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Abstract

This paper presents a simple adaptive model of demand adjustment

in cooperative games, and analyzes this model in weighted majority

games. In the model, a randomly chosen player sets his demand to

the highest possible value subject to the demands of other coalitions

members being satisfied. This basic process converges to the aspiration

set. By introducing some perturbations into the process, we show that

the set of separating aspirations, i.e. demand vectors in which no player

is indispensable in order for other players to achieve their demands,

is the one most resistant to mutations. We then apply the process

to weighted majority games. We show that in symmetric majority

games and in apex games the unique separating aspiration is the unique

stochastically stable one.

Keywords: demand adjustment, aspirations, stochastic stability

1 Introduction

Consider a situation in which there are three players, any pair of players

can cooperate and generate 30 money units but the addition of the third

*Corresponding author. School of Economics, University of Nottingham, Nottingham

NG7 2RD, United Kingdom. e-mail: alex.possajennikov@nottingham.ac.uk.
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player to the pair does not bring additional benefits. The situation can be

seen as a weighted majority game with three symmetric players dividing a

budget: two are enough to form a coalition and agree on a division; the third

player’s participation does not increase the budget. Each of the three players

may formulate a payoff demand, with the understanding that the player is

willing to join any coalition that satisfies the demand. A coalition can only

form if the demands of its members are satisfied. Clearly, not all demand

combinations are equally stable. If the first two players make a demand of

15 and the third player makes a demand of 20, the third player will find that

no coalition can satisfy his demand and may reduce it. Similarly, if the first

two players make a demand of 15 and the third player makes a demand of

10, the third player may realize that it is possible to increase his demand and

still find coalitions that can satisfy it. Demand combinations such that each

player is making the highest demand that can still be satisfied are called

aspirations in the literature on cooperative games.1

Even if we restrict ourselves to the set of aspirations, not all demand

combinations appear equally stable. For example, suppose the first two

players demand 20 each whereas the third player demands 10. There are two

feasible coalitions, both of which contain the third player. Because the third

player is indispensable, we expect him to be able to increase the demand.

There are several solution concepts defined on the space of aspirations, all

of which assume that competition for scarce players will drive their price

(demand) up. The main ones are the set of partnered aspirations (Albers,

1979; Bennett, 1983) and the set of balanced aspirations, also known as the

aspiration core (Cross, 1967).

The research agenda of making connections between cooperative solution

concepts and noncooperative games is known as the Nash (1953) program.

Our paper contributes to this approach by explicitly modeling the process

of adjustment of players’ demands in a multilateral Nash demand game,

1The terminology comes from Bennett (1983); earlier papers on aspirations include

Cross (1967) and Albers (1979).
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with the aim of providing foundations for one of the aspiration solution

concepts. The game is played repeatedly, but players are myopic and do not

take into account the effect of their decisions on future periods. The way

in which we model demand adjustment is that, at every period, a player is

randomly chosen and ”selects from the whole set of feasible coalitions that

one which will give him the highest possible return given the demands or

payoff expectations of the necessary allies” (Cross, 1967). In doing so, the

player’s demand is adjusted to the residual value after paying the coalition

partners’ demands. Bennett et al. (1997) show that processes of this kind

converge to the set of aspirations.

To be able to select a subset of the set of aspirations, we introduce small

mutations into the process. In particular, we assume that with a small

probability, a player experiments with a different demand, which is most

likely to be a higher demand than the original one. We look for the set of

aspirations that is stochastically stable (see e.g. Young, 1998) under such

mutations. If a set of aspirations is stochastically stable, the process spends

most of the time in this set as the probability of mutations becomes small.

Intuitively, if getting out of the set requires more mutations than reaching

the set from outside, the set is stochastically stable. We find that the set of

aspirations which is robust to the mutation of one player coincides with the

set of separating aspirations (a subset of partnered aspirations). In a sep-

arating aspiration no player is indispensable to another player; each player

has several coalitions to satisfy his demand. Thus, separating aspirations

are the prime candidates for being stochastically stable.

The literature on demand adjustment in cooperative games (reviewed

in Section 6 of Newton, 2018, and discussed in section 4) focuses on games

with a nonempty core. In contrast, we study a particular class of games

with an empty core, weighted majority games (the example at the begin-

ning of the introduction is an example of such a game). Unlike the core,

aspiration solutions concepts are non-empty in these games, thus allowing
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to make predictions about possible outcomes. Within this class, we show

that in symmetric majority games and in apex games there is a unique

stochastically stable aspiration, which coincides with the unique separating

aspiration. However, in other weighted majority games there may be other

sets of aspirations among which the process can move with mutations of one

player, never reaching a separating one.

2 The Model

2.1 Aspirations in cooperative games

Let (N, v) be a transferable utility cooperative game, where N = {1, 2, ..., n}
is the set of players and v : 2N → R with v(∅) = 0 is the characteristic

function. Any subset S of the player set N is called a coalition. We assume

that the game is zero-normalized, v({i}) = 0 ∀i ∈ N . A demand vector

is an n-tuple x = (x1, . . . , xn) ∈ Rn
+. Let x(S) :=

∑
i∈S xi. The following

concepts will be useful:

Definition 1 A demand vector x is an aspiration if it is maximal (∀S
x(S) ≥ v(S)) and feasible (∀i ∃S ∋ i such that x(S) ≤ v(S)).

Definition 2 For given aspiration x the generating collection GC(x) =

{S : x(S) = v(S)} is the set of coalitions that can satisfy the demands of its

members.

With some demand vectors (aspirations), one player, i, may be able to

satisfy his demand only if coalitions that satisfy this demand also include one

particular another player, j, while player j can satisfy his demand without

player i. The following defines aspirations where this cannot happen. Let C
be a collection of coalitions. For each i ∈ N let Ci = {S ∈ C : i ∈ S}.

Definition 3 A collection C of coalitions is partnered if Ci is nonempty

for all i and for any i, j in N :

Ci ⊆ Cj ⇒ Cj ⊆ Ci.
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Definition 4 An aspiration x is partnered if GC(x) is partnered.

There are two ways in which an aspiration can be partnered: either both

i and j need each other (in which case Ci = Cj), or none of the two players

need each other (in which case Ci\Cj and Cj\Ci are both nonempty). The

latter of these conditions will be important in our analysis.

Definition 5 A collection C of coalitions is separating if Ci\Cj and Cj\Ci

are both nonempty for any i, j.

Definition 6 An aspiration x is separating if GC(x) is separating.

In a separating aspiration, any pair i, j of players are “separated” in the

sense that each of them can find a coalition to satisfy his demand without

the other player. Clearly, being separating is a stronger concept for an aspi-

ration than being partnered (indeed, unlike the set of partnered aspirations,

the set of separating aspirations can be empty in general games). The term

”partnered” comes from Bennett (1983). Payoff vectors that we call “sep-

arating” are called “completely separating” in Maschler and Peleg (1966),

but are referred to as “minimally partnered” in Reny et al. (2012) (in both

these papers the focus is on demand vectors feasible for the grand coalition

N of all players, while we consider aspirations, which are not necessarily

feasible for N .) We think that “separating” is a better term, emphasizing

that any pair of players do not depend on each other, i.e., can be separated.

Another concept that will be useful is the following:

Definition 7 An aspiration x is balanced if x solves the problem

minx
∑

i∈N xi

s.t. x(S) ≥ v(S) for all S ⊆ N.

The term “balanced” is from Bennett (1983), although the concept itself

is introduced in Cross (1967). It is particularly useful for the weighted

majority games that we study.
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2.2 The basic demand adjustment process

The process works as follows. Time is discrete: t = 1, 2, . . .. At the begin-

ning of any period t, there is a vector of demands xt−1 = (xt−1
1 , . . . , xt−1

n );

we will drop the superscript when no confusion arises. At t = 1, vector x0

is exogenously given; at t > 1, xt−1 emerges from the previous period as de-

scribed below. One of the players is randomly chosen to adjust his demand.

We assume that all players have a non-zero probability to be chosen. The

chosen player searches for the coalition that leaves him the highest payoff,

provided that the demands of all other players in the coalition are satisfied.

That is, the player solves

max
S:i∈S

{v(S)− x(S\i)}. (1)

Denote the maximum value for the above problem by yi. Note that yi ≥ 0,

since player i can always choose S = {i}, in which case v(S)− x(S\i) = 0.

Player i proposes one of the coalitions that solve the maximization problem,

say coalitionQ, and sets his demand to yi.
2 Hence the new vector of demands

is xt = (xt1, . . . , x
t
n), where xti = yi and xtj = xt−1

j for j ̸= i. We assume

that all coalitions that solve the maximization problem are proposed with a

positive probability. The actual payoffs to the players at period t are

utj =

{
xtj for j ∈ Q,

0 for j /∈ Q.
(2)

i.e. players in Q get their demands, while players outside Q receive nothing.

The state of the process at the end of period t is described by the demand

vector xt = (xt1, . . . , x
t
n). We refer to a state as an aspiration state if xt is

aspiration.

Player i’s behavior can be described as adaptive in that i plays a best

response to the other players’ past choices. Since the other players are not

2In particular, if no coalition involving other players is feasible given their demands,

player i forms a singleton coalition and sets yi = v({i}) = 0.
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able to change their demands in the current period, we can also view i’s

decision as rational (though myopic, since the effect of actions on future

periods is not taken into account). We interpret coalition Q as a transitory

arrangement that exists for period t only; it plays no role in subsequent

decisions of the players.

We will denote by Ψ the correspondence that, for a given state xt at

time t, assigns the set of states that can result at time t + 1 with positive

probability according to the process described above, so that Ψ(x) denotes

the set of states that can be reached from x in one step.

Let S be the set of all possible states of the process. Given A ⊆ S,
Ψ (A) := ∪x∈AΨ(x) is the set of states that can be reached in one step from

a state in the set A.

Definition 8 A set of states A ⊆ S is absorbing if Ψ(A) = A. An absorb-

ing set A is minimal if no strict subset of A is absorbing.

Definition 9 The absorbing set solution is the union of all minimal

absorbing sets.

A set of states is absorbing if, starting from a state in this set, the process

cannot get out of the set. The absorbing set solution contains all the long-

run outcomes of the process since the process will eventually reach one of

the minimal absorbing sets starting from outside the absorbing set solution

(if this was not the case, the complement of the absorbing set solution would

also be absorbing, therefore it would contain a minimal absorbing set which

would have to be included in the absorbing set solution, a contradiction).3

We now show that the absorbing set solution for this process coincides

with the set of all aspirations. Given a demand vector x, player i’s demand

is not feasible if ∀S ∋ i x(S) > v(S). Player i’s demand is not maximal if

∃S ∋ i such that x(S) < v(S).

3We have taken the term absorbing set solution from Inarra et al. (2005); this concept

also appears in Shenoy (1979) as dynamic solution.
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Lemma 1 Let xt−1 be the demand vector at t − 1. Suppose i is randomly

selected at time t to adjust his demand. Then:

(i) If player i’s demand xt−1
i is not feasible, xti < xt−1

i .

(ii) If player i’s demand xt−1
i is not maximal, xti > xt−1

i .

Proof. Player i always sets xti = maxS:i∈S{v(S) − xt−1(S\i)} (recall

that this value is always nonnegative because i can always choose S = {i}).
(i) Because maxS:i∈S{v(S) − xt−1(S\i)} < xt−1

i (given that xt−1
i is not

feasible), it follows that xti < xt−1
i .

(ii) Because maxS:i∈S{v(S)− xt−1(S\i)} > xt−1
i (given that xt−1

i is not

maximal), it follows that xti > xt−1
i .

Our process is therefore a variant of the process of Bennett et al. (1997),

since the demand adjustment part of it satisfies their three assumptions:

(i) only one player adjusts at a time;

(ii) a player will increase his demand if some coalition can support the

larger demand, given the demands of others;

(iii) a player will decrease his demand if no coalition can support his

current demand, given the demands of others.

Note that Bennett et al. (1997) assume that demands adjust in this

way, but do not make any explicit assumptions about coalition formation.

Since our demand adjustment satisfies their three assumptions, the results

of Bennett et al. (1997) that demands converge to the set of aspirations

also hold in our model. The underlying myopic rationality of choosing the

coalition with the maximum available surplus simplifies proofs considerably.

Proposition 1 If xt is an aspiration, xt+1 = xt.

Proof. Consider any state xt that is an aspiration. Suppose player i

is randomly chosen at period t + 1 to adjust his demand. By feasibility,

∃S ∋ i such that xt(S) = v(S), or equivalently v(S) − xt(S\i) = xti. By

maximality, any coalition Q ∋ i satisfies v(Q) − xt(Q) ≤ 0, which implies

v(Q)−xt(Q\i) ≤ xti. From these two conditions it follows that yi = xti. Then
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player i proposes some coalition S that leaves xti to him, thus xt+1
i = xti.

The demands of the other players do not change, therefore xt+1 = xt.

It follows that the set of aspirations is absorbing. Indeed, each aspiration

vector x is a minimal absorbing set. The following proposition shows that

there are no other minimal absorbing sets, hence the absorbing set solution

is precisely the set of aspirations.

Proposition 2 For any initial demand vector x0 ∃T such that there is a

positive probability that ∀t > T xt is an aspiration.

Proof. Let Ht denote the set of players whose demands are not feasible

given xt, and let Lt denote the set of players whose demands are not maximal

given xt.

Let x0 be the vector of demands at the beginning of period 1. Player

i in H0 is selected with a positive probability to adjust his demand. Since

maxS:i∈S{v(S) − x(S\i)} ≥ 0 (e.g. S = {i}), the adjusted demand x1i of

player i will be feasible. Hence |H1| < |H0| and |L1| ≤ |L0|, since player i

chooses a maximal coalition. Repeating the argument for players in H1, H2,

. . . with a non-zero probability the process moves to a state with Ht = ∅.
Suppose now that player j ∈ Lt is selected. For such a player it holds

that yi > xti. Player j increases his demand to claim the maximal surplus

available, thus |Lt+1| < |Lt|. This increase may turn some previously feasible

demands unfeasible. However, from the previous paragraph, when such

players are selected, the process can reach a period with H = ∅ without

increasing |L|. Thus, with a positive probability a situation with Hr = ∅,
|Lr| < |Lt| is reached. Continuing in this fashion, a period T with HT = ∅
and LT = ∅ is reached, hence xt for t > T is an aspiration.

Thus the process converges to an aspiration with probability 1. The as-

piration approach can be criticized because players are assumed to increase

their demands whenever they are not maximal, irrespective of the probabil-

ity of getting those demands. Note that in our model this probability is 1
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by construction, since the player who is selected to adjust his demand also

selects a feasible coalition to which he belongs.

2.3 The demand adjustment process with mutations

We will assume from now on that the values v(S) are rational numbers.

Let m be a common denominator of these numbers, and let δ = 1
lm . The

number l controls how fine the grid is. We assume that the demands of the

players belong to a finite grid Γδ = {kδ : k ∈ {0, . . . ,K}} where K is a

sufficiently large number (e.g. K = V
δ , where V = maxS v(S)). We consider

only demand vectors belonging to the grid. Note that the grid is chosen in

such a way that ∀x ∈ Γδ × . . .× Γδ, if x(S) < v(S), any player i ∈ S can

increase the demand to a point yi ∈ Γδ so that x(S) = v(S). The state

space S of the demand adjustment process consists of demand vectors x on

the grid. With this finite grid, the demand adjustment process is a finite

Markov chain. For a sufficiently fine grid the set of aspirations restricted to

the grid is non-empty, and contains some partnered aspirations.

Lemma 2 If v(S) is a rational number for all S ⊆ N , there is at least one

partnered aspiration with rational coordinates.

Proof. See Appendix A.1.

The restriction to the finite grid thus retains some aspirations with de-

sirable properties.

Given the state space S, let M be the matrix such that Mab specifies

the probability of moving from state a to state b in one step according to

the demand adjustment process. Matrix M is the transition matrix of the

Markov chain on this state space. A probability distribution on the (finite)

state space S is an 1 × |S| vector µ, where µa is the probability of state a.

The vector µ is a stationary distribution of the Markov chain M if µM = µ.

Note that M may have more than one stationary distribution.

The concept of absorbing sets can be naturally applied to Markov chains.
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A set of states A ⊆ S is absorbing if for any distribution µ such that the sup-

port of µ is in A, it holds that the support of µM is also in A. Because the

process cannot permanently stay out of the absorbing set solution, the sup-

port of any stationary distribution of the Markov chain must be contained

in the support of the absorbing set solution.

From the previous subsection, the absorbing set solution is precisely the

set of aspirations (Propositions 1 and 2). Therefore, the support of any

stationary distribution consists only of aspiration states. Note that for each

particular aspiration x, there is a stationary distribution whose support only

includes x. Hence there are many stationary distributions.

We extend the basic process to allow for the possibility of rare occasions

in which the players’ behavior differs from the one described before. We

will refer to such an event as a ”mutation”. Mutations make the process

move between aspirations and may help to select among them. The set of

separating aspirations is important because such aspirations will be robust

against a mutation by one player, while other aspirations are not.

The basic model assumes that the adjusting player selects the demand

that solves the maximization problem (1). We now allow the possibility

that this player “mutates”. We assume that the player more likely mutates

to a higher demand than to a lower demand. That is, with probability

1 − ε there is no mutation (and the player adjusts in the usual way), and

with probability ε there is a mutation. Conditional on a mutation having

occurred, the new demand is within the set {xt−1
i , . . . , V } with probability

1 − ε and it is within the set {0, . . . , xt−1
i } with probability ε.4 Note that

if xt−1
i = V , then the most likely “mutation” is xti = xt−1

i . This model of

mutations is similar to intentional idiosyncratic play in Naidu et al. (2010):

players most likely “experiment” with demands that can give them a higher

payoff (if the other players adjust). Note that when ε = 0 the process is the

4The conditional probability could be a different value ν ̸= ε, but we can assume

that ν = O(ε) without changing the results. Setting ν = ε allows us to summarize the

likelihood of various mutations with one parameter.
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same as our basic process. We will consider the case where ε goes to 0.

We denote the transition matrix of the Markov chain of the process

with mutation probability ε by M ε. A Markov chain is irreducible if there

is a positive probability of moving from any state to any other state in a

finite number of periods. The introduction of mutations makes the process

irreducible, since any vector of demands can arise as a result of n consecutive

mutations, one by each player. This implies that the Markov chain M ε has

a unique stationary distribution for ε > 0 (see e.g. Young, 1998, pp. 48-49).

The states that have a positive probability in the limit of this stationary

distribution as ε goes to 0 are much more likely to be visited in the long

run. The limit stationary distribution, denoted by µ0 = limε→0 µ
ε, exists

(see Young, 1998, p. 56).

Definition 10 A state x is stochastically stable if it has a positive prob-

ability in the limit stationary distribution as ε goes to 0, that is, µ0
x > 0.

For our model of mutations, the set of separating aspirations is robust

to the introduction of one mutation of the most likely type, i.e. from xi to

a higher demand.

Lemma 3 Consider state x where x is a separating aspiration. Suppose

player i mutates, from xi to a higher demand. Then the adjustment process

without mutations will return to state x.

Proof. Suppose xti > xt−1
i . If player i is selected to adjust his demand

at t+ 1, because of maximality of the original xt−1 he will form a coalition

and get xt−1
i , in which case his demand returns to its original value. If

another player j is selected to update his demand, he will form a coalition

without i and get xtj = xt−1
j . Since none of the players needed i to achieve

their demands, no demands will change until player i is selected to adjust

his demand, in which case xi will return to its original value.

On the other hand, if an aspiration is not separating, then a mutation

by one player can lead to a different aspiration.
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Lemma 4 Consider state x where x is an aspiration that is not separating.

There exists a player i such that, if player i mutates from xi to xi + δ,

the adjustment process without mutations converges to a different aspiration

with a positive probability.

Proof. Since x is not a separating aspiration, there exist two players,

i and j, such that either j needs i to achieve his demand but i does not

need j, or i and j both need each other. Now suppose i mutates to xi + δ.

If player j is selected next, he can no longer find a coalition that supports

his demand and has to settle for yj = xj − δ, supported for example by a

coalition Q such that i, j ∈ Q and Q is in the generating collection of the

previous aspiration x. The new state is (x1, . . . , xi + δ, . . . , xj − δ, . . . , xn).

This state is not necessarily an aspiration since some of the other players’

demands may become unfeasible after an increase in player i’s demand.

Such players will lower their demands in the next periods with a positive

probability, but player i will never lower his demand. Another aspiration

will be reached with player i demanding a bit more, and some players, e.g.

player j demanding a bit less.

That some states are resistant to one (most likely) mutation and other

states are not can be helpful in identifying what states can be stochastically

stable. If there are sets of states that can be disturbed only with multiple

mutations, only such sets can be stochastically stable.

Definition 11 We call a set of states B locally stable if (i) all states in B
are in an absorbing set; (ii) for any S ⊆ B, after a mutation of one player

to a higher demand the basic process converges to a state in B; (iii) there is

no proper subset of B that has this property.

This definition is based on the definition in Nöldeke and Samuelson

(1993). It implies that there is a sequence of mutations, one at a time,

that allows to move between any two states in B (otherwise a subset of B
would be locally stable). It is also related to the “one-deviation” property
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of Newton and Sawa (2015), although they define this property for more

general mutation structures.

Proposition 3 If state x is stochastically stable, then x ∈ B, where B is in

a locally stable set of states.

The proposition is a restatement of Proposition 1 in Nöldeke and Samuel-

son (1993) and their proof applies. Intuitively, the “cost” (in terms of the

number of most likely mutations) of moving away from a locally set B is

more than 1. From states not in a locally stable set, the cost of moving

away is 1. If the probability of mutations goes to zero, the process spends

almost all the time in those states that are part of a locally stable set.

Lemma 3 shows that each separating aspiration is in a locally stable set,

but there may be other (non-singleton and consisting of aspirations that

are not separating) locally stable sets. Below we analyze the stochastic

stability of aspirations in a class of weighted majority games. We show that

in an important subclass of these games separating aspirations are indeed

the only ones that are locally, and thus stochastically, stable. However, in

other weighted majority games there exist non-singleton locally stable sets,

thus aspirations that are not separating can still be stochastically stable.

3 Demand adjustment in weighted majority games

3.1 Weighted majority games

A simple voting game is a transferable utility game (N, v) such that v(S) = 0

or 1 for all S ⊆ N . We will assume that v(S) = 1 implies v(T ) = 1 for all

T ⊇ S (monotonicity). A coalition S is called winning if v(S) = 1, and

losing if v(S) = 0. The set of winning coalitions is denoted by W . A

minimal winning coalition S is a coalition that is just large enough to win,

that is, S is winning but no T ⊊ S is winning. The set of minimal winning

coalitions is denoted by Wm.
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We only consider simple voting games that are proper, that is, if S, T ∈
W then S ∩ T ̸= ∅. If a simple game is proper it is not possible for two

disjoint coalitions to be winning. A stronger condition is the following:

Definition 12 A simple voting game is constant-sum if v(S)+v(N\S) =
1.

In a constant-sum game, the partition of the set of players into two sets

always results in one winning coalition and one losing coalition.

A veto player is a player who is in all winning coalitions. A null player

is a player such that v(S) = v(S ∪ {i}) for any S; such a player does not

belong to any coalition in Wm. We assume henceforth that there are no null

players, that is, each player belongs to at least one coalition in Wm.

A simple voting game is weighted if it is possible to assign a number of

votes (weight) wi ≥ 0 to each player and to set a threshold q such that S is

winning if and only if
∑

i∈S wi ≥ q. The combination [q;w1, ..., wn] is a repre-

sentation of the voting game. There are many representations [q;w1, ..., wn]

that are equivalent in that they produce the same set of winning coalitions.

Definition 13 A representation [q;w1, ..., wn] is called homogeneous if all

minimal winning coalitions have the same total weight q.

Definition 14 A game that admits a homogeneous representation is a ho-

mogeneous game.

For example, [3; 2, 1, 1, 1] is a homogeneous game because each mini-

mal winning coalition has exactly 3 votes. In contrast, [5; 2, 2, 2, 1, 1, 1] is

not a homogeneous game. Coalition {1, 2, 3} is minimal winning but has

6 votes, while other minimal winning coalitions (such as {1, 2, 4}) have 5

votes. Moreover, it is not possible to find an alternative representation of

this game that would be homogeneous.

Two players, i and j, are of the same type if v(S ∪ {i}) = v(S ∪ {j})
for all S ⊂ N , i, j /∈ S. If wi = wj , i and j are of the same type, though
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the converse is not necessarily true. It will sometimes be useful to refer

to coalition types by listing the player types that form the coalition, as in

[3; 2, 1, 1, 1] having two types of minimal winning coalition, [21] and [111].

Weighted majority games have an empty core unless there are veto play-

ers. Constant-sum games have no veto players, except for the trivial case in

which there is one veto player who is also a dictator, that is, {i} ∈ W .

3.2 Aspirations in weighted majority games

We focus on constant-sum homogeneous games. For games in this class,

there is an aspiration vector with desirable properties.

Remark 1 Let (N, v) be a constant-sum homogeneous game and [q;w1, ..., wn]

a homogeneous representation of this game. The aspiration vector
(
wi
q

)
i∈N

is balanced, separating and has rational coordinates.

For constant-sum homogeneous games, Peleg (1968, theorem 3.5) shows

that the nucleolus (Schmeidler, 1969) is the only homogeneous representa-

tion that has
∑

i∈N wi = 1 (hence the homogeneous representation is unique

up to a multiplicative constant in this class of games). Given that the nucle-

olus is a representation, the vector
(
wi
q

)
i∈N

, where w is the nucleolus and

q is
∑

i∈S wi for any minimal winning coalition S, is an aspiration vector

and the generating collection for this aspiration vector is Wm. Peleg (1968)

also shows that the nucleolus is proportional to a representation with in-

teger weights, hence
(
wi
q

)
i∈N

has rational coordinates. This aspiration is

separating, since for any i and j there is a feasible coalition that contains i

but not j. To see this, consider S ∈ Wm such that S ∋ i. If j /∈ S, the result

follows. Suppose j ∈ S. Since the game is constant-sum, N\S is losing and

{i} ∪N\S is winning. Furthermore, since the game is homogeneous, there

exists a coalition T ⊆ {i}∪N\S such that i ∈ T and w(T ) = q; this coalition

is feasible for i and does not involve j. That this aspiration vector is also

balanced follows from Kohlberg (1971). It is the only balanced aspiration

vector (see Morelli and Montero, 2003, Remark 10).
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That the balanced aspiration has rational coordinates allows us to select

the grid size δ in such a way that the grid contains the balanced aspiration.

Peleg (1968) shows that a constant-sum homogeneous game has a unique

integer representation [q;w1, . . . , wn] with mini∈N wi = 1. If δ = 1
lq , then

the balanced aspiration is on the grid.

For constant-sum homogeneous games, we have established that there is

a unique balanced aspiration vector, which is also a separating aspiration

vector and has rational coordinates. There may be many other separating

aspirations as the example below illustrates.

Example 1 (Aspirations that are separating but not balanced) Consider the

game [4; 2, 2, 1, 1, 1]. All demand vectors of the form x = (a, a, 1−a
2 , 1−a

2 , 1−a
2 ),

where 1
2 ≤ a ≤ 1 are separating aspirations for this game. If a > 1

2 , the only

coalitions in GC(x) are of the form [211]. No player depends on any other;

in particular, players with 2 votes do not depend on any particular player

with 1 vote to obtain their demands. Aspirations with a > 0.5 are separating

but not balanced, since the aspiration (12 ,
1
2 ,

1
4 ,

1
4 ,

1
4) has a smaller total sum.

The example also shows that separating aspirations can result in a very

unequal distribution between types, as in the case of x = (1, 1, 0, 0, 0).

If we relax the assumption that the game is constant-sum and homoge-

neous, it is possible for an aspiration vector to be balanced but not partnered

(and therefore not separating; see Appendix A.2).

3.3 Symmetric majority games

The simplest class of games to which we can apply our adjustment process

is the following. Consider the symmetric majority game with n players and

wi = 1 for all players:

[q; 1, . . . , 1].

If q = n, then the game is a unanimity game (all players are needed to

form a winning coalition; all players are veto players). In this game, there
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are no separating aspirations and all demand vectors with x1 + . . .+ xn = 1

are in the core. Therefore we consider n
2 < q < n. The three-player simple

majority example in the introduction is the symmetric majority game with

n = 3 and q = 2.

The balanced aspiration is
(
1
q , . . . ,

1
q

)
, which is also separating. Other

aspirations include, for example (0, . . . , 0, 1, . . . , 1), with q − 1 players de-

manding 0. There aspirations are clearly non-partnered, with players with

demand 1 depending on players with demand 0.

Proposition 4 The unique stochastically stable state for a symmetric ma-

jority game with n
2 < q < n is the balanced aspiration

(
1
q , . . . ,

1
q

)
.

Proof. Consider an aspiration x = (x1, . . . , xn) with xm = mini=1,...,n xi <

xM = maxi=1,...,n xi. Since
1
q is on the grid, xm ≤ 1

q − δ (otherwise there are

players whose demands are not feasible) and xM ≥ 1
q + δ (otherwise there

are coalitions that are not maximal).

In any coalition in GC(x), players with demand xm are included, and

any excluded players demand xM . Let xi = xm and xj = xM . Suppose

player i mutates to xm + δ. If player j is selected to adjust, he sets demand

to xM−δ. Other players with demand xM may need to adjust downwards by

δ, but in a new aspiration y, ym ≥ xm and if ym = xm, then the number of

players with demand xm is smaller in y than in x. Continuing the mutations

in this fashion, aspiration with xm = 1
q is reached. Then xM = 1

q , and the

balanced aspiration is reached.

Since the balanced aspiration is separating, it constitutes a locally stable

set. The previous argument shows that there are no other locally stable sets.

By Proposition 3, the balanced aspiration is stochastically stable.

3.4 Apex games

Apex games are weighted majority games with one major player (the apex

player) and n−1 ≥ 2 minor players (or base players). They can be described
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as

[n− 1;n− 2, 1, . . . , 1],

with the apex player having n−2 votes, each of the n−1 minor players hav-

ing 1 vote, and n− 1 (out of total 2n− 3) votes are needed to win. In terms

of the characteristic function, an apex game is given by v(S) = 1 if 1 ∈ S

and |S| > 1, or if S = {2, . . . , n}, and v(S) = 0 otherwise. Player 1 needs

only one minor player to form a winning coalition, whereas the only way to

win in the absence of the apex player is if all minor players form a coali-

tion. Apex games have received a lot of attention in the literature since von

Neumann and Morgenstern (1944), from both theoretical and experimental

perspectives.5

The set of aspirations in apex games can be divided into several subsets.

If x1 < n−2
n−1 , then in an aspiration every xi >

1
n−1 , and x({2, . . . , n}) > 1.

This implies that xi = 1 − x1 ∀i = 2, . . . , n, with GC(x) = {{1, i}i=2,...,n}
if x1 > 0 and GC(x) = {{1}, {1, i}i=2,...,n} if x1 = 0. If x1 > n−2

n−1 , in an

aspiration min{2,...,n} xi = 1−x1 <
1

n−1 , max{2,...,n} xi >
1

n−1 , and
∑n

i=2 xi =

1. The generating collection of such aspirations consists of the coalition

of minor players {2, . . . , n}, and one or more coalitions {1, i}. If x1 = 1,

also some singleton coalitions are feasible. Finally there is aspiration x =(
n−2
n−1 ,

1
n−1 , . . . ,

1
n−1

)
with GC(x) = {{2, . . . , n}, {1, i}i=2,...,n} = Wm. This

aspiration is the unique balanced aspiration and it is separating.

For our demand adjustment process with mutations, the following propo-

sition holds:

Proposition 5 The unique stochastically stable state for apex games is the

balanced aspiration
(
n−2
n−1 ,

1
n−1 , . . . ,

1
n−1

)
.

5See Davis and Maschler (1965), Aumann and Myerson (1988), Bennett and van

Damme (1991), Montero (2002), Fréchette et al. (2005) for theoretical developments

and Selten and Schuster (1968), Rapoport et al. (1979), Funk et al. (1980), Rapoport

(1990), Fréchette et al. (2005) for experimental studies.
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Proof. Consider an aspiration x with x1 > n−2
n−1 . If there is only one

coalition {1, i} in GC(x), player 1 needs player i. If player i mutates to

xi + δ and player 1 is then selected to adjust his demand, player 1 is forced

to reduce his demand. Other players may need to lower their demands as

well, but in the new aspiration y it holds that y1 < x1.

If there is more than one coalition {1, i} in GC(x), player 1 does not

depend on any player, but there is a player k with xk = max{2,...,n} xi >
1

n−1

that does depend on player i. Suppose player i mutates to xi + δ and

player k is selected to adjust. Player k will propose coalition {2, . . . , n}
with probability 16, so that player i receives xi + δ and player k receives

xk − δ. No other player needs to adjust, but coalition {1, i} is not feasible

for the new aspiration vector. Repeating the reasoning if necessary, a chain

of mutations, happening one at a time, leads to an aspiration x in which

only one coalition {1, i} is in GC(x).

Repeating the steps of the last two paragraphs, from any aspiration x

with x1 > n−2
n−1 there is a chain of mutations, happening one at a time, and

possibly adjustment of demands according to the basic process, that lead to

the aspiration
(
n−2
n−1 ,

1
n−1 , . . . ,

1
n−1

)
.

Consider now aspiration x with x1 < n−2
n−1 . Since {2, . . . , n} is not feasi-

ble, any minor player i needs player 1. Suppose player 1 mutates to x1 + δ

and player j ̸= 1 is selected to adjust. Player j proposes coalition {1, j},
giving a payoff x1 + δ to player 1 and lowering his own demand to xj − δ.

Furthermore, all other minor players also lower their demands when selected

because the coalitions with player 1 became unfeasible. When a new aspi-

ration y is reached, it holds that y1 > x1. Repeating the step if necessary,

there is a chain of mutations (happening one at a time) and subsequent ad-

justment according to the basic process leading to the partnered aspiration(
n−2
n−1 ,

1
n−1 , . . . ,

1
n−1

)
.

The balanced aspiration itself cannot be upset by one mutation according

6since x1 ≥ n−2
n−1

+ δ and xk ≥ 1
n−1

+ δ, it cannot be optimal for k to propose {1, k}.
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to Lemma 3, thus it is locally stable. The previous reasoning shows that

there are no other locally stable sets. According to Proposition 3, this

implies the result.

3.5 Stochastic stability in other weighted majority games

Allowing intentional “mutations” works to select the unique separating as-

piration in the classes of symmetric majority games and apex games. The

players that demand too little can start demanding a bit more, and, since

other players depend on them to satisfy their demand, the competition for

scarce players drives the demands to the separating aspiration.

However, we will see below that the process does not always lead to

this strong result. While for some games only separating aspirations are

stochastically stable (Example 1), we show that for other games there exist

locally stable sets that do not contain separating aspirations (Examples 2

and 3). Thus the strong result for apex games from the previous subsection

does not easily generalize to other weighted majority games.

Example 1 (continued) Consider the game [4; 2, 2, 1, 1, 1]. Recall that in

this game, separating aspirations are of the form (a, a, 1−a
2 , 1−a

2 , 1−a
2 ) for

1
2 ≤ a ≤ 1 (this set includes the unique balanced aspiration (12 ,

1
2 ,

1
4 ,

1
4 ,

1
4).)

Consider aspiration x with x1 + x2 = 1 and x1 < x2 (the case x1 > x2

can be analyzed analogously). In x, player 2 depends on player 1: if there

is a coalition S ∈ GC(x), 2 ∈ S, 1 /∈ S, then coalition S\{2} ∪ {1} is not

maximal. Since x1 + x2 = 1 and 1
2 is on the grid, then x1 ≤ 1

2 − δ and

x2 ≥ 1
2 + δ. If player 1 mutates to x1+ δ and player 2 adjusts to x2− δ, then

a new aspiration y is reached with y1 > x1 and y1 + y2 = 1. Continuing if

necessary, an aspiration with x1 = x2 = 1
2 can be reached by a sequence of

mutations, one player (player 1) at a time.

Consider now aspiration x with x1 = x2 =
1
2 and xi = xm = mink=3,4,5 xk <

xj = xM = maxk=3,4,5 xk. If xm ≥ 1
4 , then player j does not have a feasible
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coalition. If more than one player demands xm, then there is a coalition S

which is non-maximal. If xM ≤ 1
4 , then there also exists a coalition S which

is non-maximal. Therefore xm ≤ 1
4−δ and xM ≥ 1

4+δ. Since xi < xj , player

j depends on player i. Suppose player i mutates and player j adjusts. Then

a new aspiration y is reached, with ym > xm and yM < xM . Continuing if

necessary, the balanced aspiration
(
1
2 ,

1
2 ,

1
4 ,

1
4 ,

1
4

)
is reached.

Consider now an aspiration x with x1+x2 > 1. Suppose again xi = xm =

mink=3,4,5 xk < xj = xM = maxk=3,4,5 xk. Since the only feasible coalitions

are [211], a maximal such coalition has to include player i, therefore players

1 and 2 depend on player i. Suppose player i mutates to xm + δ. One of

players 1 or 2 adjusts. If then x1+x2 = 1, then we are in one of the cases in

the previous paragraphs. Continuing if necessary, either an aspiration with

x1+x2 = 1 is reached, or an aspiration with x3 = x4 = x5. If the former, the

process continues as described in the previous paragraphs. If the latter, then

x1 = x2 (otherwise a player is not feasible, or a coalition not maximal). A

separating aspiration
(
a, a, 1−a

2 , 1−a
2 , 1−a

2

)
with 1

2 ≤ a ≤ 1 has been reached.

Therefore from any aspiration, a sequence of mutations, one player at a

time, can reach the set of separating aspirations
(
a, a, 1−a

2 , 1−a
2 , 1−a

2

)
with

1
2 ≤ a ≤ 1. This set is the unique locally stable set. Therefore, stochastically

stable states are within this set of separating aspirations.

The previous example shows that there are games other than apex games

in which only the separating aspirations are stochastically stable in the de-

mand adjustment process with mutations (even if the set is larger than the

unique balanced aspiration), because locally stable sets contain only sepa-

rating aspirations. However, in other games there are locally stable sets that

contain other aspirations (including non-partnered ones).

Example 2 Consider the game [7; 5, 2, 2, 1, 1, 1, 1]. Consider aspiration x =

(0.8, a, 0.7− a, 0.1, 0.1, 0.1, 0.1) with 0.2 < a < 0.5. In x, no player depends

on any other player, except players 2 and 3, who depend on each other. Thus

it is partnered but not separating.
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Suppose that the process is at x. If a player other than player 2 or 3

mutates upwards, then no other player would need to adjust; the process

will return to x. Suppose player 2 mutates upwards to y2 (mutations by

player 3 can be analyzed analogously). The only other player who would

need to adjust is player 3. If y2 < 0.5, player 3 adjusts to y3 = 0.7 − y2

and in the new aspiration players 2 and 3 still depend on each other and

there are no other dependencies among the players. If y2 ≥ 0.5, then player

3 adjusts to y3 = 0.2 (with coalition {1, 3}). If y2 = 0.5, then y is an aspi-

ration. If y2 > 0.5, player 2’s demand is unfeasible and he has to lower the

demand to 0.5. In either case aspiration y = (0.8, 0.5, 0.2, 0.1, 0.1, 0.1, 0.1)

is reached. This aspiration is not partnered, since player 2 depends on

player 3 but not vice versa. If player 3 now mutates upwards, then player

2 would need to adjust, but the adjustment would lead either to aspiration

z = (0.8, 0.2, 0.5, 0.1, 0.1, 0.1, 0.1) or to an aspiration like x.

Therefore, the set of aspirations (0.8, a, 0.7 − a, 0.1, 0.1, 0.1, 0.1) with

0.2 ≤ a ≤ 0.5 is a locally stable set. The set contains non-partnered as-

pirations (a = 0.2 or a = 0.5). Aspirations in the set can be reached one

from another by a series of mutations, one at a time, but no aspiration out-

side of the set (including the unique balanced aspiration
(
5
7 ,

2
7 ,

2
7 ,

1
7 ,

1
7 ,

1
7 ,

1
7

)
)

can be reached from it by one mutation.

Example 3 Consider the game [8; 2, 2, 2, 2, 2, 2, 1, 1, 1], with nine players,

players 1-6 have two votes each and players 7-9 have one vote each. Min-

imal winning coalitions in this game can be either four players with two

votes ([2222]) or three players with two votes and two players with one vote

([22211]).

In this game, the unique balanced aspiration is
(
2
8 , . . . ,

2
8 ,

1
8 ,

1
8 ,

1
8

)
. Con-

sider aspiration x =
(
2
8 ,

2
8 + δ, . . . , 28 + δ, 18 − δ, 18 − δ, 18 − δ

)
, in which only

one player with two votes demands 2
8 , while other such players demand δ

more. It is non-partnered, with all players depending on player 1. Muta-

tions of players other than player 1 will result in the process going back
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to x. Suppose player 1 mutates upwards. If any of players 2-6 adjust, the

adjustment is to 2
8 . Player 1 then adjusts to 2

8 + δ, leading to an aspiration

that is a permutation of x (within types of players). If player 7 adjusts,

the adjustment is to 1
8 − 2δ. Player 1 then adjusts to 2

8 + δ and the new

aspiration is y =
(
2
8 + δ, . . . , 28 + δ, 18 − 2δ, 18 − δ, 18 − δ

)
(if players 8 or 9 ad-

justs, the new aspiration is a permutation of y). In y, all players depend on

player 7. If player 7 mutates upwards, then either players 8 or 9 adjust to
1
8 − 2δ, leading to an aspiration that is a permutation of y, or any of the

players 1-6 adjust to 2
8 , leading to an aspiration that is a permutation of

x. The process thus can move between aspirations like x and y with one

mutation but cannot reach any other aspiration with one mutation. The set

of aspirations that are permutations of x and y is locally stable, even though

none of these aspirations is partnered.

Note that the reasoning in the previous paragraph does not depend

(much) on the size of δ: if, for example, δ′ = δ/2, the same reasoning applies.

There is also nothing special about it being only δ away from the balanced

aspiration. Consider aspiration x′ = (28+aδ, 28+(a+1)δ, . . . , 28+(a+1)δ, 18−
(32a+1)δ, . . . , 18−(32a+1)δ), with integer a divisible by 2 and 0 ≤ a ≤ 1

12δ−
4
3

(the example in the previous paragraph is obtained by setting a = 0). In x′,

all players depend on player 1. Similarly to the discussion in the previous

paragraph, mutations of one player can move between permutations of x′

and y′ = (28+(a+1)δ, . . . , 28+(a+1)δ, 18−(32a+2)δ, 18−(32a+1)δ, 18−(32a+1)δ).

The set of aspirations which are permutations of x′ and y′ is again locally

stable.

These last two examples show that it is not necessarily the case that only

separating aspirations are contained in a locally stable set. The analysis of

stochastic stability in these games then requires going beyond locally stable

sets, looking also at mutations that are not most likely ones. We leave this

analysis for future research.
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4 Related Literature

The starting point of our model is Cross (1967) who presents a first attempt

to formalize the competition for players whose “price” (as represented by

their demand) is too low. This competition can be thought as driving prices

up for players indispensable for others to satisfy their demand. This concept

underlies the approach used in Maschler and Peleg (1966) for payoff vectors

feasible for the grand coalition and in Albers (1979) and Bennett (1983) for

more general payoff vectors.

Treating players’ behavior as setting a demand has an obvious connec-

tion with Nash (1953) demand game that models two-player bargaining.

Young (1993) is the first who uses stochastic stability in this game, in a

process of best responding (to finite samples of past observations), finding

that the payoff division related to the Nash bargaining solution is the unique

stochastically stable one. Since then, other papers analyzed dynamic pro-

cesses in cooperative games, as reviewed in Section 6 of the survey paper

Newton (2018). The most relevant of these papers are also discussed below.

Several papers in this literature study demand adjustment processes in

cooperative games (from Green, 1974 and Feldman, 1974 to more recent

Agastya, 1997, 1999; Arnold and Schwalbe, 2002; Newton, 2012; Rozen,

2013; Sawa, 2019; Nax, 2019). While these papers differ on the details of

the process (such as whether adjustment by coalitions is allowed, whether

players only set a demand or also specify coalition partners, or which (if any)

mutations are more likely), they all focus on games with a non-empty core.

Payoff allocations in the core are obtained by the adjustment process, with

the possibility of mutations allowing in some cases further selection within

the core, as in Agastya (1999), Newton (2012) and Sawa (2019). Other

papers, such as Klaus et al. (2010), Newton and Sawa (2015), Nax and

Pradelski (2015, 2016), and Klaus and Newton (2016) obtain similar results

for assignment games and matching problems with non-empty core.

The one paper that has a result for games with an empty core is Nax
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(2019), where in such games his process cycles through all coalitions struc-

tures, including the one with all players being singletons. (In Nax’s paper,

players’ individual demands are called their “aspirations”, not the whole

demand vectors, as in Bennett, 1983, and in our paper.) The mechanism

relies on joint deviations by coalitions: in the process, with a positive prob-

ability any (potentially profitable) coalition can be selected to adjust their

demands jointly but demands are made individually and may be incompati-

ble, in which case the players split into singletons. In contrast, in the (basic)

process used in this paper (which is based on Bennett et al., 1997), only one

player adjusts at a time, and a coalition always forms. In weighted majority

games, minimal winning coalitions form in our stochastically stable states.

Our model is closely related in spirit to the above mentioned models.

We allow only one player to adjust and the players also selects a coalition to

form. We further allow for mutations, which are more likely to be demand

increases (in the spirit of “intentional mistakes” in Naidu et al., 2010). For

some weighted majority games (which all have an empty core), our model

allows quite a sharp prediction, selecting among aspirations those that are

separating.

5 Conclusion

The paper presented a simple best-reply adaptive model of demand adjust-

ment in cooperative games. The basic process without mutations converges

to the set of aspirations; introducing certain mutations allowed us to select

a plausible subset of the set of aspirations.

Our model of mutations allowed players to experiment with higher de-

mands. This model identifies the set of separating aspirations, in which no

player is indispensable in order for other players to achieve their demands,

as the set that is most resistant to change.

For two particular classes of weighted majority games, namely symmetric

games and apex games, we show with such infrequent mutations the set of
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separating aspirations is stochastically stable. In this way we provide sharp

predictions for these important classes of games with an empty core.

A Appendix

A.1 Proof of Lemma 2

Lemma 2 If v(S) is a rational number for all S ⊆ N , there is at least one

partnered aspiration with rational coordinates.

Proof. Recall that the set of balanced aspirations is defined as the

solution to the following linear programming problem

minx
∑

i∈N xi

s.t. x(S) ≥ v(S) for all S ⊆ N.

This problem can be solved by the simplex method to obtain a balanced

aspiration with rational coordinates. If this balanced aspiration is also part-

nered, we have found a partnered aspiration with rational coordinates. If

not, we can use the method of Bennett (1983, theorem 6.5) to find a part-

nered aspiration. This procedure uses the dual linear programming problem

maxλ
∑

S⊂N v(S)λS

s.t.
∑

S∋i λS ≤ 1

λS ≥ 0 for all S ⊂ N.

Let x be the balanced aspiration we found by solving the primal. By

complementary slackness, any coalition that has λS > 0 in the corresponding

solution of the dual has x(S) = v(S), that is, it belongs to GC(x). Also,

any player with xi > 0 in the balanced aspiration under consideration has∑
S∋i λS = 1. Other players may in principle have

∑
S∋i λS < 1, but these

players must be getting xi = 0, so that {i} is in the generating collection

of x. We can then take λ{i} to be as large as needed so that
∑

S∋i λS = 1

holds for all players, while still keeping the property that only coalitions in
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GC(x) can have positive values for λS . Some coalitions may be in GC(x)

and have λS = 0, and, as Bennett (1983) shows and we discuss below, this

is the reason why balanced aspirations are not always partnered.

Denote by C(x) the collection of coalitions with λS > 0. A crucial step

of Bennett’s argument is that, if these were the only coalitions in the gener-

ating collection, the aspiration x would be partnered since the partnership

condition holds for C(x), that is, for all i and j,

∃S′ ∈ C(x), i ∈ S′, j /∈ S′ =⇒ ∃S′′ ∈ C(x), j ∈ S′′, i /∈ S′′.

This is because, if all S ∈ G(x) that contain i also contain j, but not the

reverse, we would have
∑

S∋i λS <
∑

S∋j λS , hence it would not be possible

for both sums to equal 1.

Hence, if x is not partnered, this must be because of a coalition S such

that S ∈ GC(x), S /∈ C(x), j ∈ S, i /∈ S. We now modify x slightly so that

S stops being in GC(x) without any other coalition being added to GC(x).

Let y be such that yk = xk for all k ̸= i, j; yi = xi − δ, yj = xj + δ. If δ

is sufficiently small, none of the coalitions involving i that were previously

unfeasible will become feasible; also, if δ is chosen to be a rational number,

the new vector y will still have rational coordinates.

The vector y is an aspiration and, since all coalitions involving j but not i

have become unfeasible, i and j now satisfy the partnership condition. There

may be other players that were unpartnered in x and are still unpartnered,

and there may even be some previously partnered players that have become

unpartnered (this would be the case if player k can form a coalition without

player l under both x and y, but all coalitions player l could form without

k under x have become unfeasible because they all involved j and excluded

i). However, since the partnership condition holds for C(x), the coalition in

GC(y) containing k but not l must have a weight of 0, and the same process

can be applied to make that coalition unfeasible so that k and l become

partners.
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The process can be repeated until a partnered aspiration is reached.

Coalitions in C(x) are not affected by the process, hence the demand vectors

remain partnered aspirations when restricted to C(x). Every time an adjust-

ment is made some coalitions leave GC(x) and no coalitions are added to

GC(x). Since GC(x) is a finite set the process eventually terminates, and

the resulting aspiration is partnered (and incidentally still balanced, since

the total sum of the demands is not altered).

A.2 An aspiration vector that is balanced but not partnered

In a constant-sum homogeneous game there is a unique balanced aspiration

which is also partnered, see Remark 1. The following example shows that,

for games outside this class, it is possible for an aspiration to be balanced

but not partnered.

Example 4 (An aspiration vector that is balanced but not partnered) Con-

sider the game [42; 11, 11, 9, 7, 7, 7, 5, 5, 1], which appears in Freixas and Mo-

linero (2009). The aspiration vector x =
(
wi
q

)
i∈N

is balanced but not part-

nered.

Note that the above game is neither constant-sum nor homogeneous. It

is not constant-sum because the majority is 42 out of a total of 58 votes, so

for example coalition {1, 2} and its complement are both losing. It is not

homogeneous because there are minimal winning coalitions such as coalitions

of type [11 11 9 7 5] which have more than 42 votes. Note that the only

coalitions in GC(x) are the ones that have exactly 42 votes. It can be shown

that the aspiration vector x is balanced, but it is not partnered because the

player with 9 votes needs the player with 1 vote, but the player with 1 vote

can form a coalition of type [11 11 7 7 5 1] without the player with 9 votes.
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