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Abstract
Rising weather volatility poses a growing challenge to crop yields in many global bread-
baskets. However, empirical evidence regarding the effects of extreme weather conditions 
on crop yields remains incomplete. We examine the contribution of climate and weather 
to winter wheat yields in Ukraine, a leading crop exporter with some of the highest yield 
variabilities observed globally. We used machine learning to link daily climatic data with 
annual winter wheat yields from 1985 to 2018. We differentiated the impacts of long-term 
climatic conditions (e.g., temperature) and weather extremes (e.g., heat waves) on yields 
during the distinct developmental stages of winter wheat. Our results suggest that climatic 
and weather variables alone explained 54% of the wheat yield variability at the country 
level. Heat waves, tropical night waves, frost, and drought conditions, particularly during 
the reproductive and grain filling phase, constitute key factors that compromised wheat 
yields in Ukraine. Assessing the impacts of weather extremes on crop yields is urgent to 
inform strategies that help cushion farmers against growing production risks because these 
extremes will likely become more frequent and intense with climate change.
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1  Introduction

Increasing variability in crop yields is a major concern for global food security (Araujo-
Enciso et  al. 2017; Lesk et  al. 2016). High yield variability translates into volatile farm 
incomes and may limit investment in intermediate inputs, such as mineral fertilizer, as the 
inputs would be lost in the case of production shortfall (Hurley et al. 2018). Hence, increas-
ing yield variability may reduce land-use intensity, with negative consequences for crop 
yields even in years with good weather conditions (Swinnen et al. 2017).

Climate change has already contributed to higher crop yield variability (Döring and 
Reckling 2018; Hawkins et  al. 2013; Iizumi and Ramankutty 2016). Rising yield varia-
bility elevates the risk of synchronized production failure in important global breadbas-
kets (Gaupp et al. 2020; Mehrabi and Ramankutty 2019), as evidenced for example by the 
simultaneous shortfall of global maize production in several key producing regions in 1983 
(Anderson et al. 2019). Synchronized production failures can cause price spikes for major 
staple crops, with particularly distressing consequences for poorer consumers in develop-
ing countries who rely on imports (Gilbert and Morgan 2010). For example, poor wheat 
harvests led to the implementation of export bans in Russia, Ukraine, and Kazakhstan, 
which contributed to spikes in wheat prices in 2008 (Headey 2011). Examining the causes 
of yield variability in the major production centers is therefore important.

Economic and political shocks (Wright 2011), insect pest outbreaks (Oerke 2006), fun-
gal diseases such as rust (Singh et al. 2008), and farmer decisions regarding soil manage-
ment, choice of cultivars, and fertilizer or pesticide applications can all affect crop yields 
(Gregory et al. 2009; Schierhorn et al. 2014). However, annual variations in climatic and 
weather conditions contribute the most to crop yield variability at the global level (Frieler 
et al. 2017; Ray et al. 2015). Efforts to reduce variability in crop yields, such as through 
plant breeding (Mühleisen et al. 2014) and agronomic management (Hatfield et al. 2018; 
Smith et al. 2007), critically depend on a better understanding of the impact of long-term 
climatic trends and rapid-onset of weather extremes on yield variability (Webber et  al. 
2018). Yet, the compound effects of climatic trends and weather extremes on crop yields 
are not well understood to date.

Long-term climatic mean variables, such as temperature, growing degree days (GDD), 
and precipitation, constitute the biophysical boundary conditions for crop growth potentials 
of a region and have been associated with crop yields in statistical models (Roberts et al. 
2012). However, the impacts of long-term climatic mean variables on crop yields (e.g., 
during specific months or the entire growing season) are distinct from the effects of one-
off weather extremes (Rowhani et al. 2011; Vogel et al. 2019). Extreme low or high tem-
peratures or abnormally low or high rainfall lead to stunted crop growth and yield declines 
below the location-specific yield potential, even under optimal crop management and when 
seasonal temperature and water requirements are met (Barlow et al. 2015; Tigchelaar et al. 
2018).

Weather extremes, such as excessive precipitation, extreme frost, or extreme heat, are 
rare, often unprecedented events that are quantified using percentiles (e.g., above the 95th 
percentile) or absolute values above a threshold, such as a temperature threshold (Tebaldi 
et  al. 2006). Empirical insights suggest that extreme weather events exert growing dam-
age to global crop production (Asseng et al. 2011; Rowhani et al. 2011; Urban et al. 2015; 
Zampieri et al. 2017).

The impacts of weather extremes on crop yields depend on when they occur during 
plant growth. For example, short episodes of temperatures higher than 22 °C during the 
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early reproductive stage are known to cause a reduction in grain number and grain yield of 
wheat (Farooq et al. 2011). Later in the growing season, temperatures above 32 °C during 
anthesis and 34 °C during grain filling can be detrimental to grain weight (Farooq et al. 
2011), particularly if they occur as a heatwave, i.e., a period of consecutive extremely hot 
days (Mazdiyasni and AghaKouchak 2015). Unfortunately, only a few notable examples 
have controlled for the effects of extreme temperature on yields during different plant 
developmental stages (Innes et  al. 2015; Peichl et  al. 2018; Rowhani et  al. 2011), partly 
because data on the timing of phenological stages are lacking. As a result, knowledge about 
the impacts of heat events on yields remains limited (Iizumi and Ramankutty 2016; Liu 
et al. 2014).

Ukraine is an important global breadbasket, where the impacts of extreme weather 
events on crop yields remain elusive. Ukraine was among the six largest exporters of wheat 
between 2015 and 2019 (FAOSTAT 2021) and had the second largest variability in wheat 
yield between 2010 and 2018 globally (Fig. S1), with important repercussions for world 
grain markets and global food security (Araujo-Enciso et al. 2017). Ukrainian agriculture, 
particularly on the southeastern steppe where most production is concentrated (Fileccia 
et al. 2014; Müller et al. 2016), is increasingly exposed to the effects of climate change, 
suggesting that climate-induced yield variability will continue to increase (Iizumi and 
Ramankutty  2016). Unfortunately, assessments on the impact of long-term climatic pat-
terns and weather extremes on crop yields in Ukraine are lacking to date.

The main objective of this paper is to assess the impacts of long-term climatic means 
and extreme weather events on wheat yields in Ukraine. We address the following 
two research questions: First, how much of the variability in wheat yields from 1985 to 
2018 can be explained by climatic mean variables and how much by variables that cap-
ture weather extremes? Second, how large are the effects of climatic means and weather 
extremes on yields during specific developmental stages of the wheat plants? To address 
these questions, we used random forests, a machine learning algorithm based on an ensem-
ble of decision trees, to associate winter wheat yields with daily weather measurements 
from meteorological stations across Ukraine.

2 � Materials and methods

2.1 � Study area

Ukraine is divided into 24 provinces and the Autonomous Republic of Crimea (Fig. 1a), 
which was annexed by the Russian Federation in 2014. Wheat is almost entirely culti-
vated under rainfed conditions in Ukraine, and winter wheat accounted for 96% of the total 
wheat and 44% of the cereal area on average between 1992 and 2018 (UKRSTAT 2019). 
Ukraine’s land mass has already experienced a 2.1 °C mean temperature increase between 
1985 and 2018 (own calculation based on data from Harris et  al. (2020)). In particular, 
the vast fertile black soil areas in the Southeast are increasingly affected by more intense 
droughts (Fig.  S2). Ukraine’s continental climate with hot summers and cold winters is 
characterized by high interannual climatic variability (Müller et al. 2016).

Our dependent variable was winter wheat yield reported by the State Statistics Service 
of Ukraine (UKRSTAT 2019) at the provincial level for every year from 1985 to 2018 
(yield data are only available until 2013 for Crimea). We analyzed models for the entire 
country, as well as for the Northwest and Southeast of Ukraine separately to account for the 
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distinct climatic and soil conditions in the two regions (Müller et al. 2016). The Northwest 
consists mainly of mixed forest and forest steppe; it has sufficient precipitation and highly 
favorable temperature conditions for wheat growth in most years. Fertile black (chernozem) 
soils characterize the Pontic steppe in the Southeast, a semi-arid region that was formerly 
dominated by natural grasslands, which has largely been converted to arable land during 
the 20th century (Wesche et al. 2016). On average, the amount of sown area of wheat has 
been approximately 20% higher in the Southeast than in the Northwest (UKRSTAT 2019).

2.2 � Developmental stages of winter wheat

In Ukraine, winter wheat is sown by the end of August and in the first weeks of September 
(Fig. 1b). After an initial vegetative phase, plant growth ceases with the onset of winter 
in early November. During winter, young wheat plants are insulated from frost by a snow 
layer, and plant growth resumes in the first weeks of March (USDA 2021). This second 
vegetative phase includes the development of the double ridge and terminal spikelet, typi-
cally in the last two weeks of April (Eriksson and Magnusson 2015). Anthesis is towards 
the end of May, followed by the grain filling phase in June and the first weeks of July 
(Becker-Reshef et  al. 2010; Eriksson and Magnusson 2015; Morgun et  al. 2018; USDA 
2021). The harvesting period in Ukraine typically stretches from July to early August. The 
onset of planting, harvesting, and the length of the developmental stages of winter wheat 
differ by several days between the Northwest and Southeast of Ukraine and we accounted 
for these differences in our models (Table S1).

Grain 
Filling

Winter
Dormancy

Reproduc
ve
Phase

Vegeta
ve
Phase I 

Vegeta
ve
Phase II 

Snow cover

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul

b

Fig. 1   Study area divided into the Northwest and Southeast of Ukraine and with the location of the 190 
meteorological stations from the Global Historical Climatology Network (GHCN) (Menne et al. 2012) (A); 
Developmental stages of winter wheat in Ukraine (B) (USDA 2021). See Table S1 for length of the devel-
opmental stages in the Northwest and Southeast
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2.3 � Climatic data

We used daily measurements of minimum, maximum, and average temperature (TMIN, 
TMAX, and TAVG, respectively), precipitation (P) and snow cover from 1985 to 2018 
from the 190 meteorological stations within Ukraine that are available from the Global 
Historical Climatology Network (GHCN) - Daily dataset (Fig. 1a, Menne et al. (2012)). 
We excluded days with implausible measurements, such as excessive TMAX (> 45 °C) 
or TMIN (< -40  °C), and erroneous datapoints, such as when TAVG or TMIN exceeded 
TMAX or when TMIN exceeded TAVG. For days without data for TAVG, we obtained TAVG 
by averaging TMIN and TMAX. For days where TMIN or TMAX was missing but TAVG was 
available, we calculated TMIN or TMAX by adding to TAVG the mean difference between 
TAVG and TMIN or TMAX on the respective day of the year over all years. We approxi-
mated hourly, within-day temperatures by using a sinusoidal distribution through daily 
TMIN and TMAX (D’Agostino and Schlenker 2016). When snow cover was missing with 
TMAX below 2  °C since the last snow cover occurrence, we assumed that snow cover 
had stayed constant. When snow cover was missing but precipitation had been recorded 
with TMAX below 2 °C, we added the additional precipitation to the existing snow cover, 
assuming a 1:10 snow ratio (i.e., 10 mm of precipitation yield 100 mm of snow cover), 
which constitutes the lower bound of estimates for this ratio (Ware et  al. 2006). This 
suffices our purposes because we are mainly interested in whether a protective snow 
cover was present; the precise thickness of the snow layer is less important here. We 
then averaged for each day the measurements of TMIN, TMAX, TAVG, P, and snow cover of 
all stations located within a province to match the spatial scale of the yield data.

We examined both long-term climatic mean variables (‘climatic means’ hereafter) 
and variables that capture weather extremes (‘weather extremes’ hereafter, Table  S2). 
Our climatic means include TMIN, TMAX, TAVG, P, growing degree days (GDD), and 
the standardized precipitation evapotranspiration index (SPEI, Vicente-Serrano et  al. 
(2010)). GDD is a measure of heat energy received by the crop for a specified time 
period (e.g., from sowing to harvesting; McMaster and Wilhelm (1997)). We calcu-
lated GDD for all days when TAVG was above 0°C and TMAX was below the respective 
threshold for extreme heat. The SPEI captures the availability of soil-water for crops in 
relation to the statistical long-term distribution of the local water balance and allows 
monitoring of drought development. We used the SPEI estimates from SPEIbase v.2.6 
(Vicente-Serrano et al. 2010).

We used the daily station measurements from GHCN to calculate eight different 
weather extremes, of which three relate to extreme heat during the day (extreme degree 
days - EDD, heat waves with precipitation - HWwithP, and heat waves without precipita-
tion - HWnoP). These three extreme heat variables were only calculated for days during 
which TMAX exceeded a certain heat threshold, and for such days, we did not calculate 
GDD. We used two different approaches to calculate the heat threshold: In the percentile 
threshold approach, the heat threshold is the 90th percentile of daily maximum tempera-
tures from 1985 to 2018 for the given province and day of the year. In the fixed thresh-
old approach, we used province-invariant heat thresholds that are constant for each day 
within the same developmental stage and are reported in Farooq et al. (2011): 30 °C for 
the vegetative phase I, 21.4 °C for the vegetative phase II, 32 °C for the reproductive 
phase, and 34.3 °C for the grain filling phase. The calculation of the remaining weather 
extreme variables did not differ between the percentile and fixed threshold approach. 
EDD measures the accumulated hourly temperatures above the heat threshold and has 
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been shown to be important for crop yields (Auffhammer and Schlenker 2014; Carle-
ton and Hsiang 2016). HWwithP and HWnoP are the accumulated hourly temperatures for 
days when TMAX exceeds the heat threshold for at least three consecutive days. TNW 
capture waves of exceptionally high daily minimum temperatures. Heavy precipitation 
(HP) captures unusually high daily precipitation, which can lead to water logging and 
can reduce yields by inhibiting root growth (Malik et al. 2002), favoring the prolifera-
tion of fungal diseases, and by posing mechanical difficulties during harvest (Mäkinen 
et  al. 2018). To assess frost, we differentiated between frost events with snow cover 
(FwithSC) and without snow cover (FnoSC) because severe frost without an isolating snow 
cover can lead to leaf chlorosis and hence to yield loss (Harkness et  al. 2020; Kolář 
et al. 2014). For the frost isolation effect to be exerted, we assumed that there must be 
at least 10 mm of snow. Temperatures below zero in late winter or early spring, particu-
larly after plant growth has already resumed, may cause medium to severe yield loss 
by damaging the plant’s florets and stem (Frederiks et al. 2015; Zheng et al. 2015). To 
account for frost events in spring, we defined a late frost variable (LF) that considers 
previous daily average temperatures (Table S2).

We used season-long variables for the period from planting to harvesting, while intra-
seasonal variables were specific for the duration of the five developmental stages of wheat 
(Fig. 1b). We hypothesize that intraseasonal variables have higher explanatory power than 
season-long variables because wheat has different optimal temperature requirements and 
maximum temperature thresholds during each developmental stage (Farooq et  al. 2011). 
We calculated season-long and intraseasonal temperature variables by averaging daily 
TMIN, TMAX, and TAVG; and we constructed season-long and intraseasonal P, GDD, and 
weather extremes by summing the daily values for the entire growing season and the spe-
cific plant developmental stages. For the SPEI, we chose the time scale of the period of 
interest and associated, for example, SPEI-2 in October with vegetative phase I (September 
and October) and SPEI-11 in July to cover the entire growing season since September.

2.4 � Random forest models

Random forests (RFs) are a nonparametric machine learning algorithm that use an ensem-
ble of classification or regression trees (Breiman 2001). RF have been used to quantify 
the effect of climate and weather on crop yield and have achieved higher explanatory 
power than traditional regression-based approaches (Feng et al. 2018; Hoffman et al. 2020; 
Jeong et al. 2016; Vogel et al. 2019). To remove the effects of long-term technological and 
climatic trends on yields, we detrended the yield data using a second-order polynomial 
regression against time prior to running the RF models (Lu et al. 2017). We assessed the 
explained variance (R2) with three combinations of climatic variables (both climatic means 
and weather extremes; climatic means only; weather extremes only), with season-long and 
intraseasonal variables, and for three different spatial extents (Country wide, Northwest, 
Southeast) (Fig.  S3). We included province dummy factor variables, which account for 
unobserved regional differences in cropping practices, mechanization, and input intensity 
across the provinces.

We ran each model 100 times; in each model run, we randomly assigned 80% of the 
observations to the training data and calculated R² values with the remaining 20%. We 
performed Wilcoxon signed-rank tests (Woolson 2007) to assess whether mean R² values 
significantly differed between models with or without the province dummy and for models 
based on either the percentile or fixed threshold approach.
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A linear relationship between two predictor variables does not affect predictions in RF 
(Cutler et al. 2007) but collinearity can obscure variable influences because the importance 
value is split between the two (Breiman 2001). For example, high temperatures are often 
the result of, and hence collinear with, soil moisture stress (Trenberth and Shea 2005). We 
identified the model configurations with the highest R² and assessed collinearity among 
the predictor variables by calculating the variance inflation factor (VIF; (Alin 2010)). We 
iteratively deleted the variable with the highest VIF until all remaining variables had a 
VIF below 10. This resulted in a dataset with 39 climatic mean and weather extreme vari-
ables and the province dummy (Fig. S4). For each of the 100 model runs and each of the 
three regions, we recorded the percent increase in mean squared error (%IncMSE) as a 
measure of variable importance. We also calculated the partial dependence of the response 
variable on each predictor variable for 50 equally spaced points from the minimum to 
maximum value of the respective predictor variable. We compared the predictions of the 
final RF models with the predictions of linear mixed-effect (LME) models, in which we 
used the province dummy as a random effect. We also assessed the performance of the 
RF and LME models in terms of root mean squared error (RMSE), Nash-Sutcliffe model 
efficiency (NSE), and Willmots’ index of agreement (Willmott’s d). RMSE and Willmott’s 
d are two measures of deviation between observed and predicted values of the response 
variable (Willmott 1981). The NSE evaluates the predictive power by comparing it with 
the observed mean and supports out-of-sample cross-validation (Nash and Sutcliffe 1970). 
Again, we used Wilcoxon signed-rank tests to assess whether model performance signifi-
cantly differed between the RF and LME models.

We grew 500 trees in each RF configuration and chose the default setting of one-third 
of the predictor variables (i.e., the hyperparameter mtry=13) as candidates at each split in 
a regression tree. We found that the variable importance ranks of our most important pre-
dictors were largely unaffected by the number of candidate variables available at each split 
(see results). We set the minimum size of terminal nodes to five and kept the maximum 
size of terminal nodes unrestricted. Finally, we used partial dependence plots to reveal 
the functional relationship between the marginal effects of climatic means and weather 
extremes on predicted wheat yields. We performed all statistical analyses in the R environ-
ment (R-Development-Core-Team 2017).

3 � Results

3.1 � Climatic and weather variables alone explain 49–58% of the yield variability

The RF models with both intraseasonal climatic means and weather extremes clearly 
outperformed the models with only season-long variables (Fig.  2). The Wilcoxon 
signed-rank tests showed almost no significant differences in R² values between the 
models based on the percentile and fixed threshold approach (Fig. S5). We here focus 
on the percentile threshold approach and provide the results for the fixed threshold 
approach in the supplement (Figs.  S6, S7, S8). The predictive ability of the models 
was substantially lower without the province dummy (Fig. 2). The RF models without 
the province dummy reveal the sole influence of climatic variables on wheat yields 
and captured 54% (country-wide), 58% (Northwest), and 49% (Southeast) of the 
wheat yield variability when based on the percentile threshold approach and both cli-
matic means as well as weather extremes were included. When the province dummy 
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and hence unobserved non-climate factors were included, these models captured 59% 
(country-wide), 63% (Northwest) and 52% (Southeast) of the variability (Fig. 2).

3.2 � Climatic means have more explanatory power than weather extremes 
but both are important

We assessed the contribution of weather extremes to the variability in wheat yields 
with intraseasonal models based on the percentile threshold approach and with the 
province dummy. Climatic means alone captured 58% (country-wide), 62% (North-
west), and 53% (Southeast) of the yield variability (Fig.  2). A comparison with the 
model with all climate variables implies that adding weather extremes to the models 
with climatic means increased the explained variability at low level (Fig. 2). The small 
difference between the R² values suggests that much of the impacts of weather extremes 
are already captured by the climatic means. Indeed, weather extremes accounted for 
a mean yield variability of 36% (country-wide), 40% (Northwest), and 36% (South-
east) (Fig.  2), implying that weather extremes alone already have sizeable effects on 
yield variability. The predictions mirror well the annual variability in observed yields 
in most years but often failed to predict the full amplitude in the observed yields, e.g., 
in 2003 in the Northwest (Fig. S9). The validation measures except Willmott’s d show 
that the RF models outperformed the LME models in all three regions, but the differ-
ences were small (Fig. S10).
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Fig. 2   Explained variability (R²) from random forest out-of-sample predictions with different sets of cli-
matic mean and weather extreme predictor variables, for season-long and intraseasonal variables, and for 
three different regions (country-wide, Northwest, Southeast), based on the percentile threshold approach. 
The symbols for the group comparison indicate that the statistical significance of the Wilcoxon signed-rank 
test differed between models with and without the province dummy (not significant (ns): p > 0.05; *: p <= 
0.05; **: p <= 0.01; ***: p <= 0.001; and ****: p <= 0.0001)
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3.3 � Distinct influences of climate variables in different stages of plant growth

We used the final RF models, consisting of 39 climate mean and weather extreme vari-
ables and the province dummy, to systematically assess variable importance for the differ-
ent plant developmental stages and regional levels. We found distinct impacts of climatic 
means and weather extremes on wheat yields in the different developmental stages. Tem-
perature-related climatic means (TMIN, TMAX, and GDD) were important predictors during 
winter dormancy, vegetative phase II, and reproductive phase in all three regions (Fig. 3). 
SPEI affected yields across most plant developmental stages in all three regions. Precipita-
tion (P) was either excluded due to multicollinearity with the SPEI (Fig. S11) or had low 
variable importance during winter dormancy and grain filling.

In general, weather extremes had a smaller influence than climatic means. However, 
some weather extremes substantially influenced yields in specific plant developmental 
stages, such as extreme degree days (EDD) in the vegetative phase I (country-wide and 
Northwest), heat waves with precipitation (HWwithP) and tropical night waves (TNW) in 

Fig. 3   Variable importance in specific developmental stages of winter wheat expressed as percent increase 
in mean squared error (%IncMSE) of the climatic means and weather extremes based on the percentile 
threshold approach and with the province dummy. Higher %IncMSE signals higher variable importance. 
See Table S2 for abbreviations and definitions of the different climate mean and weather extreme variables. 
Empty cells indicate variables that were removed due to multicollinearity or that were not defined (Fig. S4)
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the reproductive phase, and frost with snow cover (FwithSC) during winter dormancy. Late 
frost (LF) had no impact on yields in all models.

In general, climatic means played a smaller role in determining yields across most plant 
developmental stages in the Southeast than in the Northwest and country-wide (Fig.  3). 
However, the SPEI in the reproductive phase, HWwithP, TNW, and frost events without 
snow cover (FnoSC) had particularly strong effects in the Southeast. The province dummy 
was the most important variable in the Northwest and at the country level (mean %Inc-
MSE of 27 and 34, respectively), suggesting that unobserved factors, such as input inten-
sity, were more important in these regions than in the Southeast (mean %IncMSE = 10). 
The importance of the predictor variables was largely unaffected by the hyperparameter 
mtry, i.e. the number of candidate variables at each split when growing the random forest 
(Fig. S12).

3.4 � Functional relationships between climate variables and predicted wheat yields

For all three regions, TMIN below -3 °C during winter dormancy and below 3 °C during 
vegetative phase II was associated with lower yields (Fig. 4). In all three regions, yields 
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Fig. 4   Partial dependence of predicted yield on climatic means for the three regions and five developmental 
stages based on the percentile threshold approach. The x-axis shows the mean (TMIN, TMAX, SPEI) or accu-
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the yields associated with these values. The shaded area around the partial dependence represents the stand-
ard deviations of the results from the 100 model runs. See Table S2 for abbreviations and definitions of the 
different climate mean and weather extreme variables. Empty panels indicate variables that were removed 
due to multicollinearity or that were not defined (Fig. S4)
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increased when TMIN was higher than 3 °C in the vegetative phase II, or when TMAX was 
higher than 12 °C during the vegetative phase II. In the Southeast, TMAX reduced yields 
when TMAX rose above 22 °C in the reproductive phase and above 28 °C during the grain 
filling phase.

Yields were sensitive to GDD during the reproductive phase in the Northwest and coun-
try-wide model, with an increase in yields linked to GDD above 400 °C. Both the partial 
dependence plots and variable importance suggest that GDD had little impact on predicted 
wheat yields across all developmental stages in the Southeast. Unusually dry periods with 
a SPEI below -1 during the reproductive and grain filling phases reduced yields, particu-
larly in the Southeast. Yields in the Northwest were negatively associated with SPEI and 
precipitation (P, Fig. 4) during the grain filling phase, indicating that excessive water sup-
ply by the end of the growing season decreased yields in this region.

We also observed specific impacts of temperature extremes on wheat yields across 
regions and plant developmental stages (Fig. 5). In general, yields were more sensitive to 
extreme temperatures in the Southeast and are negatively associated with EDD during veg-
etative phase I and grain filling. More heat wave events with precipitation (HWwithP) dur-
ing the reproductive phase were associated with a decrease in yields in all three regions 
(Fig. 5). In the Southeast, yields were negatively associated with HWwithP during grain fill-
ing and with heat waves without precipitation (HWnoP) in the vegetative phase I, although 
with low variable importance (Fig. 3). The negative effect of HWwithP on yields was only 
present with the percentile but not with the fixed threshold approach (Fig. S8). During the 
reproductive phase and in all three regions, yields decreased when TNW increased. Frost 
during winter dormancy reduced yields in all three region (Fig. 5), but the yields were sen-
sitive to the isolation effect of snow cover only in the Southeast (Figs. 3 and 5). Finally, late 
frost (LF) had no impact on wheat yields in Ukraine.

4 � Discussion

We presented the first empirical study on the climatic determinants of wheat yield vari-
ability in Ukraine from 1985 to 2018. We used machine learning to associate all avail-
able daily data from meteorological stations within Ukraine with observed yields of win-
ter wheat. Our analysis accounts for climatic means and for weather extremes in different 
stages of plant growth. The results suggest that climatic means alone explained 53–62% of 
the annual yield variation; weather extremes were important in specific regions and growth 
stages of the wheat plants.

In a global linear regression analysis, Ray et al. (2015) estimated that climatic variabil-
ity explains 24% of the variability in wheat yields in Ukraine when accounting for coun-
try-level and season-long climatic variables from 1979 to 2008. A global assessment, also 
using random forests, found that climatic means and weather extremes explained less than 
half of the variance in yield anomalies for maize and spring wheat (Vogel et  al. 2019). 
In 17 European countries, random forests revealed that season-specific temperature and 
precipitation variables explained 43% of historical wheat yields (Beillouin et  al. 2020). 
Monthly weather variables explained 50 to 80% of the spatial variation of the yield of four 
major crops in extreme years in Germany (Webber et  al. 2020). Random forest revealed 
that climatic variation together with regional dummies explained 93% of maize yields in 
the United States (Leng and Hall 2020). The province dummies in our country-wide model 
with both climatic means and weather extremes improved the explained variability by 5%. 
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The validation measures (except Willmott’s d) suggest that RF models outperform linear 
mixed-effects (LME) models, in line with other studies that concluded that RF models are 
effective for crop yield predictions from regional to global scales (Feng et al. 2018; Jeong 
et al. 2016; Leng and Hall 2020).

At first glance, weather extremes had a limited influence on wheat yields in Ukraine. 
The models with intraseasonal climatic means and weather extremes showed similar per-
formance as the models with only climatic means, which suggests that a substantial share 
of the impact of weather extremes on yields has been captured by climatic means. For 
example, a heat wave during a certain plant developmental stage will elevate the mean 
temperatures observed in this stage (Vogel et al. 2019). We showed that the random forest 
models that were trained only with the weather extremes explained about half of the yield 
variability. This suggests that the separation of climatic means from weather extremes is 
challenging in statistical models because these variables are often collinear, which compli-
cates disentangling their individual effects on yields.

The influence of extreme weather events on yields is equivocal. In a global assessment, 
the exclusion of weather extremes from random forest models reduced the explained yield 
variability by 43% for maize and by 18% for spring wheat (Vogel et al. 2019), which sug-
gests a low sensitivity of wheat to temperature and precipitation extremes. Similarly, a pro-
cess-based crop model revealed that heat stress and drought had little influence on wheat 
yields in Europe (Webber et al. 2018), but heat stress explained a considerable amount of 
variation in wheat yields in eastern Germany (Webber et al. 2020). For eastern Australia, 
a region with similarly high yield variability as in Ukraine, rainfall extremes accounted for 
41–67% of the wheat yield variation (Feng et al. 2018). Our study corroborates the large 
influence of weather extremes on yields in a major global breadbasket.

Intraseasonal climatic variables are increasingly accounted for in the analysis of rela-
tions between climate and crop yields (Harkness et al. 2020; Lu et al. 2017; Lüttger and 
Feike 2018). Intraseasonal variables outperformed a model with season-long variables by 
up to 115% in the United States (Ortiz-Bobea et  al. 2019). To our knowledge, Hoffman 
et al. (2020) and Beillouin et al. (2020) are the only studies that applied RF modeling for 
crop-specific developmental stages. Our work underlines that using intraseasonal climatic 
variables for distinct crop developmental stages improves the understanding of the rela-
tionship between weather and yield during the developmental stages and hence confirms 
previous studies (Butler and Huybers 2015; Ortiz-Bobea et al. 2019). Better knowledge on 
intraseasonal effects of climate on yields can inform adaptation strategies of farmers and 
crop breeders.

Wheat yield is sensitive to heat during the reproductive and grain filling phases 
(Innes et al. 2015; Liu et al. 2014; Lobell et al. 2012; Lüttger and Feike 2018). We found 
that heat waves (HWwithP) negatively affect wheat yields during the reproductive phase, 
particularly in the Southeast. As EDD and HWwithP were highly correlated (Fig. S11), 
EDD was removed from the models of the reproductive phase. Exposure of wheat to 
short episodes of heat during the reproductive phase causes male and female sterility 
and triggers damage to pollen tube growth and fertilization, resulting in lower grain 
number and grain yield (Farooq et  al. 2011; Innes et  al. 2015; Sehgal et  al. 2018). It 
has been shown that high temperatures in May reduced wheat yields in the Southeast of 
Ukraine (Morgounov et al. 2013). During the grain filling phase, extreme heat (TMAX) 
also reduced yield in our models, particularly in the Southeast. Heat stress during the 
grain filling period increases the rate and reduces the duration of grain filling, which 
ultimately reduces grain yield (Barlow et  al. 2015; Farooq et  al. 2011). A meta-study 
identified a temperature threshold of 34  °C for the grain filling period, above which 
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grain weight and hence yield are reduced (Farooq et  al. 2011). Heat stress during the 
grain filling phase also negatively affects grain protein contents and hence grain size 
(Farooq et al. 2011).

We found that spells of warm nights, so-called tropical night waves (TNW), negatively 
affected wheat yields during the reproductive phase. Tropical night waves occurred both 
in the Northwest and Southeast (Fig. S13). The mechanisms underlying yield decreases in 
response to TNW are complex and not yet fully understood. Arguably, warm nights down-
regulate photosynthesis-dependent processes and trigger losses in the amount of carbon 
directed toward plant and seed growth; both mechanisms result in yield declines (Sadok 
and Jagadish 2020). TNW also decease the duration of grain filling with a concomitant 
reduction in grain yield (Farooq et al. 2011). Fortunately, advances in breeding can guard 
against yield decreases from tropical night waves, particularly for European cultivars 
(Sadok and Jagadish 2020).

Our assessment revealed that the percentile and fixed threshold approach to assess the 
impacts of extreme temperatures achieved similar R² values. However, models using the 
percentile threshold had clearer functional relationships with wheat yields than models 
using the threshold approach. For example, the negative effect of HWwithP on yield was 
only prevalent in the percentile approach (Fig. 5 and Fig. S8). In addition, the temperature 
measurements from weather stations are not ideal for defining the heat variable because 
the measurements do not match the temperature in the field. In Germany, maximum crop 
canopy temperatures and weather station temperatures can deviate by up to 7 °C (Siebert 
et  al. 2014). As we lack information about how much crop canopy and weather station 
temperatures differ, we were unable to control for this difference. In the absence of reliable 
crop canopy temperatures, we recommend testing climatic variables that are based on per-
centile thresholds.

Frost stress during winter dormancy was an important yield-limiting factor in all three 
regions. Yields were sensitive to the isolation effect of snow cover only in the Southeast. 
Wheat transitions through a process of cold acclimation toward ‘hardened’ wheat plants, 
which adapts the plants to low temperatures in winter (Barlow et al. 2015). However, the 
combination of severe frost and the absence of isolated snow cover can lead to leaf chloro-
sis and hence to yield loss (Harkness et al. 2020; Kolář et al. 2014). For example, the severe 
frost without protective snow cover that hit the southeastern Ukrainian steppe in December 
2002 led to a drastic decrease in wheat yields in 2003 (Fig. S9). Provinces in the North-
west, where a sufficiently thick snow layer protected the plants, were not severely affected. 
This underscores the protective effect of snow cover against frost, which has received little 
attention in the literature to date. Our approach to consider the protective effect of snow 
cover during frost events can help to better account for yield damages from frost.

Wheat yields in Ukraine seem insensitive to low precipitation across all plant devel-
opmental stages, in line with similar studies elsewhere (Ortiz-Bobea et al. 2019; Petersen 
2019). However, the SPEI was an important predictor of wheat yields in several develop-
mental stages, suggesting that the SPEI better reflects water availability for plants than the 
precipitation variables. The SPEI captures evaporative demands due to high temperatures 
and hence is a powerful indicator of water stress (Ortiz-Bobea et al. 2019; Potopová et al. 
2015; Starks et al. 2019). We also tested the standardized precipitation index (SPI), an indi-
cator that has performed very well in eastern Australia (Feng et al. 2018), but the SPEI had 
higher predictive power than the SPI, and both were correlated with each other (results not 
shown). The small effect of precipitation in the statistical models could also have been due 
to the high correlation between water stress and heat (Ortiz-Bobea et al. 2019), but we did 
not account for these potentially confounding effects.
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The example of the SPEI shows that statistical models for different regions can reveal 
important additional insights, which a spatially aggregated model cannot. The partial 
dependence plots suggest that the SPEI impacts wheat yields at the country level during 
grain filling, but the effects have opposite signs in the Northwest and Southeast (Fig. 4). 
We recommend assessing climate-yield relationships separately for regions with substan-
tial biophysical differences.

Our models detected water stress as a yield-limiting factor during the grain filling and 
reproductive phase in the Southeast. Limited water availability in the early stages of the 
reproductive phase, particularly during booting, heading, and flowering, accelerates leaf 
senescence and limits photosynthetic activity, hence reducing grain size and grain number 
(Ji et al. 2010; le Roux et al. 2020). Severe drought during the reproductive and grain fill-
ing phases reduced yields of winter wheat in the Czech Republic (Potopová et al. 2015). 
Water limitation has not compromised yields in the Northwest of Ukraine, where suffi-
cient precipitation is typically available, including in drier years. However, excessive water 
reduced yields during the grain filling phase and this arguably delayed harvesting in the 
Northwest. Very wet soils at the end of the growing season also lowered yields in the US 
(Li et al. 2019; Ortiz-Bobea et al. 2019). Northern Ukraine is frequently affected by severe 
waterlogging (FAO and ITPS 2015), which can critically affect the grain number per plant 
and thus reduce yields (Marti et al. 2015).

5 � Conclusions

We have used machine learning for assessing the complex and nonlinear relationships 
between climate and crop yields. We found that climatic means and weather extremes cap-
tured 53-62% and 36-40%, respectively, of the wheat yield variability in Ukraine. This sug-
gests that much of the impact of extreme weather is captured by the climatic means. Heat 
waves and tropical night waves during the reproductive phase, frost, and droughts dur-
ing grain filling and the reproductive phase were the key factors that compromised wheat 
yields. The high predictive power of extreme weather events in Ukraine calls for intensi-
fying adaptation measures toward improving the resilience of agriculture against climatic 
extremes, as such events will likely occur more frequently in the future. The increasingly 
challenging climatic conditions in the region have already contributed to the abandonment 
of many fertile lands, particularly on the southeastern steppe (Ostapchuk et al. 2021). In 
climatically favorable years, Ukraine is one of the most important grain-exporting nations 
in the world. However, in climatically unfavorable years, yields collapse with important 
repercussions for the global grain market. A better understanding of the causes of the high 
yield variability in wheat production and of pathways to stabilizing wheat supply is there-
fore of high international interest and constitutes the backbone for targeting adaptation 
strategies.
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