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Coalition Formation in Games with Externalities

Maria Montero∗

Abstract

This paper studies an extensive form game of coalition formation

with random proposers in games with externalities. It is shown that an

agreement will be reached without delay if any set of coalitions prof-

its from merging. Even under this strong condition, the equilibrium

coalition structure is not necessarily effi cient. There may be multiple

equilibria even in the absence of externalities, and symmetric play-

ers are not necessarily treated symmetrically in equilibrium. If the

grand coalition forms without delay in equilibrium, expected payoffs

must be in the core of the characteristic function game that assigns

to each coalition its equilibrium payoff. Compared with the rule of

order process of Ray and Vohra (1999), the bargaining procedure with

random proposers tends to give a large advantage to the proposer,

whereas the bargaining procedure with a rule of order tends to favor

the responders. The equilibria of the two procedures cannot be ranked

in general in terms of effi ciency.
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1 Introduction

In most economic situations, the payoff of a coalition depends on which

other coalitions form, that is, there are externalities between coalitions. A

function assigning to each coalition a payoffdepending on the whole coalition

structure is called a partition function (Thrall and Lucas (1963)). In spite of

the empirical relevance of externalities, standard cooperative game theory

is not based on the partition function but on the characteristic function,

which assigns a fixed payoff to each coalition regardless of how outsiders are

organized. In order to derive a characteristic function from a situation with

externalities, players are assumed to have conjectures about how the rest

of the players will organize themselves given that a coalition forms. These

conjectures are usually pessimistic (players fear the worst) or optimistic

(players expect the best).1 Thus, when a coalition forms, the rest of the

players are expected to partition themselves so as to either minimize or

maximize the payoff of the coalition, regardless of their own interest.2

An alternative to indiscriminated optimism or pessimism is to use an

extensive form game of coalition formation in order to allow a coalition to

predict the reaction of the outsiders as an equilibrium reaction, so that con-

jectures are consistent (see Bloch (1996) and Ray and Vohra (1999)).3 Ray

and Vohra (1999) extend the model of coalitional bargaining of Chatterjee

et al. (1993) to games with externalities. Both models are natural gener-

alizations of the Rubinstein (1982) two-player alternating offers bargaining

game.4 A distinctive feature of these models is that players respond to

1See e.g. Funaki and Yamato (1999), Meinhardt (1999), Abe and Funaki (2017).
2A related possibility is to assume that coalitions always expect outsiders to form a

coalition of their own, or to remain singletons, regardless of their own interest (see e.g.

Chander and Tulkens, 1997).
3Other approaches are surveyed by Bloch (2003). These include simultaneous games of

coalition formation (d’Aspremont et al., 1983; Hart and Kurz, 1983; Yi, 1997; Yi and Shin,

2000) and models that impose less structure about the timing of moves, based on farsighted

concepts such as equilibrium binding agreements (Ray and Vohra, 1997; Diamantoudi and

Xue, 2007) the largest consistent set (Chwe, 1994; Konishi and Ray, 2003; Mauleón and

Vannetelbosch, 2004), and the farsightedly stable set (Herings et al., 2010).
4Bloch (1996) also belongs to this family of models, even though it is not exactly

a generalization of Rubinstein (1982) since it assumes exogenous payoff division. The
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proposals according to a predetermined rule of order and the first player to

reject a proposal automatically becomes the next proposer. Because the first

rejector becomes the next proposer, responders may have substantial bar-

gaining power even if they are in a weak position in terms of the availability

of alternative coalitions.

The present paper uses an alternative model of coalitional bargaining

that has been studied by Binmore (1987) for two players, Baron and Ferejohn

(1989) for symmetric majority games, and Okada (1996) for characteristic

function games. The distinctive feature of this model is that a player who

rejects an offer does not automatically become the next proposer. Instead,

proposers are selected randomly by Nature. By giving less power to the

responders, this model incorporates competition: any player may have an

opportunity to ”step in”with a proposal during the negotiations (even if

only after a rejection), and the responders’bargaining position reflects the

availability of alternative coalitions.

As most of the literature on coalitional bargaining, I assume that payoffs

are transferable within coalitions (but not between coalitions) and coalitions

cannot be enlarged once formed, perhaps because forming a coalition entails

sunk costs.5 Players share a common discount factor6 and are risk neutral.

assumption of exogenous payoff division is common in applications (e.g. Belleflamme,

2002; Macho-Stadler et. al., 2006a; Sánchez-Pagés, 2007). De Clippel and Serrano (2008a)

resembles Bloch (1996) in that payoff division is fixed (based on de Clippel and Serrano,

2008b) and moves are sequential, but allows several coalitions to form in paralell.
5At the other extreme, if renegotiation is costless it will eventually lead to an effi cient

outcome (see Seidmann and Winter (1998) and Okada (2000) for characteristic function

games, and Gomes (2005) and Hyndman and Ray (2007) for partition function games). In

Bloch and Gomes (2006), renegotiation is possible in principle but coalitions can take irre-

versible actions that commit them to not be enlarged; this possiblity leads to ineffi ciency.

There are also models where coalitions can break up (Gomes and Jehiel, 2005).
6An alternative source of friction studied in the literature is the risk of breakdown

(see Binmore et al. (1986)). In Montero (2000) I consider the possibility of random

termination of the negotiations after a rejection, in which case all players who have not

formed a coalition yet become singletons. The results are qualitatively similar to those in

section 3, though the actual equilibria can be different. Kawamori and Miyakawa (2016,

2019) study a variant of the model of Hart and Mas-Colell (1996) where only the rejector

becomes a singleton with some probability.
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The solution concept is stationary subgame perfect equilibrium.

The main results are as follows:

(1) If any merger of two or more coalitions is (weakly) profitable, agree-

ment is immediate in equilibrium.

(2) Even under this strong condition, the resulting coalition structure is

not necessarily effi cient.

(3) If the grand coalition forms immediately in equilibrium, expected

payoffs must lie in the core of a characteristic function game that assigns to

each coalition its equilibrium payoff.

(4) Multiple equilibria with immediate agreement can exist, even in sym-

metric games without externalities.

(5) Symmetric games may have asymmetric equilibria (with immediate

agreement) where some players have a greater expected payoff than others.

(6) Compared with the rule of order procedure studied by Ray and Vohra

(1999), bargaining with random proposers favors the proposer (who may get

a disproportionate share even if players are symmetric), whereas bargaining

with a rule of order favors the responders (who may get an equal share

even if players are very asymmetric). In general, the two procedures cannot

be ranked in terms of effi ciency. For a specific class of games (symmetric

games without externalities where only one coalition forms), the procedure

with random proposers is at least as effi cient as the procedure with a rule

of order.

2 The model

2.1 The partition function

Let N = {1, 2, ..., n} be the set of players. Non-empty subsets of N are

called coalitions. A coalition structure π := {S1, ..., Sm} is a partition of N
into coalitions, hence it satisfies Sj ∩ Sk = ∅ if j 6= k, ∪mj=1Sj = N. The

set of all coalition structures is denoted by Π(N), with typical element π.

Analogously, the set of partitions of T ⊂ N is denoted by Π(T ), with typical

element πT .
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An embedded coalition is a pair (S, π) with S ∈ π. The set of embedded
coalitions is denoted by E(N). A partition function ϕ assigns a real number

to each embedded coalition (S, π), thus ϕ : E(N) −→ R. The value ϕ(S, π)

represents the payoff of coalition S given that coalition structure π forms.7

We assume that players can guarantee a nonnegative payoff as singletons

(ϕ({i}, π) ≥ 0 for all i ∈ N and π ∈ Π with {i} ∈ π). We also rule out the
trivial case in which all values are zero by assuming ϕ(N, {N}) > 0. The

pair (N,ϕ) is called a partition function game.

Given a coalition structure π = {S1, ..., Sm} and a partition function ϕ,
we will denote the m-dimensional vector (ϕ(Si, π))mi=1 by ϕ(S1, ..., Sm). It

will sometimes be convenient to write down the partition function in terms

of ϕ. We will also denote ϕ(N, {N}) by ϕ(N) or ϕ(N), and the partition of

a coalition T into singletons by 〈T 〉. In order to simplify notation, we will
write ϕ({i}, {{i}, {j, k}}) as ϕ(i, {i, jk}) and ϕ({i}, {j, k}) as ϕ(i, jk).

A partition function (N,ϕ) is positive if

ϕ(S, π) ≥ 0 for all (S, π), and ϕ(S, π) > 0 for all (S, π) such that |S| ≥ 2.

A partition function game (N,ϕ) is superadditive if for all π ∈ Π(N), Si,

Sj ∈ π, Si 6= Sj it holds that

ϕ(Si ∪ Sj , (π\{Si, Sj}) ∪ {Si ∪ Sj}) ≥ ϕ(Si, π) + ϕ(Sj , π).

Superadditivity means that a merger of any two coalitions keeping the

partition of the remaining players unchanged is weakly profitable.

A partition function game (N,ϕ) is cohesive if

ϕ(N) ≥
∑
S∈π

ϕ(S, π) for all π ∈ Π(N).

Cohesiveness means that total payoffs are maximized when players form

the grand coalition. Thus, starting from an arbitrary partition, a merger of

all coalitions to form the grand coalition is weakly profitable.

7Like the vast majority of the literature, we assume that ϕ(S, π) is independent of how

payoffs are divided within S. This assumption would not be appropriate in the presence

of moral hazard (see Espinosa and Macho-Stadler, 2003).
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A partition function game (N,ϕ) is fully cohesive if for all (S, π) ∈ E(N)

and for all πS ∈ Π(S) it holds that

ϕ(S, π) ≥
∑
T∈πS

ϕ(T, (π\{S}) ∪ πS).

Full cohesiveness means that any merger of coalitions keeping the parti-

tion of the remaining players unchanged is weakly profitable.8

Notice that cohesiveness and superadditivity are independent proper-

ties, both of them weaker than full cohesiveness.9 The following examples

illustrate these three properties.

Example 1 A game that is superadditive but not cohesive
N = {1, 2, 3}
ϕ(1, 2, 3) = (3, 3, 3)

ϕ(ij, k) = (7, 0)

ϕ(123) = 8

Even though any merger of two coalitions is profitable, total payoffs are

maximized when all players remain singletons. The externality that a two-

player merger imposes on the outsider is stronger than the internal gain,

thus the game is not cohesive.

Example 2 A game that is cohesive but not superadditive
N = {1, 2, 3}
ϕ(1, 2, 3) = (1, 1, 1)

ϕ(ij, k) = (0, 3)

ϕ(N) = 4

Total payoffs are maximized when the grand coalition forms, but the

merger of two players is not profitable.

8This terminology is taken from Cornet (1998, 2003).
9For the special case of games in characteristic function form, superadditivity and full

cohesiveness are equivalent.
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Example 3 A game that is cohesive and superadditive but not fully cohesive
N = {1, 2, 3, 4}
ϕ(1, 2, 3, 4) = (3, 3, 3, 3)

ϕ(ij, k, l) = (7, 0, 0)

ϕ(ijk, l) = (8, 0)

ϕ(ij, kl) = (2, 2)

ϕ(N) = 15

The merger of any two coalitions is profitable and the grand coalition

achieves the highest payoff, but the merger of three singletons is unprofitable.

Example 4 A fully cohesive game
N = {1, 2, 3, 4}
ϕ(1, 2, 3, 4) = (1, 1, 1, 1)

ϕ(ij, k, l) = (3, 0, 0)

ϕ(ijk, l) = (3.5, 0)

ϕ(ij, kl) = (1, 1)

ϕ(N) = 4

This example shows that full cohesiveness does not imply that going

from a finer to a coarser partition will always increase aggregate payoffs.

It also shows that full cohesiveness is compatible with a situation in which

coalition formation can only reduce aggregate payoffs.

We will assume that the partition function is positive and fully cohesive

for most of the results (these assumptions will be explicitly stated when

needed).

2.2 The bargaining procedure

Time is discrete and indexed by t = 1, 2, ... Given the underlying partition

function game (N,ϕ), bargaining proceeds as follows:

• Nature selects a player randomly to be the proposer according to the
probability vector θ := (θi)i∈N , where θi ≥ 0 for all i ∈ N and∑

i∈N θi = 1. This probability vector is called a protocol.
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• The proposer makes a proposal (S, xS\{i}) where S is a coalition to

which i belongs and xS\{i} ∈ Rs−1
+ is a vector of payments.

• If S = {i}, it is understood that i accepts his own proposal. If |S| > 1

the rest of players in S (called responders) accept or reject sequentially

(the order does not affect the results). If all players in S accept, S

is formed and each j ∈ S\{i} receives xS\{i}j from i immediately (we

assume that players are not financially constrained).

• After S is formed, bargaining continues between players in N\S with
an adjusted protocol (more on this below) provided that |N\S| > 1.

If N\S = {j}, it is understood that j has formed a singleton coalition.

• If at least one player rejects, the game proceeds to the next period in
which Nature selects a new proposer according to θ.10

• Bargaining continues until all players have formed a coalition. Given
that coalition structure π forms at time t, coalition S receives a payoff

of ϕ(S, π). This payoff goes to the player i whose proposal to form S

was accepted. Let δ ∈ [0, 1) be the discount factor. Evaluated at time

1, i’s payoff is δt−1ϕ(S, π) − δr−1∑
j∈S\{i} x

S\{i}
j , where r ≤ t is the

period in which coalition S formed11. This payoff may be negative.

We will denote the extensive form game described above by G(N,ϕ, θ, δ).

A reduced game is a subgame starting immediately after a coalition is

formed. The set T of players in the reduced game consists of all players

who have not formed a coalition yet, and the partition function they face,

ϕπN\T : E(T ) −→ R, is obtained from ϕ by fixing πN\T . The protocol

θπN\T is a probability distribution such that θ
πN\T
i ≥ 0 for all i ∈ T and∑

j∈T θ
πN\T
j = 1.We will denote the reduced game arising after the partition

πN\T has formed by G(T, ϕπN\T , θπN\T , δ).

10Thus a period elapses after a proposal is rejected, but not after a coalition is formed.

Assuming that some time elapses in both cases would not affect the results in section 3.
11Thus utility is transferable, and proposers pay responders immediately after the pro-

posal to form S is accepted. Assuming that proposers pay responders only after a complete

coalition structure is formed would not change the results in section 3.
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A (pure) strategy for player i is a sequence σi = (σti)
∞
t=1, where σ

t
i, the

tth round strategy, prescribes a proposal (S, xS\{i}) and a response function

assigning ”yes”or ”no”to all possible proposals of the other players.12

We will only consider stationary subgame perfect equilibria (SSPE). An

SSPE is a subgame perfect equilibrium with the property that the strategies

of the players depend only on the set of coalitions that have formed so far,

πN\T , and the current proposal, if any.

Let σ be a combination of stationary strategies (not necessarily an equi-

librium). Suppose that no coalitions have formed yet. Thus, we are at the

beginning of the game or at a subgame that is equivalent to the beginning of

the game. We denote the expected payoff of player i given σ by wi(σ). This

expectation is computed before Nature draws the proposer. We denote by

wji (σ) the expected payoff for player i given that player j has been selected

to be the proposer.

Suppose a proposal has been made to player i. The expected payoff of

player i if he rejects a proposal is called the continuation value of player i.

With stationary strategies, this value is a constant across all subgames in

which no coalitions have formed yet. It is also i’s expected payoff if some-

body else rejects a proposal. Stationarity also implies that i’s continuation

value equals δwi(σ). Continuation values will play a central role in the

analysis because in a subgame perfect equilibrium a responder must accept

any proposal that gives him more than his continuation value, and reject

any proposal that gives him less.13

Expected payoffs and continuation values can be defined analogously

for a reduced game. We denote player i’s expected payoff in the reduced

12Since no time elapses after a coalition is formed there may be several ”stages”at time

t, each of them with a smaller set of remaining players than the previous one, and each

player taking an action in at most one of those stages.
13Recall that the proposer’s offer is not contingent on the final coalition structure. This

assumption is without loss of generality. Given a proposal to form S with a contingent

payoff division, players can compute their expected payoff from accepting the proposal

using the probability of each coalition structure (conditional on the partition so far). The

responders are indifferent between a contingent proposal and a proposal that gives then

the same expected payoff. Risk neutrality and lack of financial constraints imply that the

proposer is also indifferent.
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game arising after πN\T has formed by w
πN\T
i (σ). We will drop σ from the

notation when no confusion can arise.

An equilibrium is effi cient if it maximizes the aggregate payoffs of the

players. Effi ciency implies two requirements: immediate agreement and

formation of a coalition structure with maximum aggregate payoffs.

3 Results

3.1 No delay

Given a strategy combination, we say that a coalition structure forms with-

out delay if all proposals that are made with positive probability are ac-

cepted. Proposition 1 states that a coalition structure will form without

delay if the underlying partition function is positive and fully cohesive. This

proposition is an extension of theorem 1 in Okada (1996) to partition func-

tion games. The proof rests on the following straightforward lemmas:

Lemma 1 Let (N,ϕ) be positive and fully cohesive. For any stationary

strategy combination σ of the game G(N,ϕ, θ, δ) it holds that

(i)
∑

i∈N wi(σ) ≤ ϕ(N).

(ii)
∑

i∈T w
πN\T
i (σ) ≤ ϕπN\T (T ).

Proof. Since the game is positive and fully cohesive, the maximum

aggregate payoff is achieved if the grand coalition is formed immediately.

Delay of the agreement or formation of subcoalitions can only reduce aggre-

gate payoffs. The same reasoning applies to any reduced game.

Lemma 2 Let σ∗ be an SSPE of G(N,ϕ, θ, δ). At any subgame (on or off

the equilibrium path):

(i) Any proposal (S, xS\{i}) such that xS\{i}j > δw
πN\T
j (σ∗) for all j ∈

S\{i} must be accepted.

(ii) Any proposal (S, xS\{i}) such that xS\{i}j < δw
πN\T
j (σ∗) for some j ∈

S\{i} must be rejected.
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Proof. (i) Suppose the proposal has been accepted by all players ex-
cept the last one. Subgame perfection implies that the last player must

accept, and by backwards induction all other players will accept as well. (ii)

Otherwise player j is not playing a best response.

Proposition 1 Let (N,ϕ) be positive and fully cohesive. In any SSPE σ∗

of the game G(N,ϕ, θ, δ), a coalition structure is formed without delay.

Proof. Consider any SSPE σ∗, and let i be the proposer. Suppose σ∗ is
such that i proposes (S, xS\{i}) with positive probability and this proposal

is rejected with positive probability. We will show that i can do better by

making a proposal that will be accepted for sure.

By making proposal (S, xS\{i}), i receives his continuation value δwi.

This is clear if the proposal is rejected with certainty. If the proposal is

accepted with positive probability, it must be the case that all j ∈ S\{i}
vote yes with positive probability and at least one j ∈ S\{i} mixes between
accepting and rejecting. The proposal must be such that xS\{i}j ≥ δwj for

all j ∈ S\{i} (otherwise j would be better-off rejecting and receiving δwj)
and xS\{i}j = δwj for any j who is mixing between accepting and rejecting

(otherwise j would be better off accepting for sure). It then follows that

i’s payoff when the proposal is accepted must also be δwi. If i’s payoff

was lower, i could do better by offering less to the responders so that the

proposal is rejected for sure. If i’s payoff was higher, i could do better by

offering δwj + ε to the responders j that are getting exactly δwj , so that

each responder gets more than their continuation value and the proposal is

accepted for sure. This would increase i’s payoff if ε is small enough.

Lemma 1 together with ϕ(N) > 0 and δ < 1 implies
∑

j∈N δwj(σ
∗) <

ϕ(N). Player i could propose the grand coalition and allocate to all players,

including himself, a payoff above δwj(σ∗). Lemma 2 (i) implies that this

proposal must be accepted. Since i can profit by deviating from σ∗, making

a proposal that is rejected with positive probability cannot be part of an

equilibrium. The same reasoning applies to any reduced game, so that the

11



whole coalition structure forms without delay.14

Corollary 1 Consider a positive and fully cohesive game (N,ϕ). In any

SSPE σ∗ of the game G(N,ϕ, θ, δ), every player i in N proposes a solution

of the following maximization problem

max
S,xS\{i}

∑
π∈Π(N)
π3S

µ(π|(σ∗, S))ϕ(S, π)−
∑

j∈S\{i}
x
S\{i}
j (1)

s.t. i ∈ S ⊆ N, xS\{i}j ≥ δwj(σ∗)

where µ(π|(σ∗, S)) is the probability that coalition structure π forms given

that players follow σ∗ and that S is the first coalition to form. Moreover,

each responder receives exactly δwj(σ∗).

Proof. Let (S, xS\{i}) be a proposal imakes with positive probability ac-

cording to σ∗i . It must be the case that x
S\{i}
j = δwj(σ

∗): if xS\{i}j < δwj(σ
∗)

for some j the proposal would be rejected, contradicting proposition 1 and

if xS\{i}j > δwj(σ
∗) for some j player i could do better by cutting j’s payoff

slightly. Thus, i’s payoff is
∑

π∈Π(N)
π3S

µ(π|(σ∗, S))ϕ(S, π)−
∑

j∈S\{i} δwj(σ
∗).

Now suppose S does not solve the maximization problem. Let T be one

of the coalitions that solves the maximization problem. Then player i would

be better-off by proposing T and offering each j ∈ T\{i} a payoff slightly
above δwj (σ∗), and σ∗ cannot be an equilibrium.

Corollary 2 Consider a positive and fully cohesive game (N,ϕ). In any

SSPE σ∗ of the game G(N,ϕ, θ, δ)

wii(σ
∗) > wi(σ

∗) > δwi(σ
∗) ≥ 0 for all i with θi > 0.

14Okada (1996) assumes superadditivity and v(S) ≥ 0 for all S. Proposition 1 replaces
superadditivity by full cohesiveness (which is equivalent for characteristic function games).

Requiring the partition function to be positive is a stronger requirement than v(S) ≥ 0
for all S, but it can be relaxed to ϕ(S, π) ≥ 0 for all (S, π) if we assume (as Okada (1996))
that the game ends with coalition structure {πN\T , 〈T 〉} if the set of remaining players T
is such that ϕπN\T (T ) = 0.
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Proof. Because δ < 1 and
∑

i∈N wi(σ) ≤ ϕ(N), the proposer can offer

each j ∈ N\{i} a payoff between δwj(σ∗) and wj(σ∗), and still get more
than wi(σ∗). Hence, wii(σ

∗) > wi(σ
∗).

Players can secure a nonnegative payoff by rejecting all proposals (as

responders) and forming a singleton coalition (as proposers), thus wi is non-

negative. Furthermore, player i can get a strictly positive payoff as a pro-

poser by proposing the grand coalition and offering everyone (including i

itself) δwj +
ϕ(N)−

∑
j∈N δwj(σ)

n > 0. Hence, wi(σ∗) > 0.

Since δ ∈ [0, 1), it then follows that wi(σ∗) > δwi(σ
∗) ≥ 0.15

Delay may arise if the partition function is not positive (Example 5) or

not fully cohesive (Example 6). On the other hand, these are suffi cient but

not necessary conditions: Example 7 shows that there may be equilibria

without delay even if the game is neither positive nor fully cohesive.

Example 5 Delay with a partition function that is fully cohesive but not
positive.

N = {1, 2, 3, 4, 5}, ϕ(S, π) = 6 if |S| = 3, 4 or 5 and 0 otherwise. All

players have the same proposer probability.

Delay is possible due to the fact that, once a three-player coalition forms,

the remaining two players are indifferent between forming a coalition of their

own, forming singletons, or creating some delay by making unacceptable

proposals.16 The delay probability in an equilibrium cannot be too high, or

it would be profitable to form a larger coalition.

15 If θi = 0, it is easy to see that wi = 0. Player i’s expected equilibrium payoff is

wi = pδwi, where p is the probability that i receives a proposal in equilibrium. Even if

p = 1, given that δ < 1, the only solution of this equation is wi = 0.
16This is a peculiarity of 0 payoffs, which are special since players are indifferent between

getting 0 now and getting 0 later. With positive payoffs, for example ϕ(S, π) = 6 if

|S|=3,4,5, ϕ(ijk, l,m) = (6, 1, 1) and ϕ(ijk, lm) = (6, 2), this indifference does not arise,

even if there are no (strict) gains from merging. Once a three-player coalition forms, the

next proposer will offer 2− δ to the remaining player. Since δ < 1, this is strictly higher

than what the proposer can get by forming a singleton.
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The following example is based on example 3.1 in Ray and Vohra (1999).

It illustrates the possibility of delay if the game is not fully cohesive.17

Example 6 Delay with a partition function that is not fully cohesive.
We are going to consider a symmetric game with five players. We depart

from our usual notation and denote each coalition by its size.

N = {1, 2, 3, 4, 5}, ϕ(3, 2) = (9, 8), ϕ(2, 2, 1) = (4, 4, 4), ϕ(4, 1) = (9, 0),

ϕ(S, π) = 0 for all other π and S ∈ π.18 All players have the same proposer
probability.

Consider the following strategy combination. Players 1, 2 and 3 pro-

pose coalition {1, 2, 3} (offering the responders their continuation value),
and players 4 and 5 make unacceptable proposals. After coalition {1, 2, 3}
is formed, players 4 and 5 form coalition {4, 5}. For large values of δ, the
continuation values associated with these strategy combination are close to

3 (for players 1, 2 and 3) and 4 (for players 4 and 5). Players 4 and 5 prefer

to wait (and get almost 4) rather than form a three-player coalition and get

about 3. Other deviations are not profitable either: a two-player coalition

would be followed by a singleton and another two-player coalition, and thus

would earn only 4. A singleton would be followed by a four-player coalition

and thus would earn 0.

There cannot be a symmetric equilibrium in which (3, 2) forms immedi-

ately. This is because then continuation values would be close to 17
5 = 3.4,

so that the proposer of a three-player coalition would earn 2.2, which is less

than what he can get by waiting. Interestingly, coalition structure (3, 2) can

form without delay in an asymmetric equilibrium (see section 3.3.1).

Example 7 Immediate agreement with a partition function that is neither
positive, nor superaditive, nor cohesive.

N = {1, 2, 3, 4}, ϕ(ij, kl) = (−1,−1), ϕ(ijk, l) = (3, 0), ϕ(N) = −1. All

other values are zero. All players have the same proposer probability.
17The game in Example 6 is not superadditive. For an example of delay in a superad-

ditive but not fully cohesive game see Example 16 in the appendix.
18This partition function is not positive, but the example can easily be modified replac-

ing 0 values with a small ε > 0.
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It is easy to see that there is an equilibrium in which all players propose

three-player coalitions.

3.2 Formation of the grand coalition

In this section, we focus on no-delay SSPE in which the grand coalition

always forms (we will say that those equilibria exhibit immediate formation

of the grand coalition). This type of equilibrium is especially relevant if

the grand coalition is the only coalition structure that maximizes aggregate

payoffs. However, we will provide examples showing that the grand coalition

being the only effi cient coalition structure is neither necessary nor suffi cient

for such an equilibrium to exist (unless δ = 0). We will also show that SSPE

with immediate formation of the grand coalition can only occur if the core

of a certain game is nonempty.

The following lemma will be useful

Lemma 3 Let (N,ϕ) be a partition function game. Suppose there is an

SSPE of the game G(N,ϕ, θ, δ) with immediate formation of the grand coali-

tion. Then the expected payoff for player i equals

wi = θiϕ(N). (2)

Proof. Given that all players propose the grand coalition and that each
responder must receive exactly δwj in equilibrium, the following equation

determines wi

wi = θi

ϕ(N)− δ
∑

j∈N\{i}
wj

+ (1− θi)δwi.

Re-arranging terms yields

wi = θi

ϕ(N)− δ
∑
j∈N

wj

+ δwi.

Using
∑

j∈N wj = ϕ(N), we obtain wi = θiϕ(N).
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3.2.1 Two examples of ineffi ciency

It is well-known that the grand coalition need not form even if it is the only

effi cient coalition structure (Chatterjee et al. 1993, Okada 1996).

Example 8 N = {1, 2, 3}, ϕ(1, 2, 3) = (0, 0, 0), ϕ(ij, k) = (8, 0), ϕ(123) =

9; θi = 1
3 for i = 1, 2, 3.

Suppose all players propose the grand coalition. Expected payoffs equal

3 according to equation (2). This is not an equilibrium for high values of δ

because player 1 would prefer to propose to just one other player, offering

3δ and keeping 8− 3δ > 9− 6δ.

Conversely, the following example shows that the grand coalition can

form even if it is not effi cient.

Example 9 N = {1, 2, 3, 4, 5}. Denoting coalitions by their size, ϕ(5) = 10,

ϕ(2, 3) = (12, 1), ϕ(2, 1, 1, 1) = (0, 1, 1, 1), ϕ(S, π) = 0 for all other π.

Let θi = 1
5 for all i. If the grand coalition always forms, each player has

an expected payoff of 2. The only coalition that could profit from deviating

is a coalition of size 2, but this would only be the case if the coalition of

size 2 is followed by a coalition of size 3. Since a coalition of size 2 would

be followed by three singletons, no player has an incentive to deviate.

3.2.2 Immediate formation of the grand coalition and the core

Chatterjee et al. (1993) show that, in the limit when δ tends to 1, immediate

formation of the grand coalition can only occur in equilibrium if the expected

payoff vector (given that all players propose the grand coalition) lies in the

core of the characteristic function game. Okada (1996) shows an analogous

result in his model. This implies that no effi cient equilibrium exists for high

values of δ if the underlying game is strictly superadditive and has an empty

core. In this section, we extend this result to partition function games.

Given a partition function, there are several characteristic functions that

can be associated to it. Two well-known possibilities are the optimistic
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characteristic function (see Shenoy, 1979) and the pessimistic characteristic

function (see Aumann and Peleg, 1960).

Given a partition function (N,ϕ), the optimistic characteristic function

v+ is defined as

v+(S) ≡ max
π∈Π(N)
π3S

ϕ(S, π) for all S ⊆ N.

Analogously, the pessimistic characteristic function v− is defined as

v−(S) ≡ min
π∈Π(N)
π3S

ϕ(S, π) for all S ⊆ N.

Proposition 2 establishes a necessary condition for immediate formation

of the grand coalition for all values of δ: the expected payoff vector found in

lemma 3 must be in the core of a characteristic function game that assigns

to each coalition its expected payoff given some equilibrium strategies.19

We will denote this characteristic function by v∗. Note however that v∗

depends on the extensive form game and on the equilibrium strategy vector

σ∗, so that a complete notation would be v∗G(N,ϕ,θ,δ),σ∗ . Clearly, Core(v
+) ⊆

Core(v∗) ⊆ Core(v−).20

Proposition 2 Let (N,ϕ) be a partition function game. Suppose there is a

sequence δk → 1 and a corresponding sequence of SSPE σ∗(δk) of the game

G(N,ϕ, θ, δk) with immediate formation of the grand coalition. Then the

expected payoff vector w = (θiϕ(N))i∈N is in the core of the characteristic

function game (N, v∗), where

v∗(S) := lim
δ→1

∑
π∈Π(N)
π3S

∞∑
t=1

δt−1µ(πt|(σ∗(δ), S))ϕ(S, π).

19A similar result is found by Okada (2010) for n-person games in strategic form.
20Modifications of the optimistic and pessimistic core have been studied by Koczy (2007,

2015) and Huang and Sjostrom (2003, 2006). These concepts are recursive, that is, they

assume that if a coalition forms the remaining players will choose an allocation in the

core of the reduced game. Koczy (2009) finds a connection between the equilibria of a

modification of Bloch’s (1996) game and the recursive pessimistic core.
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and µ(πt|(σ∗(δ), S)) is the probability that coalition structure π forms at

time t given that players follow the strategy combination σ∗(δ) and that S is

the first coalition to form.

Proof. From lemma 3, immediate formation of the grand coalition im-

plies that expected payoffs are wi = θiϕ(N) for all i ∈ N regardless of the

value of δ.

Suppose i is selected to be the proposer. If he sticks to the prescribed

strategy and proposes the grand coalition, he offers δwj to each j ∈ N\{i}
and keeps ϕ(N) −

∑
j∈N\{i} δwj . If instead he proposes coalition S ⊂ N ,

he offers δwj to each player j in S\{i}. The expected payoff for i will then
depend on the payoff coalition S gets in the game. Player i will only propose

the grand coalition if, for all S 3 i

∑
π∈Π(N)
π3S

∞∑
t=1

δt−1µ(πt|(σ∗(δ), S))ϕ(S, π)−
∑

j∈S\{i}
δwj ≤ ϕ(N)−

∑
j∈N\{i}

δwj

(3)

Since any player may be selected to be the proposer, condition (3) must

be satisfied for all i ∈ N.

In the limit when δ → 1 the advantage of the proposer disappears and

each player i gets wi regardless of whether he is a proposer or a responder.

Taking into account that wj = θjϕ(N), condition (3) becomes

v∗(S) ≤
∑
i∈S

wi for all S ⊂ N. (4)

that is, the vector w must be in the core of the game (N, v∗).

Corollary 3 If the core of v− is empty, no equilibrium with immediate

formation of the grand coalition exists.

Proposition 2 has a clear interpretation: the grand coalition cannot be an

equilibrium for all values of δ if some other coalition can form and increase

its payoff given the equilibrium reaction of N\S. The following examples
illustrate the difference between v+, v− and v∗.
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Example 10 ϕ(1, 2, 3) = (0, 0, 0), ϕ(12, 3) = (5, 0), ϕ(1, 23) = (4, 5),

ϕ(13, 2) = (5, 0), ϕ(123) = 9; θi = 1
3 for i = 1, 2, 3.

It is easy to see that v∗(1) = v+(1) = 4 (if player 1 forms a singleton,

players 2 and 3 will form a coalition, so 1 can count on a payoff of 4)

and v−(1) = v∗(i) = v+(i) = v−(i) = 0 for i = 2, 3. Moreover, since

the formation of a two or three-player coalition determines the partition,

v−(S) = v∗(S) = v+(S) for all other S. If the grand coalition always forms,

each player’s expected payoff (and actual payoff when δ → 1) is 3. The

payoff vector (3, 3, 3) is not in the core of v∗ (even though it is in the core

of v−), so immediate formation of the grand coalition is not an equilibrium

for suffi ciently high values of δ (δ > 5
6). If player 1 gets the initiative, he

prefers to form a singleton and obtain 4.

Example 11 ϕ(1, 2, 3) = (4, 0, 0), ϕ(ij, k) = (5, 0), ϕ(123) = 9; θi = 1
3 for

i = 1, 2, 3.

This example is very similar to the previous one but now v∗(i) = v−(i) =

0 for all i and v+(1) = 4. There is an SSPE in which the grand coalition

forms, even though player 1’s expected payoff (and actual payoff when δ →
1) is less than what he would get if all players were alone (i.e., the equilibrium

payoff vector is not in the core of v+). The reason is that player 1 cannot

secure 4 for himself: if he decides to stay alone players 2 and 3 will form a

coalition and player 1 will get zero. Moreover, no player would profit from

proposing a two-player coalition since any two players get 6 > 5, so the

expected payoff vector is in the core of v∗.

Bloch and van den Nouweland (2014) approach the question of con-

structing a characteristic function from a partition function axiomatically,

and discuss the properties of several expectation formation rules, including

(among others) optimism, pessimism, external players forming singletons

and external players forming a complementary coalition21. The game v∗ can

21McQuillin (2009, theorem 3) provides support for the expectation that external players

form the complementary coalition. He shows that in a simplified version of the bilateral

coalescence model of Gul (1989) applied to partition function games, the only values that
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be interpreted as yet another expectation formation rule22, with the caveat

that v∗ depends on θ and, if there are multiple equilibria, on σ∗. In cases

where v∗ is invariant to the choice of θ and σ∗ (as is the case in Example 10),

we can talk about an equilibrium characteristic function v∗, and emptiness

of its core implies that the grand coalition cannot form immediately in any

SSPE.23

3.3 Symmetric games

For the game with a rule of order, Ray and Vohra (1999) show that con-

tinuation values must be symmetric in a no-delay equilibrium. They also

show that, if δ is suffi ciently large, all no-delay equilibria lead to the same

coalition structure in terms of the size of the coalitions that form. In this

coalition structure, proposers form a coalition with highest per capita payoff

(given the anticipated reaction of outsiders).24

Do analogous results hold in the game with random proposals? The

answer is negative in both cases, as we show below.

3.3.1 Asymmetric no-delay equilibria

Consider the partition function in example 6. N = {1, 2, 3, 4, 5}, ϕ(3, 2) =

(9, 8), ϕ(2, 2, 1) = (4, 4, 4), ϕ(4, 1) = (9, 0), ϕ(S, π) = 0 for all other π and

S ∈ π.
turn out to be relevant in the limit as players become arbitrarily patient are the values of

the partition {S,N\S}.
22Borm et al. (2015) assume that, if S forms, N\S partitions itself so as to maximize

the total payoff of N\S. This is similar to the idea of the v∗ characteristic function since S
moves first and players in N\S react rationally. However, since there are no side payments
between coalitions, it is not necessarily the case that N\S would partition itself so as to
maximize its total payoff in an SSPE.
23Maskin (2003) finds that the grand coalition can form even if the core is empty. He

has both a different extensive form game (based on a bidding mechanism) and a different

characteristic function (based on N\S forming whenever S forms).
24There may still be multiple equilibria, but other equilibria would have delay (see their

example 3.4). Gomes (2015) also has an example of multiple equilibria (Example 4), all

of which involve delay.

20



Suppose all players propose {1, 2, i}, except players 1 and 2 who propose

{1, 2, 3}. All responders are offered their continuation value. Assuming

θi = 1
5 for all i, these strategies induce expected payoffs with w1 = w2 and

w4 = w5. Taking into account that, after a three-player coalition forms,

each of the two remaining players gets 4 on average, expected payoffs are

given by

w1 =
1

5
(9− δw1 − δw3) +

4

5
δw1

w3 =
1

5
(9− 2δw1) +

2

5
δw3 +

2

5
4

w4 =
1

5
(9− 2δw1) +

4

5
4

The solution to this system of equations is w1 = 5(9−7δ)

4δ2−25δ+25
, w3 =

85−69δ
4δ2−25δ+25

, w4 = 34δ2−143δ+125
4δ2−25δ+25

. For large values of δ, continuation val-

ues are close to 2.5 for players 1 and 2, and 4 for players 3, 4 and 5. It can

be checked that each proposer gets at least δwi, thus no player would rather

make an unacceptable proposal. Also, since w1 ≤ w3 ≤ w4, proposers’choice

of coalition partners is optimal.

Continuation values in the game with random proposers are influenced

by the likelihood of getting proposals. In this example, players who receive

proposals more often have lower continuation values (since they are more

likely to end up in a three-player coalition, which is less profitable than

a two-player coalition), and they get more proposals because of their low

continuation values.

Externalities play an important role in this example. Players with high

continuation values tend to be excluded from coalitions and, in the absence

of externalities, this makes it harder for them to have a high continuation

value and tends to equalize expected payoffs in equilibrium25. However, with

externalities, being less likely to receive proposals is not necessarily a bad

thing (it may lead to being in a better coalition later on) and may result in

a high continuation value.

25For weighted majority games, players of the same type must have the same expected

payoff if they are treated symmetrically by the protocol; see lemma 2 in Montero (2002).
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3.3.2 Multiplicity of symmetric no-delay equilibria

Under the random proposer bargaining procedure, there can be multiple

no-delay equilibria, and this is true even in games without externalities.26

Example 12 N = {1, 2, 3, 4, 5}. We denote a coalition by the number of
players: v(1) = 0, v(2) = 4, v(3) = 9, v(4) = 11.5, v(5) = 13. Note that

this is a superadditive game. Suppose θi = 1
5 for all i and δ ≥

25
26 . There

are two (symmetric) SSPE of the game with random proposers, leading to

partitions [3, 2] and [4, 1] respectively.

In the first SSPE, each player proposes to two other players at random;

once a three-player coalition has formed, the remaining two players form a

coalition as well. Expected payoffs computed at the start of the game are

thus v(3)+v(2)
5 = 2.6, and continuation values are 2.6δ. Forming a three-

player coalition gives the proposer v(3) − 2 × 2.6δ. If δ is large enough, it

does not pay to propose a four-player coalition (one gains 2.5 in terms of

coalitional value but has to pay 2.6δ to an additional coalition partner) or

a five-player coalition (one gains 4 in coalitional value but has to pay 2.6δ

each to two other players). This equilibrium exists for δ ≥ 25
26 .

In the second SSPE, each player proposes to three other players at ran-

dom, and the remaining player automatically becomes a singleton. Expected

payoffs are v(4)
5 = 2.3. It does not pay to form a smaller coalition (one loses

2.5 in value and saves only 2.3δ in payments to the other players) and, if

players are suffi ciently patient, it does not pay to form the grand coalition

(one gains 1.5 but has to pay 2.3δ). This equilibrium exists for δ ≥ 15
23 .

26To the best of my knowledge this has not been noted before for δ < 1. Banks and

Duggan (2000, example 4) have an example of a game with random proposers and multiple

equilibria, but their example does not have transferable utility. Other papers establish

uniqueness for certain classes of games (see Eraslan (2002), Yan (2002), Montero (2006),

Yan (2009), Okada (2011), Eraslan and McLennan (2013)). Ray and Vohra (2015, p. 294)

fail to refer to any example of multiple equilibria with random proposers in their survey.
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3.4 Random proposers versus rule of order

The essential difference between random proposers and rule-of-order bar-

gaining is not whether the first proposer is selected deterministically or at

random, but how a proposer is selected after a rejection. With random

proposers, continuation values equal expected payoffs multiplied by δ. In

contrast, with a rule of order, continuation values equal the payoff of being

proposer multiplied by δ. Because a player gets his maximum payoff when

he is the proposer, continuation values may be ”too high” with a rule of

order, leading to delay even in positive and fully cohesive games (see Chat-

terjee et al., (1993) and Okada (1996)). Also, since a player can retain the

initiative by rejecting a proposal regardless of the underlying situation, the

bargaining procedure with a rule of order leads to little competition between

the players and a tendency to equal division, even in very asymmetric situ-

ations such as one seller facing multiple buyers (see example 2 and footnote

12 in Chatterjee et al. (1993)). On the other hand, it can be argued that

the advantage of the proposer in the game with random proposers is too

high: it does not necessarily disappear as δ tends to 1, unlike in the game

with a rule of order. In general, the two bargaining procedures cannot be

ranked in terms of effi ciency, as the examples below illustrate. We also show

that the random proposers procedure is at least as effi cient for symmetric

characteristic function games with the one-stage property (Proposition 3).

Example 13 (Greater effi ciency with random proposers) N = {1, 2, 3, 4, 5},
v(S) = 18 for |S| = 4, v(S) = 14 for |S| = 3 and 0 otherwise.

Recall that Ray and Vohra (1999) show that, for symmetric games and

provided that the equilibrium exhibits no delay, players form the coalition

that maximizes the expected per capita payoff given the reaction of out-

siders. Since coalitions of size 3 have the maximum per capita payoff in this

example, the total equilibrium payoff is 14.

Consider the game with random proposers with θi = 1
5 for all i. If players

always proposed a three-player coalition, each player’s expected payoffwould

be 14
5 , and the payoff of the proposer would be 14 − 2δ 14

5 . However, he

would get an even higher payoff by proposing a coalition of four (18−3δ 14
5 ).
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In equilibrium, only coalitions of four players form. Expected payoffs are

then 18
5 = 3.6, so that a deviation to proposing a coalition of three is not

profitable. The total equilibrium payoff is 18 > 14.

The reason why larger coalitions with lower per capita payoffs may form

is that a player who rejects a proposal will be left out with positive probabil-

ity, and this negatively affects his continuation value. Since the responders

are paid less than an equal share of the value of the coalition that forms,

forming large coalitions may be profitable. This example points to a trade-

off between effi ciency and equitable distribution, since payoff division within

the four-player coalition remains unequal even as δ → 1.27

Proposition 3 generalizes Example 13 to symmetric characteristic func-

tion games with the one-stage property28, that is, to games where only one

coalition with v(S) > 0 can be formed.

Proposition 3 Let (N, v) be a symmetric game such that v(S) > 0 implies

v(T ) = 0 for all T ⊆ N\S. The equilibrium of the game with random

proposers and θi = 1
n for all i is at least as effi cient as the equilibrium of

the game with a rule of order.

Proof. Let k be the largest coalition size among those with the highest
per capita payoff. A coalition of size k always forms with a rule of order. We

now show that a coalition with lower total payoff cannot form with positive

probability in the game with random proposers.

For games with the one-stage property, symmetry of the game and of

the protocol imply that all players have the same expected payoff w.29 De-

note the value of a coalition of size m by v(m), and the probability that a

coalition of size m is formed in this hypothetical equilibrium by λm; then

w =
∑n
m=1 λmv(m)

n ≤ v(k)
k . If v(k) = 0, no coalition with positive value can

27 If instead payoff division was fixed as in Bloch (1996), there would be little difference

between the two protocols. Since the proposer gets the same payoff as the rest of players in

a coalition, he would choose the coalition of maximum per capita payoff given the reaction

of outsiders in both cases. If payoff division is fixed but not egalitarian, the two bargaining

procedures may make different predictions (see Montero and Okada, 2007).
28This terminology comes from Selten (1981).
29These games are covered by the uniqueness result of Yan (2009).
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form and total equilibrium payoffs are 0 for both bargaining procedures. If

v(k) > 0, it follows that δw < v(k)
k .

A coalition of cardinality l with v(l) < v(k) cannot form in equilibrium

in the game with random proposers. The reasons are obvious for l > k. For

l < k, the proposer would always want to enlarge the coalition to k players,

since doing so would increase the value of the coalition by at least (k−l)v(k)
k ,

while he would only have to pay (k − l)δw.
Proposition 3 requires the game to be symmetric. If the game is not

symmetric, it is possible for the equilibrium of the rule of order to be more

effi cient, as the following example shows.

Example 14 (Greater effi ciency with a rule of order; game is not symmet-
ric) N = {1, 2, 3, 4, 5}; v(1, i) = 1 + α for i = {2, 3, 4, 5}; v(2, 3, 4, 5) = 1,

v(N) = 1 + α, where α > 0.

This game is similar to an apex game (see Davis and Maschler, 1965),

except that the coalition of the apex game (player 1) with a minor player has

a greater payoff than the coalition N\{1} of the minor players. Let δ → 1.

With a rule of order, the apex player and one minor player form a coalition

and divide the payoff equally. With random proposers and θi = 1
5 for all i,

all SSPE are in mixed strategies, with minor players randomizing between

proposing {1, i} and N\{1} (analogously to Montero (2002)).30 Because the
minor player coalition forms with positive probability for any α > 0, there

is ineffi ciency.

Proposition 3 also requires the game to have the one-stage property, that

is, once a coalition forms no other coalition is profitable. If several disjoint

coalitions are profitable, the equilibrium with a rule of order may be more

effi cient, as the following example shows.

Example 15 (Greater effi ciency with a rule of order; game does not have
the one-stage property) N = {1, 2, 3, 4, 5}. We denote a coalition by its size.
v(1) = 0, v(2) = 5, v(3) = 14, v(4) = 18, v(5) = 19.

30There are multiple SSPE in terms of strategies, but they all lead to the same payoffs.
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In the game with a rule of order, a coalition of size 3 will form (since

it has the highest per capita value), followed by a coalition of size 2. Total

payoffs are then 19. However, in the game with random proposers and θi = 1
5

for all i, a four-player coalition is formed with probability 1, so that total

payoffs are only 18.

Kawamori (2008, theorem 2) also discusses the effect of rejectors be-

coming the next proposer on effi ciency in characteristic function games. He

focuses exclusively on whether immediate formation of the grand coalition

occurs, rather than on expected equilibrium payoffs more generally. An im-

plication of his theorem is that, if the grand coalition forms immediately in

the game with random proposals with θi = 1
n , then it must also form im-

mediately in the game with a rule of order. Proposition 3 strenghtens this

result for the special class of symmetric games with the one-stage property

and shows that, even if the grand coalition does not form, total payoffs will

be at least as high in the game with random proposers. Outside this class of

games, Example 15 shows that increasing the chance that a rejector becomes

the next proposer can help increase total payoffs, though it can never help

with immediate formation of the grand coalition.31

4 Concluding remarks

A key feature of random proposer bargaining is that continuation values are

closely connected to expected payoffs. This guarantees immediate agreement

for fully cohesive games, though the final outcome is not necessarily effi cient.

If the grand coalition is the only effi cient coalition structure, effi ciency can

only be achieved if the core of the characteristic function game that takes

the equilibrium reaction of the remaining players into account is nonempty.

Random proposer bargaining games may have multiple equilibria, and this

multiplicity is not necessarily connected with externalities or with delay as

31There are bargaining mechanisms in the literature that always achieve effi ciency, either

conditional on the grand coalition being effi cient (Macho-Stadler et al., 2006b) or more

generally (Hafalir, 2007). The aim of these mechanisms is to implement a particular

extension of the Shapley value to partition function games.
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we have seen in section 3.3.2.

Compared with the rule of order bargaining procedure, coalition payoffs

are divided equally in the limit with a rule of order (provided players are

symmetric and agreement is immediate), whereas the game with random

proposers typically yields a proposer advantage. While this may increase

effi ciency in some games as Proposition 3 shows, the two procedures cannot

be ranked in terms of effciency in general.

5 Appendix: Delay with a superadditive but not
fully cohesive partition function

Example 16 N = {1, 2, 3, 4, 5, 6, 7}, θi = 1
7 for all i. Coalitions are denoted

by their size.

ϕ(3, 3, 1) = (6, 6, 4)

ϕ(4, 2, 1) = (0, 1, 1)

ϕ(4, 3) = (10, 2)

ϕ(5, 2) = (1, 1)

ϕ(6, 1) = (12, 0)

ϕ(7) = 12

All other payoffs are 0. Note that this partition function is superaddi-

tive.32

There is an equilibrium with delay for δ ≥ 28
29 . This example is based

in the following idea: a coalition structure of type (3, 3, 1) is going to arise

in this equilibrium. In order for this to be the case, coalitions have to

form in a given order: the singleton coalition is the most attractive, but it

cannot form first because then a coalition of size 6 would follow and the

singleton would have a payoff of 0. Thus, a coalition of size 3 must form

32The game in example 16 is not cohesive, but we can obtain delay in a cohesive game

using this example as a subgame: consider a symmetric game with 15 players such that

coalitions of size 8 earn a payoff of 800, the value of the grand coalition is 816, and given

that a coalition of 8 players forms the payoffs for the remaining players are as in example

16. The game can also be made positive by replacing the 0 payoffs by small positive

numbers.

27



first, followed by the singleton. On the other hand, the coalition of size 3

cannot form immediately in a symmetric equilibrium, because then expected

equilibrium payoffs would be 6+6+4
7 = 16

7 for each player, and the proposer

would get approximately 6−2× 16
7 < 16

7 and would be better off waiting for

someone else to form a coalition. Thus, in order to construct an equilibrium

with coalition structure (3, 3, 1), we must give up on symmetry, immediate

agreement or both.

We now construct an asymmetric equilibrium in which some players form

a coalition of size 3 and others wait, leading to delay.33 In this equilibrium,

players 1, 2 and 3 propose coalition {1, 2, 3} if selected to be proposers, and
players 4, 5, 6 and 7 make an unacceptable proposal. After coalition {1, 2, 3}
has formed, the next proposer forms a singleton, and the remaining three

players form a three-player coalition. Off the equilibrium path, a singleton

is followed by a six-player coalition and a coalition of four players is followed

by a singleton and a two-player coalition.

In order to show that these strategies constitute an equilibrium, we cal-

culate the continuation values induced by the strategies at every subgame

and check that proposers cannot do better by proposing a different coalition

or by waiting (i.e., by making unacceptable proposals).

Step 1. A coalition of size 3 is indeed followed by a singleton and by

another coalition of size 3. Therefore, v∗(3) = 6.

Starting at the end of the game, suppose a three-player coalition has

formed, followed by a singleton. It is optimal for the remaining players to

form a three-player coalition, since all other coalitions have a value of 0.

Going back to the previous stage, suppose a three-player coalition has

formed. Given the strategies, each remaining player has a continuation value

of 10δ
4 = 2.5δ. Will the next proposer form a singleton? Since a singleton will

be followed by another three-player coalition, its payoff is 4. A two-player

coalition would lead to a negative payoff for the proposer. A three-player

coalition would lead to a payoff of 6−5δ. A four-player coalition would lead

33Thus delay occurs with positive probability but not for sure. With stationary strate-

gies, delay with probability 1 means perpetual disagreement and this can never happen

in equilibrium if ϕ(N) > 0.
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to 10− 7.5δ. If δ ≥ 4
5 , forming a singleton is optimal.

Step 2. A singleton is followed by a six-player coalition, thus v∗(1) = 0.

If players form the six player coalition, each player’s continuation value

is 2δ, and given this value it is optimal for the proposer to propose a six-

player coalition (rather than for example a three-player coalition) regardless

of the value of δ. Thus, a singleton can expect a payoff of 0.

Step 3. Analogously it can be shown that, after a coalition of 4 players

forms, followed by a singleton, it is optimal for a coalition of two players

to form. Anticipating that a two-player coalition will follow, it is optimal

to form the singleton if δ ≥ 3
4 . Hence, v

∗(4) = 0 for δ ≥ 3
4 . Similarly, a

coalition of 2 or 5 players can get only 1.

We have shown that the strategies described are optimal in subgames

where one coalition has already formed. The characteristic function associ-

ated to the strategy we have constructed is v∗(1) = 0, v∗(2) = 1, v∗(3) = 6,

v∗(4) = 0, v∗(5) = 1, v∗(6) = v∗(7) = 12. It remains to show that the

strategies are optimal also at the beginning of the game.

Step 4. At the beginning of the game, it is optimal for players 1, 2 and

3 to form {1, 2, 3}, and for the remaining players to wait.
First we compute the expected payoff of players 1, 2 and 3 (denoted

by wl) and that of players 4, 5, 6 and 7 (denoted by wh). Let i be the

selected proposer. With probability 3
7 , i ∈ {1, 2, 3} and expected payoffs are

2 for the first three players and 2.5 for the last four. With probability 4
7 ,

i ∈ {1, 2, 3, 4} and each player’s payoff is the continuation value, thus

wl =
3

7
2 +

4

7
δwl

wh =
3

7
2.5 +

4

7
δwh

The solution is wl = 6
7−4δ and wh = 15

2(7−4δ) . Continuation values are

then 6δ
7−4δ and

15δ
2(7−4δ) respectively.

Consider now the situation of the proposer. We have established above

that the payoff of a singleton is 0. As for a two-player coalition, it can earn a

payoff of at most 1 according to the partition function. If a player is going to

form a three-player coalition, he will propose to two of the players with a low
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continuation value. The total payoff for the coalition will be 6 as established

in step 1, and thus the payoff for the proposer will be 6 − 2δwl = 6(7−6δ)
7−4δ .

A coalition of size 4 or 5 would get a payoff of 0 or 1. A coalition of size

6 gets 12, and, given that the proposer includes players with the lowest

continuation values, the payoff for the proposer is then 12− 3δwl − 2δwh =
3(28−27δ)

7−4δ if i ∈ {4, 5, 6, 7} or 12−2δwl−3δwh = 3(56−55δ)
2(7−4δ) if i ∈ {1, 2, 3}. The

grand coalition is dominated by a coalition of size 6. Finally, the proposer

can make an unacceptable proposal and obtain his continuation value.

If the proposer i ∈ {1, 2, 3}, the best of these options is to form coalition

{1, 2, 3} provided that δ ≥ 28
31 . If i ∈ {4, 5, 6, 7}, the best option is to wait

and get the continuation value wh provided that δ ≥ 28
29 .

There is also a symmetric equilibrium with delay that results in the

same type of partition. In this equilibrium, each of the players randomizes

between making an acceptable proposal to form a coalition of size 3 and

making an unacceptable proposal. Once a coalition forms, strategies in the

reduced game are as in the previous equilibrium, so all the v∗ values are as

before.

In order for this to be an equilibrium, players must be indifferent between

forming a three-player coalition and creating delay, hence 6 − 2δw = δw,

which implies w = 2
δ ; the continuation value is then δw = 2. We now

construct an equilibrium that results in w = 2
δ at the start of the game.

Suppose each player proposes the three—player coalition with probability

λ and makes an unacceptable proposal with probability 1 − λ. Expected
payoffs w must solve the following equation. With probability 1

7 , the player

is selected as a proposer and gets 6 − 2δw with probability λ and δw with

probability 1 − λ. With probability 6
7 , another player is selected. It may

then be the case that this player forms a three-player coalition involving i

(this happens with probability λ2
6), a three-player coalition not involving i

(in which case the rest of the coalition structure forms without delay and

i expects 10
4 = 2.5), or creates delay (in which case i gets δw). Thus w =

1
7(λ(6− 2δw) + (1−λ)δw) + 6

7(λ2
6δw+λ4

62.5 + (1−λ)δw). Using w = 2
δ we

can solve for the equilibrium value of λ, which is 7(1−δ)
δ . This equilibrium

exists if δ ≥ 7
8 (otherwise λ would be above 1; note also that total expected
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payoffs 14
δ cannot be above 16). Creating delay or proposing a three-player

coalition is optimal; the only other alternative is to form a coalition of size

6, but this leads to the same payoff, 12− 5δ 2
δ = 2.

There is also an asymmetric no-delay equilibrium, similar to the example

in section 3.3.1. All players propose coalition {1, 2, i}, except 1 and 2, who

propose {1, 2, 3}. Unlike the others, this equilibrium is effi cient since it

involves immediate agreement and a coalition structure with the highest

possible total payoff. Expected payoffs are w1 = w2 = 14(3−2δ)

8δ2−49δ+49
, w3 =

4(28−23d)

8δ2−49δ+49
, w4 = w5 = w6 = w7 = 32δ2−159δ+147

8δ2−49δ+49
. As δ → 1, these values

converge to 1.75 for the first two players and 2.5 for everyone else. This is

an equilibrium since w2 ≤ w3 ≤ w4, implying that players are proposing to

the cheapest available coalition partners. Furthermore, none of the players

can profit from forming an alternative coalition (such as a coalition of size

6) or creating delay. This equilibrium exists for δ ≥ 4
5 (see step 1 above).

Finally, there is a symmetric no-delay equilibrium with a different coali-

tion structure. A coalition of size 6 forms immediately, each player’s ex-

pected payoff is w = 12
7 and, since this payoff is quite small (about 1.71),

the proposer gets a high payoff (about 3.43) and has no incentive to propose

a smaller coalition or cause delay.

The example also shows that all combinations of equilibrium properties

(symmetric, asymmetric, immediate agreement and delay) can occur for the

same game if δ is suffi ciently large.
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