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1 Introduction

This is to extend Morimoto and Serizawa (2015) to a general case of an arbitrary number
of agents and objects. They consider the multi-object allocation problem with monetary
transfers where each agent obtains at most one object (unit-demand). A (consumption)
bundle is a pair of object and payment. Each agent has a continuous preference relation
over bundles satisfying the possibility of compensation, money monotonicity, and object
desirability. Such preferences are called classical. The classical domain is the class of all
classical preferences.

In multi-object allocation problem, for each preference profile, Walrasian equilibrium
exists (Alkan and Gale, 1990), and Demange and Gale (1985) show that the set of Wal-
rasian prices has a lattice structure; that is, there is the minimum price Walrasian equi-
librium for each preference profile.

An (allocation) rule, or simply rule chooses, for each preference profile, the object
each agent receives and how much each agent pays. Demange and Gale (1985) show that
a minimum price Walrasian rule satisfies following properties: (i) Individual rationality
requires that each agent’s bundle is at least as good as receiving nothing with no pay-
ment. Without this condition, agents does not participate the rule voluntarily. (ii) No
subsidy means that all agents’ payments are nonnegative. (iii) Efficiency requires that
no allocation can increase the sum of payments without changing agents’ welfare. (iv)
Strategy-proofness is the incentive compatible condition, which means that no agent has
incentive to misreport his preference.

Morimoto and Serizawa (2015) show that in the case where the number of agents is
greater than the number of objects, the minimum price Walrasian rule is characterized
by individual rationality, no subsidy, efficiency and strategy-proofness. We extend their
result to a general case of an arbitrary number of agents and objects.

This article is organized as follows. Section 2 introduces the model and basic concepts
and checks the properties of minimum price Walrasian rules. Our results are in Section 3.
Section 4 provides proofs. Section 5 refers to related literatures, and Section 6 concludes.

2 The model

Let N = {1, 2, · · · , n} be the set of agents and M = {1, 2, · · · ,m} be the set of different
objects. Not consuming an object in M is called consuming the “null object”. Let
L ≡ M ∪ {0}, where 0 denotes the null object. Each agent consumes at most one object.
A typical (consumption) bundle for agent i is a pair zi = (xi, ti) ∈ L×R: agent i receives
object xi and pays ti.

Each agent has a complete and transitive preference relation Ri over L × R. Let Ii
and Pi be the indifference relation and strict preference relation associated with Ri. A
typical class of preferences is denoted by R. We call Rn a domain. Ri is classical if it
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satisfies the following assumptions:

1. Continuity: For each zi ∈ L× R, the sets {z′i ∈ L× R : z′i Ri zi} and {z′i ∈ L× R :
zi Ri z

′
i} are closed.

2. Possibility of compensation: For each pair a, b ∈ L and each t ∈ R, there exist
t′, t′′ ∈ R such that (a, t) Ri (b, t

′) and (b, t′) Ri (a, t
′′) .

3. Money monotonicity: For each a ∈ L and each pair t, t′ ∈ R, if t < t′, then
(a, t) Pi (a, t

′).

4. Object desirability: For each a ∈ M and each t ∈ R, (a, t) Pi (0, t).

Let RC be the set of classical preferences. We assume that R ⊆ RC .

Definition 1. A preference Ri ∈ RC is quasi-linear if for each (a, t), (b, t′) ∈ L×R and
each δ ∈ R, (a, t) Ii (b, t′) implies (a, t− δ) Ii (b, t

′ − δ).

Let RQ be the set of quasi-linear preferences. Note that RQ � RC .
A preference profile is a list of preferences R ≡ (R1, · · · , Rn). Given i ∈ N and

N ′ ⊆ N , let R−i ≡ (Rj)j �=i and R−N ′ ≡ (Rj)j∈N\N ′ .
A (feasible) object allocation is an n-tuple x = (x1, x2, . . . , xn) ∈ Ln such that

for each pair i, j ∈ N , if xi = xj, then xi = xj = 0. Let A be the set of all object
allocations. An allocation is a pair of an object allocation and a vector of payments,
z = ((x1, x2, . . . , xn) , (t1, t2, . . . , tn)) ∈ A × Rn. Given z ∈ A × Rn and i ∈ N , zi =
(xi, ti) ∈ L × Z denotes the bundle of agent i. An allocation z′ ∈ A × Rn Pareto-
dominates z ∈ A × Rn if (i) for each i ∈ N , z′i Ri zi and (ii)

∑
i∈N t′i >

∑
i∈N ti.

1 An
allocation z is efficient if there is no allocation that Pareto-dominates z.

An (allocation) rule associates an allocation to each preference profile. Formally,
a rule is a mapping f = (x, t) : Rn → A × Rn. Given a rule f and a preference profile
R ∈ Rn, agent i’s assignment under f at R is denoted by fi (R). Moreover, we write
fi (R) ≡ (xi(R), ti(R)) ∈ L × R, where xi(R) denotes i’s object assignment and ti(R)
denotes his payment. We define f (R) ≡ (f1 (R) , · · · , fn (R)).

We introduce the properties of allocation rule.

• Efficiency: For each R ∈ Rn, f(R) is efficient for R.

• Individual rationality: For each R ∈ Rn and each i ∈ N , fi (R) Ri (0, 0).

• No subsidy: For each R ∈ R and each i ∈ N , ti(R) ≥ 0.

• No subsidy for losers: For each R ∈ Rn and each i ∈ N , if xi(R) = 0, then ti(R) ≥ 0.

1This condition is equivalent to the following: (i) for each i ∈ N , z′i Ri zi, (ii) there is j ∈ N such that
z′j Pj zj and (iii)

∑
i∈N t′i ≥

∑
i∈N ti.
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• Strategy-proofness: For eachR ∈ Rn, each i ∈ N and eachR′
i ∈ R, fi (R) Ri fi (R

′
i, R−i).

Let p = (p1, p2, · · · , pm) ∈ Rm
+ be a price vector. We assume that the price of null

object is equal to zero; that is, p0 = 0. Given i ∈ N , Ri ∈ R, and p ∈ Rm
+ , let

D(Ri, p) ≡ {a ∈ L : ∀b ∈ L, (a, pa)Ri (b, pb)} denote the demand set of agent i with Ri

at p.
Next, we define the concept of Walrasian equilibrium. It is a pair of a price vector

and an allocation such that each agent an object he demands and pays its price, and the
price of an unassigned object is zero.

Definition 2. Given R ∈ Rn, a pair ((x, t) , p) ∈ (A× Rn) × Rm
+ is a Walrasian equi-

librium for R if
WE-i: for each i ∈ N , xi ∈ D(Ri, p) and ti = pxi

; and
WE-ii: for each a ∈ M \ {xj}j∈N , pa = 0.

Given R ∈ Rn, let W (R) be the set of Walrasian equilibria for R, and define

Z(R) ≡ {z ∈ A× Rn : ∃p ∈ Rm
+ s.t. (z, p) ∈ W (R)}

and
P (R) ≡ {

p ∈ Rm
+ : ∃z ∈ A× Rn s.t. (z, p) ∈ W (R)

}
.

Fact 1 (Alkan and Gale, 1990). For each R ∈ Rn, there is a Walrasian equilibrium; that
is, W (R) �= ∅.
Fact 2 (Demange and Gale, 1985). For each R ∈ Rn, there is p ∈ Rm

+ such that for each
p′ ∈ P (R), p ≤ p′. 2

Given R ∈ Rn, we denote the minimum Walrasian price for R by pmin(R) and define

Zmin(R) ≡ {z ∈ A× Rn : (z, pmin(R)) ∈ W (R)}.
We say an allocation rule f is a minimum price Walrasian rule if for each R ∈ Rn,

f(R) ∈ Zmin(R).

Fact 3 (Demange and Gale, 1985). The minimum price Walrasian rule f is strategy-
proof.3

By the definition of Walrasian equilibrium, the minimum price Walrasian rule satisfies
individual rationality, no subsidy and efficiency.

Fact 4 (Demange and Gale, 1985). The minimum price Walrasian rule f satisfies indi-
vidual rationality, no subsidy, efficiency and strategy-proofness.

2p ≤ p′ means that pa ≤ p′a for each a ∈ M .
3Precisely, they show that the minimum price Walrasian rule f is group strategy-proof : that is, for

each R ∈ Rn and each N ′ ⊆ N , there is no R′
N ′ ∈ R|N ′| such that for each i ∈ N , fi(R

′
N ′ , R−N ′)Pi fi(R).

4



3 Characterization

Morimoto and Serizawa (2015) characterizes a minimum price Walrasian rule on classical
domain by efficiency, individual rationality, no subsidy for losers, and strategy-proofness
when the number of agent is greater than the number of objects.

Fact 5 (Theorem 2 in Morimoto and Serizawa, 2015). Let R = RC and n > m. An
allocation rule satisfies efficiency, individual rationality, no subsidy for losers and strategy-
proofness if and only if it is a minimum price Walrasian rule on Rn.

Fact 6 (Lemma 7 in Morimoto and Serizawa, 2015). LetR = RC and n > m. If f satisfies
efficiency, individual rationality, no subsidy for losers and strategy-proofness then it also
satisfies no subsidy.

Remark 1. A minimum price Walrasian rule satisfies no subsidy

From Fact 6 and Remark 1, we have the following fact:

Fact 7. Let R = RC and n > m. An allocation rule satisfies efficiency, individual ratio-
nality, no subsidy and strategy-proofness if and only if it is a minimum price Walrasian
rule on Rn.

Our theorem shows that even when the number of agents is less or equal to the number
of objects, a minimum price Walrasian rule is characterized by the axioms in Corollary 1.

Theorem. Let R = RC . An allocation rule satisfies efficiency, individual rationality, no
subsidy, and strategy-proofness if and only if it is a minimum price Walrasian rule.

4 Proofs

In this section, we assume that R = RC . To prove our Theorem, we show the following
Propositions:

Proposition 1. Let f satisfy four axioms in Theorem. For each R ∈ Rn, each z ∈
Zmin(R) and each i ∈ N , fi(R)Ri zi.

Proposition 2. Let f satisfy four axioms in Theorem. For each R ∈ Rn, each z ∈
Zmin(R) and each i ∈ N , zi Ri fi(R).

By using these Propositions, we prove Theorem.

Given i ∈ N , Ri ∈ R, a ∈ L and (b, t) ∈ M × R+, we say V Ri(a; (b, t)) is the
compensated valuation of a from (b, t) for Ri if (a, V

Ri(a; (b, t))) Ii (b, t).
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Fact 8. Let f satisfies individual rationality. Let R ∈ Rn, i ∈ N and zi ∈ L × R+. If
zi Pi fi(R), then xi �= 0.

Definition 3. Given (a, t) ∈ M × R+, R
′
i is (a, t)-favoring if for each b ∈ M \ {a},

V R′
i(b; (a, t)) < 0.

Fact 9 (Lemma 8 in Morimoto and Serizawa, 2015). Let f satisfy strategy-proofness and
no subsidy. Let R ∈ Rn and i ∈ N be such that xi(R) �= 0. Let R′

i ∈ R be fi(R)-favoring.
Then, fi(R

′
i, R−i) = fi(R).

Given (a, t) ∈ M × R+ and ε > 0, we say Ri ∈ R is (a, t)ε-favoring if (i) Ri is (a, t)-
favoring, (ii) V Ri(a; (0, 0)) = t + 2ε and (iii) for each b ∈ M \ {a}, V Ri(b; (0, 0)) = ε.4

Especially, if Ri ∈ RQ is (a, t)ε-favoring, we write this preference by RQ((a, t), ε).

Remark 2. For each (a, t) ∈ M × R+ and each ε ∈ R++, there is Ri ∈ R such that
Ri = RQ((a, t), ε).

Remark 3. Let (a, t) ∈ M × R+, εi ∈ R++ and Ri = RQ((a, t), εi). Then Ri is (a, t)-
favoring.

Remark 4. Let i ∈ N , zi = (xi, ti) ∈ M × R+, εi ∈ R++ and Ri = RQ(zi, εi). Then for
each (a, t) ∈ (M \ {xi})×R, (i) (xi, ti + εi + t) Ii (a, t) and (ii) V Ri(xi; (a, t)) = ti + εi + t.

Proof. Let (a, t) ∈ (M \ {xi})× R.
(i) By Ri = RQ(zi, εi) and a �= xi,

(xi, ti + 2εi) Ii (a, εi)

⇔ (xi, ti + εi) Ii (a, 0)

⇔ (xi, ti + εi + t) Ii (a, t).

(ii) By the definition of compensated valuation, (xi, V
Ri(xi; (a, t))) Ii (a, t), and so by

(i), V Ri(xi; (a, t)) = ti + εi + t. �

Definition 4. Let R ∈ Rn, z ∈ A × Rn and N ′ ≡ {i1, . . . , iK} ⊆ N with K ≥ 2.
(N ′, (t′i)i∈N ′) is a Pareto-dominating trading cycle of z if (i) zi1 Ii1 (xiK , t

′
i1
), (ii) for

each k ∈ {2, . . . , K}, zik Iik (xik−1
, t′ik) and (iii)

∑
i∈N ′ t′i >

∑
i∈N ′ ti.

Fact 10. Let R ∈ Rn and z ∈ A× Rn. If z has a Pareto-dominating trading cycle, then
it is not efficient for R.

4Note that this definition is different from Kazumura et al. (2020B) and Sakai and Serizawa (2020)
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4.1 Preliminary results for Proposition 1

By using the similar method of Proposition 1 in Sakai and Serizawa (2020), we prove
Proposition 1. 5

Remark 5. Let f satisfy no subsidy. Let R ∈ Rn, i ∈ N , and zi = (xi, ti) ∈ M × R+ be
such that Ri is zi-favoring. If xi(R) �= xi, then zi Pi fi(R).

Proof. Let xi(R) �= xi. Since Ri is zi-favoring, V
Ri(xi(R); zi) < 0. By no subsidy, ti(R) ≥

0. Hence V Ri(xi(R); zi) < ti(R). By money monotonicity, (xi(R), V Ri(xi(R); zi))Pi (xi(R), ti(R)),
and so by the definition of compensated valuation, zi Pi (xi(R), ti(R)) = fi(R). �

Fact 11. Let R ∈ Rn, i ∈ N , z ∈ A×Rn and (a, t) ∈ M ×R++ be such that (a) for each
j ∈ N , xj �= a, (b) (a, t) Ii (xi, ti) and (c) t > ti. Then z is not efficient for R.

Proof. Let z′ ∈ Z be such that for each j ∈ N \ {i}, z′j = zj and z′i = (a, t). Then, (i)
for each j ∈ N , z′i Ii zi and (ii)

∑
j∈N t′j =

∑
j �=i tj + t >

∑
j �=i tj + ti =

∑
j∈N tj. Thus, z

′

Pareto-dominates z for R. �

Fact 12 (Lemma 5 in Morimoto and Serizawa, 2015). Let z ∈ A× Rn. Let R ∈ Rn and
i, j ∈ N with i �= j. If ti + tj < V Ri(xj; zi) + V Rj(xi; zj), then z is not efficient for R.

Lemma 1. Let f satisfy individual rationality and strategy-proofness. Let R ∈ Rn, i ∈ N
and zi ∈ M×R+ be such that zi Pi fi(R). Then, (i) there are εi ∈ (0, 1

2
(V Ri(xi; fi(R))−ti))

and R′
i = RQ(zi, εi), and (ii) xi(R

′
i, R−i) �= xi.

Proof. (i) By zi Pi fi(R), ti < V Ri(xi; fi(R)). Thus, there is εi ∈ (0, 1
2
(V Ri(xi; fi(R))− ti))

and R′
i = RQ(zi, εi).

(ii) Suppose xi(R
′
i, R−i) = xi. Then, by individual rationality, ti(R

′
i, R−i) ≤ ti + 2εi,

and by (i), ti + 2εi < V Ri(xi; fi(R)). Thus, ti(R
′
i, R−i) < V Ri(xi; fi(R)), and hence

fi(R
′
i, R−i)Pi fi(R). This contradicts strategy-proofness. Thus, xi(R

′
i, R−i) �= xi. �

Lemma 2. Let f satisfy no subsidy, efficiency and strategy-proofness. Let R ∈ Rn,

N ′ ⊆ N , z ∈ A × Rn
+ and (εi)i∈N ′ ∈ R|N ′|

++ be such that for each i ∈ N ′, xi �= 0 and
Ri = RQ(zi, εi). Then, for each i ∈ N ′, there is j ∈ N such that

(i) xj(R) = xi and
(ii) if i �= j, then tj(R) ≥ ti + εi.

Proof. (i) Let i ∈ N ′. Then xi �= 0. Suppose that for each j ∈ N , xj(R) �= xi. By
xi(R) �= xi, Ri = RQ(zi, εi) and Remark 4 (i), (xi, ti + εi + ti(R)) Ii (xi(R), ti(R)). By
ti + εi > 0, ti + εi + ti(R) > ti(R), and hence by Fact 11, f(R) is not efficient, which is a
contradiction.

5Kazumura et al. (2020B) and Sakai and Serizawa (2020) show the dominance in agents’ welfare by
replacing efficiency with weak fairness condition (equal treatment of equals)
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(ii) Let i ∈ N ′ and j ∈ N be such that i �= j and xj(R) = xi. Suppose that
tj(R) < ti + εi. Let R′

j ∈ R be such that it is fj(R)-favoring and for each a ∈ L \ {xi},
−V R′

j(a; fj(R)) < ti+εi−tj(R). By Fact 9, fj(R
′
j, R−j) = fj(R), and so by xi(R

′
j, R−j) �=

xi, −V R′
j(xi(R

′
j, R−j); fj(R

′
j, R−j)) < ti + εi − tj(R

′
j, R−j). By xi(R

′
j, R−j) �= xi, Ri =

RQ(zi, εi) and Remark 4 (ii), V Ri(xi; fi(R
′
j, R−j)) = ti + εi + ti(R

′
j, R−j). Hence we have

V Ri(xj(R
′
j, R−j); fi(R

′
j, R−j)) + V R′

j(xi(R
′
j, R−j); fj(R

′
j, R−j))

= V Ri(xi; fi(R
′
j, R−j)) + V R′

j(xi(R
′
j, R−j); fj(R

′
j, R−j))

> (ti + εi + ti(R
′
j, R−j)) + (tj(R

′
j, R−j)− ti − εi)

= ti(R
′
j, R−j) + tj(R

′
j, R−j).

By Fact 12, f(R′
j, R−j) is not efficient for (R′

j, R−j), which is a contradiction. �

4.2 Proof of Proposition 1

Proof. Let R ∈ Rn, p = pmin(R) and z ∈ Zmin(R). Let

p ≡
{

min{pa ∈ R : a ∈ M and pa > 0} if ∃a ∈ M such that pa > 0
0 otherwise

Suppose that there is i ∈ N such that zi Pi fi(R). Without loss of generality, let i ≡ 1.

Claim: For each k ≥ 0, there are sets N(k) and N(k + 1) of distinct agents such
that N(k + 1) ⊇ N(k), |N(k)| = k, |N(k + 1)| = k + 1, say N(k) = {1, 2, . . . , k},
N(k + 1) = {1, 2, . . . , k + 1}, and (εj)j∈N(k+1) ∈ Rk+1

++ , R(k) ≡ (R′
N(k), R−N(k)) ∈ Rn and

R(k+1) ≡ (R′
N(k+1), R−N(k+1)) ∈ Rn such that

(i-a) zk+1 Pk+1 fk+1(R
(k)) and

(i-b) xk+1 �= 0,
(ii-a) ε1 < min({p, 1

2
(V R1(x1; f1(R))− t1)} \ {0}) and R′

1 = RQ(z1, ε1),

(ii-b) for each j ∈ N(k + 1) \ {1}, εj < min{εj−1,
1
2
(V Rj(xj; fj(R

(j−1))) − tj)} and R′
j =

RQ(zj, εj), and
(ii-c) for each j ∈ N(k), εk+1 < tj + εj,
(iii) xk+1(R

(k+1)) �= xk+1 and zk+1 P
′
k+1 fk+1(R

(k+1)),
(iv) xk+1(R

(k+1)) /∈ {xl}l∈N(k+1), and
(v) there is j ∈ N \N(k + 1) such that xj(R

(k+1)) ∈ {xl}l∈N(k+1) and zj Pj fj(R
(k+1)).

We prove Claim by induction on k.

Base Case: Let k = 0. (i) By assumption, z1 P1 f1(R). Thus, (i-a) holds. By individual
rationality, z1 ∈ L× R+, (i-a) and Fact 8, x1 �= 0. Hence, (i-b) holds.
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(ii) By z1 P1 f1(R), t1 < V R1(x1; f1(R))). Thus, there is ε1 > 0 such that ε1 <
min({p, 1

2
(V R1(x1; f1(R)) − t1)} \ {0}). By (i-b), x1 �= 0. Thus, by Remark 2, there is a

preference R′
1 = RQ(z1, ε1). Hence, (ii-a) holds. By k = 0, (ii-b) and (ii-c) hold vacantly.

(iii) By (i-a), (ii-a) and Lemma 1 (ii), x1(R
(1)) �= x1. By (ii-a) and Remark 3, R′

1 is
z1-favoring, and so by Remark 5, z1 P

′
1 f1(R

(1)).
(iv) By k = 0, (iv) directly follows from (iii).
(v) By x1(R

(1)) �= x1 and Lemma 2 (i), there is j ∈ N \ {1} such that xj(R
(1)) = x1.

Without loss of generality, let j ≡ 2. We show that z2 P2 f2(R
(1)). By Lemma 2 (ii) and

(z, p) ∈ W (R), t2(R
(1)) ≥ t1 + ε1 > t1 = px1 . Thus,

z2 R2
by (z,p)∈W (R)

(x1, px1) P2
by t2(R(1))>px1

(x1, t2(R
(1))) =

by x2(R(1))=x1

f2(R
(1)).

Hence, z2 P2 f2(R
(1)).

Inductive Hypothesis: Let k ≥ 1. There are sets N(k− 1) and N(k) of distinct agents
such thatN(k) ⊇ N(k−1), |N(k − 1)| = k−1, |N(k)| = k, sayN(k−1) = {1, 2, . . . , k−1},
N(k) = {1, 2, . . . , k}, and (εj)j∈N(k) ∈ Rk

++, R(k−1) ≡ (R′
N(k−1), R−N(k−1)) ∈ Rn and

R(k) ≡ (R′
N(k), R−N(k)) ∈ Rn such that

(i-a-k) zk Pk fk(R
(k−1)) and

(i-b-k) xk �= 0,
(ii-a-k) ε1 < min({p, 1

2
(V R1(x1; f1(R))− t1)} \ {0}) and R′

1 = RQ(z1, ε1),

(ii-b-k) for each j ∈ N(k) \ {1}, εj < min{εj−1,
1
2
(V Rj(xj; fj(R

(j−1))) − tj)} and R′
j =

RQ(zj, εj), and
(ii-c) for each j ∈ N(k − 1), εk+1 < tj + εj,
(iii-k) xk(R

(k)) �= xk and zk P
′
k fk(R

(k)),
(iv-k) xk(R

(k)) /∈ {xl}l∈N(k), and
(v-k) there is j ∈ N \N(k) such that xj(R

(k)) ∈ {xl}l∈N(k) and zj Pj fj(R
(k)).

Inductive Step: (i) By (iv-k), there is j ∈ N \ N(k) such that zj Pj fj(R
(k)). Without

loss of generality, let j = k+1. Then, (i-a) holds. By individual rationality, zk+1 ∈ L×R+,
(i-a) and Fact 8, xk+1 �= 0. Thus, (i-b) holds.

(ii) The hypothesis (ii-a-k) is equivalent to (ii-a).
Next we show (ii-b). By (i-a), tk+1 < V Rk+1(xk+1; fk+1(R

(k))). By (ii-b-k), εk > 0.
Thus, there is εk+1 > 0 such that εk+1 < min{εk, 12(V Rk+1(xk+1; fk+1(R

(k))) − tk+1)}. By
(i-b), xk+1 �= 0. Thus, by Remark 2, there is a preference R′

k+1 = RQ(zk+1, εk+1). Hence
by (ii-b-k), (ii-b) holds.

Note that by (ii-b), for each j ∈ N(k), εk+1 < εj. Since for each j ∈ N(k), tj ≥ 0,
εk+1 < εj + tj. Hence (ii-c) holds.

(iii) By (i-a), (ii-a) and Lemma 1 (ii), xk+1(R
(k+1)) �= xk+1. By Remark 3, R′

k+1 is
zk+1-favoring and so by Remark 5, zk+1 P

′
k+1 fk+1(R

(k+1)).
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(iv) Suppose that xk+1(R
(k+1)) ∈ {xl}l∈N(k+1). By (iii), since xk+1(R

(k+1)) �= xk+1,
there is j ∈ N(k + 1) \ {k + 1} such that xk+1(R

(k+1)) = xj. By xk+1(R
(k+1)) �= xk+1

and (ii-b), V R′
k+1(xk+1(R

(k+1)); (0, 0)) = εk+1. By individual rationality, tk+1(R
(k+1)) ≤

V R′
k+1(xk+1(R

(k+1)); (0, 0)) = εk+1, and so by (ii-c), tk+1(R
(k+1)) ≤ εk+1 < tj+εj. However,

by Lemma 2 (ii), tk+1(R
(k+1)) ≥ tj + εj. This is a contradiction. Thus, xk+1(R

(k+1)) /∈
{xl}l∈N(k+1).

(v) By (ii-a), (ii-b) and Lemma 2 (i), for each i ∈ N(k + 1), there is j ∈ N such that
xj(R

(k+1)) = xi. By (iv), since xk+1(R
(k+1)) /∈ {xl}l∈N(k+1), there is j ∈ N \N(k+1) such

that xj(R
(k+1)) ∈ {xl}l∈N(k+1).

By Lemma 2 (ii) and (z, p) ∈ W (R), tj(R
(k+1)) ≥ tj + εj > tj = pxj(R(k+1)). Thus,

zj Rj (xj(R
(k+1)), pxj(R(k+1))) (by (z, p) ∈ W (R) )

Pj (xj(R
(k+1)), tj(R

(k+1))) (by tj(R
(k+1)) > pxj(R(k+1)) )

= fj(R
(k+1)).

Hence zj Pj fj(R
(k+1)). The proof of Claim is completed.

By the above Claim, we derive a contradiction. For k = n, there are n + 1 distinct
agents N(n + 1) ⊆ N . However, since |N(n + 1)| = n + 1 and |N | = n, N(n + 1) � N .
This is a contradiction. �

4.3 Preliminary results for Proposition 2

Throughout this subsection, we assume that f satisfies four axioms in Theorem.

Lemma 3. Let R ∈ Rn, (z, p) ∈ Wmin(R) and M+ ≡ {a ∈ M : pa > 0}. Then, for each
i ∈ N ,

(i) ti(R) ≤ pxi(R),
(ii) if fi(R)Pi zi, then ti(R) < pxi(R) and xi(R) ∈ M+, and
(iii) if xi(R) /∈ M+, then ti(R) = 0 and fi(R) Ii zi.

Proof. Let z′ ≡ f(R). Note that by Proposition 1, for each i ∈ N , z′i Ri zi.
(i) Let i ∈ N . By WE-i of (z, p), zi Ri (x

′
i, px′

i
). Thus, by z′i Ri zi, (x

′
i, t

′
i) = z′i Ri (x

′
i, px′

i
)

and so t′i ≤ px′
i
.

(ii) Let i ∈ N be such that z′i Pi zi. By WE-i of (z, p), zi Ri (x
′
i, px′

i
). Thus, by z′i Pi zi,

(x′
i, t

′
i) = z′i Pi (x

′
i, px′

i
) and so t′i < px′

i
. Since t′i ≥ 0, 0 ≤ t′i < px′

i
, and so x′

i ∈ M+.
(iii) Let i ∈ N be such that x′

i /∈ M+. First we show that t′i = 0. By (i) and x′
i /∈ M+,

t′i ≤ px′
i
= 0. By t′i ≥ 0, t′i = 0.

Next we show that z′i Ii zi. Suppose that z′i Pi zi. Then by (ii), x′
i ∈ M+, which

contradicts the assumption that x′
i /∈ M+. Thus x′

i /∈ M+. �
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Fact 13 (Corollary 1 in Morimoto and Serizawa, 2015). Let R ∈ Rn and (z, p) ∈
Wmin(R). Let N+ ≡ {i ∈ N : pxi

> 0} and M+ ≡ {a ∈ M : pa > 0}. Then,
|N+| = |M+| < n.

Lemma 4. Let R ∈ Rn and (z, p) ∈ Wmin(R) and M+ ≡ {a ∈ M : pa > 0}. Let
x′ ∈ A. Assume that there is j1 ∈ N such that xj1 /∈ M+ and x′

j1
∈ M+. Then, there is K

distinct agents J ≡ {j1, . . . , jK} ⊆ N with K ≥ 2 such that (4-a) for each k ∈ {2, . . . , K},
xjk ∈ M+, (4-b) for each k ∈ {1, . . . , K − 1}, x′

jk
= xjk+1

, and (4-c) x′
jK

/∈ M+.

Proof. Since (z, p) ∈ W (R), by WE-ii of (z, p), for each a ∈ M+, there is i ∈ N such that
a = xi. By xj1 /∈ M+ and x′

j1
∈ M+, there is j2 ∈ N \ {j1} such that x′

j1
= xj2 ∈ M+.

We consider the following procedure.

Step 1: If xj2 /∈ M+, this procedure stops. If xj2 ∈ M+, then there is j3 ∈ N \ {j1, j2}
such that x′

j2
= xj3 ∈ M+, and this procedure proceeds to Step 2.

Step t ≥ 2: If xjt+1 /∈ M+, this procedure stops. If xjt+1 ∈ M+, then there is jt+2 ∈
N \{j1, . . . , jt+1} such that x′

jt+1
= xjt+2 ∈ M+, and this procedure proceeds to Step t+1.

Step n− 1: This procedure stops whether xjn ∈ M+ or not.

If this procedure stops at Step t with t < n−1, then the sequence {j1, . . . , jt} satisfies
(4-a) to (4-c). We consider the case where the procedure stops at Step n − 1. We show
that x′

jn /∈ M+. Suppose that x′
jn ∈ M+. Then, by Steps 1 to n − 2, for each i ∈ N ,

x′
i ∈ M+. Thus, |M+| ≥ n. However, by (z, p) ∈ Wmin(R) and Fact 13, |M+| < n. This

is a contradiction. Hence, x′
jn /∈ M+, and so {j1, . . . , jn} satisfies (4-a) to (4-c). �

Given (z, p) ∈ Wmin(R), Ri ∈ R is z-indifferent (i) if n > m, for each a, b ∈ L,
(a, pa) Ii (b, pb), and (ii) if n ≤ m, for each a, b ∈ M , (a, pa) Ii (b, pb).

Given (z, p) ∈ Wmin(R) and M+ = {a ∈ M : pa > 0}, let R−
I (z, p) be the set of

z-indifferent preferences such that for each Ri ∈ R−
I (z, p), each a ∈ L \ M+ and each

(b, t) ∈ M+ × R+ with pb − t > 0, −V Ri(a; (b, t)) < pb − t.

Lemma 5. Let R ∈ Rn, (z, p) ∈ Wmin(R) and M+ ≡ {a ∈ M : pa > 0}. Let z′ ≡ f(R).
Then there is no J ≡ {j1, . . . , jK} ⊆ N with K ≥ 2 such that (5-a) Rj1 ∈ R−

I (z, p)
and z′i1 Pi1 zi1 , (5-b) for each k ∈ {2, . . . , K}, x′

jk−1
∈ D(Rjk , p) and z′jk Ijk zjk , and (5-c)

x′
jK

/∈ M+.

Proof. Suppose that there is J ≡ {j1, . . . , jK} ⊆ N with K ≥ 2 satisfying (5-a) to
(5-c). Let (t′′j )j∈J ∈ RK be such that t′′i1 ≡ V Ri1 (x′

iK
; z′i1) and for each k ∈ {2, . . . , K},

t′′jk ≡ px′
jk−1

. Then, z′i1 Ii1 (x
′
iK
, t′′i1). Thus J and (t′′j )j∈J satisfies condition (i) of Pareto-

dominating trading cycle. Note that by (5-b), for each k ∈ {2, . . . , K}, z′jk Ijk zjk Ijk (x′
jk−1

, px′
jk−1

) =

(x′
jk−1

, t′′jk), and so z′jk Ijk (x
′
jk−1

, t′′jk). Thus, J and (t′′j )j∈J satisfies condition (ii) of Pareto-
dominating trading cycle.

By (5-a) and Lemma 3 (ii), t′i1 < px′
i1
. Thus byRj1 ∈ R−

I (z, p) and (5-c), −V Rj1 (x′
jK
; z′i1) <

px′
j1
− t′j1 , and so t′′j1 > t′i1 − px′

i1
. Moreover, by (5-b), (5-c) and Lemma 3 (i), for each
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k ∈ {2, . . . , K}, t′jk−1
≤ px′

jk−1
= t′′jk . Thus,∑

j∈J
t′′j =

∑
k∈{2,...,K}

t′′xjk
+ V Rj1 (x′

jK
; z′j1)

>
∑

k∈{2,...,K}
t′′jk + t′j1 − px′

j1

(by −V Rj1 (x′
jK
; z′i1) < px′

j1
− t′j1)

=
∑

k∈{2,...,K}
t′′jk + t′j1 − t′′j2

=
∑

k∈{3,...,K}
t′′jk + t′j1

≥
∑

k∈{3,...,K}
t′jk−1

+ t′j1

=
∑

k∈{1,...,K−1}
t′jk

=
∑

k∈{1,...,K}
t′jk (by t′jK = 0)

Thus J and (t′′j )j∈J satisfy condition (iii) of Pareto-dominating trading cycle. By Fact 10,
z′ is not efficient R; that is, f is not efficient, which is a contradiction. �

Remark 6. Let R ∈ Rn, (z, p) ∈ Wmin(R) and M+ ≡ {a ∈ M : pa > 0}. Let
z′ ≡ f(R). Then there is no pair i, j ∈ N such that (a) Ri ∈ R−

I (z, p) and z′i Pi zi, and
(b) xi ∈ D(Rj, p), z

′
j Ij zj and x′

j /∈ M+.

Proof. This is a special case of Lemma 5 with K = 2. �

Fact 14 (Lemma 11 in Morimoto and Serizawa, 2015). Let R ∈ Rn, (z, p) ∈ Wmin(R).
Let N ′ ⊆ N , R′

N ′ ∈ R−
I (z)

|N ′|, and R′ ≡ (R′
N ′ , R−N ′). Then, (i) (z, p) ∈ Wmin(R′) and

(ii) for each i ∈ N , fi(R
′)R′

i zi.

Lemma 6. Let R ∈ Rn, (z, p) ∈ Wmin(R). Assume that there is i ∈ N such that
fi(R)Pi zi. Let R

′
i ∈ R−

I (z, p). Then, (i) fi(R
′
i, R−i)P

′
i zi and (ii) xi(R

′
i, R−i) ∈ M+.

Proof. (i) Suppose that zi R
′
i fi(R

′
i, R−i). Then by Fact 14 (ii), zi I

′
i fi(R

′
i, R−i). By

R′
i ∈ R−

I (z, p), (xi(R), pxi(R)) I
′
i zi. By fi(R)Pi zi and Lemma 3 (ii), ti(R) < pxi(R), and so

fi(R) = (xi(R), ti(R))P ′
i (xi(R), pxi(R)). Hence,

fi(R) = (xi(R), ti(R))P ′
i (xi(R), pxi(R)) I

′
i zi I

′
i fi(R

′
i, R−i);

that is, fi(R)P ′
i fi(R

′
i, R−i). This contradicts strategy-proofness. Thus, fi(R

′
i, R−i)P

′
i zi.
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(ii) By R′
i ∈ R−

I (z, p) and (i),

fi(R
′
i, R−i)P

′
i zi I

′
i (xi(R

′
i, R−i), pxi(R′

i,R−i)),

and so ti(R
′
i, R−i) < pxi(R′

i,R−i). By no subsidy, 0 ≤ ti(R
′
i, R−i) and hence pxi(R′

i,R−i) > 0.
Thus xi(R

′
i, R−i) ∈ M+. �

Lemma 7. Let R ∈ Rn, (z, p) ∈ Wmin(R). Let N+ ≡ {i ∈ N : pxi
> 0} and N̂ ≡ {i ∈

N : fi(R)Pi zi}. Then, N̂ ⊆ N+,

Proof. If N̂ = ∅, this lemma is trivial. Assume that N̂ �= ∅. Let i ∈ N̂ . Suppose that
i /∈ N+; i.e., fi(R)Pi zi and xi /∈ M+. Without loss of generality, assume that i = 1.

Claim: For each k ≥ 0, there are sets N(k) and N(k + 1) of distinct agents such that
N(k + 1) ⊇ N(k), |N(k)| = k, |N(k + 1)| = k + 1, say N(k) = {1, 2, . . . , k}, N(k + 1) =
{1, 2, . . . , k+1}, and R(k) ≡ (R′

N(k), R−N(k)) ∈ Rn and R(k+1) ≡ (R′
N(k+1), R−N(k+1)) ∈ Rn

such that
(i) fk+1(R

(k))Pk+1 zk+1, xk+1(R
(k)) ∈ M+, and tk+1(R

(k)) < pxk+1(R(k)),

(ii) for each i ∈ N(k + 1), R′
i ∈ R−

I (z, p) and fk+1(R
(k+1))P

(k+1)
k+1 zk+1,

(iii) for each i ∈ N(k + 1), xi(R
(k+1)) ∈ M+,

(iv) there is J (k+1) ≡ {j(k+1)
1 = 1, . . . , j

(k+1)
Tk+1

} ⊆ N with Tk+1 ≥ 2 such that

(a) for each t ∈ {2, . . . , Tk+1}, xjt ∈ M+,
(b) for each t ∈ {1, · · · , Tk+1 − 1}, x

j
(k+1)
t

(R(k+1)) = x
j
(k+1)
t+1

and

(c) x
j
(k+1)
Tk+1

(R(k+1)) /∈ M+,

(v) there is j ∈ J (k+1) \N(k + 1) such that fi(R
(k+1))Pi zi.

We prove Claim by induction on k.

Base Case: k = 0. (i) By assumption, f1(R)P1 z1. By Lemma 3 (i), x1(R) ∈ M+ and
t1(R) < px1(R). Thus, (i) holds.

(ii) Let R′
1 ∈ R−

I (z). By (i) and Lemma 6 (i), f1(R
(1))P ′

1 z1. Thus (ii) holds.
(iii) By (i), (ii) and Lemma 6 (ii), x1(R

(1)) ∈ M+.
(iv) Since x1 /∈ M+ and x1(R

(1)) ∈ M+, by Lemma 4, there is J (1) ≡ {j1 =
1, j2, . . . , jT} ⊆ N satisfying (a)-(c) in Claim (iv). Thus, (iv) holds.

(v) By Fact 14 (ii), for each i ∈ N , fi(R
(1))R

(1)
i zi. Suppose for each j ∈ J (1) \ {j1},

fj(R
(1)) I

(1)
j zj. Then J (1) satisfies (5-a) to (5-c), which contradicts Lemma 5. Thus, there

is j ∈ J (1) \ {j1} such that fj(R
(1))Pj zj. Hence (v) holds.

Inductive Hypothesis: Let k ≥ 1. There are sets N(k − 1) and N(k) of distinct
agents such that N(k − 1) ⊇ N(k), |N(k − 1)| = k − 1, |N(k1)| = k, say N(k − 1) =
{1, 2, . . . , k − 1}, N(k) = {1, 2, . . . , k}, and R(k) ≡ (R′

N(k−1), R−N(k−1)) ∈ Rn and R(k) ≡
(R′

N(k), R−N(k)) ∈ Rn such that

(i-k) fk(R
(k−1))Pk zk, xk(R

(k−1)) ∈ M+, and tk(R
(k−1)) < pxk(Rk−1),
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(ii-k) for each i ∈ N(k), R′
i ∈ R−

I (z) and fk(R
(k))P

(k)
k zk,

(iii-k) for each i ∈ N(k), xi(R
(k)) ∈ M+,

(iv-k) there is J (k) ≡ {j(k)1 = 1, . . . , j
(k)
Tk

} ⊆ N \ {1} with Tk ≥ 2 such that
(a) for each t ∈ {2, . . . , Tk}, xjt ∈ M+,
(b) for each t ∈ {1, · · · , Tk − 1}, x

j
(k)
t
(R(k)) = x

j
(k)
t+1

and

(c) x
j
(k)
Tk

(R(k)) /∈ M+,

(v-k) there is j ∈ J (k) \N(k), fi(R
(k))P

(k)
i zi, and

Induction Step: (i) By (v-k), there is j ∈ J (k) \ N(k) such that fj(R
(k))Pj zj and

xj ∈ M+. Let j ≡ k + 1. Thus, (i) holds.
(ii) Let R′

k+1 ∈ R−
I (z, p). By (ii-k), for each i ∈ N(k + 1), R′

i ∈ R−
I (z, p). By (i) and

Lemma 6 (i), fk+1 P
(k+1)
k+1 zk+1. Thus (ii) holds.

(iii) By (i), (ii) and Lemma 6 (ii), xk+1(R
(k+1)) ∈ M+.

Next we show that for each i ∈ N(k+1)\{k+1}, xi(R
(k+1)) ∈ M+ Suppose that there is

i ∈ N(k+1)\{k+1} such that xi(R
(k+1)) /∈ M+. By Lemma 3 (iii), fi(R

(k+1)) I ′i zi, and so
by i ∈ N(k+1), xk+1(R

(k+1)) ∈ D(R′
i, p). Thus, by R′

k+1 ∈ R−
I (z), fk+1(R

(k+1))P ′
k+1 zk+1,

{k + 1, i} satisfies (a) and (b) in Remark 6.6 This is a contradiction.

(iv) Since x1 /∈ M+ and x1(R
(k+1)) ∈ M+, by Lemma 4, there is J (k+1) ≡ {j(k+1)

1 =

1, . . . , j
(k+1)
Tk+1

} ⊆ N with Tk+1 ≥ 2 satisfying (a)-(c) in Claim (iv). Thus, (iv) holds.

(v) Without loss of generality, let T ≡ Tk+1 and J ≡ {j1 = 1, . . . , jT} = J (k+1).

First, we show that there is j ∈ J such that fj(R
(k+1))P

(k+1)
j zj. Suppose that for

each j ∈ J \ {j1}, fj(R(k+1)) I
(k+1)
j zj. We consider two cases: f1(R

(k+1))P
(k+1)
1 z1 and

f1(R
(k+1)) I

(k+1)
1 z1.

Case 1: f1(R
(k+1))P

(k+1)
1 z1. Then J satisfies (5-a) to (5-c) in Lemma 5, which is a

contradiction.

Case 2: f1(R
(k+1)) I

(k+1)
1 z1. Let H ≡ {h1, . . . , hT+1} = {k + 1} ∪ J ⊆ N be such that

h1 = k + 1 and for each t ∈ {1, . . . , T}, ht+1 = jt. Then H satisfies (5-a) to (5-c) in
Lemma 5, which is a contradiction.

From Cases 1 and 2, there is j ∈ J (k+1) such that fi(R
(k+1))P

(k+1)
i zi.

Next, we show that there is j ∈ J \N(k + 1) such that fj(R
(k+1))P

(k+1)
j zj. Suppose

that for each j ∈ J \N(k+1), fj(R
(k+1)) I

(k+1)
j zj. Let jK ≡ argmaxjs∈J{s ∈ {1, . . . , T} :

js ∈ N(k + 1) ∩ J and fjs(R
(k+1))P

(k+1)
js

zjs}. By (iii), xiK (R
(k+1)) ∈ M+, and so by

(iv), jT �= jK . Hence, K < T . Let H ′ ≡ {h′
1, . . . , h

′
T−K+1} be such that for each

t ∈ {1, . . . , T −K + 1}, h′
t = jK+t−1. Then H ′ satisfies (5-a) to (5-c) in Lemma 5, which

is a contradiction. Thus, there is j ∈ J (k+1) \N(k + 1). We complete the proof of Claim.

6Precisely, since (a) R′
k+1 ∈ R−

I (z) and fk+1(R
(k+1))P ′

k+1 zk+1, and (b) xk+1(R
(k+1)) ∈ D(R′

i, p),

fi(R
(k+1)) I ′i zi and xi(R

(k+1)) /∈ M+, {k + 1, i} satisfies the conditions in Remark 6.

14



By using the above Claim, we prove Lemma 7. For k = n, there are n + 1 distinct
agents N(n + 1) ⊆ N . However, since |N(n + 1)| = n + 1 and |N | = n, N(n + 1) � N .
This is a contradiction. �

We have the following corollary of Lemma 7.

Corollary 1. Let R ∈ Rn, (z, p) ∈ Wmin(R). Let N+ ≡ {i ∈ N : pxi
> 0}. Let

N ′ ⊆ N and R′ ≡ (R′
N ′ , R−N ′) ∈ Rn be such that for each i ∈ N ′, R′

i ∈ R−
I (z, p), and let

N̂ ′ ≡ {i ∈ N : fi(R
′)P ′

i zi}. Then, N̂ ′ ⊆ N+.

Proof. By Fact 14 (i), (z, p) ∈ Wmin(R′). Thus by Lemma 7, N̂ ′ ⊆ N+. �
Given R ∈ Rn, p ∈ Rm

+ and L′ ⊆ L, let N(R, p, L′) ≡ {i ∈ N : D(Ri, p) ∩ L′ �= ∅}.
Note that N(R, p, ∅) = {i ∈ N : D(Ri, p) ∩ ∅ �= ∅} = {i ∈ N : ∅ �= ∅} = ∅.
Remark 7. Let R ∈ Rn, p ∈ Rm

+ and L1, L2, . . . , LK ⊆ L. Then N(R, p,
⋃K

k=1 Lk) =⋃K
k=1 N(R, p, Lk).

Fact 15 (Theorem 1 in Morimoto and Serizawa, 2015). Let R ∈ Rn and (z, p) ∈ Wmin(R).
LetM+ ≡ {a ∈ M : pa > 0}. Then for eachM ′ ⊆ M+ withM ′ �= ∅, |N(R, p,M ′)| > |M ′|.
Remark 8. Let R ∈ Rn and (z, p) ∈ Wmin(R) and M+ ≡ {a ∈ M : pa > 0} and
M ′ ⊆ M+ with M ′ �= ∅. Let N ′ ⊆ N and R′ ≡ (R′

N ′ , R−N ′) ∈ Rn be such that for each
i ∈ N ′, R′

i ∈ R−
I (z, p). Then |N(R′, p,M ′)| > |M ′|.

Proof. By Fact 14 (i), (z, p) ∈ Wmin(R′). Thus by Fact 15, |N(R′, p,M ′)| > |M ′|. �

Lemma 8. Let x ∈ A be a feasible object allocation. Let R ∈ Rn and p ∈ R+. Let
J(0) ⊆ N and {J(t)}∞t=0 ⊆ N be the sequence of the set of agents such that J(1) ≡
N(R, p, {xi}i∈J(0))\J(0) and for each T ≥ 1, J(T+1) ≡ N(R, p, {xi}i∈⋃T

t=0 J(t)
)\⋃T

t=0 J(t).

Then for each T ≥ 0, J(T + 1) = N(R, p, {xi}i∈J(T )) \
⋃T

t=0 J(t).

Proof. We prove this lemma by induction. This lemma holds for T = 0 obviously. As a
base case, we consider the case T = 1

Base Case: T = 1. Then, by Remark 7

J(2) = N(R, p, {xi}i∈(J(0)∪J(1))) \ (J(0) ∪ J(1))

=
[
N(R, p, {xi}i∈J(0)) ∪N(R, p, {xi}i∈J(1)))

] \ (J(0) ∪ J(1))

=
[
N(R, p, {xi}i∈J(0)) \ (J(0) ∪ J(1))

] ∪ [
N(R, p, {xi}i∈J(1)) \ (J(0) ∪ J(1))

]
=

[(
N(R, p, {xi}i∈J(0)) \ J(0)

] \ J(1)] ∪ [
N(R, p, {xi}i∈J(1)) \ (J(0) ∪ J(1))

]
= (J(1) \ J(1)) ∪ [

N(R, p, {xi}i∈J(1)) \ (J(0) ∪ J(1))
]

= ∅ ∪ [
N(R, p, {xi}i∈J(1)) \ (J(0) ∪ J(1))

]
= N(R, p, {xi}i∈J(1)) \ (J(0) ∪ J(1)).
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Inductive hypothesis: Let T ≥ 1. Assume that for each t ∈ {1, . . . , T}, J(t) =
N(R, p, {xi}i∈J(t−1)) \

⋃t
s=0 J(s).

Inductive Step: Let T ≥ 1. Then by Remark 7 and inductive hypothesis,

J(T + 1) = N(R, p, {xi}i∈⋃T
t=0 J(t)

) \
T⋃
t=0

J(t)

= N(R, p,
T⋃
t=0

{xi}i∈J(t)) \
T⋃
t=0

J(t)

=
T⋃
t=0

N(R, p, {xi}i∈J(t)) \
T⋃
t=0

J(t)

=

[
T−1⋃
t=0

[N(R, p, {xi}i∈J(t)) \
t⋃

s=0

J(s)] \ (J(t+ 1) ∪ · · · ∪ J(T ))

]

∪
[
N(R, p, {xi}i∈J(T )) \

T⋃
t=0

J(t)

]

=

[
T−1⋃
t=0

[J(t+ 1) \ (J(t+ 1) ∪ · · · ∪ J(T ))]

]
∪
[
N(R, p, {xi}i∈J(T )) \

T⋃
t=0

J(t)

]

= ∅ ∪ · · · ∪ ∅︸ ︷︷ ︸
T times

∪N(R, p, {xi}i∈J(T )) \
T⋃
t=0

J(t)

= N(R, p, {xi}i∈J(T )) \
T⋃
t=0

J(t).

�

Lemma 9. Let R ∈ Rn and (z, p) ∈ Wmin(R). Let M+ ≡ {a ∈ M : pa > 0}. Assume
that there are N(k) = {1, . . . , k} ⊆ N and R(k) ≡ (R′

N(k), R−N(k)) ∈ Rn such that for

each i ∈ N(k), R′
i ∈ R−

I (z). Let N̂(k) ≡ {i ∈ N : fi(R
(k))Pi zi}. Assume that N̂(k) �= ∅.

Then, N̂(k) � N(k).

Proof. For convenience, let J(0) ≡ N̂(k). Suppose that J(0) = N̂(k) ⊆ N(k). We prove
this lemma by induction.

Claim: For each T ≥ 0, there is {J(t)}T+1
t=0 ⊆ N such that

(i) J(T + 1) ≡ N(R(k), p, {xj(R
(k))}j∈J(T )) \

⋃T
t=0 J(t) �= ∅,

(ii) for each j ∈ J(T + 1), xj(R
(k)) ∈ M+, and

(iii) N(R(k), p, {xj(R
(k))}j∈⋃T+1

t=0 J(t)) \
⋃T+1

t=0 J(t) �= ∅.

16



Base Case: T = 0. (i) Let J(1) ≡ N(R(k), p, {xi}i∈J(0)) \ J(0). By Lemma 3 (ii), for
each i ∈ J(0), xi(R

(k)) ∈ M+. Since p = pmin(R), by Remark 8, |N(R(k), p, {xi}i∈J(0))| >
|{xi}i∈J(0)| = |J(0)|. Thus, J(1) = N(R(k), p, {xi}i∈J(0)) \ J(0) �= ∅. Hence (i) holds.

(ii) Suppose that there is j ∈ J(1) such that xj(R
(k)) /∈ M+. Let h ∈ N̂(k) be such

that xh(R
(k)) ∈ D(R

(k)
j , p). By j /∈ J(0) = N̂(k), fj(R

(k)) I(k) zj. Thus, {h, j} satisfies (a)

and (b) in Remark 6, which is a contradiction. Thus, for each j ∈ J(1), xj(R
(k)) ∈ M+.

(iii) By (ii), {xj(R
(k))}j∈J(1) ⊆ M+. Thus, by {xj(R

(k))}j∈J(0) ⊆ M+, p = pmin(R(k))
and Remark 8, |N(R(k), p, {xj(R

(k))}j∈J(0)∪J(1))| > |{xj(R
(k))}j∈J(0)∪J(1)| = |J(0) ∪ J(1)|.

Thus, N(R(k), p, {xj(R
(k))}j∈J(0)∪J(1)) \ (J(0) ∪ J(1)) �= ∅.

Inductive Hypothesis: Let T ≥ 1. Assume that for each t ∈ {1, . . . , T}, there is
{J(s)}Ts=0 ⊆ N such that
(i-t) J(t) = N(R(k), p, {xj(R

(k))}j∈J(t−1)) \
⋃t−1

s=0 J(s) �= ∅,
(ii-t) for each j ∈ J(t), xj(R

(k)) ∈ M+, and
(iii-t) N(R(k), p, {xj(R

(k))}j∈⋃t
s=0 J(s)

) \⋃t
s=0 J(s) �= ∅.

Inductive Step: (i) Let J(T + 1) ≡ N(R(k), p, {xj(R
(k))}j∈⋃T

s=0 J(s)
) \ ⋃T

s=0 J(s). By

(iii-T), J(T + 1) �= ∅. By Lemma 8, J(T + 1) = N(R(k), p, {xj(R
(k))}j∈J(T )) \

⋃T
s=0 J(s).

Thus, (i) holds.
(ii) Suppose that there is jT+1 ∈ J(T + 1) such that xjT+1

(R(k)) /∈ M+. Note that

by (i) and (i-1) to (i-T ), there is {h, j1, . . . , jT+1} ⊆ N such that, h ∈ N̂(k) = J(0),

for each t ∈ {1, . . . , T}, jt ∈ J(t), xh(R
(k)) ∈ D(R

(k)
j1
, p), and for each t ∈ {1, . . . , T},

xjt(R
(k)) ∈ D(R

(k)
jt+1

, p). Since for each t ∈ {1, . . . , T + 1}, J(t) ∩ J(0) = J(t) ∩ N̂(k) = ∅,
for each t ∈ {1, . . . , T + 1}, fjt(R(k)) I

(k)
jt

zjt . Let H ≡ {h1, . . . , hT+2} ⊆ N such that
h1 = h, and for each t ∈ {1, . . . , T + 1}, ht+1 = jt. Then H satisfies (5-a) to (5-c) in
Lemma 5, which is a contradiction.

(iii) By (ii-k) and (ii), {xj(R
(k))}j∈⋃T+1

s=0 J(s) ⊆ M+. Thus, by Remark 8,

|N(R(k), p, {xj(R
(k))}j∈⋃T+1

s=0 J(s)| > |{xj(R
(k))}j∈⋃T+1

s=0 J(s)| = |⋃T+1
s=0 J(s)|. Thus, N(R(k), p, M̂∪

{xj(R
(k))}j∈N ′(l+1)) \

⋃T+1
s=0 J(s) �= ∅. We complete the proof of Claim.

By the above claim, we derive a contradiction. For T = n, by the definition of
{J(s)}ns=0, |

⋃n
s=0 J(s)| ≥ n+1 and

⋃n
s=0 J(s) ⊆ N . However, since |N | = n,

⋃n
s=0 J(s) �

N . This is a contradiction. �

4.4 Proof of Proposition 2

Proof. Suppose that there is i ∈ N such that fi(R)Pi zi. Without loss of generality, i = 1.

Claim: For each k ≥ 0, there are sets N(k) and N(k + 1) of distinct agents such that
N(k + 1) ⊇ N(k), |N(k)| = k, |N(k + 1)| = k + 1, say N(k) = {1, 2, . . . , k}, N(k + 1) =
{1, 2, . . . , k+1}, and R(k) ≡ (R′

N(k), R−N(k)) ∈ Rn and R(k+1) ≡ (R′
N(k+1), R−N(k+1)) ∈ Rn

such that
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(i) fk+1(R
(k))Pk+1 zk+1

(ii) for each i ∈ N(k + 1), R′
i ∈ R−

I (z, p) and fk+1(R
(k+1))P ′

k+1 zk+1,

(iii) N̂(k + 1) �= ∅ and N̂(k + 1) ⊆ N+, and
(iv) N(k + 1) � N+.

Base Case: Let k = 0. (i) By assumption, (i) holds.
(ii) Let R′

1 ∈ R−
I (z). By (i) and Lemma 6, f1(R

(1))P ′
1 z1.

(iii) By (ii), 1 ∈ N̂(1) and so N̂(1) �= ∅. By Corollary 2, N̂(1) ⊆ N+.
(iv) By (iii) and Lemma 9, N̂(1) � N(1). Thus, there is j ∈ N̂(1) \N(1). Hence, by

(iii), since j ∈ N+, N(1) � N+.

Inductive Hypothesis: Let k ≥ 1. There are sets N(k− 1) and N(k) of distinct agents
such thatN(k−1) ⊇ N(k), |N(k − 1)| = k−1, |N(k)| = k, sayN(k−1) = {1, 2, . . . , k−1},
N(k) = {1, 2, . . . , k}, and R(k) ≡ (R′

N(k−1), R−N(k−1)) ∈ Rn and R(k) ≡ (R′
N(k), R−N(k)) ∈

Rn such that
(i-k) fk(R

(k−1))P
(k)
k zk,

(ii-k) for each i ∈ N(k), R′
i ∈ R−

I (z, p) and fk(R
(k))P ′

k zk,

(iii-k) N̂(k) �= ∅ and N̂(k) ⊆ N+, and
(iv-k) N(k) � N+

Inductive Step: (i) By (iii-k), N̂(k) �= ∅. Thus, by Lemma 9, N̂(k) � N(k). Hence

there is j ∈ N̂(k) \ N(k); that is, j /∈ N(k) and fj(R
(k))Pj zj. Let j ≡ k + 1. Thus (i)

holds.
(ii) Let R′

k+1 ∈ R−
I (z, p). Thus by (ii-k), for each i ∈ N(k + 1), R′

i ∈ R−
I (z, p).

Moreover, by (i) and Lemma 6 (i), fk+1(R
(k+1))P ′

k+1 zk+1. Thus (ii) holds.

(iii) By (ii), k + 1 ∈ N̂(k + 1) and so N̂(k + 1) �= ∅. By Corollary 2, N̂(k + 1) ⊆ N+.
(iv) By (iii) and Lemma 9, N̂(k+1) � N(k+1). Thus, there is j ∈ N̂(k+1)\N(k+1).

Hence, by j ∈ N̂(k+1) and (iii), j ∈ N+. Thus, N(k+1) � N+. Therefore, we complete
the proof of Claim.

By the above claim, we prove Proposition 2. For k = n, there are n+1 distinct agents
N(n+ 1) ⊆ N . However, since |N(n+ 1)| = n+ 1 and |N | = n, N(n+ 1) � N . This is a
contradiction. �

4.5 Proof of Theorem 1

Proof. Let R ∈ Rn and (z, p) ∈ Wmin(R). By Propositions 1 and 2, for each i ∈ N ,
fi(R) Ii zi. We show that (f(R), p) satisfies WE-i and WE-ii.

Suppose that (f(R), p) does not satisfy WE-i; that is, there is i ∈ N such that
xi(R) /∈ D(Ri, p) or ti(R) �= pxi(R). Note that if xi(R) /∈ D(Ri, p), then by fi(R) Ii zi
(xi(R), ti(R)) = fi(R) Ii zi Pi (xi(R), pxi(R)), and so ti(R) < pxi(R). Hence we need only
to consider the case ti(R) < pxi(R). Also note that by Lemma 3 (i), for each i ∈ N ,
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ti(R) ≤ pxi(R). Thus, ∑
k∈N

tk(R) <
∑
k∈N

pxk(R) ≤
∑
a∈M

pa =
∑
k∈N

tk.

Hence, z Pareto-dominates f(R), contradicting efficiency. Therefore, for each i ∈ N ,
xi(R) ∈ D(Ri, p); that is, zi Ii (xi(R), pxi(R)). Since for each i ∈ N , fi(R) Ii zi,

(xi(R), ti(R)) = fi(R) Ii zi (xi(R), pxi(R)).

Hence, for each i ∈ N , ti(R) = pxi(R), which means that (f(R), p) satisfies WE-i.
Next, we show that for each a ∈ M with pa > 0, there is i ∈ N such that xi(R) = a.

Suppose that there is a ∈ M such that pa > 0 but for each i ∈ N , xi(R) �= a. Since∑
k∈N tk =

∑
b∈M+ pb, and

∑
k∈N tk(R) ≤ ∑

b∈M+ pb − pa,∑
k∈N

tk(R) ≤
∑
b∈M+

pb − pa <
∑
b∈M+

pb =
∑
k∈N

tk,

Since for each i ∈ N , fi(R) Ii zi, z Pareto-dominates f(R), contradicting efficiency. Hence,
for each a ∈ M+, there is i ∈ N such that xi(R) = a, which means that (f(R), p) satisfies
WE-ii.

Therefore, (f(R), p) ∈ W (R), and by p = pmin(R), f(R) ∈ Wmin(R) ; that is, f(R) is
a minimum price Walrasian allocation for R. �

5 Related literatures

In the cases of homogeneous objects, Saitoh and Serizawa (2008) and Sakai (2008) char-
acterize the generalized Vickrey rule by individual rationality, no subsidy, efficiency and
strategy-proofness on the classical domain; moreover, Saitoh and Serizawa (2008) also
show the same characterization on the positive income domain and the negative income
domain.

Zhou and Serizawa (2018) also maintain unit-demand preferences, but study the spe-
cial class of preferences, the common-tiered domains. It says that objects are partitioned
into several tiers, and if objects are equally priced, agents prefer an object in the higher
tier to one in the lower. They show that when we sort objects and the tier including nth
highest objects is singleton, for an arbitrary numbers of agents and objects, the minimum
price Walrasian rule is the only rule satisfying same four properties on the common-tiered
domains; moreover, when the number of agents is less than or equal to the number of
objects including null object, on the common-tiered positive income effect domains, the
minimum price Walrasian rule is also the only rule satisfying same four properties.

There is also the literature on auction with non-quasi-linear preferences admitting
multi-demand in various settings. Kazumura and Serizawa (2016) study classes of prefer-
ences that include unit-demand preferences and additionally includes at least one multi-
demand preference, and show that no rule satisfies the four properties on such a domain.
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Malik and Mishra (2021) study the special classes of preferences, “dichotomous” domains.
A preference is dichotomous if there is a set of objects such that the valuations of its su-
persets are constant and the valuations of other sets are zero. A dichotomous domain
includes all such dichotomous preferences for a given set of objects. They show that no
rule satisfies the four properties on a dichotomous domain, but that the generalized Vick-
rey rule is the only rule satisfying the four properties on a class of dichotomous preferences
exhibiting positive income effects.

Baisa (2020) assumes that objects are homogeneous and shows that on the class of
preferences exhibiting decreasing marginal valuations, positive income effect, and single-
crossing property, if the preferences are parametrized by one dimensional types, there is
a rule satisfying the above four properties, but that if types are multi-dimensional, no
rule satisfies these properties. Shinozaki et al. (2020) also assume the homogeneity of
objects, and show that on the class of preferences includes sufficiently various preferences
exhibiting non-decreasing marginal valuations (minimal richness), the generalized Vickrey
rule is the only rule satisfying the four properties, but that no rule satisfies these properties
on the class of preferences that additionally includes at least one preference exhibiting
decreasing marginal valuations.

There is another topic on auction with non-quasi-linear preference which focus on ex-
post revenue maximization. On the unit-demand setting, Kazumura et al. (2020B) and
Sakai and Serizawa (2020) show that in the class of auction rules satisfying individual ra-
tionality, no subsidy, non-wastefulness, equal treatment of equals and strategy-proofness,
a minimum price Walrasian rule is the unique rule ex-post revenue maximizing rule.
Recently, Kazumura et al. (2020A) develop methods to analyze strategy-proof rules in
general settings including multi-demand cases.

6 Conclusion

By extending the results of Morimoto and Serizawa (2015), we showed that for an ar-
bitrary numbers of agents and objects, the minimum price Walrasian rule is the unique
rule satisfying individual rationality, no subsidy, efficiency and strategy-proofness on the
classical domain. We believe that our technique will be useful for the analysis of auction
in the environment of non-quesi-linear preferences.
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