sample variance is close
to its rational expectations benchmark, but it increases signi�cantly beyond
the RE benchmark if we proceed to the `unstable' and `strongly unstable'
scenarios. Fig. 1 shows snapshots from longer simulation runs and Table 1
summarizes some key statistics, for all three treatments, averaged over 1,000
simulations of 50 periods each. The sample mean of individual forecasts
(Mean(pe)) has been obtained by averaging the individual forecasts over all
subjects (K=6) and all experiments (J = 6) for each treatment. The sample
variance of individual forecasts (Var(pe)) has been computed as follows. Let
p̂j

t,k be the price forecast for time period t, by subject k, in experiment j,
then the mean forecast for period t in experiment j is µj

t = 1
K

∑
k p̂j

t,k, with
K = 6 in the experiments. The sample variance of this mean forecast over
all rounds (T = 50) of experiment j is given by

Varj(pe) =
1

T − 1

∑
t

(µj
t −

1

T

∑
µj

t)
2. (10)

The sample average of individual forecasts can then be obtained by aver-
aging over all experiments (J = 6) or over all simulations (J = 1, 000)
respectively, within each treatment:9

Var(pe) =
1

J

∑
j

Varj(pe). (11)

9There are other ways of de�ning the sample mean and sample variance of individual
forecasts. For example, one can pool the forecasts for each period t over all individuals
i and all experiments j, compute the variance of the pooled forecasts and then average
over all rounds. Alternatively, one can start out with the variance over the individual
forecasts for each experiment j, for each period t and then average over all experiments
and all rounds. The results for these alternative ways of averaging of individual
forecasts are very similar to those reported below. In particular, independently of the
details of the averaging method, the GA-learning simulations match the laboratory
experiments quite nicely.
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Figure 1: Snapshots from simulations of GA-learning: realized prices (solid)
and RE benchmarks (broken lines) for all three treatments (stable,
unstable and strongly unstable) and three di�erent values of the
mutation probability σmut.
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Table 1: Sample means and sample variances of individual expectations and
realized market prices

Mean(pe) Mean(p) Var(pe) Var(p)

Stable treatment

RE 5.57 5.57 0.042 0.25

Experiments 5.56 5.64 0.087 0.36

pmut = 0.01 5.529 5.601 0.083 0.309

pmut = 0.025 5.537 5.596 0.095 0.318

pmut = 0.05 5.527 5.598 0.115 0.336

Unstable treatment

RE 5.73 5.73 0.042 0.25

Experiments 5.67 5.85 0.101 0.63

pmut = 0.01 5.603 5.841 0.121 0.512

pmut = 0.025 5.632 5.808 0.130 0.538

pmut = 0.05 5.643 5.795 0.150 0.579

Strongly unstable treatment (K=6)

RE 5.91 5.91 0.042 0.25

Experiments 5.73 5.93 0.429 2.62

pmut = 0.01 5.514 6.154 0.423 1.492

pmut = 0.025 5.613 6.026 0.406 1.698

pmut = 0.05 5.671 5.923 0.443 2.044

Strongly unstable treatment (K=12)

RE 5.91 5.91 0.021 0.25

Experiments 5.781 5.937 0.204 1.783

pmut = 0.01 5.557 6.155 0.257 0.998

pmut = 0.025 5.653 6.037 0.225 1.072

pmut = 0.05 5.702 5.946 0.240 1.287

Notes: all parameters have been chosen exactly as in Hommes et al. (2007),
i.e., there are K = 6 GA agents whose task is to forecast the next period's
price. Crossover probability is 0.6 and the election operator is applied. The �rst
and second moments are computed from 1,000 runs of 50 periods each (i.e., using
50,000 observations). The last �ve rows of the table correspond to the experiments
with K = 12 in van de Velden (2001) and simulations with K = 12 GA agents.
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In a similar vein, the variance of realized prices, Var(p) has been computed
according to (11), averaging over J = 1, 000 simulations. Table 1 shows
the statistics for the GA simulations, the laboratory experiments and the
RE benchmark10. The table shows that the GA-simulations are surprisingly
close to the laboratory experiments across all treatments. Besides the three
treatments of the laboratory experiments, we also distinguish between dif-
ferent settings for the mutation probability, pmut = 0.01, 0.025 and 0.05, as
this appears to be the more interesting aspect of the GA design. As can be
seen, price �uctuations also increase ceteris paribus with higher mutation
probability due to the higher rate of new forecasting rules entering the pop-
ulation. Like in other applications of GAs (cf. Lux and Schornstein, 2005)
varying other parameters as well as choosing di�erent speci�cations of the
operators appears to cause no major changes in the overall outcome.

Fig. 2 shows the autocorrelations of prices for the nine scenarios under
investigation. All autocorrelations are small, with the �rst one or two lags
exhibiting small negative values, in nice agreement with the laboratory �nd-
ings (cf. the autocorrelation plots of realized prices in the experiments,
Hommes et al., 2007, Fig. 5, pp.21-22). The slight increase of the auto-
correlation at the �rst few lags with higher mutation probability is simply
due to the mechanics of a population with high rate of change as the ran-
dom elements invoke a mean reverting tendency towards the average of a
randomized population.

Fig. 3 shows that even under the `strongly unstable' scenario, the population
mean values of the AR1 parameters αi and βi are close to their benchmark
values under rational expectations: αi �uctuates in the vicinity of the RE
equilibrium price (p∗ = 5.91) while the average βi is close to zero. The same
applies in the other cases. However, �uctuations around the RE benchmark
are stronger for the unstable and strongly unstable cases which leads to
stronger �uctuations and excess volatility of market prices consistent with
the laboratory experiments.

Overall, the GA experiments with the same parameter setting and incentive
structure as in the laboratory experiments appear to closely mimic the set of
10For the RE benchmark, Var(pe) has been computed as the variance of the average of

individual forecasts drawn randomly from the RE stochastic process p∗ + εt in (6),
yielding Var(pe) = σ2

εt
/K ≈ 0.042 for K = 6.
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Figure 2: Autocorrelations of realized prices under GA-learning: the pro-
cess only shows slight negative correlations over one or two lags
(consistent with the laboratory experiments). The plots show the
means and 95% con�dence intervals from 1,000 GA-simulations
each extending over 50 periods.
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Figure 3: Snapshots of the development of average AR1 parameters αi and
βi, together with their RE benchmarks αi = p∗, βi = 0 (broken
lines), under GA-learning in the `strongly unstable' treatment.
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stylized facts above. We note that the qualitative outcome was quite robust
under various modi�cations of the GA learning mechanism. For example,
we get similar results when dispensing with the election operator. The main
di�erence in this setting is that �uctuations in the `unstable' and `strongly
unstable' treatment become more pronounced and that we see somewhat
more signi�cant negative autocorrelation in the �rst few lags: as mentioned
above, this feature can be easily explained by the mean-reverting nature of
the dynamics with more random mutations admitted to the population. On
economic grounds we might, however, argue that agents should not allow ob-
viously unsuccessful strategies to enter their set of forecast functions (which
is why the election operator had been introduced in economic settings) so
that we would not place too much weight on these results.

Interestingly, adopting a simpler concept of learning, that dispenses with
the AC parameter βi and restricts forecast rules to a constant αi also leads
to results that share some of the stylized facts. While this scenario leads to
similar outcomes for volatility in the three treatments, it is, however, also
characterized by anti-persistent price behavior and more signi�cant zigzag
patterns of autocorrelations in the strongly unstable case. The simplest GA
with only constant rules, therefore, seems to inherit at least part of the os-
cillating dynamics of the benchmark case of homogenous naive or adaptive
expectations. A more intelligent type of forecast rules such as our AR1
rules, taking into account both the average price level and �rst order auto-
correlation, is required to remove linear forecastability. Stated di�erently,
individual learning of the mean alone is not consistent with the laboratory
experiments, but some more sophisticated form of individual learning tak-
ing into account whether prices are persistent or anti-persistent is needed to
remove autocorrelations in aggregate prices. The interaction of individual
rules, learning both the price level and the �rst order autocorrelation, leads
to the correct aggregate price level and washes out all autocorrelations in
aggregate price �uctuations.

Why do the GA experiments reproduce the experimental results so well?
Our conjecture is that GAs and human subjects share the tendency of �learn-
ing by experience� and of shifting their strategies towards a speci�cation
that would have performed well in the recent past. This is actually the
consequence of the built-in genetic operators of GAs. While this leads to
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an optimal solution for static problems (at least, if the evolutionary pro-
cess is allowed to run long enough), with the changing objective functions
of an interactive environment it could also lead to repetitive patterns (cf.
Lux and Schornstein, 2005). In the absence of structural knowledge about
the underlying mechanisms of a decision problem, humans can also still de-
termine what actions or decisions would have performed well in the past.
Quite clearly, the laboratory experiments with their unknown forms of the
underlying market functions and added stochasticity could not have been
fully penetrated by the experimental subjects. However, they could easily
focus on the past success and failure of their forecasts and learn to maintain
successful strategies. Exploiting the mean together with short-run autocor-
relations seems to be one of the simplest strategies that could be pursued
in a rule-of-thumb manner without computing the sample autocorrelation
exactly (which would normally not be possible given the time pressure of
most experimental settings). These rough computations lead to stochastic
�uctuations that are similar to the �uctuations caused by the evolution-
ary dynamics of the GA. The latter feature distinguishes our heterogenous
learning scenario from homogenous learning models (Hommes, 2009) which
seem unable to explain the full set of stylized facts. Heterogeneity in indi-
vidual forecasting thus seems to be a key element in explaining all stylized
facts at the aggregate level simultaneously.

In summary, our conjecture is that the orientation at successful performance
in the past within a reasonable class of forecasting heuristics together with
the heterogeneity of the GA design explains its proximity to human be-
haviour in the lab. We may note that such conformity has also been found
in a number of other cases, e.g. in an experimental foreign exchange market
(Arifovic, 1996) or public good experiments (Casari, 2004). It is also related
to the work of Erev and Roth (1999) on reinforcement learning to explain
experiments with repeated games11. Anufriev and Hommes (2009) have re-

11We also investigated a reinforcement learning (RL) algorithm with similar strategy sets
as in our GA setting. Individuals were endowed with AC strategies with parameter
space αi ∈ [0, 10] and βi ∈ [−2, 2]. Initial parameters were drawn randomly from a
uniform distribution and updated with probabilities computed via relative �tness (as
in the GA experiments) with �tness de�ned by the payo� function (5). We distin-
guished between a myopic RL algorithm, only using the last payo� as �tness function,
and a full memory RL scheme that computed �tness as the arithmetic average of all
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cently used another form of reinforcement learning to explain learning to
forecast experiments in a di�erent, asset pricing framework.

The degree of heterogeneity

In the stable treatment of the laboratory experiments it seems that prices
converge to RE and agents learn to coordinate on the RE forecast. In
contrast, in the (strongly) unstable treatment prices do not converge, but
exhibit excess volatility. Does forecast heterogeneity disappear in the stable
treatment and does persistent forecast heterogeneity explain the observed
excess volatility in the (strongly) unstable treatment? Whether or not het-
erogeneity persists is important for economic theory. If beliefs converge to
a common rule, long run aggregate price behavior can be described by a
representative agent model. If on the other hand beliefs do not converge,
heterogeneous expectations models become relevant as a description of short
run as well as long run aggregate market behavior. See Hommes (2006) for
an extensive discussion of heterogeneous expectations models.

Figure 4 (top panel) shows some typical examples of time series of the six
individual forecasts in one group for each of the three treatments. These ex-
amples already suggest that heterogeneity quickly disappears in the stable
treatment, while heterogeneity is highly persistent in the strongly unsta-
ble treatment. Figure 4 (bottom panel) also shows the average degree of
heterogeneity, that is, the time development of the standard deviations of
individual forecasts (K = 6 individuals per group) averaged over all groups
in each treatment. More precisely, let p̂j

t,k be the price forecast for time
period t, by subject k, in experiment j, then the mean forecast for period
t in experiment j is µj

t = 1
K

∑
k p̂j

t,k. The standard deviation of the mean

previous payo�s. Qualitative results of both settings were not too di�erent, however.
The basic outcome of these RL experiments was that (i) agents never converged to the
RE benchmark. In particular, the variance was always above the RE benchmark, even
in the `stable' scenario. Mean values were slightly further away from RE prices than
under GA learning, (ii) in all cases, realized market prices showed pronounced cyclical
patterns indicating that RL agents were not able to exploit all linear structure, (iii)
results seemed to be entirely insensitive to the number of strategies (we allowed the
strategy set of agents to vary from M = 50 over 500 up to 5000). Detailed results are
available upon request.
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forecast at date t, over K = 6 subjects of experiment j is

σj
t =

√
1

K − 1

∑

k

(p̂j
t,k − µj

t)
2. (12)

The average degree of heterogeneity at date t over all experiments (J = 6)
within a treatment is then de�ned as the average standard deviation

σt(p
e) =

1

J

∑
j

σj
t . (13)

The time development of the average degree of heterogeneity in Figure 4
(bottom panel) exhibits two important features: (1) for all treatments fore-
cast heterogeneity decreases over time, and (2) forecast heterogeneity is
persistent in the unstable treatment and highly persistent in the strongly
unstable treatment.
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Figure 4: Top panel: Six individual forecasts in one group of the laboratory
experiments in the stable (left), unstable (middle) and strongly
unstable (right) treatments. Bottom panel: Time development
of the average degree of heterogeneity, i.e. the standard devi-
ations of individual forecasts (six individuals) averaged over all
(six) groups in the stable treatment (left), the unstable (middle)
and the strongly unstable treatment (right).

Figure 5 shows the time development of the average degree of heterogeneity
in GA learning simulations in the �rst 50 periods, averaged over 1000 runs,
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Figure 5: Time development of the average degree of heterogeneity, i.e. the
standard deviations of the six individual forecasts in GA learn-
ing simulations (dark line) averaged over 1000 runs, in the stable
(left), the unstable (middle) and the strongly unstable treatment
(right) for di�erent values of the mutation probability pmut. The
time series of the average degree of heterogeneity in the corre-
sponding experiments (grey line) as well as the RE benchmark
(dotted line) are also shown.
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in the stable, the unstable and the strongly unstable treatments. This �gure
shows that GA-learning simulations reproduce the patterns of the average
degree of heterogeneity in the laboratory experiments quite nicely: a quick
decrease of forecasting heterogeneity in the stable treatment and a much
slower decrease in the (strongly) unstable treatment. In fact, both in the
experiments and the GA learning simulations the unstable and strongly
unstable treatments exhibit a non-monotonic development of forecasting
heterogeneity with an increase in heterogeneity in the early stage of the
experiment/simulations due to overshooting and a decrease in heterogeneity
after periods 5− 7 due to learning.

5 Beyond the Laboratory Setting

In contrast to experiments with human subjects, additional experiments
with genetic algorithms can be conducted at essentially zero cost. In this
section we expand our previous experiments into various directions not cov-
ered by the laboratory experiments. Among others, we investigate long run
price behaviour, how price behaviour depends upon parameter values, in
particular the parameter tuning the nonlinearity of the supply curve, and
we investigate the consequences of an increase of the number of agents and
forecasting strategies in the GA populations.

5.1 Long run behaviour

Table 2 summarizes the long run statistics for all three treatments and
three di�erent mutation probabilities, pmut = 0.01, 0.025 and 0.05. As can
be seen, in the stable case the long run average degree of heterogeneity,
Var(pe), is small and price volatility is quite close to the RE benchmark
0.25. In the unstable treatment price volatility is slightly above the RE
variance, while in the strongly unstable treatment the long run price vari-
ance is signi�cantly above the RE benchmark due to a larger average degree
of heterogeneity. The strongly unstable treatment thus exhibits persistent
heterogeneity and long run excess price volatility. Moreover, both the av-
erage degree of heterogeneity and excess price volatility increases with the
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mutation probability. This seems intuitively clear, since a higher muta-
tion probability leads to a higher rate of new forecasting rules entering the
population.

5.2 Parameter sensitivity

In the next set of simulations we explore the transition between the `nice'
price behaviour of the `stable' treatment and the excessive price volatility
of the unstable treatments. Recall that the di�erence between these treat-
ments is the parameter λ tuning the nonlinearity of the supply curve. We
ran the same type of GA experiments with 800 di�erent values of the slope
parameters λ ranging from 0.005 to 4 (with increments of 0.005). Fig. 6
reports the mean values and variances of realized prices over 50,000 rounds
together with their RE benchmark. It turns out that the variance of realized
prices is close to its RE benchmark of 0.25 only for very small values of λ

with an almost perfectly linear increase with λ thereafter.12 In contrast, the
average price stays close to its RE benchmark over the whole range of our
experiments. While there appears to be a slightly increasing wedge between
average price and the RE solution for increasing λ the deviation is always
very small compared to the di�erence between the realization of the second
moment and its RE benchmark. We conjecture that this increasing wedge
might be more an artifact of our simulation design than a `true' indica-
tion of (small) deviations of the mean price from the rational expectations
price. Since pRE is slightly above the center of the admissible range [0, 10]

larger �uctuations would generate some asymmetries in realized prices with
a slight dominance of lower rather than higher prices. The slight deviation
from RE in the �rst moment (which remains smaller than 2% percent in all
scenarios) would then be a numerical consequence of the large deviation in
the second moment from its RE benchmark.

12A regression of the variance of realized prices on the parameter λ over the second half
of our experiments produced a slope parameter 0.12 and a constant 0.25 with R2 of
the regression equal to 0.94. Note that the constant is equal to the variance in RE
equilibrium.
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Table 2: Long run simulations for di�erent mutation probabilities

Mean(pe) Mean(p) Var(pe) Var(p)

Stable case

RE - 5.57 - 0.25

Experiments 5.56 5.64 0.087 0.36

pmut = 0.01 5.567 5.575 0.023 0.266

pmut = 0.025 5.575 5.574 0.030 0.271

pmut = 0.05 5.576 5.565 0.045 0.283

Unstable case

RE - 5.73 - 0.25

Experiments 5.67 5.85 0.101 0.63

pmut = 0.01 5.723 5.731 0.017 0.292

pmut = 0.025 5.729 5.716 0.023 0.313

pmut = 0.05 5.725 5.716 0.038 0.355

Strongly unstable case

RE - 5.91 - 0.25

Experiments 5.73 5.93 0.429 2.62

pmut = 0.01 5.870 5.889 0.019 0.432

pmut = 0.025 5.855 5.863 0.054 0.714

pmut = 0.05 5.838 5.808 0.151 1.274

Notes: Long run simulations with K = 6 GA agents (chromosomes) and di�erent
mutation probabilities pmut. The �rst and second moments for market prices,
Mean(pe) and (Varpe), are computed from simulations over 50,000 time steps
after discarding the �rst 10,000 observations as transient sample. Mean (pe) is
the mean over the whole simulation of the average forecast across the 6 `agents'
in each period. The average degree of heterogeneity, V ar(pe) has been computed
according to (10), averaged over T = 50, 000 periods after a transient of 10, 000
periods.
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Figure 6: Mean prices (bottom panel) and variances (top panel) from GA
simulations of markets with λ ranging from 0.005 to 4. Except
for the variation of λ, all parameters are the same as before. Re-
sults are sample moments over simulations of 50,000 rounds (after
discarding a transient period of 10,000 rounds).
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5.3 Simulations with many agents

Another set of Monte Carlo runs investigates what happens if we increase
the pool of participants in our forecasting experiments. While laboratory
settings are typically restricted to small numbers of agents due to techni-
cal restrictions, the availability of subjects and the costs of running large
experiments, we can easily extend our previous GA setting to much larger
numbers of arti�cial agents. Since we have normalized supply by dividing
through the number of �rms in eq. (1), the RE benchmarks for �rst and
second moments remain the same for all population sizes, K.

Table 3 compares
the results for population numbers K ∈ {6, 12, 30, 100, 150, 600}. Initial-
ization of the GA simulation is done based on the �rst and second period
individual forecasts in the experiments with K = 6 subjects in Hommes et
al. (2007) as well as the experiments with K = 12 subjects in the strongly
unstable treatment in van de Velden (2001). For the �rst period, all exper-
iments (with 6 or 12 subject, with stable, unstable and strongly unstable
treatments) have been pooled and the resulting distribution has been �tted
with a normal N(5.271, 1.393). Second period forecasts in the experiments
di�er between treatments, but are very similar for the 6 and 12 subjects
cases in the strongly unstable treatment. We, therefore, pooled the fore-
casts of period 2 over all experiments of each treatment and �tted Normal
distributions N(5.279, 1.698) for the stable treatment (only cases with 6
subjects), N(5.952, 1.266) for the unstable treatment (only cases with 6
subjects), and N(6.885, 1.225) for the strongly unstable treatment (pooled
over all experiments with 6 or 12 subjects). The above experiments with
K = 6 to K = 600 agents have been initialized by random draws from the
pertinent Normal distribution, i.e., the same over all settings in period 1
but the treatment-dependent ones for period 2.

Apparently, higher numbers of agents have a tendency to dampen �uctu-
ations. While there is not much di�erence in the experiments with stable
slope parameter λ = 0.22, the e�ect is more pronounced in the unstable and
strongly unstable scenarios. The stable case stays close to the RE bench-
mark for all sizes of the population with the variance of price �uctuations
close to the variance of the random term. In the other cases, the excess �uc-
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Table 3: Short run simulations for increasing number of subjects

#subjects (K) Mean(pe) Mean(p) Var(pe) Var(p)

Stable case

K = 6 5.531 5.593 0.096 0.316

K = 12 5.528 5.597 0.062 0.295

K = 30 5.525 5.601 0.042 0.283

K = 100 5.527 5.596 0.034 0.275

K = 150 5.528 5.599 0.033 0.278

K = 600 5.530 5.598 0.031 0.278

Unstable case

K = 6 5.625 5.811 0.140 0.556

K = 12 5.643 5.797 0.073 0.417

K = 30 5.648 5.793 0.045 0.362

K = 100 5.656 5.787 0.034 0.331

K = 150 5.652 5.786 0.033 0.326

K = 600 5.653 5.788 0.031 0.320

Strongly unstable case

K = 6 5.617 6.023 0.421 1.670

K = 12 5.642 6.045 0.264 1.112

K = 30 5.659 6.052 0.192 0.821

K = 100 5.665 6.051 0.166 0.715

K = 150 5.665 6.058 0.168 0.715

K = 600 5.666 6.053 0.162 0.694

Notes: E�ects of the variation of the number of agents, K. Other parameters are M = 10

and pmut = 0.025. Increasing K leads to convergence towards the RE benchmark in the
stable and unstable treatment, but excess volatility persists in the `strongly unstable'
treatment. The �rst and second moments are computed from 1,000 runs with 50 periods
each (i.e., using 50,000 observation).
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Table 4: Long run simulations for increasing number of subjects

#subjects (K) Mean(pe) Mean(p) Var(pe) Var(p)

Stable case

K = 6 5.564 5.575 0.034 0.270

K = 12 5.567 5.574 0.020 0.263

K = 30 5.570 5.570 0.011 0.259

K = 100 5.565 5.571 0.008 0.260

K = 150 5.570 5.575 0.008 0.254

K = 600 5.566 5.573 0.007 0.255

Unstable case

K = 6 5.722 5.727 0.023 0.314

K = 12 5.716 5.734 0.015 0.292

K = 30 5.717 5.730 0.009 0.278

K = 100 5.715 5.731 0.006 0.265

K = 150 5.716 5.729 0.005 0.268

K = 600 5.717 5.730 0.005 0.269

Strongly unstable case

K = 6 5.864 5.856 0.052 0.716

K = 12 5.882 5.889 0.014 0.441

K = 30 5.885 5.889 0.006 0.359

K = 100 5.883 5.891 0.004 0.330

K = 150 5.884 5.891 0.003 0.320

K = 600 5.882 5.890 0.003 0.315

Notes: Long run statistics when the number of agents, K, increases. Other parameters
are M = 10 and pmut = 0.025. Increasing K leads to convergence towards the RE
benchmark in all three treatments. Even in the strongly unstable treatment long run
market volatility decreases with K, to a value fairly close to the RE benchmark of 0.25.
The �rst and second moments are computed using 50,000 observation, after disregarding
the �rst 10,000 observations as transient.
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tuations are clearly reduced when increasing the size of the population. In
the `unstable' case (λ = 0.5) price volatility decreases from Var(p) = 0.556

for K = 6, to Var(p) = 0.362 for K = 30, already fairly close to the RE
benchmark of 0.25. In the strongly unstable case (λ = 2) price volatility is
reduced by more than 50% for K = 600, but is still signi�cantly higher than
the RE benchmark (Var(p) = 0.694). In the strongly unstable treatment
in the short run, i.e. for the �rst 50 periods, excess volatility thus persists
when increasing the number of agents to K = 600.

Another striking feature of these GA-simulations is that an increase of the
number of agents beyond N = 30 has little e�ect upon aggregate behavior.
In all treatments, price volatility and the average degree of heterogeneity
drop signi�cantly when the number of agents is increased from N = 6 to
N = 30, but hardly drop when the number of agents is further increased
from N = 30 to N = 600. This suggests that it may be possible to study
macro phenomena in relatively small laboratory experiments with about 30

subjects, a size that is manageable in most experimental laboratories. See
also the discussion about the relevance of laboratory experiments in macro
in e.g. Du�y (2008).

Table 4 gives an overview of the same statistics in long run simulations,
based on 50,000 periods, after a transient of 10,000 periods. Both the sta-
ble and the unstable treatments converge to the RE benchmark, with price
volatility of Var(p) = 0.255 and Var(p) = 0.269 respectively for K = 600.
Also the strongly unstable treatment approaches the RE benchmark rela-
tively closely in the long run, although price volatility Var(p) = 0.359 for
K = 30 and Var(p) = 0.315 for K = 600 respectively are still more than
25% above the RE-benchmark.

The laboratory experiments provide a simple and stylized framework that
is stationary for 50 periods. In real markets with �uctuating prices, one
would perhaps expect larger exogenous shocks to occur occasionally. From
this perspective, what we have called the �short run�, i.e. the �rst 50 periods,
could be more relevant to real markets than the �long run� where the market
is stationary for a very long time.

The decrease of volatility with increasing population is probably easy to
explain: adding more agents evokes a law of large numbers. Since our
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GA agents are e�ectively independent stochastic processes, their individual
�uctuations should be averaged out when aggregating over more and more
individuals.13 This is what seems to happen in our experiments. Note,
in particular the strong decrease of the variance of average price expecta-
tions in all settings. Of course, if price expectations would converge to the
RE benchmark, realized prices would only �uctuate due to the exogenous
random noise component.

5.4 Simulations with many rules

Finally, Table 5 reports results of GA-learning simulations where the num-
ber of agents has again been �xed to K = 6, while the number of rules, M ,
available to each agent increases from M = 10 to M = 60.

Note that in a GA setting, the set of rules of an individual need not nec-
essarily be di�erent. In fact, convergence of the GA would imply that the
population of rules of an agent becomes fully homogeneous. Increasing M

thus does not necessarily mean that an individual has more di�erent rules
in each period, but it only increases the potential sophistication of the set
of rules. As it turns out, at least in the `strongly unstable' treatment, this
higher sophistication leads to an increase of the volatility of realized (as
well as expected) prices. With M = 60 rules per agent, price volatility
has almost doubled from Var(p) = 0.824 to Var(p) = 1.546 . In contrast,
variation of the number of rules M seems to leave the results of the stable
and unstable treatments almost unchanged. We conjecture that the higher
number of chromosomes allows agents more easily to react on price �uctua-
tions around the RE benchmark. With a high λ, under naive expectations
a small deviation from pRE would lead to a step-wise increase or decrease
of the price for some time. Autocorrelation detection by some agents could
reinforce this tendency as they would already forestall the direction of the
subsequent price changes. With a large number of chromosomes, chances

13While there should always be a quasi-deterministic limit for the dynamics of GA pop-
ulations, this need not necessarily lead to convergence towards some kind of steady
state. Lux and Schornstein (2005) provide an example for how adaptive GA agents
could converge to perfectly oscillatory dynamics due to their interactions in a large
population.
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Table 5: Long run simulations for increasing number of rules per agent

# rules (M) Mean(pe) Mean(p) Var(pe) Var(p)

Stable case

10 5.578 5.565 0.030 0.272

20 5.577 5.567 0.022 0.264

30 5.582 5.569 0.020 0.262

40 5.578 5.567 0.020 0.262

50 5.577 5.570 0.020 0.267

60 5.574 5.570 0.019 0.264

Unstable case

10 5.729 5.723 0.027 0.328

20 5.731 5.722 0.023 0.315

30 5.734 5.721 0.021 0.310

40 5.734 5.719 0.023 0.308

50 5.737 5.715 0.020 0.312

60 5.735 5.719 0.025 0.316

Strongly unstable case

10 5.880 5.833 0.092 0.824

20 5.878 5.835 0.156 0.974

30 5.874 5.825 0.226 1.102

40 5.870 5.825 0.308 1.249

50 5.863 5.821 0.418 1.431

60 5.866 5.806 0.468 1.546

Notes: E�ects of the variation of the number of rules, M , per GA-agent. Other
parameters are K = 6 and pmut = 0.025. Increasing M seems to leave the results
practically unchanged in the `stable' and `unstable' cases, but increases both the
volatility of predicted prices and realized market prices in the `strongly unstable'
scenario. The moments are extracted from simulations over 50,000 periods after
a transient of 10,000 steps.
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are increasing to evolve such momentarily advantageous rules. If such rules
are admitted to the population, they would enhance �uctuations. It might,
therefore, be a mixture of `naive' adaptation of some agents (modi�cations
of αi) and trend chasing of others (adapting αi and βi) that generates the
higher volatility in this case. Unfortunately, a systematic analysis of the
interplay between the number of agents and their behavior in experimental
settings is beyond the limit of available laboratory resources. Given the au-
tonomous adaptation of human subjects to di�erent environments, it is not
clear whether their learning behavior would remain unchanged in groups of
di�erent sizes. Our simulations suggest that, at least in the strongly unsta-
ble treatment, an increase of the number of learning rules per agent may be
a potentially destabilizing force counterbalancing the stabilizing force of an
increase in the number of agents in the market. It therefore seems possi-
ble, that changes of behavior might compensate for the law-of-large-number
tendency in larger groups.

6 Concluding Remarks

Genetic algorithm learning of simple forecasting strategies provides an accu-
rate description of individual expectations at the micro level and, at the same
time, the interaction of these individual rules matches observed aggregate
price behavior at the macro level surprisingly well. In the simple framework
of the classical cobweb model, the interaction of individual GA-learning
rules is able to reproduce all stylized facts in aggregate prices �correct
sample mean, excess volatility depending on demand/supply characteris-
tics and no linear predictability � observed in recent learning to forecast
laboratory experiments with human subjects. In contrast to homogeneous
learning rules, the interaction of heterogeneous GA-learning rules explains
all stylized facts simultaneously and across various treatments. It should
be emphasized that these results are robust and not sensitive to the GA-
speci�cation or the two GA-parameters (the mutation probability pmut and
the crossover probability pcross). The GA-algorithms attempt to learn two
parameters �the sample mean and the �rst order autocorrelation coe�cient�
in a simple AR(1) forecasting rule. Evolutionary selection within a simple
class of individual forecasting heuristics, that take into account both the
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observed sample mean and the �rst order sample autocorrelation, thus ex-
plains aggregate price behavior surprisingly well.

We have also looked at the average degree of heterogeneity of individual
forecasting behaviour. In all treatments, heterogeneity decreases over time.
In the stable treatment heterogeneity quickly disappears and the price set-
tles down to its RE benchmark. In the (strongly) unstable treatment het-
erogeneity decreases somewhat due to learning, but heterogeneity persists,
even in the long run. These results suggest that economic theory needs
to go beyond representative agent models with homogeneous expectations.
The matching of our GA-simulation results with laboratory experiments
are consistent with a theory of endogenous selection of heterogeneous ex-
pectations, for example, as in Evans and Ramey (1992), Brock and Hommes
(1997) and, more recently, in Reis (2006).

Fitting a GA-learning model to the laboratory experiments allows one to go
beyond experiments and simulate alternative and more realistic market envi-
ronments. Through GA-simulations, we have seen that adding more agents
to the market has a stabilizing e�ect, that is, price volatility decreases as the
number of agents increases. However, in the strongly unstable treatment,
excess price volatility persists when the number of agents becomes large.
On the other hand, increasing the potential sophistication by allowing more
strategies per individual has a destabilizing e�ect and makes price behavior
more volatile. Additional laboratory experiments could reveal more infor-
mation about the number of strategies subjects are using, in order to explore
which of these two forces will dominate.

We have also seen that an increase in the number of agents beyond 30

has relatively little impact on aggregate price behavior. This suggests that
laboratory experiments with 30 interacting subjects may reveal useful infor-
mation about macro phenomena. Such larger macro experiments as well as
applying GA's to other laboratory experiments, in particular other learning
to forecast experiments, is a challenge for future work and may shed more
light on individual expectation formation, their interaction and aggregate
outcomes in alternative market settings.
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