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Abstract 
 
Current policies focus on reducing CO2 emissions, neglecting the existence and impact 
of other air pollutants such as NO2, NH3, NMVOC, PPM10, PPM2.5, and SO2. We devise a 
strategy to model those emissions and related social cost accounting for diverging 
social and private discount rates in an intertemporal optimization framework that 
aims to predict firm behavior. We derive optimal CO2 and air pollution taxes above the 
social cost of carbon or social cost of air pollution, respectively, when social discount 
rates are below private ones. We implement the modeling strategy in the EUREGEN 
model to determine the technology and emission mix of the European power market 
until 2050 and quantify aggregated social cost. No taxation yields aggregated social 
cost of 5,145 billion € in the period 2020 to 2050. Taxing CO2 emissions only leads to 
aggregated social cost of 794 billion € and promotes the deployment of CCS tech-
nologies. Taxing air pollution only results in aggregated social cost of 2,091 billion € 
and fosters the deployment of nuclear. Taxing both reduces cost to 622 billion €. Wind 
and solar are almost unaffected by internalization choices.  
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1. Introduction

Climate change calls for prompt action by policymakers, firms, and consumers. The overarching
goal is to reduce CO2 emissions in order to keep global warming far below 2° Celsius. However,
a focus on CO2 emissions and climate change neglects local effects from related air pollution and
associated damages on human health or loss of biodiversity, respectively. We address this issue
by showing how power system transformations and related social cost change when accounting for
social cost of air pollution (SCAP) as well as social cost of carbon (SSC).

With more than 40%, electricity generation is the biggest contributor of the 33.4 Gt of energy-
related CO2 emissions (IEA, 2020). Electricity generation and its role for emitting CO2 significantly
increased over the last decades—leaving aside a pandemic-driven drop in 2020—and is expected
to assume an ever bigger share due to electrification trends (digitization, air conditioning, electric
mobility, economic development). Thus, many policies focus on decarbonizing electricity gener-
ation. For example, the European Union Emission Trading System (EU ETS) reduced—among
other supplementary policies—CO2 emissions from power generation from 1.191 to 0.844 Gt in the
period 2013 to 2020. The European Union even proposes more ambitious targets to achieve carbon
neutrality by 2045. However, European actions alone will never completely suffice to reduce CO2

emissions in other parts of the world and, more importantly, climate change’s global impact. The
characteristic of CO2 emissions as public bad (or reducing them as public good) allows for free
riding and hampers the binding and enforceable implementation of goals and targets. Air pollution
emissions, in turn, have local impacts and every country should undertake efforts to internalize
those local damages. Thus, shifting the focus away from sole mitigation of CO2 emissions towards
the internalization of air pollution might be a complementary policy to partly resolve the free
riding problem. Additionally, some climate neutral technologies such as bio-CCS (biomass with
carbon capture and storage) deprive CO2 emissions but still pollute, giving way to interesting
questions about how to design a technology mix with low carbon and low air pollution emissions.

We develop a strategy to depict SCC and SCAP in an intertemporal optimization framework,
thereby accounting for diverging discount rates when evaluating firms’ cash flows (investment,
fixed, and variable cost), SCC, and SCAP. The underlying assumption is that SCC require low-
est (social) discount rates due to the long-lasting intergenerational impact of CO2 emissions and
firms face highest (private) discount rates. Damages from air pollution emissions would be (so-
cially) discounted in the meantime because their impact is immediate and not as long-lasting
and intergenerational, as is the case for CO2 emissions. We implement this strategy in the
EUREGEN model, a partial equilibrium model of the European power market that optimizes
investments, dispatch, and decommissioning of multiple generation, storage, and transmission
technologies from 2020 to 2050 (Weissbart and Blanford, 2019). We obtain air pollution emis-
sion factors from EPA (1995), Cai et al. (2012), EEA (2019), UBA (2019). We calibrate the
DICE model (Nordhaus, 2014) to deliver SCC that match population projections from the World
Bank (https://databank.worldbank.org/source/population-estimates-and-projections) as well as
GDP projections from EUREGEN’s CGE calibration (Mier et al., 2020, Siala et al., 2020). We
obtain SCAP from the externE project series (Friedrich and Bickel, 2001).
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Our general theoretical contribution demonstrates how diverging social and private discount
rates can be implemented simultaneously in an intertemporal optimizing framework (such as inte-
grated assessment, energy system, and power market models). This makes it possible to evaluate
firm cash flows differently from social cost occurring when emitting either CO2 or one of the air
pollutants under investigation. Social discount rates below private ones and the existence of emis-
sions requires taxing CO2 emissions and air pollution at rates above their marginal damages, SCC
or SCAP, respectively. For example, assuming SCC of 62 e/ton in 2050, a social discount rate of
1.5%, and a private discount rate of 7%, demands for an optimal CO2 tax of 354 e/ton to enforce
full internalization of cost because firms discount cash flows including taxes (in their variable cost)
differently to a social planner.

Our numerical contribution delivers insight on three subjects. First, we calculate how the
European power system varies under different internalization specifications (no taxation, CO2

taxation, air pollutant taxation, CO2 and air pollutant taxation). We test robustness of results by
varying assumptions about emission factors, SCC, SCAP, and technological progress of wind power.
Second, we determine the impact of diverging discount rates on the technology mix, emissions, and
social cost. Third, we analyze distributional and trade effects by running different specifications
that differ in the weighting of SCAP across countries, biomass limits, and tradability of biomass.

Focusing solely on the internalization of SCC, leads to aggregate total SCC of 345 billion e
until 2050. Total SCAP come to 449 billion e (sum of social cost of 794 billion e). When only
internalizing SCAP, total SCC come to 1,761 billion e and total SCAP are at 330 billion e (sum
of 2,091 billion e). Internalizing SCC as well as SCAP, leads to aggregate total SCC (SCAP, sum)
of 456 (166, 622) billion e. Thus, solely internalizing SCAP is a bad substitute for internalizing
SCC. However, also internalizing SCAP additionally to SCC leads to lowest social cost, where total
SCC are higher (compared to only internalizing SCC) but total SCAP are substantially lower than
for the case where we internalize SCAP only. Thus, SCC internalization is a good complement of
SCAP internalization.

We find that wind and solar deployment is almost unaffected by internalization choice, emis-
sion factor assumptions, SCC, and SCAP specifications. The economically viable wind and solar
potential is used even when SCC values (and corresponding optimal tax rates) are low. Thus, in-
creasing or decreasing them does not lead to relevant changes. In turn, we observe a CCS-nuclear
substitution. Higher SCAP foster nuclear expansion at the cost of CCS technologies because those
technologies still emit air pollutants that come at fundamental cost. High SCC as well as relaxing
biomass limits and trade barriers in turn result in the promotion of bio-CCS while reducing wind,
gas-CCS, and nuclear.

Section 2 relates our contribution to the literature. Section 3 introduces the modeling strategy
within an intertemporal optimization framework and optimal taxation following from diverging
discount rates. Section 4 presents the calibration by focusing on emissions, social cost, and the
role of discounting and resulting taxation. Sections 5, 6, and 7 show results. Section 5 describes
the impact of different internalization choices and tests sensitivity of emission factor assumptions,
SCC, and SCAP, as well as assumptions about the technological progress of wind power. Section
6 presents the role of discounting when internalizing social cost by intertemporal taxation. Section
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7 analyzes distributional effects, the role of biomass limits, and the impact of biomass tradability.
Section 8 discusses results by showing general substitution patterns and aggregated levels of social
cost. Section 9 concludes.

2. Literature

Our paper relates to the literature about models aiming to internalize externalities, about
discount rates in (integrated assessment, energy system, or power market) models, and about
optimal taxation of emissions when social and private discount rates differ. Our paper does not
relate to literature about technological details when it comes to CO2 and air pollutant emission
factors (see Subsection 4.1). We also do not discuss how (not) to determine SCC (e.g., Nordhaus,
2014), SCAP (e.g., Douthwaite et al., 2003), or other social cost from electricity generation (e.g.,
Sheldon et al., 2015).1 We deploy existing models (SCC) or estimates (SCAP) to determine SCC
and SCAP (see Subsection 4.2). Moreover, we also do not contribute to the discussion whether to
apply constant or hyperbolic discount rates (e.g., Arrow et al., 2014), time-inconsistency problems
arising from intertemporal taxation and different forms of discount rates (e.g., Strulik, 2021), the
general level of (social) discount rates (e.g., Drupp et al., 2018), or how to discount climate change
(e.g., Stern, 2008).2

The literature agrees that social and private discount rates differ (von Below, 2012, Belfiori,
2017, 2018, Barrage, 2018). Climate change impact should be discounted with the lowest possible
discount rate due to its long-lasting and intergenerational effects (Weitzman, 1998). In turn, firm
discount rates follow from capital market interest rates (Steinbach, 2015). However, given that CO2

emissions, air pollutant emissions, and investment, fixed, and variable cost of firms have diverging
discount rates, we encounter a problem of setting optimal intertemporal tax rates on CO2 and air
pollutant emissions. We show that intertemporal models aiming to reflect firm behavior need to tax
CO2 and air pollutant emissions at rates above their marginal damage (SCC, SCAP) because those
emissions’ social discount rates lie below those of firms. This finding corresponds to those of Belfiori
(2017) and Barrage (2018). Belfiori (2017) shows that the optimal carbon tax does not equal in
general the SCC and that social discount rates are below those of private individuals. Barrage
(2018) highlights that social planners and households discount the future differently. Additional
intertemporal effects distort optimal decisions in general equilibrium, requiring massive taxation
decisions to restore efficiency. In our partial equilibrium modeling task, we do not have general
equilibrium distortions, however, we do have diverging discount rates between social planner (for

1Owen (2004), Roth and Ambs (2004), Owen (2006), National Research Council (2010), Galetovic and Muñoz
(2013), McCubbin and Sovacool (2013), Thopil and Pouris (2015), Rhodes et al. (2017) focus on the determination
of final cost of electricity generating technologies, whereas Sundqvist (2004) explains differences in estimates by
reviewing the past literature. See also Hazilla and Kopp (1990) for a discussion of differences between social and
private cost from environmental quality regulations.

2For parsimony, we simply assume in our standard specification social discount rates of 1.5% to discount SCC
and 3% to discount SCAP, and private discount rates of 7% to discount firm cash flows from investments, fixed,
and variable cost including tax payments.
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SCC and SCAP) and firms. The result are intertemporal tax rates above SCC and SCAP (when
SCC and SCAP discount rates of the social planner are below those of firms).

Only few papers address the issue of discount rates in energy system models. Steinbach (2015)
argues that social discount rates differ from private ones and gives guidance on how to determine
those rates. Garćıa-Gusano et al. (2016) and Mier and Azarova (2021) show that diverging discount
rates considerably impact results. This is supported by Shindell (2015) who presents results for
different discount rates and concludes that some air pollutant damages dominate for low and others
when assuming high rates. However, he refrains from analyzing the role of applying different
discount rates for CO2 and air pollutant emissions simultaneously as done in our paper. The
authors are not aware of any contribution attempting to implement multiple discount rates in one
intertemporal optimization framework and how to deal with the resulting internalization (taxation)
problem.

Klaassen and Riahi (2007) apply MESSAGE-MACRO to internalize air pollution damages but
refrain from internalizing climate damages (as we do). They also take SCAP estimates from the
externE project series (that are similar but older than ours). However, their focus is completely
different since we focus on the internalization decomposition, the role of intertemporal taxation,
and distributional as well as trade effects. Additionally, our most important technologies for SCC
and SCAP internalization, bio-CCS and gas-CCS, are not part of their technology set. Final
results can thus no longer be compared. Nam et al. (2010) find, using CGE analysis for 18
European countries, fundamental welfare losses (2%) from air pollution. Barteczko-Hibbert et al.
(2014) integrate life cycle assessment (LCA) and electricity generation but focus on greenhouse
gases and less on local damages from air pollution. Like our paper, Shindell (2015) extends
the SCC framework to incorporate (local) damages from air pollutants. He finds environmental
damages of 330 to 970 billion $/year for US electricity generation. Our 2020 damages estimates are
fundamentally lower, but the underlying message is similar: also accounting for damages from air
pollutants considerably changes final social cost. Also, Holland et al. (2020) use local and global
damages from CO2 emissions and air pollution. Using an integrated assessment model, they find
that damages fell from $245 billion in 2010 to $133 billion in 2017. Our 2020 annual damages are
at 40 billion e when not internalizing social cost (by taxation). However, US CO2 emissions are
approximately double those of the European power market and thus damages are fundamentally
higher in Holland et al. (2020).

3. Modeling Strategy

Power market models in general minimize the stream of cost C (t) from investments, operation
and maintenance, and dispatch by choosing to install capacities Q and generation Y for all time
periods t. Intertemporal models—such as EUREGEN—additionally discount cash flows by using
the discount factor δ (t), i.e., the minimization problem is given by

min
Q,Y

∑
t

δ (t)C (t) . (1)
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We add social cost by using different discount factors. δcar (t) is the time-varying discount factor
for CO2 emissions and δair (t) is the one for air pollution. We assume that δcar (t) ≤ δair (t) ≤ δ (t)
to reflect the long-lasting (intergenerational) impact of CO2 emissions (lowest discount rate) and
the myopic behavior of firms (highest discount rate). We use subscripts i, r to denote technologies
and regions, respectively, and parentheses for vintages v (year of installation) and periods t (current
time period). For example, Yir (v, t) is generation from technology i in region r in period t whose
capacity is installed in period v. Denote by SCC (t) the social cost of carbon and by SCAPr,ap (t)
the region-specific social cost of air pollution by air pollutant ap (both in e/ton). CO2 emission
factor ξcari (v), air pollution emission factor ξairi,ap (v), and power plant efficiency ηi (v) depend on
the vintage. Older vintages have lower efficiencies and higher emissions factors, which results in
higher emissions. Discounted total social cost SCδ (t) follow from

SCδ (t) = δcar (t)
∑
v≤t

∑
i,r

SCC (t) × ξcari (v)
Yir (v, t)

ηi (v)
+

δair (t)
∑
v≤t

∑
i,r

∑
ap

SCAPr,ap (t) × ξairi,ap (v)
Yir (v, t)

ηi (v)
. (2)

The first term are discounted total SCC and the second term discounted total SCAP in period
t. Yir(v,t)

ηi(v)
represents region- and technology-specific fuel usage and ξi(v)Yir(v,t)

ηi(v)
related emissions.

Multiplying emissions with respective social cost, SCC or SCAP , yields total social cost (of carbon
or air pollution, respectively). Weighting social cost with the discount factor yields SCδ (t). The
resulting minimization problem is

min
Q,Y

∑
t

(δ (t)C (t) + SCδ (t)) . (3)

We internalize those social cost within a firm equilibrium by imposing a carbon tax τ car (t) as

well as air pollution taxes τairr,ap (t). Denote by Ecar (t) =
∑

v≤t
∑

i,r ξ
car
i (v) Yir(v,t)

ηi(v)
CO2 emissions and

by Eair
r,ap =

∑
v≤t
∑

i ξ
air
i,ap (v) Yir(v,t)

ηi(v)
regional air pollution by air pollutant. The cost minimization

problem changes to

min
Q,Y

∑
t

δ (t)

(
C (t) + τ car (t)Ecar (t) +

∑
r

∑
ap

τairr,ap (t)Eair
r,ap (t)

)
. (4)

Problem (3) and (4) are equivalent when the social planner sets optimal intertemporal tax rates
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of

τ car (t)∗ = SCC (t)
δcar (t)

δ (t)
, (5)

τairr,ap (t)∗ = SCAPr,ap (t)
δair (t)

δ (t)
. (6)

Observe that those tax rates are higher than the respective social cost by δcar(t)
δ(t)

≥ 1 or δair(t)
δ(t)

≥ 1

due to the assumptions of δcar (t) ≤ δair (t) ≤ δ (t) because firms discount cash flows more than a
social planner discounts CO2 and air pollutant emission damages.3

4. Calibration

EUREGEN is a partial equilibrium model of the European power market, which optimizes in-
vestments, decommissioning, and dispatch of multiple generation, storage, and transmission tech-
nologies intertemporally from 2020 to 2050, while 2015 serves as base year.4 EUREGEN uses the
CGE model PACE to calibrate for annual electricity demand and major fuel prices.5 EUREGEN
calculates CO2 emissions from an emission factor and either implements a carbon price (e.g., Mier
et al., 2020) or a quantity target (e.g., Azarova and Mier, 2021). We extend the EUREGEN
model by emission factors for different air pollutants and run different specifications to account
for technology heterogeneity and uncertain technological developments in future (Subsection 4.1).
We refrain from using carbon prices resulting from the CGE calibration or quantity targets as
imposed, e.g., by the EU ETS and, instead, apply SCC and SCAP as described in Subsection
4.2. EUREGEN chooses between different discount and interest rates, investor types, and spatial
resolutions (Mier and Azarova, 2021). Subsection 4.3 describes the applied discounting and tax
rates. We opt for the normal investor that carries cost of investments within the period of invest-
ment and uses endeffects when the investment’s depreciation extends above the model horizon.
Moreover, we apply the maximum spatial resolution of 28 countries (EU27 less the island states
of Cyprus and Malta, including Norway, Switzerland, and United Kingdom) and an hour choice
algorithm to reduce temporal resolution of the year (to keep the model numerically feasible).6

3We are aware of the time inconsistency problem of intertemporal taxation under discounting, i.e., optimal 2025
to 2050 tax rates from 2020 perspective differ from optimal 2025 to 2050 tax rates from 2025 perspective. However,
we keep the rates as they are because they underline the problems of handling private and social discount rates
within one intertemporal optimization framework. Moreover, resulting carbon taxes are indeed necessary to achieve
carbon neutrality by the mid of the century.

4See Weissbart and Blanford (2019) for the basics of the model and Weissbart (2020) and Mier and Weissbart
(2020) for applications.

5See Appendix A.3 and Mier et al. (2020) and Siala et al. (2020) for details.
6The hour choice algorithm selects and weights hours that present the extremes of load, wind onshore, wind

offshore, solar, and hydro generation. We obtain 280 hours and finally scale load and intermittent renewables
timeseries to match annual demand and full-load hours, respectively.
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4.1. Emissions from Electricity Generation

CO2 emissions are the major source of pollution from electricity generation. Its emission factor
depends on the carbon content of fuel. We also concentrate on other air pollutants and their role for
electricity generation. The most important ones are ammonia NH3, non-methane volatile organic
compounds NMVOC, nitrogen oxides NOx, particulate matter PPM10 as well as the finer PPM2.5,
and sulfur dioxide SO2 (or SOx expressed in SO2 equivalents). EEA (2019) provides information
on how these air pollutants occur, and what general measures exist to mitigate their air release.

NMVOC is emitted due to incomplete combustion and its emission factor is negatively corre-
lated with plant size. NOx emissions can be reduced by around 30% by applying single primary
measures such as low NOx burner technologies. This can be complemented by secondary mea-
sures like selective catalytic reduction or non-selective catalytic reduction, achieving up to 50 to
80% reduction. NH3 is added for NOx abatement purposes and finally emitted due to incomplete
reaction. PPM10 and PPM2.5 decrease with plant size. The most common abatement techniques
are electrostatic precipitation and fabric filters. The emission intensity of SO2 depends on the
fuel’s sulfur content. Most common abatement techniques are flue gas desulfurization processes,
reaching control levels of more than 90%. Technologies for SO2 abatement also contribute to very
effective PPM abatement.

The actual (CO2 and air pollution) emission intensity of one electricity unit produced depends
on three factors. The first is the type of fuel used, the second any of the applied counter measures
above, and the third are the plant-specific efficiency and underlying combustion technology. We
therefore distinguish emission factors according to fuel type and technology (comprising combustion
technology and the underlying counter measure) to address these three factors. We consider steam
turbines burning biomass with carbon capture and storage (bio-CCS), steam turbines burning
biomass (bioenergy), steam turbines burning coal (coal), coal-CCS, combined-cycle gas turbines
burning natural gas (gas-CCGT), steam turbines burning natural gas (gas-ST), open-cycle gas
turbines burning natural gas (gas-OCGT), gas-CCS, steam turbines burning lignite (lignite), and
gas turbines using oil and other non-biomass non-natural gas fuels (oil). In the following, we refrain
from presenting values for bioenergy, coal-CCS, lignite, and oil because those technologies are not
relevant for the final technology mix.

We express all emission factors under consideration in emissions per thermal fuel input unit
(g/GJ), which allows us to explicitly account for the role of plant efficiency on emission intensity in
the consequent modeling process. We achieve this by combining emission factors with technology-
and vintage-specific plant efficiencies (see equation (2) in Section 3 and Table A.1 in Appendix
A.3). By doing so, we arrive at a sophisticated representation of actual emission intensities per
electricity output unit (ton/GWh electric). Due to the wide-spread application of the abatement
technologies indicated above, we abstain from using air pollution emission factors that do not
assume any emission control. Rather, we aim for fleet average emission factors for existing plant
vintages, which are calculated via annual statistics of total emissions and total fuel consumption.
Thereby, an averaged abatement efficiency is considered. For CCS technologies we further consider
increased NH3 emissions occurring during the capture process. We reflect overall slightly increased
emissions for NOx, NMVOC, and PPM due to increased fuel consumption by decreased efficiencies
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of CCS plants compared to their non-CCS counterparts.
We construct three emission factor specifications—low, mid, and high—that differ by the as-

sumed emissions factors for existing and future vintages. The literature provides lower and upper
bounds as well as medium range emission factors (EPA, 1995, Cai et al., 2012, EEA, 2019, UBA,
2019). Our benchmark specification mid uses medium emission factors of existing vintages. Where
applicable, for future vintages we include linear improvements in average abatement efficiency so
that 2050 vintages across all regions achieve abatement efficiencies of modern plant fleets. The low
specification uses the same emission factors for existing vintages, whereas improvements for future
vintages are more ambitious. In this specification, 2050 vintages in all regions achieve lower bound
abatement levels of today’s technology frontier. The third specification high applies upper bound
emissions factors for existing vintages. Where applicable, for future vintages we implement a linear
improvement path so that 2050 vintages achieve abatement levels, comparable to existing vintages
in the mid specification. Tables A.3 to A.5 in Appendix A.2 contain the full set of emission factors
(in ton/GJ) as compiled from EPA (1995), Cai et al. (2012), EEA (2019), UBA (2019).7

Table 1 summarizes emission factors of different technologies. Observe that CO2 emission
factors are by far the highest. Among the air pollutants NOx, PPM10, and PPM2.5 are most
relevant. Gas technologies do not emit relevant amounts of NH3, and sulfur-content of natural gas
is almost negligible. In general, technologies burning natural gas are the cleanest, whereas biomass
technologies are the most emission intensive.

Table 1: 2015 emission factors (ton/GWh electric) for the mid specification

NH3 NMVOC NOx PPM10 PPM2.5 SO2 CO2

Bio-CCS 0.086 0.164 1.719 0.716 0.629 0.243 -710
Coal 0.002 0.008 0.582 0.062 0.027 0.509 760
Gas-CCGT, Gas-ST 0.001 0.189 0.005 0.005 0.001 340
Gas-OCGT 0.002 0.268 0.008 0.008 0.001 480
Gas-CCS 0.002 0.236 0.007 0.007 0.001 40

Emission factors displayed here are already subject to technology-specific efficiencies as
shown in Table A.1 in Appendix A.1. We refrain from presenting values for bioenergy,
coal-CCS, lignite, and oil here and in the following because those technologies do not
play a relevant role in the final technology mix.

4.2. Social Cost

Social cost of carbon. The CGE model used to calibrate the EUREGEN model also projects GDP
development (see Table A.9 in Appendix A.5). The underlying population projections are from
the world bank (see Table A.8 in Appendix A.4). In DICE-2016R-091216a, 2015 world GDP is

7A note is to be added on biomass emission factors, which are quite dispersed in range. This reflects the
availability of different abatement techniques in combination with the variation in emission intensity from using
heterogeneous fuels or fuel compositions (wood, crops and agricultural residues, waste), respectively.
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105.5 trillion 2010-US$.8 We change this value to 86.1 trillion 2015–US$. Additionally, we need
to scale total factor productivity by 0.8254 to match 2020 CO2 emission of 39.6 Gt. We further
adjust population and total factor productivity from 2020 to 2050 to precisely match world bank
(population) and CGE (GDP) projections. Finally, we use DICE standard discounting with pure
time preferences of 1.5%.

We obtain SCC of 28 e/ton in 2020 and 62 e/ton in 2050. Table 2 presents the exact values
and further parameters. Observe that (global) carbon emissions remain almost constant, leading
to a temperature increase of above 1.5° (2.0°) Celsius already in 2040 (2050). We are aware that
those predictions does not correspond targets from the Paris Agreement (2015) but are in line
with recent findings of Dietz et al. (2021), who also find that the optimal path leads to more than
2° Celsius warming. Indeed, SCC values are even lower in Dietz et al. (2021) compared to the
outcome from DICE-2016R-091216a. We thus decide to stick with the above-mentioned version of
the DICE model.

Table 2: SCC and other parameters from final DICE calibration

2020 2030 2040 2050

SCC (US$/ton) 30.48 39.79 52.37 68.53
SCC (e/ton) 27.71 36.18 47.61 62.30
CO2 emissions (Gt) 39.60 39.30 40.50 40.95
Temperature increase (°C) 1.02 1.37 1.71 2.06
Gross world GDP (trillion 2015-US$) 99.7 131.5 171.7 216.6
World population (billion) 7.75 8.50 9.14 9.68

We apply an exchange rate of 1.1 to convert US-$ into e, i.e., 1 e is
worth 1.1 US-$ in 2015. We refrain from showing 2015 values because
they are not relevant for calculating results. We further refrain from
showing 2025, 2035, and 2045 for better readability.

Social cost of air pollution. Air pollution (from electricity generation) can lead to higher mortality,
discomfort, and productivity loss (e.g., Markandya and Wilkinson, 2007, Dedoussi and Barrett,
2014, Dedoussi et al., 2020). Value of life concepts (e.g., Viscusi and Aldy, 2003) such as disabled
adjusted life years (e.g., Murray, 1994, Anand and Hanson, 1997, Murray et al., 2012), monetize
those damages. The externE project series calculates and monetizes those damages by employing
life cycle assessment (e.g., Klöpffer, 1997), the impact pathway approach (e.g., Douthwaite et al.,
2003), diffusion patterns of air pollutants, as well as meteorological, geological, demographic, and
health data. We take SCAP from the NEEDS project (part of the externE project series) that
provides SCAP (in 2000-e) for six air pollutants (NH3, NMVOC, NOx, PPM10, PPM2.5, SO2),
the 28 countries under investigation, and for five categories (human health, loss of biodiversity,

8GAMS code is available at http://www.econ.yale.edu/ nordhaus/homepage/homepage/DICE2016R-
091916ap.gms.
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regional crops, materials, and rest of the world damages).9 We take the high height of release values
(as suggested in the user manual for electricity generation) that are calculated for meteorological
conditions for 2010. We recalculate the values from 2000-e in 2015-e by using the ratio 1.3334.
NEEDS authors suggest increasing the SCAP by a rate according to GDP growth. We assume
that real GDP grew by 25.84% between 2000 and 2015. Growth rates for 2020 onwards are based
on country-level projections from our CGE calibration (see Table A.10 in Appendix A.5).

Table 3 shows the country (annual electricity demand-weighted) averages for the six air pol-
lutants and the categories for 2015. Country level data is available in Tables A.14 to A.16 in
Appendix A.6. The difference between total regional and total global cost in Table 3 is the rest-
of-the-world impact. This impact is negligible for NH3, NOx, PPM10, PPM2.5, and SO2) (below
5%) and only relevant for NMVOC (global impact, see Subsection 4.1). Observe that (regional)
human health impacts dominate with shares of 56.81% (for NMVOC) to 99.61% (for PPM10).
Moreover, NH3 and PPM2.5 are the most expensive air pollutants, followed by NOx and SO2.
Total cost of NMVOC and PPM10 seem to be negligible. However, final emissions will determine
whether the levels are crucial for the relative competitiveness of technologies. We thus calculate
SCC and SCAP per technology in the next paragraph.

Table 3: 2015 average SCAP by impact category and air pollutant

NH3 NMVOC NOx PPM10 PPM2.5 SO2

Human health 16,543 1,039 8,003 1,019 23,105 9,844
Loss of biodiversity 5,790 -129 1,570 583
Regional crops -281 319 356 -112
Materials 116 435
Total regional cost 22,052 1,229 10,045 1,019 23,105 10,750
Total global cost 22,057 1,829 10,265 1,023 23,370 11,217

2015 average SCAP follow from weighting 2015 country-specific SCAP with 2015
country-specific annual demand. The rest of the world category value is the dif-
ferences between regional and global cost.

Technology-specific social cost. We now compare SCC and SCAP values by applying efficiencies
(see Table A.1 in Appendix A.1) and emission factors (see Tables A.3 to A.5 in Appendix A.2)
of different technologies. We obtain the values in Table 4. Remember that SCC are at 28 e/t
in 2020 and at 62 e/t in 2050. Moreover, SCAP values grow with GDP to a similar extent (see
Table A.10 in Appendix A.5). Start with bio-CCS. Negative CO2 emissions yield negative SCC
values, growing from -20 e/MWh in 2020 to -44 e/MWh in 2050. In turn, SCAP grow from 39
to 47 e/MWh in 2050. In aggregate, the competitiveness of bio-CCS increases over time, that
is, growing SCC and SCAP values does not fully neutralize each other. Among the remaining

9See https://cordis.europa.eu/project/id/502687/de for details. The project page, https://needs-project.org, is
no longer available. Data and further documents can be now accessed via the project page of the University of
Stuttgart, https://www.ier.uni-stuttgart.de/forschung/modelle/ecosense/.
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technologies observe that SCAP have higher impact than SCC only for gas-CCS. For all other
technologies, SCC dominate. Those magnitudes conform to recent findings of Dedoussi et al.
(2019) that calculate 20% higher social cost when additionally accounting for mortality caused by
air pollutants.

Table 4: SCC and average SCAP (e/MWh electric) by vintage and technology

2020 2030 2040 2050

Bio-CCS
SCC -20 -26 -34 -44
SCAP 39 42 44 47

Coal
SCC 20 25 33 43
SCAP 12 13 13 14

Gas-CCGT, Gas-ST
SCC 9 12 15 20
SCAP 2 2 3 3

Gas-OCGT
SCC 13 16 21 27
SCAP 3 3 4 4

Gas-CCS
SCC 1 1 2 3
SCAP 3 3 3 4

SCAP follow from average SCAP and emission factors
from the mid specification. Summing up over all air
pollutants and applying efficiencies yields the respective
values. For SCC we only need to apply efficiencies and
emission factor to obtain the respective values.

4.3. Discounting and Taxation

Discounting. The standard discounting in EUREGEN applies a discount rate of 7% to evaluate
all cash flows. We follow the interpretation of discount rates and factors from the DICE model as
stated in Nordhaus (2014), and thus relinquish the distinction between discount rates and rates of
pure time preferences. More specifically, we either assume constant consumption or a non-existent
elasticity of marginal utility. Following the discussion in Nordhaus (2014) and supported by Drupp
et al. (2018), we apply 1.5% to discount SCC. Moreover, we believe that air pollution damages
should be discounted slightly lower (i.e., higher discount rate) due to their immediate effect, which
is not long-lasting. We thus decide to discount SCAP with 3%. Table 5 shows the respective
discount factors reflecting all periods from 2020 onwards covering 5 years in total.
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Table 5: Discount factors following from different discount rates

Discount rate 2020 2030 2040 2050

Private discount rate 7% 4.10 2.08 1.06 0.54
Social discount rate for air pollution 3% 4.58 3.41 2.54 1.89
Social discount rate for CO2 emissions 1.5% 4.78 4.12 3.55 3.06

Discount factors follow from δ (t) = (1+ν)tstep(t)−1

ν(1+ν)t−tbase
with ν as discount rate,

tstep (t) as the number of years in period t, and tbase = 2015. Note that
δ(2015) = 1 because tstep(2015) = 1.

Taxation. Different discount rates for SCC and firm cash flows require for taxation as derived in
Equation (5) in Section 3. The carbon tax thus predicts this optimal tax rate that needs to be
implemented in the power market model to strive for efficient internalization of cost. We present
results for such a constellation in Section 5 but also change discount rate differentials in Section 6.
Observe from Tables 2 and 6 that a moderate SCC of 62 e/ton in 2050 reaches 354 e/ton when
implementing the optimal tax rate in an intertemporal optimization context.

Accordingly, the relative magnitudes of effects in Table 4 change to those presented in Table
6. Observe that the role of the carbon tax grows comparatively to those of the air pollution tax.
Moreover, the carbon tax now clearly dominates for bio-CCS from 2040 onwards. In the long-run,
carbon and air pollution taxes are similarly important for gas-CCS. For all other technologies, the
dominance of SCC actually grows through carbon taxation.

5. Internalization

We start presenting results in Subsection 5.1 by focusing on different outcomes depending on the
internalization of SCC and/or SCAP, respectively. This enables us to analyze both the decomposed
effects of both types of social cost as well as their joint internalization effect. We additionally test
the role of assumptions about the underlying air pollution emission factor (Subsection 5.2), the
level of SCC (Subsection 5.3) and SCAP (Subsection 5.4), and finally changes emanating from
further technological advancements of wind turbines, called technology boost (Subsection 5.5).

5.1. Decomposition of Internalization Choices

Figures 1 and 2 visualize our results for installed capacities, generation, CO2 emissions, and
total SCAP and SCC (Figure C.9 in Appendix C.1 displays CO2 and air pollution emissions).
Figure 1 consists of an upper and a lower panel where different model specifications are clustered
by periods from 2020 to 2050. The upper panel shows installed capacities (in GW, left axis) and
the lower one generation (in TWh, left axis) by technology type. The lower panel additionally
displays CO2 emissions (in Gt, right axis). Figure 2 presents total social cost from air pollution
(in billion e, left axis) and from CO2 emissions (in billion e, right axis). We consider six different
specifications reflecting different levels of internalization and assumptions about emission factors:
(1) No internalization of SCC nor SCAP, (2) Only SCAP internalization given the mid emission
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Table 6: Optimal CO2 and air pollution taxes by year (e/ton) or vintage and technology (e/MWh electric)

2020 2030 2040 2050

CO2 tax (e/ton) 32 72 160 354

Bio-CCS
CO2 tax (e/MWh electric) -23 -51 -114 -252
Air pollution tax (e/MWh electric) 43 69 106 166

Coal
CO2 tax (e/MWh electric) 24 50 111 246
Air pollution tax (e/MWh electric) 14 21 31 48

Gas-CCGT, Gas-ST
CO2 tax (e/MWh electric) 11 23 52 115
Air pollution tax (e/MWh electric) 2 4 6 11

Gas-OCGT
CO2 tax (e/MWh electric) 15 32 69 154
Air pollution tax (e/MWh electric) 3 5 9 14

Gas-CCS
CO2 tax (e/MWh electric) 1 3 7 15
Air pollution tax (e/MWh electric) 3 5 8 13

Air pollution taxes are specific to air pollution emissions factors that
depend on vintage and technology as well as SCAP and thus cannot
be simply displayed in e/ton. We use average SCAP to determine
air pollution taxes, that is, air pollution taxes might be lower for
some countries and higher for others.
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factor assumptions, (3) Only SCC internalization, (4) SCC and SCAP internalization given the
low emission factors, (5) SCC and SCAP internalization given the mid emission factors, and finally
(6) SCC and SCAP internalization given the high emission factors for air pollution. The numbers
in parentheses reflect the column of each cluster in Figure 1. Figure 2 (and C.9 in Appendix C.1)
refrains from showing the first specification for better comparability of the other specifications.

We start with decomposing the impact when internalizing SCC and/or SCAP by optimal
intertemporal taxation in this subsection. There, we consider specifications (1), (2), (3), and
(5). Specifications (4), (5), and (6) test emission factor sensitivity and are subject of the next
subsection.

No internalization (first column of each cluster) reflects the extreme case. Coal capacity in-
creases from 85 GW in 2020 to 762 GW in 2050 (+797%) and thus the generation share increases
from 13 to 58%. Other dirty technologies are phased out by by 2040 (oil) or 2050 (lignite), re-
spectively. Nuclear is successively phased out as well (capacity drops from 46 to 18 GW in 2050).
Generation from wind (solar) increases from 525 TWh (129 TWh) to 781 TWh (289 TWh) but its
generation share drops from 16 to 12% (remains constant). Conventional gas (gas-CCGT, gas-ST,
gas-OCGT) capacity rises just slightly (from 347 to 407 GW) but its generation share drops from
40 to 18%. Observe that CCS technologies are entirely irrelevant due to the lack of incentives for
CO2 abatement. Resulting CO2 emissions leave the scale of the axis from 2040 onwards and are
finally at 3.21 Gt (+227% compared to 2020). Moreover, the resulting generation mix is associ-
ated with severe NOx (2.2 Mt) and SO2 emissions (1.4 Mt, see also Figure C.9 in Appendix C.1).
This leaves the 2050 system with annual cost of 200 billion e from CO2 and 71 billion e from
air pollution emissions, mostly caused by NOx (40 billion e), SO2 (28 billion e), and PPM2.5 (3
billion e). This extreme case does not serve as a good benchmark for analysis of more realistic
internalization choices. We opt for SCC and SCAP (mid) as a decisive benchmark, i.e. our stan-
dard specification, to evaluate the impact of internalizing SCC (difference to Only SCAP (mid))
and SCAP (difference to Only SCC ). The benchmark is labelled with *** to improve readability
of Figure 1.

In SCC and SCAP (mid), wind capacity increases from 385 GW in 2020 to 957 GW in 2050,
so that the final generation share increases from 31% in 2020 to 38% in 2050. Solar capacity
even increases from 126 to 352 GW (generation share almost doubles from 4 to 7%). Nuclear,
gas-CCS, hydro, and some bio-CCS accompany wind and solar in the long-run. Hydro capacity
and generation remain (as in all other specifications) constant at 131 GW and around 415 TWh).
The biomass potential—which is 376 TWh assuming efficiencies of the 2050 vintage—is not fully
exploited so that bio-CCS plays a minor role with just 147 TWh (share of 2.2%) in 2050. Gas-CCS
starts being employed from 2035 onwards, making up 279 GW or a generation share of 11% in
2050. Nuclear is the other major generation source besides wind. Nuclear capacity increases from
54 to 314 GW (generation share increases from 11 to 34%).10 Observe that final CO2 emissions

10Note that the nuclear share was 26% in 2015 (in a non-optimized system) and drops until 2025 to 7% when
applying optimization given existing capacities and pipeline investments.
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***SCC and SCAP (mid) serves as benchmark for comparisons with other specifications.

Figure 1: Installed capacity (upper panel) and generation with CO22 emissions (lower panel) for different levels of
internalization and emission factor assumptions

are negative (-0.05 Gt) and thus this internalization specification is a good reflection of what
a carbon-neutral electricity system might look like. Note that carbon-neutral (carbon-negative)
systems come at no (negative) total SCC. Observe from Figure 2 that total SCC increase from 14
billion e in 2020 to 24 billion e in 2030 and then drop to -3 billion e in 2050. Total SCAP in turn
increase from 3 billion e (almost only NOx) to 6 billion e (also PPM2.5). Related air pollution
is mainly proportional to social cost but PPM10 and NMVOC do not play a role in the absolute
level of social cost (see also Figure C.9 in Appendix C.1).
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The differences from our benchmark to Only SCAP (mid) is the effect of internalizing SCC.
Observe that gas-CCS and bio-CCS do not play a role at all. Additionally, nuclear plays a minor
role, contributing just 4% (compared to 34%) to the 2050 generation mix, and coal phases out
completely in 2030. Instead, conventional gas technologies constitute the major share with 58%.
However, the role of wind remains at least constant (22% in 2020, 24% in 2050), reflecting almost
a doubling in capacity (from 283 to 536 GW). Not internalizing SCC and just SCAP comes at
increasing CO2 emissions (from 0.71 to 1.31 Gt). Air pollution, in turn, remains almost constant
but its decomposition slightly changes away from some SO2 (from coal generation) to more NOx

(from gas generation). However, total SCAP double from 6 to 12 billion e.
Differences to Only SCC (third column) can be adhered to the SCAP internalization effect.

Observe that effects are fundamentally smaller compared to the effect from SCC internalization.
Wind plays a similar a role (-4% generation in 2020, same in 2050) but solar becomes more
important (+20% generation in 2050). Additionally, the biomass potential is fully exploited from
2040 onwards (365 TWh), making the bio-CCS share 5.4% in 2050 (compared to 2.2%). Higher
solar and bio-CCS generation comes at benefits of gas-CCS (+68% compared to the benchmark)
and deprives nuclear (-36%). Combined gas-CCS and nuclear generation drops from 45 to 40% in
2050. Final CO2 emissions drop to -0.18 Gt. However, related air pollution increases from 0.4 to
1.3 Mt leading to fundamentally higher social cost (see Figure 2). In particular, PPM2.5 takes a
fundamental share due to the extensive use of bio-CCS and higher gas-CCS generation compared
to our benchmark case. Additionally, NH3 now plays a considerable role due to bio-CCS.

***SCC and SCAP (mid) serves as benchmark for comparisons with other specifications.

Figure 2: Total SCAP and SCC for different levels of internalization and emission factor assumptions

We can shortly summarize the main trends when looking at different internalization strategies.
First, SCC internalization fosters gas-CCS and bio-CCS. Gas-CCS and bio-CCS are powerful
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technologies to mitigate CO2 emissions but still additionally emit air pollutants to some extent
that come at their very own costs. Second, SCAP internalization hampers gas-CCS and bio-CCS
at the benefit of nuclear power. Such a specification accounts for considerable air pollution and
related social cost of CCS technologies. Besides nuclear, the other emission-neutral solutions are
wind and solar. However, current technological projections (potential, full-load hours, cost) limit
the expansion of wind and solar and require nuclear capacity to fill the gap to annual demand
(that more than doubles to around 6.700 TWh in 2050). Third, wind and solar shares are almost
unaffected due to expansion limits and technological projections of those technologies. We conclude
that internalization of SCAP is not a complement for the internalization of SCC. In total, SCC are
around the factor 5 more relevant (see the scale of the axes in Figure 2) and thus the internalization
of SCC dominates the system. However, only SCC is also a poor complement for SCAP as soon as
bio-CCS becomes relevant. Bio-CCS provides negative CO2 emissions at cost of high air pollution
(and related cost). So, bio-CCS drives the adverse behavior of internalizing SCC and SCAP, while
finally the internalization of SCC is more important for ending in a cost optimal system.

5.2. Varying Emission Factors

We now focus on specifications (4), (5), and (6) in Figures 1 and 2 to analyze the role of
assumptions about emission factors. Remember from Subsection 4.1 that current and future tech-
nologies differ in air pollution emission factors. The CO2 emission factor follows from the carbon
content of the underlying fuel and predictions of those are quite consistent across different studies.
Predictions about air pollutants in turn are not. We thus analyze the three diverging assumptions
described in Subsection 4.1. The mid assumptions serve as benchmark as in the prior subsection.

Start with low. Lower air pollution emission factors decrease the role of SCAP in internalizing
social cost because technologies become cleaner. The effect grows over time because the emission
factor differential increases from 2020 to 2050 compared to mid assumptions. Difference in the
expansion of wind and solar capacity and related generation are negligible. In turn, bio-CCS
and gas-CCS play a bigger and nuclear a smaller role. Bio-CCS is almost used to its maximum
potential (351 TWh or 3% higher generation share in 2050, compared to 147 TWh). Gas-CCS
generation share is 1.2% higher and nuclear share 3.4% lower. Higher CCS usage comes at higher
air pollution (NOx +52%, SO2 +128%, PPM2.5 +29%) and higher related social cost (+108%,
+217%, +125%). CO2 emissions in turn are at -0.19 Gt.

High emission factors again do not impact wind and solar deployment. In turn, bio-CCS share
drops to 0.4%, gas-CCS remains almost constant at 11%, and nuclear share increases to 35.4% in
2050. Final CO2 emissions are at 0.03 Gt and thus the entire system is still almost carbon neutral.
However, air pollution is fundamentally lower, mainly due to less bio-CCS, and related 2050 social
cost sum up to 4 billion e. Interestingly, combined social cost (total SCC plus total SCAP) are
lowest for the high emissions assumptions.

Intuitively, lower emission factors should lead to lower emissions and higher ones to higher
emissions. We reveal how this intuition is wrong. Lower emission factors promote the expansion
of air pollution emission-intensive technologies (such as bio-CCS and gas-CCS), leading to more
pollution and more social cost. In turn, higher emission factors in turn hamper the deployment of
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bio-CCS so that final air pollution and related social cost are lowest. Again, wind and solar de-
ployment is almost unaffected. However, nuclear generation differs by considerable amounts (2050
generation shares of 30.5%, 33.9%, and 35.4% for low, mid, and high emission factor assumptions).

5.3. Varying Social Cost of Carbon

Now, we test the sensitivity of results regarding the SCC level additionally applying 25%, 50%,
200%, 400%, and 800% of the SCC level in SCC and SCAP (mid) (see Figures C.10 to C.12 in
Appendix C.2 for visualization).

SCC 25% (carbon price below 90 e in 2050) is insufficient for introducing CCS technologies.
In turn, conventional gas technologies substitute for gas-CCS and substantial parts of nuclear
generation, making up a generation share of 27% in 2050 (45% in 2020). Wind (solar, nuclear)
share increases from 25% (4%, 11%) in 2020 to 39% (10%, 18%) in 2050. CO2 emissions even
increase from 0.61 Gt in 2020 to 1.04 Gt in 2035 and then drop to 0.61 Gt in 2050 again. For
SCC 50% (carbon price of around 175 e in 2050), gas-CCS is employed from 2045 onwards but
its generation share is only at 7% in 2050 (compared to 11% for our benchmark SCC and SCAP
(mid)). Wind (solar, nuclear) contributes 40% (7%, 32%) in 2050, and is thus already quite close
to the benchmark case with 38% (7%, 34%). Interestingly, bio-CCS is not in the system whereas
our benchmark has 2.2% of generation from bio-CCS. Thus, it requires intertemporal carbon tax
rates between 175 and 350 e/ton to induce a small amount of bio-CCS in 2050. Increasing SCC
values to 200%, 400%, and 800% increases bio-CCS (up to its maximum potential, 5% generation
share in 2050) and nuclear at cost of gas-CCS. Wind and solar remain almost unaffected with
shares of 38% (41%, 41%) and 6% (6%, 6%) in 2050 for SCC 200% (400%, 800%). Nuclear and
gas-CCS make up to 35% and 9% in 2050 for SCC 200%. 2050 gas-CCS share is fundamentally
lower at 2% (2%) and nuclear share higher at 39% (41%) for 400% (800%). 2050 CO2 emissions
are at 0.19 Gt for SCC 50% (-0.05 for in our benchmark) and drop even further in SCC level to
-0.23 Gt (-0.26 Gt, -0.26 Gt) for SCC 200% (400%, 800%).

Note that wind shares do not differ much across SCC levels (between 38% and 41%). Despite
10% solar generation for SCC 25%, fostered by higher conventional gas capacity, solar is at a
similar level as well. Remaining differences lie in the employment of CCS technologies and nuclear.
Interestingly, higher SCC level do not automatically foster gas-CCS. Gas-CCS shares first increase
in higher SCC levels but then drop for very high SCC levels again because gas-CCS still emits
CO2. In turn, nuclear as carbon-neutral technology is highest for highest SCC level, whereas the
bio-CCS share already reaches its maximum for carbon prices between 350 and 700 e/ton so that
CO2 does not drop much further when increasing SCC above 200% of the benchmark value.

Total SCC are directly proportional to the CO2 emission and the corresponding SCC level,
that is, highest for SCC 25% (9 billion e in 2050) and lowest for SCC 800% (-130 billion e in
2050). More interestingly, total SCAP differ fundamentally between SCC levels and even show
some non-linear effects. Total SCAP is at 6 billion ein 2050 for SCC 25%, drops to 3 billion e for
SCC 50%, increases to 6 billion e for our benchmark again, and then heavily increases to 19 (18,
17) billion e for SCC 200% (400%, 800%) due to full bio-CCS usage.
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We conclude that the CCS-nuclear substitution effect is not valid anymore for very high SCC
levels. However, our previous finding that solar and wind shares are almost unaffected across
specifications holds for different SCC levels as well. Moreover, total SCAP are again dominated
by bio-CCS deployment.

5.4. Varying Social Cost of Air Pollution

Despite careful calibration, some uncertainty remains regarding SCAP. We address this un-
certainty by testing on modified SCAP. We thus mirror the sensitivity in the prior subsection by
applying the same sensitivity magnitudes on SCAP (see Figures C.13 to C.15 in Appendix C.3
for visualization).

SCAP 25% (50%) lead to full usage of the biomass potential (5% generation share) from 2045
onwards (in 2050). Our benchmark (SCAP 200%) still applies some bio-CCS with 2050 generation
share of 2.2% (1.5%). Higher SCAP in turn prevent bio-CCS from being part of an optimized
system. Gas-CCS contributes 15% (12%, 11%, 7%, 3%, 2%) and nuclear (26%, 29%, 34%, 38%,
42%, 43%) for SCAP 25% (50%, our benchmark, 200%, 400%, 800%). Wind (38% for SCAP 25%,
42% for SCAP 800%) and solar (8% for SCAP 25%, 6% for SCAP 800%) are almost unaffected
from changing SCAP levels. Final CO2 emissions are driven by bio-CCS shares. SCAP 25% and
50% reach -0.2 Gt and -0.19 Gt, our benchmark and SCAP 200% are slightly negative at -0.05
and -0.02 Gt, and finally SCAP 400% and 800% are almost carbon neutral at 0.04 Gt. There is
adverse behavior of air pollution emissions, that is, air pollution emissions are highest when CO2

emissions are lowest (for SCAP 25% and 50%) and lowest when CO2 are highest (for SCAP 400%
and 800%). In turn, resulting total SCAP demonstrate non-linear behavior. 2050 total SCAP
double from 5 to 10 billion e when doubling SCAP levels from 25% to 50%. Remember that 25%
and 50% both use the entire biomass potential, resulting in similar final emissions but double total
SCAP for the 50% specification. Our benchmark (SCAP 200%) lead to 6 (7) billion e total SCAP.
Bio-CCS share is higher for our benchmark but cost higher for SCAP 200%. The resulting total
SCAP level is thus similar. Finally, SCAP 400% and 800% have lowest 2050 total SCAP (2.8 and
3.4 billion e) due to similar technology mix driven by no bio-CCS deployment.

Varying SCAP mainly impacts the deployment of bio-CCS, gas-CCS, and nuclear. Lower SCAP
foster CCS deployment. Higher SCAP in turn lead to more nuclear. Note that this CCS-nuclear
trade-off is quite important although the final CO2 emissions do not differ much in absolute terms.
Those results are in line with those for internalization decomposition and lower/higher emission
factors but differ from the sensitivity of SCC.

5.5. Technology Boost

We observe fairly constant 2050 wind deployment across internalization strategies (38% for Only
SCC and SCC and SCAP (mid)), emission factor assumptions (37% for low, 39% for high), SCC
sensitivity (39% for SCC 25% and 41% for SCC 800%), and SCAP sensitivity (38% for SCAP 25%,
42% for SCAP 800%). This almost constant deployment indicates that the economically usable
potential of wind (see Table A.17 in Appendix A.7 for theoretical potential by resource class by
country) does not differ much from the underlying specifications and in turn promotes nuclear
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expansion (2050 generation share of 34% in our benchmark specification SCC and SCAP (mid)).
We test for this effect by introducing a technology boost in 2040, that is, wind turbines are now
up to 140 meters high delivering higher full-load hours (FLH) than before (see Tables A.18 and
A.19 in Appendix A.7).

In EUREGEN, wind expansion (for onshore and offshore) works with potentials reflecting high,
mid, and low resource classes. By assumptions, high and low resource class are of the same size,
whereas the mid class is three times the size. Full-load hours (FLH) and timeseries of respective
wind turbines follow from this assumption. It is possible that countries with high wind speeds
have higher FLH in their mid or low resource class, respectively, than countries with low wind
speeds in their high resource class.

Table 7 shows the total theoretical potential by class as well as corresponding average (potential-
weighted) FLH. Observe that total wind onshore (offshore) potential in the high resource class is
585 GW (1,724 GW). The potential above 3,000 FLH (4,250 FLH) is just 275 GW (0 GW), whereas
2050 capacity in our benchmark specification is at 898 GW (58 GW). Thus, wind offshore potential
is rarely used but wind onshore potential quite extensively (there is no wind capacity installed in
the low class). The technology boost increases this potential to 946 GW (288 GW), where high
FLH increase by 23% (13%) in the high class and by 49% (4%) in the mid class.

Table 7: Potential and full-load hours of wind technologies by resource class (low, mid, high) without and with
technology boost

Resource class low mid high

Wind offshore
Total theoretical potential (GW) 1,724 5,178 1,724
Potential (GW) ≥ 4250 FLH without boost 0 0 0
Potential (GW) (GW) ≥ 4250 FLH with boost 0 0 288
Average FLH without boost 1,450 2,135 2,601
Average FLH with boost 1,577 2,230 2,937
Difference in FLH 8.78% 4.42% 12.93%

Wind onshore
Total theoretical potential (GW) 585 1,756 585
Potential (GW) ≥ 3000 FLH without boost 0 0 275
Potential (GW) ≥ 3000 FLH with boost 50 487 409
Average FLH without boost 1,089 1,725 2,898
Average FLH with boost 1,776 2,578 3,558
Difference in FLH 63.08% 49.49% 22.78%

Now we look at the outcome (capacities, generation, emissions, social cost) when modeling the
technology boost (see Figures C.16 to C.18 in Appendix C.4 for visualization). 2050 wind capacity
increases to 1,457 GW (1,340, 1,396 GW, 1,488 GW) for SCC and SCAP (mid) (only SCC, low,
high), reflecting generation shares of 64% (60%, 62%, 65%) . Nuclear in turn drops to 14% (8%,
11%, 15%) compared to 34% (22%, 31%, 35%). Thus, the final realization of wind (and eventually
also solar) shares depends on technological assumptions and thus substitutes for nuclear. However,
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the overall pattern, particularly regarding social cost and emissions, remains consistent despite the
reduced role for nuclear and the increased one for wind.

6. Discounting and Taxation in Intertemporal Optimization Frameworks

We discuss the impact of different discount rates and optimal taxation in intertemporal opti-
mization frameworks already in Subsection 4.3. Previously, we assume that firms discount cash
flows with 7% and the social planner SCAP with 3% and SCC with 1.5%. Resulting carbon tax-
ation is shown in the last line of Table 8, i.e., 2050 SCC of 62 e/ton translate into an optimal
carbon tax of 354 e/ton.

We now analyze three specifications with homogeneous discount (and interest) rates for firms’
cash flows, SCAP, and SCC but differ the level, i.e., 7/7/7 applies 7% discount and interest
rates for all three categories, 3/3/3 applies 3%, and 1.5/1.5/1.5 applies 1.5%. We obtain carbon
prices presented in the first line of Table 8. We additionally analyze three specifications with
heterogeneous discount factors (applying 7% interest rate). 7/3/3 applies 7% discount rate for
firms’ cash flows and discount SCC as well as SCAP at 3%. The resulting carbon tax is shown
in the second line of Table 8. 7/1.5/1.5 discounts SCC and SCAP at 1.5% resulting in a carbon
tax as shown in the third line of Table 8 but structurally higher taxes for air pollution emissions.
7/3/1.5 is our benchmark specifications (and marked with *** in the following) with the same
carbon tax as 7/1.5/1.5.

Table 8: Optimal carbon tax (e/ton) for different discount rates for firms’ cash flows and SCC

2020 2030 2040 2050

Equal discount rates 27.71 36.18 47.61 62.30
7% vs. 3% 30.95 59.14 113.93 218.23
7% vs. 1.5%*** 32.32 71.53 159.55 353.90

***7% vs. 1.5% is the specification applied in our
benchmark specification SCC and SCAP (mid).

Let us start with the three specifications applying homogeneous rates. Differences between
those specifications can be traced back to the absolute level of discount rates.11 Figure 3 mirrors
Figure 1 for the changed discount rate specifications. Observe that the overall amount of installed
capacity is highest for 1.5/1.5/1.5 (2,581 GW in 2050) and lowest for 7/7/7 (2,387 GW). Intuitively,
discounting cash flows at lower rates places more emphasis on later generation cost than on early
investment cost. Thus, investments (and total installed capacity) increase with lower rates from
2020 onwards, and the differences remain consistent, although they drop over time. Wind capacity
increases from 487 GW (448 GW, 373 GW) in 2020 to 1,072 GW (1,005 GW, 797 GW) in 2050

11We also change interest rates at the same level as private discount rates, but the impact of diverging interest
rate is negligible for early investments and only minor for later ones.
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for 1.5/1.5/1.5 (3/3/3, 7/7/7), whereas solar capacity is around 550 GW in 2050 for all three
specifications. Further structural differences exist in the level of nuclear (146 GW in 2050 for
1.5/1.5/1.5 vs. 49 GW for 7/7/7) and gas (686 GW vs. 872 GW). 2050 wind generation shares
are 41% (39%, 33%) for 1.5/1.5/1.5 (3/3/3, 7/7/7), those of nuclear 16% (15%, 4%), and those
of solar at 10% (11%, 11%). Gas contributes 26% (29%, 46%) in 2050. CCS technologies are not
part of the mix for all three specifications because carbon prices following from homogeneous rates
(see first line in Table 8 in Subsection 4.3) are not sufficient to induce CCS technologies. Lower
air pollution taxes (that generally foster CCS deployment) are thus not dominating in establishing
CCS technologies. 2050 CO2 emissions are at 0.59 Gt (0.62 Gt, 1.02 Gt). Looking at social cost
in Figure 4, 2050 total SCAP are at 5 (6, 10) billion e and 2050 total SCC at 37 (41, 64) billion
e for 1.5/1.5/1.5 (3/3/3, 7/7/7). The composition of social cost does not change much over time
and in between different levels of homogeneous rate specifications because no CCS technologies
are employed. Observe that SO2 cost drop out due to the phase out of coal.

Now consider the three specifications with heterogeneous rates. Wind, solar, and nuclear ca-
pacities are at similar 2050 levels (around 1,000 GW, 355 GW, and 320 GW), leading to generation
shares of 40% (38%, 39%) for wind, 7% (7%, 7%) for solar, and 33% (34%, 36%) for nuclear for
7/3/3 (7/3/1.5, 7/1.5/1.5). Bio-CCS contributes 0.5% (2.2%, 1.5%) and gas-CCS 9% (11%, 9%)
in 2050. Those small differences in the technology mix yield CO2 emissions of -0.02 Gt (-0.05 Gt,
0.1 Gt). Absolute levels (3, 6, and 4 billion e) of total SCAP in turn fundamentally differ due
to diverging CCS shares. Carbon taxes of 218 e/ton (7/3/3) are indeed sufficient to introduce a
small amount of bio-CCS. The bio-CCS share drops when applying lower discount rates for SCAP
(7/1.5/1.5) because air pollution damages are weighted higher.

The lower carbon price is the main driving force behind differences between homogeneous and
heterogeneous discount rates. Lower discount rates in general foster decarbonization by expanding
wind capacity and nuclear capacity, whereas higher rates rely more on conventional gas. Remember
that 7/3/3 induces lower carbon prices than 7/3/1.5 and 7/1.5/1.5 (almost by factor 2). However,
resulting decarbonization and technology mix differ only slightly because bio-CCS shares remain
small and economically best wind potentials are already used.

7. Distributional Effects and the Role of Biomass

7.1. Distributional and Growth Effects

Country differences in SCAP are based on the meteorological and geological conditions but
also demographics (age structure, population density, health system). SCAP differences neglect
diverging welfare across countries due to ethical reasons. The default life cycle analysis assumes
that all countries face the same value for disabled adjusted life years (DALY). Indeed, GDP per
capita normally serves as a benchmark to determine diverging DALY per country. Moreover, SCAP
grow country-specifically with GDP per capita. Finally, we avoid arbitrage effects by equalizing
SCAP across all regions by applying an electricity demand-weighted average of regional SCAP.
Based on these facts, we develop five additional specifications beside our benchmark to analyze
distributional effects: (2) SCAP equal neglects country differences in SCAP by using average
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***7/3/1.5 is the same as SCC and SCAP (mid) and serves as benchmark for comparisons with other
specifications.

Figure 3: Installed capacity (upper panel) and generation with CO2 emissions (lower panel) for different discount
and interest rates

(demand weighted) SCAP for each country. (3) SCAP distributional adjusts SCAP accordingly
to a index reflecting GDP per capita differences, i.e., countries with higher GDP per capita face
higher (see Table A.13 in Appendix A.5) SCAP due to higher assumed DALY. (4) SCAP equal
and distributional combines the two previous ones by taking average SCAP and then scale those
simply by the index reflecting GDP per capita differences. (5) SCAP no GDP growth neglects
that SCAP rise with GDP per capita, i.e., SCAP are constant for each country over time. Finally,
(6) SCAP equal and no GDP growth takes the same SCAP for every country for all time periods.

Figures 5 to C.20 show installed capacities, generation, CO2 emissions, social cost, and air
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***7/3/1.5 is the same as SCC and SCAP (mid) and serves as benchmark for comparisons with other
specifications.

Figure 4: Total SCAP and SCC for different discount and interest rates

pollution for the six specifications. SCC and SCAP (mid) serves as benchmark again and is called
SCAP normal for parsimony in the following and marked by *** in Figures5 to C.20. In 2050,
remember that installed wind (solar, bio-CCS, nuclear, gas-CCS) capacity is 957 GW (352 GW, 30
GW, 314 GW, 279 GW) and the corresponding generation share is 38% (7%, 2.2%, 34%, 10.9%),
resulting in -0.05 Gt CO2 emissions, -3 billion e total SCC and 6 billion e total SCAP, whereas
SCAP are dominated by NOx and PPM2.5 damages.

Now turn to the analysis of SCAP equal. Intuitively, equalizing SCAP across countries reduces
SCAP of ”very expensive” countries and increases those of ”cheaper” ones. As result, there are less
arbitrage effects, that is, producing with ”dirty” SCAP technologies (i.e., bio-CCS and gas-CCS)
in cheap countries. At first sight, hardly any relevant differences in capacity and generation mix
can be observed between the different specifications until 2040. Even in 2050, the differences in
system composition appear only minor. For example, 2050 wind (solar, bio-CCS, nuclear, gas-
CCS) capacity grows by +12 GW (+7 GW, +10 GW, -11 GW, -14 GW). Final generation share
is at 39% (7%, 2.8%, 33%, 10.6%) and CO2 emissions are at -0.08 Gt. We observe slightly more
bio-CCS but less gas-CCS. However, looking at the associated emissions and their social costs,
the specifications can be clearly distinguished from one another. Total SCAP double to 12 billion
e, whereas overall air pollution just increases by 16% from 0.6 to 0.7 Mt. This effect can be
explained by the model’s near-lacking ability under equalized SCAP to arbitrage between regional
SCAP levels when making location choices for pollution intensive generation capacities. Thus, the
aforementioned intuition is not wrong, but effects are more diverse. When looking just at capacities
and generation, one might neglect the overall impact of taking equalized SCAP for each country.
However, total SCAP show that arbitrage effects play a fundamental role because the doubling of
total SCAP is not reflected in total generation share changes and air pollutant emissions.
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***SCAP normal is the same as SCC and SCAP (mid) and serves as benchmark for comparisons with other
specifications.

Figure 5: Installed capacity (upper panel) and generation with CO2 emissions (lower panel) for different SCAP
specifications

The next specification, SCAP distributional, constrains arbitrage opportunities (for SCAP)
compared to the benchmark but does not remove them altogether (as does SCAP equal). In 2050,
wind (solar, bio-CCS, nuclear, gas-CCS) capacity drops by 21 GW (-1 GW, +13 GW, -5 GW,
+2 GW) and the corresponding generation share is 38% (7%, 3.4%, 33%, 11.1%). Intuitively, we
expect that the SCAP differences across countries and thus arbitrage effects grow, resulting in
higher air pollution but lower overall social cost. This intuition is wrong. Air pollution is higher at
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***SCAP normal is the same as SCC and SCAP (mid) and serves as benchmark for comparisons with other
specifications.

Figure 6: Total SCAP and SCC for different SCAP specifications

0.8 Mt (compared to 0.6 Mt in our benchmark, +37%) and resulting total SCAP grow by a similar
level to 8 billion e (+31%). However, higher shares for CCS technologies and higher air pollution
indicate that overall arbitrage effects grow slightly, making CCS technologies more competitive.
As a result, constrained SCAP arbitrage opportunities drive the need for negative SCC, so that
we likewise observe slightly increased bio-CCS capacities as it is the case for SCAP equal.

When combining equalized SCAP and distributional effects, as done in SCAP equal and distri-
butional, we observe that 2050 wind (solar, bio-CCS, nuclear, gas-CCS) capacity remains constant
(+6 GW, +1 GW, -3 GW, -12 GW) and its generation share is at 39% (7%, 2.4%, 33%, 10.8%).
Air pollution is comparable to our benchmark (0.6 Mt) but fundamentally lower compared to
SCAP distributional. However, total SCAP are at 7 billion e and thus higher than our benchmark
but lower than SCAP distributional. It appears that jointly applying two dimensions that work
in opposite directions (regarding fostering or hampering arbitrage effects related to air pollution)
leads to a slightly cleaner system. Equalized SCAP reduce air pollution and distributional effects
reduce related total SCAP.

Now turn to the specifications neglecting GDP growth. Start with SCAP no GDP growth.
2050 wind (solar, bio-CCS, nuclear, gas-CCS) capacity drops by -37 GW (+11 GW, +44 GW,
-36 GW, +7 GW) and generation share is at 37% (7%, 5.5%, 30%, 11.9%). We now observe
that SCAP indeed impact wind deployment to the benefit of CCS technologies. Neglecting GDP
growth leads to fundamentally lower SCAP values in 2045 and 2050, so that bio-CCS is used
to its maximum potential and gas-CCS capacity/shares likewise increase fundamentally. Final
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***SCAP normal is the same as SCC and SCAP (mid) and serves as benchmark for comparisons with other specifications.

Figure 7: Air pollutant and carbon emissions for different SCAP specifications

air pollution emissions are at 12 Mt and related social cost at 12 billion e. When additionally
applying equalized SCAP, as done in SCAP equal and no GDP growth, we obtain wind (solar,
bio-CCS, nuclear, gas-CCS) capacity changes of -21 GW (+9 GW, +39 GW, -38 GW, +4 GW)
and shares of 38% (7%, 5.6%, 30%, 11.9%). Observe that generation differences between the two
GDP growth specifications are negligible, as is related air pollution, but total SCAP are higher,
again indicating that arbitrage effects of producing in ”cheap” countries are reduced.

To summarize, we again observe a structural CCS-nuclear shift when SCAP become effectively
lower (distributional scaling, no GDP growth). Interestingly, there is a small wind substitution
effect when applying no GDP growth. SCAP values are then fundamentally lower, and CCS tech-
nologies far more competitive. Overall, the effect of taking equalized SCAP across countries impact
the technology mix and related air pollution only to a minor extent but shows considerable im-
pact when looking at total SCAP. However, benefits from reducing carbon emissions still partially
outweigh changes in SCAP because total SCC are higher in magnitude until 2045 (and similar in
2050).

7.2. Biomass Limits and Trade

Biomass, its costs, and the maximum usage are key for sustainable development due to biomass
with carbon capture and storage (bio-CCS). Such technology uses carbon-neutral biomass and
additionally (captures and) stores CO2 so that the final CO2 emission factor is negative. Assuming
an efficiency of 16%, the resulting factor is -0.71 ton/MWh electric. Indeed, cost assumptions,
assumptions about the efficiency, and emission factor assumptions are important, but decisive for
the role of bio-CCS for future decarbonization is the biomass limit eligible for usage in electricity
generation. Our standard calibration assumes a European wide biomass limit of 2,045 TWh per
year (resulting in generation of around 376 TWh for the 2050 vintage). We compile long-term
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economic annual harvesting potentials for agricultural, wooden, and waste biomass from Scarlat
et al. (2011), Dees et al. (2017) and Thees et al. (2017) and convert them to biomass potentials.
The country-level values and related maximum generation are depicted in Table A.20 in Appendix
A.8.

We take our benchmark and vary the regional biomass limit by factors two and four, respec-
tively. We also provide for biomass tradability across Europe, allowing for arbitrage effects when
trading biomass from an ”expensive” into a ”cheap” (in terms of SCAP) country. Additional to
our benchmark, we analyze five specifications: European trading takes the standard biomass limits
and allows for trading across Europe. Double regional takes the twofold limits. Double European
trading allows to trade the twofold limits. Fourfold regional take the fourfold limits. Finally,
Fourfold European trading makes it possible to trade the fourfold limits. Note that there is no
direct trade costs. Visual results are shown in Figures C.21 to C.23 in Appendix C.7.

Higher regional biomass limits allow ”cheap” countries already using their maximum potential
to increase biomass usage and related bio-CCS production. Increasing the limits by factor two
(four), increases 2050 bio-CCS capacity from 30 GW to 59 GW (111 GW) and the related genera-
tion shares from 2.2% to 4.4% (8.7%). Thus, doubling the limits doubles capacity and generation,
but does not enforce maximum usage. Allowing for European trade of biomass with simple (dou-
ble, fourfold) limits increase capacity to 71 GW (128 GW, 249 GW) and generation share to 5.4%
(10,8%, 21.7%). Subsequently, the entire European potential is used by trading it into the ”cheap”
countries that used completely its regional potential already. Interestingly, higher bio-CCS us-
age reduces nuclear generation from 34% to 32% (33%, 30%, 31%, 25%) and gas-CCS generation
from 10.9% to 10.7% (10.5%, 10.2%, 10.1%, 9.3%) for European trading (Double regional, Double
European trading, Fourfold regional, Fourfold European trading). Interestingly, even wind shares
drop from 38% to 37% (38%, 35%, 36%, 30%). Final CO2 emissions are hugely negative due to
massive bio-CCS usage (-1 Gt Fourfold European trading). Air pollution emissions are negatively
correlated to CO2 emissions, since low CO2 emissions due to high bio-CCS usage come at high air
pollutant emissions.

However, resulting total SCAP does not fully reflect air pollutant emissions due to tremendous
arbitrage effects when allowing for European biomass trade. Thus, the European-wide trade of
biomass (instead of just using just the regional limits) increases arbitrage effects, that is, biomass
would be traded in ”cheap” countries so that resulting total SCAP are reduced. Moreover, bio-CCS
substitutes for gas-CCS, nuclear, and even wind power. This substitution effect is not observed in
the prior analysis.

7.3. Biomass Trade and Arbitrage

Bio-CCS appeared to be a key lever in the model’s ability to steer social cost via earnings from
negative CO2 emissions. In particular, arbitrage effects when using biomass in ”cheap” countries
(with regard to SCAP) are considerably important. We test the prior findings by running the
same specifications (limits, tradability) as before but assume equalized SCAP. This reduces SCAP
arbitrage opportunities especially in the specifications with trade.
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2050 bio-CCS shares now increase from 2.8% (in the SCAP equal specification) to 5.5% (5.4%,
11.2%, 9.8%, 13.7%) compared to 2.2% to 5.4% (4.4%, 10.8%, 8.7%, 21.7%) for European trading
(Double regional, Double European trading, Fourfold regional, Fourfold European trading). Interest-
ingly, bio-CCS shares without European trade are even higher than for normal SCAP. Conversely,
the impact of trade is now much lower. Fourfold European trading delivers only 13.7% generation
compared to the previous 21.7%. Thus, the overall biomass potential is no longer fully exploited.

8. Discussion

Diverging total social cost (of carbon and air pollution) and substitution effects between tech-
nologies are the key differences of the analyzed specifications. We thus compare aggregated social
cost in Subsection 8.1 and cluster substitution effects according to resulting CO2 and air pollutant
emissions in Subsection 8.2.

8.1. Aggregated Social Cost

Table 9 presents aggregated social cost from air pollutant and CO2 emissions for the 35 years
from period 2020 to period 2050, thereby considering that each period reflects five years, for se-
lected specifications.12 Start with the first group that contains information about internalization
strategies and the technology boost. Observe that aggregated social cost are at 5,145 billion e
for no internalization. Internalizing only SCAP (mid), reduces cost by more than 60%. However,
accounting for only SCC reduces aggregate social cost to 794 (compared to 2,091 for only inter-
nalizing SCAP). Consequently, SCC internalization plays a dominating role in the reduction of
social cost. However, only internalizing SCAP results in fundamentally lower aggregated SCAP
(330 billion e compared to 449 billion e for only SCC ). Combining both internalization strategies
in SCC and SCAP (mid) engenders additional benefits for aggregated SCAP (that reduce to 166
billion e), whereas aggregated SCC increase from 345 to 456 billion e (compared to only SCC ).
Only internalizing SCAP is thus a bad complement for SCC internalization but additional SCAP
internalization a useful tool to reduce social cost. Interestingly, when applying the technology
boost (that increases 2050 wind shares from 38% to 64%) aggregate social cost even increase by
7 billion e due to slightly higher bio-CCS and gas-CCS usage (whereas shares of other SCC- and
SCAP-free technologies such as nuclear drop).

Now turn to discounting and intertemporal taxation in the second block. We selected 7/7/7,
7/3/3, and 7/1.5/1.5 due to their diverging underlying optimal tax rates (see Table 8 in Section 6).
7/7/7 implements lowest tax rates (for CO2 and air pollution) and increases aggregated social cost
to 1,684 billion e. The increase mainly stems from increasing SCC (1,416 billion e). Intuitively,
the tax drop for SCAP is less pronounced than for SCC because SCC is discounted with 1.5%
and SCAP with 3% in our benchmark. 7/3/3 just increases the discount rate for SCC, leading
to similar aggregated SCAP but considerably higher aggregated SCC (683 vs. 456 billion e).
Finally, increasing tax rates for air pollution emissions (discount rate of 1.5% instead of 3%)

12Tables B.21 and B.22 in Appendix B.1 present the full set of specifications.
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Table 9: Aggregated social cost (billion e) from period 2020 (2016 to 2020) to 2050
(2045 to 2050)

SCAP SCC Sum

Internalization and technology boost
No internalization 1,494 3,650 5,145
Only SCAP (mid) 330 1,761 2,091
Only SCC 449 345 794
SCC and SCAP (mid)*** 166 456 622
SCC and SCAP (mid) with boost 153 476 629

Discounting and taxation
7/7/7 268 1,416 1,684
7/3/3 160 683 843
7/1.5/1.5 140 468 608

Distributional effects, biomass limits, and trade
SCAP equal 186 469 656
SCAP distributional 177 441 618
European trading 187 356 543
Double regional 194 404 598
Double European trading 243 205 448
Fourfold regional 249 302 551
Fourfold European trading 345 -35 310
Fourfold European trading and SCAP equal 359 304 662

***SCC and SCAP (mid) is the same as 7/3/1.5 and regional biomass limits.
SCC and SCAP (mid) serve as benchmark for comparisons with other specifications.

changes aggregated SCAP only slightly to 140 billion e. Aggregated social cost remain almost
unaffected. Discount rates strongly impact the resulting technology mix and the related emission
levels, but aggregated SCC react more sensitively towards changes. Again, this underlines the
dominance of SCC in contrast to SCAP for the optimal technology mix and emission levels, and
the complementing feature of additional SCAP internalization.

Finally, equalized SCAP and distributional effects impact aggregate social cost only to a minor
extent. SCAP equal increases social cost by 34 billion e (Compared to the benchmark). SCAP
distributional, that is, higher SCAP level for richer countries, in turn even reduces aggregated
social cost by 4 billion e. Biomass limits and tradability of biomass across European countries
in turn impact results tremendously. European trading allows for higher bio-CCS usage so that
aggregated SCAP increase by 21 billion e but aggregated SCC drop by 100 billion e. Arbitrage
effects across countries from ”cheap” SCAP regions are at 79 billion e (more than two billion e
per year). Those arbitrage effects even increase when assuming double (fourfold) biomass limits
with European trading to 174 (312) billion e. However, all benefits are destroyed when assuming
equalized SCAP across European countries although underlying bio-CCS shares increase.
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8.2. Substitution Effects

Many of our specifications either make CO2 or air pollutant emissions cheaper or more expen-
sive. We do this explicitly by internalization choices (Subsection 5.1), changing SCC (Subsection
5.3) or SCAP (Subsection 5.4), or implicitly by changing emission factors (Subsection 5.2), un-
derlying discount rates (Section 6), or allowing for tradability of biomass (Subsection 7.2). We
now proceed to identify behavioral patterns in the resulting 2050 technology mix by comparing
CO2 and air pollutant emissions as well as generation shares. In particular, we analyze for each
specification which technologies gain and lose most in the 2050 mix compared to our benchmark
SCC and SCAP (mid). Based on the pattern of technology switches, we identify four clusters: (1)
medium dominance of SCC, (2) strong dominance of SCC, (3) biomass dominance, (4) little or no
dominance of SCC, and (5) dominance of SCAP.

In the first two clusters, SCC dominate SCAP compared to our benchmark, and they all exhibit
a technology switch to bio-CCS. In cluster median dominance of SCC the difference between air
pollution taxes and carbon taxes is relatively mild and the switch happens from nuclear to bio-
CCS. In cluster strong dominance of SCC carbon taxes are significantly higher than air pollution
taxes, with the switch happening from gas-CCS towards bio-CCS, while nuclear becomes a co-
winning technology. Cluster biomass dominance resembles the first two clusters in the way that it
exhibits distinct technology switches from nuclear to bio-CCS. However, the distinction to median
dominance of SCC is that this switch is not driven by changes in emission taxes but by significant
increases to the biomass potentials and consequential arbitrage opportunities. Cluster little or no
dominance of SCC is marked by specifications where carbon taxes are low. The technology switch
defining this cluster is a significant shift to conventional gas. The last cluster dominance of SCAP
comprises specifications with higher air pollution taxes than our benchmark, which switch away
from gas-CCS towards emission-free technologies like nuclear and wind. Wind and solar shares
in the generation mix remain essentially unaffected by the technology switches in most of the
clustered specifications.13

Figure 8 depicts all clustered specifications in a scatter plot relative to our benchmark speci-
fication.14. The y-axis measures 2050 CO2 emissions and the x-axis measures 2050 air pollution
emissions as absolute differences to the benchmark. The color scheme indicates cluster membership
and emphasizes the technology, which is at the center of the cluster’s technology switch. Observe
that each cluster is associated with distinct movement roughly along one of the axes. Cluster
median dominance of SCC is scattered along the positive x-axis range, thus represents increased
air pollution emissions. Cluster strong dominance of SCC is the same but with only slightly
decreased CO2 emissions, as biomass potentials for negative CO2 emissions are limited. Cluster
biomass dominance extends this trend towards increased air pollution but gravitates towards the

13Table B.23 in Appendix B.2 gives an overview of the clustered specifications and respective technology switch-
ing. Several specifications have not been clustered despite presenting similar technology switching trends as the
clusters above because their technology switching pattern is not pronounced enough. Tables B.24 and B.25 in
Appendix B.2 summarize the entire set of specifications.

14See Figure C.27 in Appendix C.9 for a full scatter plot with all specifications (except for technology boost).
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center of the fourth quadrant thanks to increased bio-CCS switches with negative CO2 emissions.
We can interpret cluster little or no dominance of SCC as movement along the positive range of
the y-axis, i.e., increased CO2 emissions due to the conventional gas-switch. The movement is
not strictly vertical, as conventional gas also bears a fair amount of air pollution, which therefore
changes slightly accordingly. Finally, cluster dominance of SCAP marks movement along the neg-
ative range of the x-axis. This represents decreases in air pollution emissions from the switch away
from gas-CCS to emissions-free technologies. This movement is one dimensional, that is, leaving
CO2 emission unaffected, as gas-CCS is a carbon-neutral technology.

Note that CO2 and air pollutant emissions are displayed in absolute difference to our benchmark SCC and SCAP
(mid)—which is the same as 7/3/1.5 and Regional biomass limits.

Figure 8: 2050 emissions of selected specifications in relation to benchmark specification – clustered by technology
switch

From the clustering and resulting scatter plot, we can conclude that low air pollution taxes (or
low air pollution emission factors) and high carbon taxes both have the same effect of fostering
bio-CCS deployment (clusters median dominance of SCC and strong dominance of SCC ). This can
be further promoted by enhancing biomass exploitation and trade (cluster biomass dominance).
While it is straightforward and well-known that low carbon taxes lead to overinvestments into
conventional gas (cluster little or no dominance of SCC ), high air pollution taxes make gas-CCS
noncompetitive (cluster dominance of SCAP).
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9. Conclusion

We develop a modeling strategy to account for social cost of carbon (SCC) and social cost of
air pollution (SCAP) in intertemporal optimization frameworks. In particular, we derive optimal
intertemporal taxation to internalize CO2 and air pollutant emissions given diverging social and
private discount rates for SCC, SCAP, and firms’ cash flows. We implement the theoretical frame-
work in the EUREGEN model that intertemporally optimizes capacity expansion and generation
of the European power market until 2050. We use data from the DICE model to determine SCC
and from the externE project series for SCAP. We start with decomposing the effect of internal-
izing SCC and SCAP on the technology mix, emissions, and social cost. We additionally test for
sensitivities of emission factors, SCC level, SCAP level, and technological assumptions of wind tur-
bines. Next, we vary discount and interest rates to find the impact of varying rates and resulting
intertemporal taxation. Finally, we analyze distributional effects by testing different specifications
for SCAP calculation, varying biomass limits, and allow for tradability of biomass across European
countries.

We run 42 specifications of diverging internalization choices for SCC or SCAP, respectively,
with internalization differing either explicitly or implicitly. Our key findings are threefold. First,
we find that intertemporal tax rates of CO2 and air pollutant emissions are higher than their
marginal damages, SCC or SCAP, by the ratio of social (for SCC or SCAP) to private (for firms’
cash flows) discount rates. For example, assuming social discount rates of 1.5% for damages from
CO2 emissions and private discount rates of 7% for firms’ cash flows, yields an (intertemporally)
optimal 2050 carbon tax of 354 e/ton whereas marginal damages, that is, SCC, are at 62 e/ton
only. Assuming the same discount rates leads to carbon tax rates equal to SCC.

Second, we determine how different internalization choices, discount rates, distributional as-
sumptions, and the tradability of biomass impact aggregated social cost until 2050. Only account-
ing for SCAP yields social cost of 2,091 billion e. Cost drop to 794 billion e when accounting
for SCC instead. Jointly internalizing SCC and SCAP reduces social cost to 622 billion e.15 In-
creasing social discount rates or decreasing tax rates for CO2 or air pollutants, respectively, yields
fundamentally higher aggregate social cost. Assuming the same SCAP values for each country or
adjusting them according to their GDP per capita only has a minor impact on the overall social
cost level. Increasing biomass limits or allowing for European trade of biomass in turn impacts
social cost tremendously. For example, assuming a doubled limit and allowing for trade reduces
aggregated social cost until 2050 by 174 billion e, whereas aggregate SCAP increase—due to ex-
tensive biomass usage in low-SCAP countries—and aggregate SCC decrease—due to negative CO2

emissions from a technology switch to bio-CCS.
Third, we examine patterns of technology switches and analyze substitution effects when ac-

counting for higher or lower SCC and SCAP. We find five substitution clusters. Medium (strong)
dominance of SCC internalization over SCAP internalization fosters bio-CCS deployment while
reducing nuclear (gas-CCS). Increasing biomass limits and tradability of biomass always promotes

15We use carbon prices that nearly lead to carbon neutrality by 2050 in our benchmark specification.
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bio-CCS usage in substitution for nuclear. For extensive expansions of bio-CCS usage even wind
energy is substituted. All those specifications lead to rising air pollutant and falling CO2 emis-
sions, driven by bio-CCS deployment. Subsequently, little or no dominance of SCC, that is, low
CO2 taxes, lead to increasing CO2 emissions. The dominant switch is from nuclear to gas. Finally,
dominance of SCAP, that is very high taxes on air pollution, promotes the substitution of gas-CCS
for nuclear under decreasing air pollution and increasing CO2 emissions.

Our paper shows that the interpretation of modeling results and their consideration by policy
makers requires careful review of the assumptions about discount rates, taxes, and what the
respective model tries to determine. Some models seek for the social optimum, others depict firm
equilibria, and others in turn do not even make any explicit statement about this. We model
a situation where a social planner tries to set carbon and air pollutant tax rates to push firms
for intertemporally optimal investment and generation decisions. Our first key result, i.e., that
emission tax rates are to be set above marginal damages, also underlines that social planners need
to consider tax rates or emission prices above marginal damages instead of trying to argue for
equality. Quantity targets overcome such a problem, that is, models could determine the optimal
quantity target that would then be necessary to get imposed by policy makers. As result, we
would obtain tax rates as described in our paper. Our second key result informs about welfare
losses of policies when not appropriately internalizing CO2 or air pollutant damages, respectively,
and underlines that the focus on decarbonization should leave space also for co-internalization of
air pollutant damages, in particular, when CCS technologies become competitive. Our third key
result describes technology switch patterns. Interestingly, nuclear plays a dominant role because
wind and solar deployment at competitive spots is naturally limited and thus nuclear is the only
remaining emission-neutral (CO2 and air pollutants) technology. As a consequence, accounting
for air pollutant damages shifts the focus back towards nuclear in the choice set of policy makers.
In addition, bio-CCS is the dominant technology that drives air pollutant damages but reduces
those of CO2 emissions. This trade-off challenges the role of bio-CCS as panacea to achieve a
deep decarbonization. Regional biomass limits reinforce that challenge and trading biomass into
low-SCAP countries opens discussions on fair burden sharing of decarbonization.

Our analysis comes with some limitations. First, we do not address the time inconsistency
problem when re-setting intertemporal optimal tax rates in succeeding periods. To do so, we
would need to run the model on a rolling horizon until arriving at 2050. However, the objective
of our analysis is to highlight flaws of current modeling when interpreting results and, thus, we
refrain from undergoing this computationally intense task. Second, we use a European power
market model to quantify results. Consequently, quantification of social cost is only valid for
Europe which is quite densely populated and thus carries quite high damages from air pollutants.
However, technology cost are similar across the globe and the determined substitution effects and
the problem of CCS technologies is generally applicable. Moreover, wind and solar potential in time
and space is limited under current electricity demand projections. Other world regions without
that scarcity might overcome the entire air pollutant relevance by not using CCS technologies.
Third, the quite prominent role of nuclear is fostered by the fact that we do not explicitly account
for social cost of nuclear. Considering them could be a useful topic for future work. However,
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reduced nuclear capacities come with higher reliance on CCS technologies, which in turn makes
the role of air pollutant damages and their appropriate taxation even more severe.
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Appendix A. Supplementary Data

Appendix A.1. Technology Parameters

Table A.1: Efficiencies of generation technologies

2015 2020 2025 2030 2035 2040 2045 2050

Bio-CCS 0.16 0.16 0.17 0.17 0.17 0.18 0.18 0.18
Bioenergy 0.20 0.20 0.21 0.21 0.21 0.22 0.22 0.23
Coal 0.45 0.47 0.48 0.49 0.49 0.49 0.49 0.49
Coal-CCS 0.36 0.37 0.38 0.39 0.39 0.39 0.39 0.39
Gas-CCGT, Gas-ST 0.59 0.60 0.61 0.62 0.62 0.62 0.62 0.62
Gas-CCS 0.47 0.48 0.49 0.50 0.50 0.50 0.50 0.50
Gas-OCGT 0.42 0.44 0.45 0.46 0.46 0.47 0.47 0.47
Geothermal 0.09 0.11 0.11 0.12 0.13 0.13 0.14 0.14
Lignite 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
Nuclear 0.59 0.60 0.61 0.62 0.62 0.62 0.62 0.62
Oil 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

Table A.2: Investment cost (e/kW) of generation technologies

2015 2020 2025 2030 2035 2040 2045 2050

Bio-CCS 4,450 4,361 4,272 4,272 4,228 4,183 4,183 4,139
Bioenergy 4,322 4,236 4,149 4,149 4,106 4,063 4,063 4,020
Coal 1,500 1,500 1,440 1,410 1,395 1,380 1,380 1,365
Coal-CCS 3,415 3,415 3,278 3,210 3,176 3,142 3,142 3,108
Gas-CCGT, Gas-ST 850 850 850 850 850 850 850 850
Gas-CCS 1,495 1,495 1,495 1,495 1,495 1,495 1,495 1,495
Gas-OCGT 437 437 437 437 437 437 437 437
Geothermal 12,364 11,993 11,622 11,498 11,251 11,127 11,004 11,004
Lignite 1,640 1,640 1,640 1,640 1,640 1,640 1,640 1,640
Nuclear 6,600 6,006 5,346 5,082 4,818 4,488 4,488 4,356
Oil 822 822 822 822 822 822 822 822
Solar 1,300 1,027 936 858 819 780 741 715
Wind off 3,600 3,024 2,700 2,520 2,376 2,268 2,160 2,088
Wind on 1,520 1,397 1,368 1,339 1,325 1,310 1,310 1,296
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Appendix A.2. Emission Factors

Table A.3: Air pollution emissions (g/GJ) from the low scenario

2015 2020 2025 2030 2035 2040 2045 2050

NH3

Bio-CCS 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84
Bioenergy 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28
Coal 0.30 0.29 0.28 0.27 0.26 0.25 0.24 0.23
Coal-CCS 0.90 0.87 0.84 0.81 0.78 0.75 0.72 0.69
Gas-CCGT, Gas-OCGT, Gas-ST, Oil 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gas-CCS 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Lignite 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

NMVOC
Bio-CCS, Bioenergy 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31
Coal, Coal-CCS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
Lignite 1.40 1.35 1.31 1.26 1.21 1.17 1.12 1.07
Oil 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30

NOx

Bio-CCS, Bioenergy 76.42 73.77 71.13 68.48 65.84 63.19 60.55 57.90
Coal, Coal-CCS 72.50 69.90 67.30 64.70 62.10 59.50 56.90 54.30
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 31.01 28.61 26.21 23.81 21.40 19.00 16.60 14.20
Lignite 72.50 69.90 67.30 64.70 62.10 59.50 56.90 54.30
Oil 56.60 54.57 52.54 50.51 48.49 46.46 44.43 42.40

PPM10

Bio-CCS, Bioenergy 31.81 29.72 27.63 25.55 23.46 21.37 19.28 17.20
Coal, Coal-CCS 7.70 6.78 5.87 4.95 4.04 3.12 2.21 1.29
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Lignite 7.90 6.81 5.72 4.63 3.53 2.44 1.35 0.26
Oil 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20

PPM2.5

Bio-CCS, Bioenergy 27.94 26.10 24.26 22.41 20.57 18.73 16.89 15.05
Coal, Coal-CCS 3.40 3.08 2.76 2.44 2.11 1.79 1.47 1.15
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Lignite 3.20 2.78 2.36 1.94 1.52 1.10 0.68 0.26
Oil 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30

SO2

Bio-CCS, Bioenergy 10.80 10.24 9.68 9.12 8.57 8.01 7.45 6.89
Coal 63.45 55.41 47.38 39.34 31.31 23.27 15.24 7.20
Coal-CCS 50.76 44.33 37.90 31.47 25.05 18.62 12.19 5.76
Gas-CCGT, Gas-OCGT, Gas-ST 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
Gas-CCS 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
Lignite 91.20 79.20 67.20 55.20 43.20 31.20 19.20 7.20
Oil 70.70 68.69 66.67 64.66 62.64 60.63 58.61 56.60
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Table A.4: Air pollution emissions (g/GJ) from the mid scenario

2015 2020 2025 2030 2035 2040 2045 2050

NH3

Bio-CCS 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84
Bioenergy 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28
Coal 0.30 0.29 0.28 0.27 0.26 0.25 0.24 0.23
Coal-CCS 0.90 0.87 0.84 0.81 0.78 0.75 0.72 0.69
Gas-CCGT, Gas-OCGT, Gas-ST, Oil 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gas-CCS 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Lignite 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

NMVOC
Bio-CCS, Bioenergy 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31
Coal, Coal-CCS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
Lignite 1.40 1.35 1.31 1.26 1.21 1.17 1.12 1.07
Oil 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30

NOx

Bio-CCS, Bioenergy 76.42 73.77 71.13 68.48 65.84 63.19 60.55 57.90
Coal, Coal-CCS 72.50 71.23 69.96 68.69 67.43 66.16 64.89 63.62
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 31.01 30.62 30.24 29.85 29.46 29.07 28.69 28.30
Lignite 72.50 71.64 70.78 69.92 69.07 68.21 67.35 66.49
Oil 56.60 54.57 52.54 50.51 48.49 46.46 44.43 42.40

PPM10

Bio-CCS, Bioenergy 31.81 31.81 31.81 31.81 31.81 31.81 31.81 31.81
Coal, Coal-CCS 7.70 6.85 6.00 5.15 4.30 3.45 2.60 1.75
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Lignite 7.90 6.85 5.80 4.75 3.71 2.66 1.61 0.56
Oil 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20

PPM2.5

Bio-CCS, Bioenergy 27.94 27.94 27.94 27.94 27.94 27.94 27.94 27.94
Coal, Coal-CCS 3.40 3.14 2.87 2.61 2.35 2.09 1.82 1.56
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Lignite 3.20 2.81 2.43 2.04 1.65 1.26 0.88 0.49
Oil 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30

SO2

Bio-CCS, Bioenergy 10.80 10.24 9.68 9.12 8.57 8.01 7.45 6.89
Coal 63.45 59.74 56.03 52.32 48.60 44.89 41.18 37.47
Coal-CCS 50.76 47.79 44.82 41.85 38.88 35.91 32.95 29.98
Gas-CCGT, Gas-OCGT, Gas-ST 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
Gas-CCS 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
Lignite 91.20 81.44 71.68 61.92 52.16 42.40 32.64 22.88
Oil 70.70 68.69 66.67 64.66 62.64 60.63 58.61 56.60
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Table A.5: Air pollution emissions (g/GJ) from the high scenario

2015 2020 2025 2030 2035 2040 2045 2050

NH3

Bio-CCS 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84
Bioenergy 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28
Coal 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Coal-CCS 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
Gas-CCGT, Gas-OCGT, Gas-ST, Oil 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gas-CCS 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Lignite 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

NMVOC
Bio-CCS, Bioenergy 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31
Coal, Coal-CCS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
Lignite 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40
Oil 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30

NOx

Bio-CCS, Bioenergy 115.70 112.94 110.19 107.43 104.67 101.91 99.16 96.40
Coal, Coal-CCS 143.17 133.07 122.98 112.88 102.79 92.69 82.60 72.50
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 59.01 55.01 51.01 47.01 43.01 39.01 35.01 31.01
Lignite 123.14 115.91 108.67 101.44 94.20 86.97 79.73 72.50
Oil 56.60 54.57 52.54 50.51 48.49 46.46 44.43 42.40

PPM10

Bio-CCS, Bioenergy 155.00 155.00 155.00 155.00 155.00 155.00 155.00 155.00
Coal, Coal-CCS 20.82 18.95 17.07 15.20 13.32 11.45 9.57 7.70
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Lignite 22.67 20.56 18.45 16.34 14.23 12.12 10.01 7.90
Oil 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20

PPM2.5

Bio-CCS, Bioenergy 133.00 133.00 133.00 133.00 133.00 133.00 133.00 133.00
Coal, Coal-CCS 17.47 15.46 13.45 11.44 9.43 7.42 5.41 3.40
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Lignite 22.60 19.83 17.06 14.29 11.51 8.74 5.97 3.20
Oil 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30

SO2

Bio-CCS, Bioenergy 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80
Coal 72.50 71.21 69.91 68.62 67.33 66.04 64.74 63.45
Coal-CCS 58.00 56.97 55.93 54.90 53.86 52.83 51.79 50.76
Gas-CCGT, Gas-OCGT, Gas-ST 0.28 0.26 0.24 0.22 0.20 0.18 0.16 0.14
Gas-CCS 0.22 0.21 0.19 0.18 0.16 0.14 0.13 0.11
Lignite 346.38 309.92 273.47 237.02 200.56 164.11 127.65 91.20
Oil 70.70 68.69 66.67 64.66 62.64 60.63 58.61 56.60
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Appendix A.3. Annual Electricity Demand and Fuel Prices

Table A.6: Annual electricity demand (TWh)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 63 64 78 91 137 147 156 163
Belgium 83 82 96 107 131 157 181 196
Bulgaria 30 30 35 36 37 39 41 43
Croatia 16 16 17 18 18 20 23 25
Czech Republic 59 63 116 121 125 133 141 149
Denmark 32 32 37 35 39 47 52 56
Estonia 7 8 9 11 12 12 13 14
Finland 80 73 83 79 80 82 87 91
France 448 450 759 768 813 868 926 986
Germany 528 534 832 843 843 874 910 950
Greece 52 53 58 54 58 63 68 71
Hungary 38 37 44 53 67 71 75 81
Ireland 26 26 31 32 39 42 45 49
Italy 297 319 421 562 597 644 689 735
Latvia 6 7 8 9 10 12 12 13
Lithuania 10 12 18 18 17 18 19 20
Luxembourg 6 6 7 8 11 14 15 17
Netherlands 109 113 148 186 189 199 210 226
Norway 119 124 131 126 158 168 179 190
Poland 139 143 164 179 229 267 280 293
Portugal 47 52 61 62 66 70 73 76
Romania 47 47 54 58 60 67 74 80
Slovak Republic 25 27 34 39 48 56 58 60
Slovenia 13 13 15 17 19 22 23 24
Spain 239 247 313 367 494 523 543 568
Sweden 128 133 159 161 232 248 265 282
Switzerland 58 61 67 71 117 128 139 151
United Kingdom 311 317 358 389 435 489 533 595

Table A.7: Fuel prices for Germany (EUR/MWh thermal)

2015 2020 2025 2030 2035 2040 2045 2050

Bioenergy 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
Coal 8.35 8.22 8.09 7.94 7.79 7.68 7.58 7.49
Lignite 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
Gas 20.65 20.34 20.01 19.63 19.27 18.99 18.74 18.53
Oil 40.26 40.84 41.18 41.58 42.14 42.74 43.51 44.34
Uranium 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33
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Appendix A.4. Population Projections

Table A.8: Population projections (million)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 8.64 8.92 8.98 9.04 9.07 9.06 9.01 8.93
Belgium 11.27 11.54 11.70 11.83 11.93 12.01 12.06 12.09
Bulgaria 7.18 6.92 6.66 6.38 6.10 5.84 5.59 5.36
Croatia 4.20 4.04 3.93 3.82 3.70 3.56 3.43 3.30
Czech Republic 11 11 11 11 11 11 11 11
Denmark 5.68 5.83 5.94 6.03 6.10 6.17 6.21 6.25
Estonia 1.32 1.33 1.30 1.27 1.24 1.21 1.18 1.15
Finland 5.48 5.53 5.56 5.55 5.52 5.50 5.48 5.45
France 66.55 67.20 68.01 68.54 68.87 69.09 69.18 69.09
Germany 81.69 83.15 82.55 82.22 81.72 80.93 79.80 78.53
Greece 10.82 10.66 10.38 10.15 9.93 9.71 9.48 9.20
Hungary 9.84 9.74 9.58 9.40 9.18 8.94 8.73 8.52
Ireland 4.70 4.98 5.14 5.27 5.38 5.50 5.60 5.68
Italy 60.73 60.18 59.51 58.59 57.64 56.62 55.29 53.59
Latvia 1.98 1.89 1.81 1.73 1.66 1.60 1.55 1.50
Lithuania 2.90 2.76 2.64 2.54 2.44 2.35 2.26 2.18
Luxembourg 0.57 0.63 0.66 0.69 0.72 0.74 0.76 0.78
Netherlands 16.94 17.38 17.55 17.65 17.67 17.61 17.48 17.29
Norway 5.19 5.39 5.62 5.83 6.03 6.21 6.37 6.52
Poland 37.99 37.91 37.57 36.95 36.09 35.09 34.12 33.19
Portugal 10.36 10.25 10.11 9.95 9.77 9.57 9.34 9.08
Romania 19.82 19.25 18.82 18.35 17.84 17.31 16.82 16.30
Slovak Republic 5.42 5.46 5.44 5.39 5.30 5.19 5.07 4.96
Slovenia 2.06 2.09 2.08 2.06 2.03 2.00 1.97 1.93
Spain 46.44 47.13 46.87 46.46 45.93 45.30 44.51 43.49
Sweden 9.80 10.34 10.61 10.83 11.01 11.19 11.38 11.55
Switzerland 8.28 8.63 8.90 9.13 9.32 9.47 9.59 9.68
United Kingdom 65.12 67.16 68.44 69.54 70.48 71.36 72.13 72.74
World 7,339 7,754 8,140 8,501 8,836 9,145 9,426 9,676
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Appendix A.5. GDP Projections

Table A.9: GDP projections (billion 2015 EUR)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 436 474 511 546 589 636 683 728
Belgium 528 566 606 654 719 797 877 960
Bulgaria 56 62 67 71 75 79 83 86
Croatia 57 62 65 69 75 82 88 94
Czech Republic 204 223 238 258 277 297 317 338
Denmark 346 388 429 463 499 542 590 643
Estonia 26 29 31 33 35 38 40 41
Finland 271 287 303 323 350 382 413 445
France 2,841 3,066 3,270 3,488 3,763 4,094 4,435 4,820
Germany 3,850 4,091 4,328 4,490 4,640 4,855 5,097 5,334
Greece 234 241 246 256 275 295 306 316
Hungary 137 148 165 180 194 207 217 231
Ireland 250 282 306 333 363 393 420 455
Italy 2,132 2,273 2,409 2,556 2,733 2,939 3,144 3,385
Latvia 31 35 39 42 44 47 50 52
Lithuania 47 54 57 58 59 63 67 71
Luxembourg 65 74 84 95 108 123 138 154
Netherlands 876 938 987 1,028 1,083 1,153 1,230 1,317
Norway 507 555 601 654 715 785 861 936
Poland 542 622 698 769 826 881 919 947
Portugal 228 245 266 281 296 309 319 330
Romania 198 222 243 261 278 297 317 338
Slovak Republic 99 114 128 144 156 164 169 173
Slovenia 49 53 58 62 65 70 74 78
Spain 1,376 1,510 1,652 1,793 1,936 2,061 2,141 2,264
Sweden 570 630 697 765 847 937 1,033 1,131
Switzerland 700 776 859 950 1,055 1,172 1,300 1,430
United Kingdom 2,984 3,188 3,366 3,611 3,948 4,354 4,780 5,215
World 78,242 90,573 104,038 119,466 136,834 155,959 175,894 196,762
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Table A.10: GDP growth (2015 = 1)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 1.00 1.09 1.17 1.25 1.35 1.46 1.57 1.67
Belgium 1.00 1.07 1.15 1.24 1.36 1.51 1.66 1.82
Bulgaria 1.00 1.11 1.20 1.27 1.34 1.42 1.48 1.53
Croatia 1.00 1.09 1.15 1.22 1.32 1.45 1.56 1.66
Czech Republic 1.00 1.09 1.17 1.26 1.36 1.45 1.55 1.65
Denmark 1.00 1.12 1.24 1.34 1.44 1.57 1.70 1.86
Estonia 1.00 1.10 1.18 1.26 1.34 1.42 1.50 1.56
Finland 1.00 1.06 1.12 1.19 1.29 1.41 1.52 1.64
France 1.00 1.08 1.15 1.23 1.32 1.44 1.56 1.70
Germany 1.00 1.06 1.12 1.17 1.21 1.26 1.32 1.39
Greece 1.00 1.03 1.05 1.09 1.18 1.26 1.31 1.35
Hungary 1.00 1.08 1.20 1.32 1.42 1.50 1.58 1.68
Ireland 1.00 1.13 1.22 1.33 1.45 1.57 1.68 1.82
Italy 1.00 1.07 1.13 1.20 1.28 1.38 1.47 1.59
Latvia 1.00 1.14 1.25 1.34 1.41 1.52 1.60 1.68
Lithuania 1.00 1.14 1.20 1.22 1.25 1.32 1.41 1.50
Luxembourg 1.00 1.14 1.29 1.46 1.67 1.90 2.13 2.37
Netherlands 1.00 1.07 1.13 1.17 1.24 1.32 1.40 1.50
Norway 1.00 1.10 1.19 1.29 1.41 1.55 1.70 1.85
Poland 1.00 1.15 1.29 1.42 1.52 1.62 1.70 1.75
Portugal 1.00 1.07 1.16 1.23 1.29 1.35 1.40 1.45
Romania 1.00 1.12 1.23 1.32 1.40 1.50 1.60 1.70
Slovak Republic 1.00 1.15 1.29 1.46 1.57 1.65 1.70 1.75
Slovenia 1.00 1.08 1.17 1.25 1.33 1.41 1.49 1.58
Spain 1.00 1.10 1.20 1.30 1.41 1.50 1.56 1.65
Sweden 1.00 1.11 1.22 1.34 1.49 1.64 1.81 1.99
Switzerland 1.00 1.11 1.23 1.36 1.51 1.67 1.86 2.04
United Kingdom 1.00 1.07 1.13 1.21 1.32 1.46 1.60 1.75
World 1.00 1.16 1.33 1.53 1.75 1.99 2.25 2.51
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Table A.11: GDP per capita (2015er EUR)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 50,447 53,122 56,882 60,422 65,003 70,194 75,788 81,573
Belgium 46,828 49,070 51,840 55,235 60,281 66,345 72,752 79,463
Bulgaria 7,803 9,019 10,132 11,173 12,313 13,600 14,814 16,033
Croatia 13,509 15,280 16,584 18,081 20,279 23,080 25,765 28,542
Czech Republic 19,358 20,822 22,175 24,141 26,129 28,101 30,103 32,170
Denmark 60,879 66,439 72,165 76,820 81,782 87,851 94,885 102,893
Estonia 20,076 21,880 23,948 26,147 28,492 31,077 33,531 35,882
Finland 49,532 51,818 54,551 58,276 63,441 69,427 75,519 81,745
France 42,691 45,624 48,086 50,883 54,629 59,248 64,105 69,772
Germany 47,135 49,193 52,425 54,606 56,777 59,991 63,868 67,926
Greece 21,604 22,635 23,679 25,213 27,670 30,369 32,275 34,361
Hungary 13,942 15,235 17,188 19,197 21,174 23,094 24,924 27,096
Ireland 53,216 56,603 59,576 63,162 67,411 71,445 74,920 79,977
Italy 35,102 37,764 40,479 43,621 47,415 51,914 56,867 63,155
Latvia 15,730 18,725 21,552 23,975 26,410 29,484 32,223 34,792
Lithuania 16,343 19,524 21,609 22,797 24,225 26,780 29,687 32,691
Luxembourg 113,650 116,861 126,423 137,335 150,763 166,092 181,310 196,353
Netherlands 51,708 53,969 56,222 58,261 61,312 65,459 70,373 76,168
Norway 97,625 102,975 107,016 112,177 118,729 126,534 135,089 143,682
Poland 14,268 16,396 18,568 20,816 22,882 25,092 26,945 28,535
Portugal 22,057 23,866 26,304 28,285 30,263 32,250 34,193 36,397
Romania 10,012 11,528 12,933 14,245 15,567 17,173 18,853 20,750
Slovak Republic 18,267 20,830 23,476 26,750 29,386 31,575 33,242 34,887
Slovenia 23,876 25,521 27,837 29,894 32,227 34,789 37,430 40,341
Spain 29,631 32,047 35,251 38,599 42,143 45,492 48,099 52,061
Sweden 58,129 60,914 65,647 70,643 76,911 83,714 90,796 97,892
Switzerland 84,554 89,900 96,469 104,057 113,187 123,741 135,521 147,763
United Kingdom 45,828 47,469 49,174 51,931 56,019 61,017 66,270 71,700
World 10,661 11,682 12,781 14,052 15,485 17,054 18,661 20,335
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Table A.12: GDP per capita growth (2015 = 1)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 1.00 1.05 1.13 1.20 1.29 1.39 1.50 1.62
Belgium 1.00 1.05 1.11 1.18 1.29 1.42 1.55 1.70
Bulgaria 1.00 1.16 1.30 1.43 1.58 1.74 1.90 2.05
Croatia 1.00 1.13 1.23 1.34 1.50 1.71 1.91 2.11
Czech Republic 1.00 1.08 1.15 1.25 1.35 1.45 1.56 1.66
Denmark 1.00 1.09 1.19 1.26 1.34 1.44 1.56 1.69
Estonia 1.00 1.09 1.19 1.30 1.42 1.55 1.67 1.79
Finland 1.00 1.05 1.10 1.18 1.28 1.40 1.52 1.65
France 1.00 1.07 1.13 1.19 1.28 1.39 1.50 1.63
Germany 1.00 1.04 1.11 1.16 1.20 1.27 1.36 1.44
Greece 1.00 1.05 1.10 1.17 1.28 1.41 1.49 1.59
Hungary 1.00 1.09 1.23 1.38 1.52 1.66 1.79 1.94
Ireland 1.00 1.06 1.12 1.19 1.27 1.34 1.41 1.50
Italy 1.00 1.08 1.15 1.24 1.35 1.48 1.62 1.80
Latvia 1.00 1.19 1.37 1.52 1.68 1.87 2.05 2.21
Lithuania 1.00 1.19 1.32 1.39 1.48 1.64 1.82 2.00
Luxembourg 1.00 1.03 1.11 1.21 1.33 1.46 1.60 1.73
Netherlands 1.00 1.04 1.09 1.13 1.19 1.27 1.36 1.47
Norway 1.00 1.05 1.10 1.15 1.22 1.30 1.38 1.47
Poland 1.00 1.15 1.30 1.46 1.60 1.76 1.89 2.00
Portugal 1.00 1.08 1.19 1.28 1.37 1.46 1.55 1.65
Romania 1.00 1.15 1.29 1.42 1.55 1.72 1.88 2.07
Slovak Republic 1.00 1.14 1.29 1.46 1.61 1.73 1.82 1.91
Slovenia 1.00 1.07 1.17 1.25 1.35 1.46 1.57 1.69
Spain 1.00 1.08 1.19 1.30 1.42 1.54 1.62 1.76
Sweden 1.00 1.05 1.13 1.22 1.32 1.44 1.56 1.68
Switzerland 1.00 1.06 1.14 1.23 1.34 1.46 1.60 1.75
United Kingdom 1.00 1.04 1.07 1.13 1.22 1.33 1.45 1.56
World 1.00 1.10 1.20 1.32 1.45 1.60 1.75 1.91
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Table A.13: GDP per capita index (European 28 = 1)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 1.34 1.32 1.32 1.31 1.31 1.30 1.30 1.28
Belgium 1.24 1.22 1.20 1.20 1.21 1.23 1.24 1.25
Bulgaria 0.21 0.22 0.24 0.24 0.25 0.25 0.25 0.25
Croatia 0.36 0.38 0.38 0.39 0.41 0.43 0.44 0.45
Czech Republic 0.51 0.52 0.51 0.52 0.53 0.52 0.51 0.51
Denmark 1.62 1.65 1.68 1.67 1.65 1.63 1.62 1.62
Estonia 0.53 0.54 0.56 0.57 0.57 0.58 0.57 0.56
Finland 1.32 1.29 1.27 1.26 1.28 1.29 1.29 1.29
France 1.13 1.13 1.12 1.10 1.10 1.10 1.10 1.10
Germany 1.25 1.22 1.22 1.18 1.14 1.11 1.09 1.07
Greece 0.57 0.56 0.55 0.55 0.56 0.56 0.55 0.54
Hungary 0.37 0.38 0.40 0.42 0.43 0.43 0.43 0.43
Ireland 1.41 1.41 1.38 1.37 1.36 1.32 1.28 1.26
Italy 0.93 0.94 0.94 0.95 0.95 0.96 0.97 0.99
Latvia 0.42 0.47 0.50 0.52 0.53 0.55 0.55 0.55
Lithuania 0.43 0.49 0.50 0.49 0.49 0.50 0.51 0.51
Luxembourg 3.02 2.90 2.93 2.98 3.03 3.08 3.10 3.09
Netherlands 1.37 1.34 1.31 1.26 1.23 1.21 1.20 1.20
Norway 2.59 2.56 2.48 2.43 2.39 2.34 2.31 2.26
Poland 0.38 0.41 0.43 0.45 0.46 0.46 0.46 0.45
Portugal 0.59 0.59 0.61 0.61 0.61 0.60 0.58 0.57
Romania 0.27 0.29 0.30 0.31 0.31 0.32 0.32 0.33
Slovak Republic 0.49 0.52 0.54 0.58 0.59 0.59 0.57 0.55
Slovenia 0.63 0.63 0.65 0.65 0.65 0.64 0.64 0.64
Spain 0.79 0.80 0.82 0.84 0.85 0.84 0.82 0.82
Sweden 1.54 1.51 1.52 1.53 1.55 1.55 1.55 1.54
Switzerland 2.25 2.23 2.24 2.26 2.28 2.29 2.32 2.33
United Kingdom 1.22 1.18 1.14 1.13 1.13 1.13 1.13 1.13
World 0.28 0.29 0.30 0.30 0.31 0.32 0.32 0.32
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Appendix A.6. Detailed SCAP

Table A.14: Demand-weighted average SCAP (e/ton) by impact category and air pollutant (1)

Average AT BE BG CH CZ DE DK EE EL

Human health
NH3 16,543 19,650 36,698 9,475 14,214 28,161 21,930 11,964 8,563 7,149
NMVOC 1,039 1,702 2,633 -87 1,301 980 1,394 957 273 259
NOx 8,003 11,803 9,576 7,235 20,071 9,885 11,574 5,131 1,903 2,553
PPM10 1,019 789 2,441 634 549 939 1,493 591 241 500
PPM2.5 23,105 24,759 33,185 15,381 26,800 27,356 36,745 11,805 7,360 11,544
SO2 9,844 11,300 13,504 7,551 16,003 11,381 13,067 6,214 5,397 7,207

Loss of biodiversity
NH3 5,790 6,483 3,342 1,382 14,710 8,897 10,510 2,297 5,585 1,118
NMVOC -129 -80 -60 -14 -177 -146 -356 -82 -50 -17
NOx 1,570 1,276 1,100 229 2,567 2,413 2,435 1,426 941 325
PPM10 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0
SO2 583 402 480 32 424 731 944 630 349 69

Regional crops
NH3 -281 -97 -133 -125 -207 -211 -106 -149 -11 -318
NMVOC 319 119 432 35 254 228 470 334 51 51
NOx 356 324 1 214 784 390 629 212 55 149
PPM10 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0
SO2 -112 -73 -111 4 -214 -100 -195 -127 -26 -5

Materials
NH3 0 0 0 0 0 0 0 0 0 0
NMVOC 0 0 0 0 0 0 0 0 0 0
NOx 116 141 78 82 120 203 156 121 52 88
PPM10 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0
SO2 435 355 461 178 387 850 733 425 165 142

Total regional cost
NH3 22,052 26,036 39,906 10,732 28,717 36,847 32,334 14,112 14,137 7,949
NMVOC 1,229 1,741 3,005 -66 1,379 1,061 1,507 1,209 274 293
NOx 10,045 13,544 10,755 7,760 23,543 12,891 14,794 6,890 2,950 3,115
PPM10 1,019 789 2,441 634 549 939 1,493 591 241 500
PPM2.5 23,105 24,759 33,185 15,381 26,800 27,356 36,745 11,805 7,360 11,544
SO2 10,750 11,985 14,335 7,766 16,601 12,862 14,548 7,142 5,885 7,414

Total global cost
NH3 22,057 26,041 39,911 10,736 28,721 36,852 32,339 14,116 14,141 7,954
NMVOC 1,829 2,341 3,605 534 1,979 1,661 2,107 1,809 874 893
NOx 10,265 13,764 10,975 7,980 23,763 13,111 15,014 7,110 3,170 3,335
PPM10 1,023 792 2,445 637 552 943 1,497 594 244 503
PPM2.5 23,370 25,024 33,449 15,645 27,065 27,620 37,009 12,070 7,624 11,809
SO2 11,217 12,451 14,801 8,232 17,068 13,328 15,015 7,609 6,352 7,881
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Table A.15: Demand-weighted average SCAP (e/ton) by impact category and air pollutant (2)

ES HU FI FR HR HU IE IT LT LU

Human health
NH3 6,024 22,941 5,302 14,423 19,968 22,941 3,028 16,842 7,296 29,975
NMVOC 546 810 294 1,178 992 810 859 857 547 2,554
NOx 3,034 11,998 1,905 10,928 9,590 11,998 4,149 8,406 5,868 11,334
PPM10 489 1,119 74 1,040 819 1,119 384 1,073 366 1,355
PPM2.5 11,273 27,537 4,921 27,382 23,825 27,537 9,386 22,115 10,308 32,757
SO2 7,391 10,882 3,742 10,548 11,005 10,882 7,651 10,455 6,809 14,702

Loss of biodiversity
NH3 2,705 5,335 3,090 5,224 7,844 5,335 635 9,755 3,905 11,331
NMVOC -43 -82 -55 -95 -100 -82 -34 -130 -49 -136
NOx 851 1,822 1,266 1,570 2,167 1,822 668 1,894 940 2,541
PPM10 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0
SO2 197 475 641 950 562 475 251 265 241 996

Regional crops
NH3 -451 -280 -4 -529 -336 -280 -279 -447 -19 -285
NMVOC 139 144 50 376 234 144 206 327 59 564
NOx 438 659 59 389 1,121 659 438 590 171 891
PPM10 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0
SO2 -80 -34 -31 -162 -108 -34 -112 -62 -75 -261

Materials
NH3 0 0 0 0 0 0 0 0 0 0
NMVOC 0 0 0 0 0 0 0 0 0 0
NOx 31 298 36 126 120 298 53 93 124 175
PPM10 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0
SO2 69 817 144 420 387 817 118 188 324 755

Total regional cost
NH3 8,278 27,997 8,388 19,117 27,476 27,997 3,384 26,150 11,182 41,020
NMVOC 641 872 290 1,460 1,126 872 1,032 1,054 557 2,981
NOx 4,354 14,777 3,266 13,013 12,998 14,777 5,309 10,983 7,103 14,940
PPM10 489 1,119 74 1,040 819 1,119 384 1,073 366 1,355
PPM2.5 11,273 27,537 4,921 27,382 23,825 27,537 9,386 22,115 10,308 32,757
SO2 7,577 12,140 4,495 11,755 11,846 12,140 7,907 10,846 7,299 16,192

Total global cost
NH3 8,283 28,002 8,393 19,122 27,481 28,002 3,389 26,155 11,186 41,024
NMVOC 1,241 1,472 890 2,060 1,726 1,472 1,632 1,654 1,157 3,581
NOx 4,573 14,997 3,486 13,233 13,218 14,997 5,528 11,203 7,323 15,160
PPM10 493 1,123 78 1,044 823 1,123 388 1,076 369 1,358
PPM2.5 11,538 27,802 5,185 27,646 24,090 27,802 9,650 22,379 10,573 33,022
SO2 8,044 12,607 4,962 12,222 12,313 12,607 8,374 11,313 7,765 16,659
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Table A.16: Demand-weighted average SCAP (e/ton) by impact category and air pollutant (3)

Average LV NL NO PL PT RO SE SI SK UK

Human health
NH3 6,024 8,096 28,196 4,273 16,194 4,958 11,039 10,224 22,073 25,327 21,596
NMVOC 546 497 2,038 461 758 521 489 482 1,399 653 1,093
NOx 3,034 3,995 8,678 3,585 6,510 916 8,508 3,693 9,935 10,156 4,807
PPM10 489 348 2,388 191 1,012 328 917 170 843 928 1,136
PPM2.5 11,273 8,838 36,246 6,012 24,798 7,080 18,976 6,421 23,387 23,614 20,252
SO2 7,391 5,891 12,927 2,093 10,981 4,831 9,108 4,833 12,333 10,576 8,858

Loss of biodiversity
NH3 2,705 5,220 5,929 1,399 6,486 1,737 3,963 2,403 13,424 9,157 1,042
NMVOC -43 -59 -107 -74 -90 -17 -36 -68 -150 -99 -53
NOx 851 994 1,760 825 1,781 270 675 1,638 2,965 1,656 1,020
PPM10 0 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0 0
SO2 197 249 1,223 463 -54 86 101 967 748 524 377

Regional crops
NH3 -451 -14 -279 -36 -160 -361 -192 -33 -321 -216 -406
NMVOC 139 67 645 146 192 91 75 111 262 156 521
NOx 438 60 -263 360 236 102 326 191 922 644 -30
PPM10 0 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0 0
SO2 -80 -39 -200 -47 -13 -42 -9 -74 -189 -47 -102

Materials
NH3 0 0 0 0 0 0 0 0 0 0 0
NMVOC 0 0 0 0 0 0 0 0 0 0 0
NOx 31 78 137 120 220 19 222 53 215 273 70
PPM10 0 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0 0
SO2 69 216 827 387 880 49 644 186 576 813 320

Total regional cost
NH3 8,278 13,302 33,846 5,636 22,520 6,334 14,810 12,594 35,176 34,268 22,232
NMVOC 641 504 2,577 534 860 595 528 525 1,510 710 1,562
NOx 4,354 5,127 10,313 4,890 8,747 1,308 9,730 5,574 14,038 12,729 5,866
PPM10 489 348 2,388 191 1,012 328 917 170 843 928 1,136
PPM2.5 11,273 8,838 36,246 6,012 24,798 7,080 18,976 6,421 23,387 23,614 20,252
SO2 7,577 6,318 14,777 2,896 11,794 4,925 9,844 5,912 13,469 11,866 9,452

Total global cost
NH3 8,283 13,307 33,851 5,640 22,525 6,338 14,815 12,599 35,181 34,272 22,237
NMVOC 1,241 1,104 3,177 1,134 1,460 1,195 1,128 1,125 2,110 1,310 2,162
NOx 4,573 5,347 10,533 5,110 8,967 1,527 9,950 5,794 14,258 12,948 6,086
PPM10 493 351 2,392 194 1,016 332 920 174 846 931 1,139
PPM2.5 11,538 9,102 36,511 6,277 25,063 7,345 19,240 6,686 23,651 23,878 20,517
SO2 8,044 6,784 15,244 3,362 12,261 5,392 10,311 6,379 13,936 12,333 9,919
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Appendix A.7. Technology boost

Table A.17: Potential (GW) of wind technologies by country and resource class (low, mid, high)

Wind off (low) Wind off (mid) Wind off (high) Wind on (low) Wind on (mid) Wind on (high)

Austria 0 0 0 10 30 10
Belgium 1 2 1 3 9 3
Bulgaria 12 36 12 14 43 14
Croatia 19 57 19 7 22 7
Czech Republic 0 0 0 10 29 10
Denmark 36 108 36 5 16 5
Estonia 13 38 13 5 16 5
Finland 27 82 27 40 119 40
France 119 358 119 71 214 71
Germany 19 58 19 43 128 43
Greece 167 502 167 17 50 17
Hungary 0 0 0 12 36 12
Ireland 148 444 148 9 28 9
Italy 178 535 178 37 111 37
Latvia 10 30 10 8 24 8
Lithuania 2 7 2 8 25 8
Luxembourg 0 1 0
Netherlands 22 67 22 4 12 4
Norway 321 963 321 35 106 35
Poland 10 31 10 40 119 40
Portugal 110 329 110 12 36 12
Romania 10 31 10 31 92 31
Slovak Republic 6 18 6
Slovenia 2 7 2
Spain 195 585 195 67 201 67
Sweden 53 159 53 53 158 53
Switzerland 5 14 5
United Kingdom 252 756 252 31 92 31
Sum 1,724 5,178 1,724 585 1,756 585
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Table A.18: Full-load hours of wind and solar technologies by resource class (low, mid, high) without wind technology boost

Wind off (low) Wind off (mid) Wind off (high) Wind on (low) Wind on (mid) Wind on (high)

Austria 0 0 0 558 1,675 2,814
Belgium 2,758 2,763 3,255 2,197 2,292 2,930
Bulgaria 594 1,203 1,523 479 1,337 2,555
Croatia 462 1,107 915 284 619 2,288
Czech 0 0 0 1,894 2,326 2,812
Denmark 2,800 3,312 4,106 1,376 2,764 2,992
Estonia 2,248 2,160 3,420 1,299 1,836 2,903
Finland 1,151 2,033 2,683 742 940 3,462
France 1,671 2,735 3,414 1,462 2,003 2,889
Germany 2,617 3,190 3,267 1,757 2,105 2,403
Greece 610 1,440 2,133 259 718 2,201
Hungary 0 0 0 637 848 2,686
Ireland 2,061 3,557 4,046 2,131 2,682 3,324
Italy 664 979 956 255 970 1,849
Latvia 1,809 2,833 3,375 648 2,265 2,704
Lithuania 1,885 2,708 1,881 485 1,580 2,317
Luxembourg 0 0 0 1,862 2,087 2,254
Netherlands 2,959 3,116 3,728 1,929 2,135 2,513
Norway 1,114 2,218 2,070 664 2,317 3,303
Poland 2,196 2,751 3,149 1,883 2,032 3,406
Portugal 620 1,619 2,821
Romania 1,112 1,336 1,667 512 1,010 2,518
Slovakia 679 1,620 2,834
Slovenia 685 685 457 331 894 1,722
Spain 752 1,084 1,574 1,602 2,328 3,295
Sweden 325 947 3,258
Switzerland 1,499 1,793 2,501
United Kingdom 2,912 3,150 4,148 1,901 2,700 3,019
Average 1,450 2,135 2,601 1,089 1,725 2,898
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Table A.19: Full-load hours of wind and solar technologies by resource class (low, mid, high) with wind technology boost

Wind off (low) Wind off (mid) Wind off (high) Wind on (low) Wind on (mid) Wind on (high)

Austria 0 0 0 831 2,719 3,753
Belgium 2,964 2,970 3,489 3,269 3,247 3,616
Bulgaria 881 1,333 1,685 732 2,120 3,242
Croatia 893 923 996 472 966 2,975
Czech 0 0 0 2,722 3,178 3,834
Denmark 3,037 3,567 4,353 1,876 4,083 4,443
Estonia 2,459 2,978 3,654 1,888 2,573 4,328
Finland 1,190 1,695 2,901 1,419 1,776 3,886
France 1,833 2,964 3,638 3,053 3,003 3,708
Germany 2,836 2,573 3,661 2,893 2,977 3,003
Greece 773 1,270 2,318 456 1,060 2,896
Hungary 0 0 0 965 1,271 3,575
Ireland 2,217 3,980 4,214 2,797 3,737 3,895
Italy 735 1,058 1,886 394 1,498 2,401
Latvia 1,970 3,065 3,607 1,012 3,550 3,664
Lithuania 2,044 2,891 3,205 766 2,644 3,216
Luxembourg 0 0 0 2,523 2,660 2,903
Netherlands 3,175 3,338 3,956 2,843 3,251 3,331
Norway 1,244 1,843 2,167 940 3,271 3,835
Poland 2,110 2,973 3,390 2,873 3,263 4,314
Portugal 968 2,847 3,646
Romania 1,240 1,583 1,844 832 1,752 2,881
Slovakia 1,010 2,209 3,652
Slovenia 761 761 507 515 1,509 2,417
Spain 832 1,511 2,499 2,578 3,031 3,928
Sweden 550 1,770 3,704
Switzerland 2,141 2,520 2,838
United Kingdom 3,127 3,375 4,324 2,387 3,642 3,615
Average 1,577 2,230 2,937 1,776 2,578 3,558
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Appendix A.8. Biomass Limits

Table A.20: Country-level biomass limits (TWh)

TWh th.: Standard Double Fourfold TWh el.: Standard Double Fourfold

Austria 52 103 207 10 19 38
Belgium 21 42 85 4 8 16
Bulgaria 37 73 146 7 13 27
Croatia 16 31 62 3 6 11
Czech Republic 61 121 242 11 22 45
Denmark 17 34 69 3 6 13
Estonia 18 35 70 3 6 13
Finland 101 202 404 19 37 74
France 300 600 1,200 55 110 221
Germany 263 526 1,053 48 97 194
Greece 21 42 84 4 8 15
Hungary 54 107 215 10 20 39
Ireland 37 75 149 7 14 27
Italy 114 228 456 21 42 84
Latvia 28 56 111 5 10 20
Lithuania 22 44 88 4 8 16
Luxembourg 3 5 11 0 1 2
Netherlands 18 36 72 3 7 13
Norway 23 46 93 4 9 17
Poland 161 322 643 30 59 118
Portugal 35 69 139 6 13 26
Romania 122 245 490 23 45 90
Slovak Republic 22 44 88 4 8 16
Slovenia 14 27 55 3 5 10
Spain 160 320 640 29 59 118
Sweden 148 296 592 27 54 109
Switzerland 13 27 54 2 5 10
United Kingdom 166 332 664 31 61 122
Sum 2,045 4,091 8,182 376 753 1,505

We take regional economic harvesting potentials in kilo tons (metric) for agricultural biomass,
wooden biomass, and waste, out of which we assume 50% to be available for electricity genera-
tion. We use net calorific values of 18 MJ/kg (agricultural crops), 19 MJ/kg (wood), and 15 MJ/kg
(dry matter waste) to convert biomass potentials to bioenergy potentials.
The three columns on the left show thermal limits (TWh th.) and the three columns on the right
generation limits (TWh el.) when assuming technology parameters of the 2050 vintage.
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Appendix B. Supplementary Tables

Appendix B.1. Additional Tables for Subsection 8.1

Table B.21: Aggregated social cost (billion e) from 2016 to 2050 (1)

SCAP SCC Sum

Internalization choices and emission factor assumptions
No internalization 1,494 3,650 5,145
Only SCAP (mid) 330 1,761 2,091
Only SCC 449 345 794
SCC and SCAP (low) 192 414 605
SCC and SCAP (mid)*** 166 456 622
SCC and SCAP (high) 208 474 682

Varying SCC level
SCC 25% 242 321 562
SCC 50% 185 451 636
SCC 100%*** 166 456 622
SCC 200% 353 -34 320
SCC 400% 486 -998 -512
SCC 800% 576 -2,727 -2,151

Varying SCAP level
SCAP 25% 89 369 458
SCAP 50% 130 417 548
SCAP 100%*** 166 456 622
SCAP 200% 249 446 695
SCAP 400% 322 382 704
SCAP 800% 408 285 693

Technology boost
No internalization with boost 1,340 3,251 4,591
Only SCAP (mid) with boost 280 1,460 1,740
Only SCC with boost 430 375 805
SCC and SCAP (low) with boost 174 441 615
SCC and SCAP (mid) with boost 153 476 629
SCC and SCAP (high) with boost 200 483 683

***SCC and SCAP (mid) is the same as SCC 100%, SCAP 100%, 7/3/1.5, SCAP normal, and
regional biomass limits. Those serve as benchmark for comparison with other specifications.
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Table B.22: Aggregated social cost (billion e) from 2016 to 2050 (2)

SCAP SCC Sum

Discounting and taxation
7/7/7 268 1,416 1,684
3/3/3 201 1,058 1,259
1.5/1.5/1.5 178 937 1,115
7/3/3 160 683 843
7/3/1.5*** 166 456 622
7/1.5/1.5 140 468 608

Distributional and growth effects
SCAP normal*** 166 456 622
SCAP equal 186 469 656
SCAP distributional 177 441 618
SCAP equal and distributional 174 464 638
SCAP no GDP growth 176 401 578
SCAP equal and no GDP growth 170 435 605

Biomass limits and trade
Regional biomass limits*** 166 456 622
European trade 187 356 543
Double regional 194 404 598
Double European trade 243 205 448
Fourfold regional 249 302 551
Fourfold European trade 345 -35 310

Biomass trade and arbitrage
Regional biomass limits and SCAP equal (mid) 186 469 656
European trade and SCAP equal (mid) 230 426 656
Double regional and SCAP equal (mid) 230 428 658
Double European trade and SCAP equal (mid) 319 341 660
Fourfold regional and SCAP equal (mid) 297 363 660
Fourfold European trade and SCAP equal (mid) 359 304 662

***SCC and SCAP (mid) is the same as SCC 100%, SCAP 100%, 7/3/1.5,
SCAP normal, and regional biomass limits. Those serve as benchmark for
comparison with other specifications.
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Appendix B.2. Additional Tables for Subsection 8.2

Table B.23: Technology switching clusters A to D compared to benchmark specification SCC and SCAP (mid)

Specifications by cluster from to

Median dominance of SCC
SCC and SCAP (low) Nuclear Bio-CCS
SCAP 50% Nuclear Bio-CCS
SCAP no GDP growth Nuclear Bio-CCS
Only SCC Nuclear Bio-CCS. Gas-CCS
SCAP 25% Nuclear Bio-CCS.Gas-CCS

Strong dominance of SCC
SCC 200% Gas-CCS Bio-CCS
SCC 400% Gas-CCS Bio-CCS. Nuclear
SCC 800% Gas-CCS Bio-CCS. Nuclear

Biomass dominance
Double European trading Nuclear. Wind Bio-CCS
Fourfold regional Nuclear Bio-CCS
Fourfold European trading Nuclear. Wind Bio-CCS

Little or no dominance of SCC
No internalization Nuclear. Wind Gas
SCC 50% Gas-CCS Gas
SCC 25% Nuclear Gas
Only SCAP Nuclear. Wind Gas
7/7/7 Nuclear. Wind Gas. Solar
3/3/3 Nuclear Gas. Solar
1.5/1.5/1.5 Nuclear Gas. Solar

Dominance of SCAP
SCAP 200% Gas-CCS Nuclear
SCAP 400% Gas-CCS Nuclear
SCAP 800% Gas-CCS Nuclear. Wind
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Table B.24: Change in 2050 emissions in comparison to benchmark specification SCC and SCAP (mid) (1)

Change in 2050 emissions Air pollution Carbon Air pollution Carbon
(in Mt) (in Gt) (magnitude) (magnitude)

Internalization choices and emission factor assumptions
No internalization 3.24 3.26 +++ +++
Only SCAP 0.15 1.36 + +++
Only SCC 0.75 -0.13 ++ -
SCC and SCAP (low) 0.31 -0.14 + -
SCC and SCAP (high) -0.12 0.08 - +

Varying SCC level
SCC 25% -0.24 0.66 - ++
SCC 50% -0.38 0.24 -- +
SCC 200% 0.59 -0.19 ++ -
SCC 400% 0.48 -0.21 + -
SCC 800% 0.45 -0.21 + -

Varying SCAP level
SCAP 25% 0.68 -0.14 ++ -
SCAP 50% 0.63 -0.16 ++ -
SCAP 200% -0.20 0.02 - +
SCAP 400% -0.52 0.09 --- +
SCAP 800% -0.54 0.09 --- +

Technology boost
No internalization with boost 2.52 2.64 +++ +++
Only SCAP (mid) with boost -0.08 0.94 - ++
Only SCC with boost 0.64 -0.14 ++ -
SCC and SCAP (low) with boost 0.15 -0.10 + -
SCC and SCAP (mid) with boost -0.06 0.00 - +
SCC and SCAP (high) with boost -0.20 0.09 - +

***SCC and SCAP (mid) is the same as SCC 100%, SCAP 100%, 7/3/1.5, SCAP normal, and regional biomass limits. Those serve
as benchmark for comparison with other specifications.
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Table B.25: Change in 2050 emissions in comparison to benchmark specification SCC and SCAP (mid)

Change in 2050 emissions Air pollution Carbon Air pollution Carbon
(in Mt) (in Gt) (magnitude) (magnitude)

Discounting and taxation
7/7/7 -0.01 1.07 - +++
3/3/3 -0.21 0.70 - ++
1.5/1.5/1.5 -0.25 0.64 -- ++
7/3/3 -0.31 0.15 -- +
7/1.5/1.5 -0.16 0.03 - +

Distributional and growth effects
SCAP equal 0.09 -0.03 + -
SCAP distributional 0.21 -0.06 + -
SCAP equal and distributional 0.03 -0.01 + -
SCAP no GDP growth 0.62 -0.16 ++ -
SCAP equal and no GDP growth 0.61 -0.16 ++ -

Biomass limits and trade
European trading 0.61 -0.16 ++ -
Double regional 0.39 -0.11 + -
Double European trading 1.63 -0.42 +++ --
Fourfold regional 1.19 -0.32 +++ --
Fourfold European trading 3.64 -0.95 +++ ---

Biomass trade and arbitrage
European trading and SCAP equal 0.57 -0.17 ++ -
Double regional and SCAP equal 0.57 -0.16 ++ -
Double European trading and SCAP equal 1.56 -0.44 +++ --
Fourfold regional and SCAP equal 1.32 -0.37 +++ --
Fourfold European trading and SCAP equal 2.00 -0.56 +++ ---

***SCC and SCAP (mid) is the same as SCC 100%, SCAP 100%, 7/3/1.5, SCAP normal, and regional biomass
limits. Those serve as benchmark for comparison with other specifications.
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Appendix C. Supplementary Visualizations

Appendix C.1. Additional Figures for Subsection 5.1

***SCC and SCAP (mid) serves as benchmark for comparisons with other specifications.

Figure C.9: Air pollutant and carbon emissions for different internalization strategies and emission factor scenarios
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Appendix C.2. Additional Figures for Subsection 5.3

***SCC 100% is the same as SCC and SCAP (mid) serves as benchmark for comparisons with other specifications.

Figure C.10: Installed capacity (upper panel) and generation with CO2 emissions (lower panel) for different SCC assumptions
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***SCC 100% is the same as SCC and SCAP (mid) serves as benchmark for comparisons with other specifications.

Figure C.11: Total SCAP and SCC for different SCC assumptions

***SCC 100% is the same as SCC and SCAP (mid) serves as benchmark for comparisons with other specifications.

Figure C.12: Air pollutant and carbon emissions for different SCC assumptions
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Appendix C.3. Additional Figures for Subsection 5.4

***SCAP 100% is the same as SCC and SCAP (mid) serves as benchmark for comparisons with other specifications.

Figure C.13: Installed capacity (upper panel) and generation with CO2 emissions (lower panel) for different SCAP assumptions
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***SCAP 100% is the same as SCC and SCAP (mid) serves as benchmark for comparisons with other specifications.

Figure C.14: Total SCAP and SCC for different SCAP assumptions

***SCAP 100% is the same as SCC and SCAP (mid) serves as benchmark for comparisons with other specifications.

Figure C.15: Air pollutant and carbon emissions for different SCAP assumptions
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Appendix C.4. Additional Figures for Subsection 5.5

***SCC and SCAP (mid) with boost serves as benchmark for comparisons with other specifications.

Figure C.16: Installed capacity (upper panel) and generation with CO2 emissions (lower panel) for different levels of internal-
ization and emission factor assumptions assuming higher full-load hours for wind from 2040 onwards
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***SCC and SCAP (mid) with boost serves as benchmark for comparisons with other specifications.

Figure C.17: Total SCAP and SCC for different levels of internalization and emission factor assumptions assuming higher full-load
hours for wind from 2040 onwards

***SCC and SCAP (mid) with boost serves as benchmark for comparisons with other specifications.

Figure C.18: Air pollutant and carbon emissions for different levels of internalization and emission factor assumptions assuming
higher full-load hours for wind from 2040 onwards
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Appendix C.5. Additional Figures for Section 6

***7/3/1.5 is the same as SCC and SCAP (mid) and serves as benchmark for comparisons with other specifications.

Figure C.19: Air pollutant and carbon emissions for different discount and interest rates
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Appendix C.6. Additional Figures for Subsection 7.1

***SCAP normal is the same as SCC and SCAP (mid) and serves as benchmark for comparisons with other specifications.

Figure C.20: Air pollutant and carbon emissions for different SCAP specifications
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Appendix C.7. Additional Figures for Subsection 7.2

***Regional biomass limits is the same as SCC and SCAP (mid) and serves as benchmark for comparisons with other
specifications.

Figure C.21: Installed capacity (upper panel) and generation with CO2 emissions (lower panel) for different biomass limits
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***Regional biomass limits is the same as SCC and SCAP (mid) and serves as benchmark for comparisons with other
specifications.

Figure C.22: Total SCAP and SCC for different biomass limits

***Regional biomass limits is the same as SCC and SCAP (mid) and serves as benchmark for comparisons with other
specifications.

Figure C.23: Air pollutant and carbon emissions for different biomass limits
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Appendix C.8. Additional Figures for Subsection 7.3

***Regional biomass limits and SCAP equal is the same as SCAP equal and serves as benchmark for comparisons with other
specifications.

Figure C.24: Installed capacity (upper panel) and generation with CO2 emissions (lower panel) for different biomass limits when
assuming equal SCAP across countries
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***Regional biomass limits and SCAP equal is the same as SCAP equal and serves as benchmark for comparisons with other
specifications.

Figure C.25: Total SCAP and SCC for different biomass limits when assuming equal SCAP across countries

***Regional biomass limits and SCAP equal is the same as SCAP equal and serves as benchmark for comparisons with other
specifications.

Figure C.26: Air pollutant and carbon emissions for different biomass limits when assuming equal SCAP across countries
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Appendix C.9. Additional Figures for Subsection 8.2

Note that both CO2 and air pollutant emissions are displayed in absolute difference to our benchmark specification SCC and
SCAP (mid)***. Technology boost specifications are excluded for readability purposes as they do not change any

emission-related or social-cost related assumptions.

Figure C.27: 2050 emissions of all specifications in relation to benchmark specification
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