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Abstract: Many financial and economic time series exhibit nonlinear patterns or relationships. How-
ever, most statistical methods for time series analysis are developed for mean-stationary processes
that require transformation, such as differencing of the data. In this paper, we study a dynamic
regression model with nonlinear, time-varying mean function, and autoregressive conditionally
heteroscedastic errors. We propose an estimation approach based on the first two conditional mo-
ments of the response variable, which does not require specification of error distribution. Strong
consistency and asymptotic normality of the proposed estimator is established under strong-mixing
condition, so that the results apply to both stationary and mean-nonstationary processes. Moreover,
the proposed approach is shown to be superior to the commonly used quasi-likelihood approach
and the efficiency gain is significant when the (conditional) error distribution is asymmetric. We
demonstrate through a real data example that the proposed method can identify a more accurate
model than the quasi-likelihood method.

Keywords: nonlinear dynamic model; ARCH error; mixing process; mean nonstationarity; second
order least squares; semiparametric efficiency; econometric modeling; financial time series

1. Introduction

Dynamic models have been widely applied in the analysis of economic and financial
data. Most theories and methods are developed for mean-stationary data generating pro-
cesses, specifically ARMA processes, although ARIMA processes have also been studied
(Koul and Ling 2006; Ling 2003; Ling and McAleer 2003; Meitz and Saikkonen 2008). How-
ever, many financial and economic variables exhibit nonlinear behaviour or relationships
(e.g., Enders 2010; Franses and Van Dijk 2000). As pointed out by Li et al. (2002), consistent
estimation of variance parameters may be misleading or impossible if the conditional mean
function is not adequately specified. Therefore, more general and flexible models with time
varying mean functions are desirable to capture the nonlinear dynamic behaviour and the
structural relationships in the real data.

On the other hand, the autoregressive conditional heteroscedasticity (ARCH) model
and its various generalizations have been widely used to analyze economic and finan-
cial data. These models allow both the conditional means and variances of a process
to jointly evolve over time. The mainstream method for estimation and inference in
generalized ARCH (GARCH) models is likelihood based (e.g., Engle 1982; Engle and
Gonzalez-Rivera 1991; Weiss 1986), although the estimating function approach is also
studied (Li and Turtle 2000). So far most research focuses on the quasi-likelihood method
for various generalizations of the ARCH error component while keeping the process mean
function very simple, e.g., constant or linear. Therefore from both theoretical and practical
points of view, it is important to develop methodologies for mean nonstationary ARCH
processes.

In this paper, we consider a model with a fairly general time varying nonlinear mean
function and ARCH error that covers both stationary and mean-nonstationary processes. In
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particular, we propose a so-called second-order least squares (SLS) approach based on the
first two conditional moments of the process. We establish the consistency and asymptotic
normality for the proposed estimator under general mixing conditions. We demonstrate
that this approach is more efficient than the commonly used quasi-likelihood method and
the efficiency gain is significant when the conditional error distribution is asymmetric. We
also carry out extensive simulations to study finite sample properties of our proposed
estimator and compare its performance with other related estimators. Our results show
that in most cases the optimal SLS estimator has superior performance over the estimating
function estimators based on the same set of moments. Finally, we apply our approach
to the empirical example of the U.K. inflation of Engle (1982), which leads to a different
model specification than the quasi-likelihood method.

It is worthwhile to note that some researchers have obtained more efficient estimators
than the Gaussian quasi-maximum likelihood estimator (QMLE) by assuming various
parametric families of error distributions (see a recent survey by Zhu and Li (2015)).
However, our approach is based on the first two conditional moments of the process only
and does not require any distributional assumptions. The SLS method was first used
by Wang (2003, 2004) to estimate the nonlinear measurement error models. Later, it was
extended to the nonlinear longitudinal data models by Wang (2007) and to the censored
linear models by Abarin and Wang (2009). Wang and Leblanc (2008) showed that under a
nonlinear cross-sectional data model, the SLS estimator is asymptotically more efficient
than the ordinary least squares estimator when the error term has nonzero third moment,
and both estimators are equally efficient otherwise. Further, Kim and Ma (2012) showed
that the SLS estimator attains the optimal semiparametric efficiency bound in general.
More recently, Rosadi and Filzmoser (2019); Rosadi and Peiris (2014) and Salamh and Wang
(2021) used this method in dynamic models. It has also been applied in the optimal design
problems by several researchers, e.g., Bose and Mukerjee (2015); Gao and Zhou (2017); Yin
and Zhou (2017) and He and Yue (2019).

The paper is organized as follows. In Section 2 we introduce the model and SLS
estimator and establish its consistency and asymptotic normality. In Section 3 we derive the
optimal SLS estimator and propose a feasible version of it. We also investigate the efficiency
gain of the optimal SLS estimator relative to the QMLE and highlight the differences
between our approach and that of the estimating functions. In Section 4 we carry out
Monte Carlo simulations to study the finite sample behavior of the SLS estimator in the
cases of both skewed and leptokurtic conditional error distributions, and compare it with
the QMLE and some other related estimators. In Section 5 we apply the SLS approach to
an empirical analysis of the U.K. inflation data. Finally, conclusions and discussion are
given in Section 6, while regularity assumptions and mathematical proofs are given in
the Appendix A.

2. Model and SLS Estimation

Let {(yt, x′t)} be a sequence of random vectors defined on a complete probability space
(Ω,F , P) and denote vt =

(
x′t, yt−1, x′t−1, . . . , yt−τ , x′t−τ

)′ for some nonnegative integer τ.
We consider the model

yt = ft(vt, θ0) + εt, t ∈ Z, (1)

where ft : Rυ ×Θ→ R1 are known measurable functions on Rυ for each θ ∈ Θ ⊂ Rq, and
continuous on Θ uniformly in t a.s.-P. Further, denote the σ-field Ft−1 = F{xi, yi−1, i ≤ t}
and assume that εt = σtεt satisfying

E(εt |Ft−1) = 0 a.s.-P, E
(

ε2
t |Ft−1

)
= 1 a.s.-P, σ2

t = φ00 +
p

∑
i=1

φ0iε
2
t−i, (2)

where φ00, φ0p > 0, and φ0i ≥ 0 for i = 1, 2, . . . , p − 1. It is easy to see that the linear
model with ARCH error is a special case of model (1) and (2). Our main goal is to estimate
γ0 =

(
θ′0, φ′0

)′ ∈ Γ which is a compact subset of Rq+p+1.
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Given the random sample
(

yT , x′T , . . . , y1−p−τ , x′1−p−τ

)
, let εt(θ) = yt − ft(vt, θ),

σ2
t (γ) = φ0 +∑

p
i=1 φiε

2
t−i(θ) and ht(γ) =

(
εt(θ), y2

t − f 2
t (vt, θ)− σ2

t (γ)
)′. Then the second-

order least squares (SLS) estimator is defined as the F–measurable function satisfying

γ̂T = argmin
γ∈Γ

QT(γ) a.s.-P, (3)

where

QT(γ) = T−1
T

∑
t=1

h′t(γ)W tht(γ)

and W t is a nonnegative definite matrix that is measurable, with respect to F
{

vt, . . . , vt−p
}

.
Next we establish the consistency and asymptotic normality of γ̂T under the regularity

conditions given in Appendix A. The consistency of γ̂T follows from the uniform conver-
gence of QT(γ) on Γ to a non-random sequence Q̄T(γ) which have unique minimizer at
γ0 for sufficiently large T.

Theorem 1. Under Assumptions A1–A3, γ̂T
a.s.−→ γ0, as T → ∞.

Theorem 2. Under Assumptions A1–A9, V−1/2
T ĀT(γ0)

√
T (γ̂T − γ0)

d−→ N
(
0, Iq+p+1

)
, as

T → ∞, where

ĀT(γ0) = 2T−1
T

∑
t=1

E
{
∇γh′t(γ0)W t∇γ′ht(γ0)

}
(4)

and

V T = 4T−1
T

∑
t=1

E
{
∇γh′t(γ0)W tht(γ0)h

′
t(γ0)W t∇γ′ht(γ0)

}
. (5)

The proofs are given in the Appendix A.

3. Optimal SLS Estimator

From Theorem 2 the asymptotic covariance (acov) of
√

T (γ̂T − γ0) is given by
Ā−1

T (γ0)V T Ā−1
T (γ0) which depends on the weights W t, t = 1, 2, . . . , T. Therefore it is

of interest to find the (asymptotically) optimal estimator, say γ̂o
T , which has the smallest

asymptotic variance in the class of estimators defined by (3), i.e., for any estimator γ̂T satis-
fying (3), acov

√
T (γ̂T − γ0)− acov

√
T (γ̂o

T − γ0) is nonnegative definite. The following
theorem gives the optimal choice of W t to achieve this goal.

Theorem 3. Suppose U t = E
{

ht(γ0)h
′
t(γ0)|vt, . . . , vt−p

}
is nonsingular a.s.-P, and Assump-

tions A2, A3, A6–A9 hold with W t = U−1
t . Then, the asymptotically optimal SLS (OSLS)

estimator γ̂o
T is obtained by using W t = U−1

t , t = 1, 2, . . . , T. Further, the corresponding (inverse)
optimal covariance matrix is given by

acov−1
√

T (γ̂o
T − γ0) = T−1

T

∑
t=1

E
{
∇γh′t(γ0)U

−1
t ∇γ′ht(γ0)

}
, (6)

= T−1
T

∑
t=1

E
{

B′tΩ
−1
t Bt

}
, (7)

where

B′t =
(
∇θ ft(vt, θ0) ∇θσ2

t (γ0)
0 ∇φσ2

t (γ0)

)
, (8)

and

Ωt = σ2
t (γ0)

(
1 σt(γ0)E

(
ε3

t |vt, . . . , vt−p
)

· σ2
t (γ0)

[
E
(
ε4

t |vt, . . . , vt−p
)
− 1
] ). (9)
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However, the OSLS estimator γ̂o
T is infeasible because U t depends on γ0 and

E
(

ε
j
t|vt, . . . , vt−p

)
, j = 3, 4. In practice a two-step procedure can be used as follows.

First, a first-step consistent estimator of γ0 is calculated, such as the QMLE or simply
the SLS γ̂T using the identity weight matrix. Second, the residuals ε̂t are calculated and
suitable autoregressive models are fitted to ε̂3

t and ε̂4
t respectively. Finally, these fitted

values are substituted in U t and the second-step estimator is calculated using the estimated

optimal weights W t = Û
−1
t . Under some general conditions this two-step estimator is

consistent and, moreover, it has the same asymptotic variance as in (7) if Û t is consistent
for U t. Henceforth, this two-step estimator will be called the feasible optimal SLS estimator
(FSLS). Note that fitting the autoregressive models is useful if the errors {εt} are not i.i.d.,
otherwise the sample means of ε̂3

t and ε̂4
t can be used. Alternatively, if the conditioning set{

vt, . . . , vt−p
}

is reasonably small, one can use nonparametric estimators of the conditional
skewness and kurtosis to obtain Û t. More details about the two-step estimators can be
found in White (1996, Section 6.3).

In the rest of this section we investigate the efficiency gain of the OSLS estimator
compared to the Gaussian QMLE, which is one of the most popular methods of estimation
in GARCH models. The asymptotic properties of the QMLE are studied by Weiss (1986)
and Bollerslev and Wooldridge (1992). Specifically for model (1) and (2), the Gaussian
QMLE is defined as

γ̂Q
T = argmin

γ∈Γ
T−1

T

∑
t=1

log σ2
t (γ) +

ε2
t (θ)

σ2
t (γ)

a.s.-P. (10)

Under similar conditions as Assumptions A2–A9 and similar to the proofs of Theorems 1
and 2, we can show that γ̂Q

T is
√

T-consistent with acov
√

T
(

γ̂Q
T − γ0

)
given by

T

(
T

∑
t=1

E
{

B′tΣ
−1
t Bt

})−1( T

∑
t=1

E
{

B′tΣ
−1
t ΩtΣ

−1
t Bt

})( T

∑
t=1

E
{

B′tΣ
−1
t Bt

})−1

, (11)

where Bt and Ωt are defined in (8) and (9) respectively and

Σt =

(
σ2

t (γ0) 0
0 2σ4

t (γ0)

)
.

Further, similar to the proof of Theorem 3, we can show that

acov
√

T a′(γ̂o
T − γ0) ≤ acov

√
T a′

(
γ̂Q

T − γ0

)
for any a ∈ Rq+p+1, and the equality holds if and only if for t = 1, 2, . . . , T,

ΩtΣ
−1
t Bta = Bt

(
T

∑
t=1

E
{

B′tΩ
−1
t Bt

})−1( T

∑
t=1

E
{

B′tΣ
−1
t Bt

})
a a.s.-P. (12)

The above general condition can be simplified under specific settings. For example, if
the process {(yt, x′t, σt, εt)} is stationary with E

(
ε3

t |vt, . . . , vt−p
)
= 0, and E

(
ε4

t |vt, . . . , vt−p
)

= µ4, then it can be shown that Equation (12) is equivalent to

a′1
(

Iq − C
)
∇θ ft(vt, θ0) = 0, a′1

(
µ4 − 1

2
Iq − C

)
∇θσ2

t (γ0) = 0, (13)

where C =
(

C1 +
1
2 C2

)(
C1 +

1
µ4−1 C2

)−1
, C1 = E

{
σ−2

t (γ0)∇θ ft(vt, θ0)∇θ′ ft(vt, θ0)
}

,

C2 = E
{

σ−4
t (γ0)∇θσ2

t (γ0)∇θ′σ
2
t (γ0)

}
and a1 is the subvector of the first q elements of a.
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Since it is difficult to quantify the difference between the asymptotic covariance
matrices in (7) and (11) in general, in the following we calculate some examples under a
simple AR(1) model with ARCH(1) error

yt = θ0yt−1 + εt, σ2
t = 1− φ0 + φ0ε2

t−1, (14)

where the innovations {εt = εt/σt} are i.i.d. with zero mean and unit variance. We consider
both symmetric and skewed distributions for εt. In particular, we choose Gamma distribu-
tion with various shape parameters and Student’s t distribution with various degrees of
freedom to reflect the different degrees of skewness and kurtosis, respectively.

The asymptotic variances of the OSLS and QMLE for various parameter values are
given in Table 1, where the asymptotic variance of the true maximum likelihood estimator
(MLE) is also given as a benchmark. The results show clearly that the efficiency gain of
the OSLS over the QMLE is significant in the case of highly skewed distributions such
as Gamma, while this is less so in the case of symmetric distributions such as Student’s
t. Note that the QMLE and OSLS of φ0 have the same asymptotic variances under the
Student’s t distribution, which is consistent with the theoretical result (13).

Table 1. Asymptotic variances of OSLS, QMLE, and MLE under AR(1)-ARCH(1) model.

v(θ̂0) v(φ̂0) v(θ̂0) v(φ̂0) v(θ̂0) v(φ̂0) v(θ̂0) v(φ̂0)

θ0 = 0.2 θ0 = 0.2 θ0 = 0.8 θ0 = 0.8
φ0 = 0.2 φ0 = 0.6 φ0 = 0.2 φ0 = 0.6

Gamma (2) OSLS 0.83 2.89 0.81 1.23 0.24 2.77 0.19 1.23
QML 1.35 4.48 1.63 2.02 0.42 4.48 0.38 2.03
ML 0.15 0.25 0.08 0.14 0.04 0.06 0.04 0.13

Gamma (8) OSLS 0.97 2.08 0.88 0.94 0.31 2.06 0.22 0.94
QML 1.18 2.52 1.09 1.15 0.38 2.51 0.28 1.14
ML 0.87 1.44 0.69 0.64 0.27 1.35 0.19 0.62

Gamma (12) OSLS 1.02 2.00 0.90 0.90 0.32 1.99 0.23 0.90
QML 1.17 2.30 1.05 1.04 0.37 2.29 0.27 1.04
ML 0.97 1.58 0.79 0.69 0.30 1.50 0.21 0.72

Gamma (20) OSLS 1.06 1.93 0.91 0.88 0.34 1.93 0.24 0.88
QML 1.15 2.11 1.00 0.96 0.37 2.11 0.26 0.96
ML 1.03 1.67 0.86 0.73 0.33 1.62 0.23 0.75

t (5) OSLS 1.34 6.32 1.51 2.86 0.37 6.26 0.29 2.86
QML 1.56 6.32 2.34 2.86 0.41 6.26 0.41 2.86
ML 1.05 2.44 1.04 1.11 0.29 2.41 0.21 1.11

t (7) OSLS 1.26 3.30 1.26 1.51 0.37 3.32 0.29 1.51
QML 1.30 3.30 1.41 1.51 0.38 3.32 0.32 1.51
ML 1.10 2.31 1.05 1.05 0.32 2.34 0.25 1.05

t (13) OSLS 1.20 2.31 1.08 1.06 0.37 2.33 0.26 1.06
QML 1.20 2.31 1.10 1.06 0.37 2.33 0.26 1.06
ML 1.15 2.12 1.03 0.97 0.36 2.17 0.24 0.97

In order to see how much loss of efficiency in the QMLE is recovered by the OSLS
estimator, next we calculate the relative reduction in the QMLE efficiency-loss (inefficiency)

RIEL
(
a′γ0

)
= 100×

acov
√

T a′
(

γ̂Q
T − γ0

)
− acov

√
T a′(γ̂o

T − γ0)

acov
√

T a′
(

γ̂Q
T − γ0

)
− acov

√
T a′

(
γ̂M

T − γ0
) ,

where γ̂M
T is the true MLE for γ0. This measure also indicates which estimator approaches

the asymptotic variance lower bound faster.
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Figure 1 contains a sample of the numerical outputs. First, Figure 1a shows that
45–60% of the inefficiency of θ̂Q

T is recovered by θ̂o
T when the innovations {εt} have a

heavy tail Student’s t distribution. Further, RIEL(θ0) declines sharply as the degrees of
freedom increases, indicating that as the distribution of {εt} gets close to the Gaussian,
the QMLE improves quickly and it gets close to the OSLS estimator, and both of them
approach the variance lower bound. However, the situation in Figure 1b,c is opposite,
where RIEL(θ0) and RIEL(φ0) are increasing with the shape parameter of the Gamma
distribution. This indicates that the OSLS improves significantly faster than the QMLE
as the skewed distribution gets closer to the Gaussian. In other words, the efficiency loss
of the QMLE is persistent and therefore it is not desirable under asymmetric conditional
error distribution.
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Figure 1. Reduction (%) in the QMLE efficiency-loss. (a) εt ∼ Student’s t, φ0 = 0.5; (b) εt ∼ Gamma,
φ0 = 0.5; (c) εt ∼ Gamma, θ0 = 0.5.

4. Simulation Studies

In this section we carry out Monte Carlo simulations to study the finite sample
behaviour of the feasible optimal SLS estimator (FSLS) γ̂o

T and compare it with some other
related, commonly used estimators.

4.1. Comparison with Quasi-MLE

We first compare the FSLS with the quasi-maximum likelihood estimator (QMLE).
Specifically, we generate the data from the AR(1)-ARCH(1) model in (14) with innovations
{εt} drawn from the standardized distributions of different levels of skewness and kurtosis.
We consider various sample sizes including T = 10,000 to approximate the asymptotic re-
sults. In each simulation, we vary the values of the parameters (θ0, φ0) to represent different
levels of persistence in the mean and variance components. For each estimator, we calcu-
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late the mean estimates (θ̂0, φ̂0) and the root mean squared errors (RMSE(θ̂0), RMSE(φ̂0))
based on 3000 independent replications over 4 different pairs of true values (θ0, φ0).

Table 2 contains the summary results for Gamma (2,1) innovations, which show clearly
that the FSLS outperforms the QMLE for all sample sizes and panels, while both estimators
have the same degree of bias. We have also done the simulations with Student’s t(5)
innovations and the results show that the FSLS has moderate gain of efficiency over the
QMLE, which performs fairly well in small samples.

Table 2. Simulation results for FSLS and QMLE under AR(1)-ARCH(1) model with εt ∼ Gamma(2,1).

T θ̂0 RMSE(θ̂0) φ̂0 RMSE(φ̂0) θ̂0 RMSE(θ̂0) φ̂0 RMSE(φ̂0)

(a): θ0 = φ0 = 0.2 (b): θ0 = 0.2, φ0 = 0.6

60 QMLE 0.21 0.149 0.30 0.213 0.19 0.152 0.58 0.163
FSLS 0.21 0.119 0.27 0.172 0.19 0.121 0.59 0.136

100 QMLE 0.20 0.116 0.25 0.169 0.20 0.121 0.58 0.134
FSLS 0.20 0.091 0.23 0.138 0.20 0.094 0.59 0.108

1000 QMLE 0.20 0.038 0.20 0.063 0.20 0.040 0.60 0.037
FSLS 0.20 0.029 0.20 0.052 0.20 0.028 0.60 0.030

10,000 QMLE 0.20 0.012 0.20 0.020 0.20 0.013 0.60 0.012
OSLS 0.20 0.009 0.20 0.016 0.20 0.009 0.60 0.010

(c): θ0 = 0.8, φ0 = 0.2 (d): θ0 = 0.8, φ0 = 0.6

60 QMLE 0.77 0.098 0.29 0.215 0.77 0.097 0.59 0.161
FSLS 0.78 0.073 0.27 0.178 0.78 0.077 0.59 0.139

100 QMLE 0.78 0.074 0.25 0.172 0.78 0.071 0.58 0.128
FSLS 0.79 0.054 0.23 0.140 0.79 0.054 0.59 0.106

1000 QMLE 0.80 0.021 0.20 0.062 0.80 0.021 0.60 0.038
FSLS 0.80 0.016 0.19 0.050 0.80 0.015 0.60 0.030

10,000 QMLE 0.80 0.007 0.20 0.020 0.80 0.007 0.60 0.012
OSLS 0.80 0.005 0.20 0.016 0.80 0.005 0.60 0.010

To understand how the values of (θ0, φ0), shape parameter, and sample size T affect
the relative RMSE of the FSLS compared to QMLE, we use the numerical results of the
simulations to fit two regression equations with RRMSE(θ̂o

T) = RMSE(θ̂o
T)/RMSE(θ̂Q

T )
and RRMSE(φ̂o

T) as the response variables, respectively. The results in Table 3 show that
the shape parameter has a positive effect on both RRMSE(θ̂o

T) and RRMSE(φ̂o
T), while T is

negatively associated with both RRMSEs, indicating that the outperformance of the FSLS
in large samples is more evident than in small samples if the innovations distribution is
skewed. Moreover, the negative sign of θ0 in the RRMSE(θ̂o

T) equation indicates that the
performance of the QMLE improves quickly as the value of θ0 gets larger.

Table 3. Effect of the shape, sample size, and parameter values on the RRMSEs under Gamma
distribution. All coefficients are significant at 0.0001 level.

Coefficients
R2 Error df

Const Shape T θ0 φ0

RRMSE(θ̂o
T) 0.76546 0.02887 −0.00007 −0.02783 0.02525 0.78692 4785

RRMSE(φ̂o
T) 0.79952 0.02078 −0.00003 0.01013 0.00962 0.70135 4785
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4.2. Comparison with Estimating Function Estimators

Our approach is related to the estimating function (EF) approach. Following Durairajan
(1992), it can be shown that under models (1) and (2) the EF estimator γ̂EF

T is obtained by
solving the estimating equation

T

∑
t=1

B′t(γ)Ω
−1
t (γ)

(
εt(γ)

ε2
t (γ)− σ2

t (γ)

)
= 0, (15)

where B′t(γ) and Ωt(γ) are given in (8) and (9) with θ0, γ0 and E
(

ε
j
t|vt, . . . , vt−p

)
, j = 3, 4

replaced by θ, γ and Eγ

(
ε

j
t(γ)|vt, . . . , vt−p

)
, j = 3, 4 respectively. The EF in (15) is optimal

with respect to the so-called Godambe’s information criterion. Moreover, under some
regularity conditions similar to Assumptions A2–A9, the EF estimator can be shown to
be
√

T-consistent with acov
√

T
(
γ̂EF

T − γ0
)

given by Equation (7). However, although the
FSLS and EF estimators have the same asymptotic variance, they are distinct in the follow-
ing aspects. First, the FSLS is an extremum estimator while the EF estimator represents a
solution of the optimal estimating Equation (15). Second, if Eγ

(
ε

j
t(γ)|vt, . . . , vt−p

)
, j = 3, 4

are known functions of γ, then the EF estimator can be calculated in one step, while the
FSLS remains to be a two-step estimator due the dependence of W t on γ0. Third, the two
estimators may behave differently in finite-sample situations because they have different
estimating equations. This can be seen by comparing Equation (15) with the first order
condition for the FSLS which can be written as

T

∑
t=1

B′t(γ)Ht(θ)Ω
−1
t H ′t(θ)

(
εt(γ)

ε2
t (γ)− σ2

t (γ)

)
= 0,

where

Ht(θ) =

(
1 2 ft(vt, θ)− 2 ft(vt, θ0)
0 1

)
.

Next we calculate some numerical examples to compare the FSLS with four different
versions of the EF estimators that are commonly used in practice. First, since εt are i.i.d.,
Equation (15) can be written as

T

∑
t=1

B′t(γ1)Ω
−1
t (γ2, µ3, µ4)

(
εt(γ)

ε2
t (γ)− σ2

t (γ)

)
= 0. (16)

Then we calculate four variants of the EF estimator as follows: the estimator EF0 is
obtained by taking γ1 = γ2 = γ̂Q

T , µ3 = 1/T ∑T
t=1 ε3

t (γ̂
Q
T ) and µ4 = 1/T ∑T

t=1 ε4
t (γ̂

Q
T ); EF1

is the same as EF0 except that γ1 = γ; EF is the same as EF0 except that γ1 = γ2 = γ; and
EF2 is obtained by letting γ1 = γ2 = γ, µ3 = 1/T ∑T

t=1 ε3
t (γ) and µ4 = 1/T ∑T

t=1 ε4
t (γ).

The four variants have the same asymptotic covariance matrix.
Figure 2 shows the relative RMSE of the FSLS over the RMSE of the QMLE and EF

estimators, respectively. Figure 2a is based on 4790 simulations with 3000 independent
replications where {εt} are generated from the standardized Gamma distribution with
shape parameters 2, 3, 4, 5, 6, and 7 respectively. Similarly, Figure 2b is based on 4050
simulations with {εt} generated from the standardized Student’s t distribution with df 5, 6,
7, 8, and 9, respectively. In all cases, sample size T varies over a range (30, 40, 50, 60, 70, 80,
90, 100, 500, and 1000) and the RMSE of the estimators are calculated on the parameters
grid {(0.1, 0.1), (0.1, 0.2), . . . , (0.1, 0.9), (0.2, 0.1), . . . , (0.9, 0.9)}.
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Figure 2. Ratio of the RMSE of FSLS to the RMSE of QML and EF estimators respectively. (a) εt ∼
Gamma with shape parameter (2, 3, 4, 5, 6, 7). (b) εt ∼ Student’s t with df (5, 6, 7, 8, 9).

The results show clearly that the FSLS outperform the EF estimators for θ0 in almost all
cases and for φ0 in the majority of the cases. In particular, results of EF2 show that replacing
the nuisance parameters with highly nonlinear functions of the estimated parameter makes
the performance worse. Therefore in practice, a two-step EF estimator such as the EF or
EF1 should be recommended. Finally, the QMLE performs reasonably well in the case of
symmetric error distributions, while not so well in the case of skewed error distributions.

5. Application

In this section we apply our method to an empirical example of Engle (1982) (see
also Enders 2010), who used an AR model with ARCH error to study the wage/price
spiral in the U.K. over the period 1958Q2–1977Q2. Specifically, let pt denote the log of
the consumer price index and wt denote the log of the index of the nominal wage rates.
Then yt = pt − pt−1 and rt = wt − pt are the rate of inflation and real wage, respectively.
Engle (1982) first fitted the following equation using the least squares (LS) method

yt = 0.0257 + 0.334 yt−1+ 0.408 yt−4− 0.404 yt−5+ 0.0559 rt−1 + εt,
(0.006) (0.103) (0.110) (0.114) (0.014)

σ̂2
t = 8.9× 10−5,

(17)
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where the standard errors are in parentheses. Since the Lagrange multiplier (LM) test for
ARCH(1) error was not significant, but for ARCH(4) process was instead, the following
conditional variance equation was specified

σ2
t = φ0 + φ1(0.4 ε2

t−1 + 0.3 ε2
t−2 + 0.2 ε2

t−3 + 0.1 ε2
t−4), (18)

where the two-parameter variance function with declining weights was chosen to satisfy
the nonnegativity and stationarity constraints. Further, Engle (1982) fitted Equations (17)
and (18) jointly using the Gaussian quasi-likelihood method, where all coefficients (except
the first lag in the inflation rate) were significant at level 0.05.

Since we could not obtain the wage rates before 1963, we use the data from 1963Q1
through 1982Q1 to compensate for the 19 missing quarters. The data were obtained from
the OECD website http://dx.doi.org/10.1787/data-00052-en (accessed on 15 January 2014,
see OECD, Main Economic Indicators–complete database). To see if there is major structural
difference in our data compared to the data used by Engle (1982), we have done an initial
investigation and found no evidence of structural change by replacing the 19 quarters. So
our results are to some extent comparable with those in Engle (1982).

We start by fitting the following regression model for inflation using the LS method

yt = θ0 + θ1yt−1 + θ2yt−2 + θ3yt−3 + θ4yt−4 + θ5yt−5 + θ6rt−1 + εt (19)

The results are shown in the first part of Table 4 under Model-I (LS), where the White’s
correction for the standard errors are reported in parentheses.

We calculate the Ljung-Box statistic Q for ε̂t (denoted by Q1) and ε̂2
t (denoted by Q2)

at lags 5, 10, 15, and 20. They are all insignificant at level 0.1 except for Q2(5), which agrees
with Engle (1982) in including four lags in the variance equation. Further, we use the
squared residuals from this regression to fit an ARCH(4) model for the conditional variance

σ2
t = φ0 + φ1ε2

t−1 + φ2ε2
t−2 + φ3ε2

t−3 + φ4ε2
t−4 (20)

The results are shown in the second part of Table 4 under Model-I (LS). Again, the
ARCH(4) model is confirmed by the LM test at significance level 0.05. We report only
the LS estimates of the variance function without standard errors because those estimates
are only used as starting values to compute the QMLE. The Q1 and Q2 statistics from
Model-I (LS) (in the third part of Table 4) indicate that the mean and variance equations are
fairly well specified since none of these diagnostics are significant at level 0.1. Therefore
we fit the Model-I again using the QMLE, which is more efficient than the LS procedure.
Although the diagnostics of the standardized innovations from Model-I (QMLE) do not
show serial correlation of the first or second order, all coefficients in the variance function
are insignificant except for the constant term. This contradicts the ARCH(4) that we found
before to be correctly specified. However, this can be explained by the lack of efficiency in
the QMLE due to the moderate level of skewness in the corresponding residuals.

On the other hand, our FSLS estimation yields a significant fourth lag in the variance
function in addition to the correct specification as indicated by Q1 and Q2. Accordingly, we
use the model fitted by FSLS in stepwise regression algorithm to obtain a reduced model
(Model-II in Table 4)

yt = θ0 + θ1yt−1 + θ4yt−4 + θ5yt−5 + θ6rt−1 + εt (21)

σ2
t = φ0 + φ4ε2

t−4 (22)

Note that while the mean equation is identical to that in Engle (1982), only the fourth
lag is significant in the variance equation. The above ARCH structure can only be detected
by using the full model that is more flexible than the two-parameter variance function in
Equation (18). Moreover, the more efficient FSLS estimation yields the ARCH(4) structure,
while the QMLE would conclude with a misspecified homoscedastic model.

http://dx.doi.org/10.1787/data-00052-en
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Table 4. Fitted Model-I (19) and (20) and Model-II (21) and (22), where standard errors are in
parentheses. The superscript a indicates statistical significance at 5% level. Q1(n) (Q2(n)) is the
Ljung-Box statistic for the (squared) standardized innovations and the corresponding p-values are in
parentheses. JB is the standard Jarque-Bera test.

Coef.
Model-I Model-II

LS QMLE FSLS QMLE FSLS

Conditional Mean Equation

θ0 0.071 a 0.079 a 0.049 a 0.067 a 0.063 a

(0.016) (0.015) (0.014) (0.015) (0.013)
θ1 0.417 a 0.339 a 0.280 a 0.323 a 0.257 a

(0.141) (0.1) (0.093) (0.096) (0.086)
θ2 −0.039 0.004 0.050 – –

(0.095) (0.086) (0.081)
θ3 −0.180 −0.235 a -0.158 – –

(0.148) (0.101) (0.094)
θ4 0.436 a 0.481 a 0.563 a 0.328 a 0.339 a

(0.184) (0.108) (0.101) (0.116) (0.104)
θ5 −0.350 a −0.310 a −0.294 a −0.246 a −0.234 a

(0.101) (0.094) (0.088) (0.094) (0.084)
θ6 0.076 a 0.086 a 0.051 a 0.073 a 0.067 a

(0.018) (0.017) (0.016) (0.017) (0.015)

Conditional Variance Equation

φ0 0.0001 0.000 a 0.000 0.000 a 0.000
(0.000) (0.000) (0.000) (0.000)

φ1 0.1064 0.093 0.021 – –
(0.134) (0.126)

φ2 0.0000 0.000 0.000 – –
(0.077) (0.072)

φ3 0.0806 0.100 0.102 – –
(0.146) (0.137)

φ4 0.3364 0.389 0.479 a 0.553 0.556 a

(0.252) (0.235) (0.308) (0.281)

Diagnostic Statistics of the Standardized Innovations

Q1(5) 0.9 (0.97) 1.0 (0.96) 2.1 (0.83) 2.0 (0.85) 1.9 (0.86)
Q1(10) 4.4 (0.93) 7.4 (0.68) 6.4 (0.78) 8.4 (0.59) 8.5 (0.58)
Q1(15) 12.8 (0.62) 16.1 (0.38) 14.1 (0.52) 19.6 (0.19) 18.7 (0.23)
Q2(5) 3.7 (0.59) 4.4 (0.50) 0.4 (0.99) 6.5 (0.26) 6.4 (0.27)

Q2(10) 5.7 (0.84) 6.9 (0.74) 1.3 (0.99) 8.2 (0.61) 8.1 (0.62)
Q2(15) 9.2 (0.87) 9.8 (0.83) 2.7 (0.99) 9.1 (0.87) 9.4 (0.85)

Skewness 0.78 0.61 1.67 0.73 0.99
Kurtosis 4.07 3.49 8.48 3.73 4.27

JB 11.0 a 5.35 115 a 8.12 a 16.93 a

6. Conclusions and Discussion

Although the ARCH-type models have been extensively studied for decades, most
theories and methods are developed for stationary data processes whose conditional mean
functions are either ARMA or simple linear functions of covariates. Moreover, recent
research has been focusing on generalization of the error component while leaving the
mean function to be simple linear form. However, many economic and financial time series
are nonlinear and/or nonstationary in the mean, therefore, data transformation is required
in order to apply standard methodologies in the analysis.

In this paper, we proposed the second-order least squares (SLS) approach to estimate a
flexible and general model with nonlinear and time-varying conditional mean and ARCH
conditional variance function. This approach is applicable to both stationary and mean-
nonstationary processes and therefore can be used to analyze the transformed as well as the
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original data. Another advantage of this approach is that it does not require specification
of the underlying distribution for the errors. Moreover, the feasible optimal SLS estimator
(FSLS) is more efficient than the commonly used QMLE, and the efficiency gain is significant
when the conditional error distribution is asymmetric. We have demonstrated through a
real data example that the efficiency gain of the proposed approach leads to a more accurate
model than the QMLE. The third and fourth conditional moments of the innovation provide
useful information that is utilized by the FSLS (through the weight matrix) to gain efficiency
over the QMLE. This information is even more important in the case of skewed and/or
leptokurtic error distributions. Our simulation studies also show that the SLS approach has
better finite sample properties than the estimating function approach based on the same
set of conditional moments.

There are some issues remaining to be studied in the future. Some assumptions for
the asymptotic theories are sufficient but not necessary. They are adopted here mainly due
to the way of the proofs we used. As is common in statistics and econometrics, there are
usually different ways to prove an asymptotic theory, and each of them requires a specific
set of assumptions. Therefore it is interesting to explore the possibilities of establishing the
asymptotic properties for the FSLS estimator under the similar conditions for the QMLE.
Indeed, our Monte Carlo simulation studies have shown that the FSLS estimator performs
well in the finite sample situations even if the innovation does not have the finite moments
of order higher than four. From the application point of view, it is also important to extend
the method of this paper to models with more general GARCH errors. This is possible by
modifying some assumptions to adapt for the mixing process.
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Appendix A

In this Appendix we first list the technical assumptions that are sufficient for the
asymptotic properties of the SLS estimator γ̂T , followed by the mathematical proofs for the
theorems. To simplify the notation, we denote ft(·, θ) = ft(vt, θ).

Appendix A.1. Regularity Conditions

We make the following assumptions for the consistency of the SLS estimator γ̂T .

http://dx.doi.org/10.1787/data-00052-en
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Assumption A1. The process {(yt, x′t)} is strong mixing of size −a, for some a > 1. That is,
there exists δ > 0 such that α(m) = O(m−a−δ), where

α(m) = sup
n

sup
{F∈Fn

−∞ , G∈F∞
n+m}
|P(F ∩ G)− P(F)P(G)|,

Fn
−∞ = F{(yt, x′t), t ≤ n} and F∞

n+m = F{(yt, x′t), t ≥ n + m}.

This is a high-level assumption which allows for considerable dependence and hetero-
geneity in the underlying process. As noted by White and Domowitz (1984), it preserves
the asymptotic independence of the observed process even under further transformations.
This assumption can be justified on a case by case basis. For example, if ∑

p
i=1 φ0i < 1, then

{εt} is strong mixing with geometric rate if the innovation noise sequence {εt} is i.i.d., has
finite second moment, and Lebesgue density being strictly positive in a neighbourhood of
zero (Lindner 2009). The geometric memory decay implies that a can be set to an arbitrarily
large number. It can also be shown that finite order Gaussian ARMA processes are strong
mixing (Ibragimov and Linnik 1971, pp. 312–13).

Assumption A2. Let ‖.‖ be the Euclidean norm. Then for some r > a
a−1 ,

sup
t∈N

E

{
‖W t‖

(
1 +

p

∑
i=0

ε4
t−i + sup

Θ
f 4
t−i(·, θ)

)}r

< ∞.

Assumption A3. For any open neighbourhood N ( Γ of γ0, there exists T0(N ) such that

inf
T≥T0

T−1
T

∑
t=1

min
γ∈N c∩Γ

E
{
(ht(γ)− ht(γ0))

′W t(ht(γ)− ht(γ0))
}
> 0.

Note that Assumption A2 ensures the uniform convergence of QT(γ) and Assumption A3
is sufficient for parameter identification. If the process (yt, x′t) is stationary, ft = f : Rυ ×Θ→
R1 and W t = W

(
vt, . . . , vt−p

)
is positive definite a.s.-P, then Assumption A3 is equivalent to

that f (·, θ) = f (·, θ0) a.s.-P only if θ = θ0.
Further, we make the following additional assumptions for the asymptotic normality

of γ̂T .

Assumption A4. The true value γ0 is an interior point of Γ.

Assumption A5. The random functions ft(·, θ) are twice continuously differentiable on Γ uni-
formly in t a.s.-P.

Assumption A6. For some r > a
a−1 , it holds

sup
t∈N

E

{
‖W t‖ sup

Θ

(∥∥∥∇2
θ ft(·, θ)

∥∥∥2
+

p

∑
i=0
‖∇θ ft−i(·, θ)‖4 +

p

∑
i=1

ε2
t−i

∥∥∥∇2
θ ft−i(·, θ)

∥∥∥2

+
p

∑
i=0

f 2
t−i(·, θ)

∥∥∥∇2
θ ft−i(·, θ)

∥∥∥2
)}r

< ∞.

Assumption A7. The sequence ĀT(γ0) = 2T−1 ∑T
t=1 E

{
∇γh′t(γ0)W t∇γ′ht(γ0)

}
is bounded

and lim infT→∞|ĀT(γ0)| > 0.
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Assumption A8. For some r > a
a−1 ,

sup
t∈N

E

{
‖W t‖2

(
1 + f 2

t (·, θ0)‖∇θ ft(·, θ0)‖2 +
p

∑
i=1

ε2
t−i‖∇θ ft−i(·, θ0)‖2

+‖∇θ ft(·, θ0)‖2 +
p

∑
i=1

ε4
t−i

)(
1 +

p

∑
i=0

ε4
t−i + ε2

t f 2
t (·, θ0)

)}r

< ∞.

Assumption A9. The sequence V T = 4T−1 ∑T
t=1 E

{
∇γh′t(γ0)W tht(γ0)h

′
t(γ0)W t∇γ′ht(γ0)

}
is bounded and lim infT→∞|V T | > 0.

Assumptions A2, A6, and A8 are for general cases and can be simplified for spe-
cific choice of W t. For example, for the optimal weight W t = U−1

t in Section 3, these
assumptions can be simplified to the following assumptions, respectively.

Assumption A10 (Assumption A2). For k = 0, 1, . . . , p, and some r > a
a−1 ,

sup
t∈N

E

{
ε4

t + σ−4
t sup

Θ
f 4
t−k(·, θ)

}r

< ∞.

Assumption A11 (Assumption A6). For s = 1, 2 and k = 0, 1, . . . , p, and some r > a
a−1 ,

sup
t∈N

E

{
σ−4

t sup
Θ
‖∇s

θ ft−k(·, θ)‖4

}r

< ∞.

Assumption A12 (Assumption A8). For k = 0, 1, . . . , p, and some r > a
a−1 ,

sup
t∈N

E
{

ε8
t + σ−8

t f 8
t (·, θ0) + σ−8

t ‖∇θ ft−k(·, θ0)‖8
}r

< ∞.

Appendix A.2. Proof of Theorem 1

First, by using Hölder’s inequality and Cr inequality, we can easily verify that
the sequence

{
h′t(γ)W tht(γ)

}
is dominated by uniformly Lr-bounded variables (i.e.,

supt E
∣∣h′t(γ)W tht(γ)

∣∣r < ∞). Therefore, QT(γ) = T−1 ∑T
t=1 E

{
h′t(γ)W tht(γ)

}
is well

defined and is continuous on Γ uniformly in T. Then by the uniform law of large numbers
(ULLN) (White and Domowitz 1984, Theorem 2.3), we have supγ∈Γ

∣∣QT(γ)−QT(γ)
∣∣ a.s.−→

0 as T → ∞. Further, since {ht(γ0),Ft} is a martingale difference sequence and W t is
measurable–Ft−1, we have

E
{

h′t(γ)W tht(γ)
}
= E

{
(ht(γ)− ht(γ0))

′W t(ht(γ)− ht(γ0))
}
+ E

{
h′t(γ0)W tht(γ0)

}
.

Since W t is non-negative definite a.s.-P, Assumption A3 ensures the uniqueness of
the minimum of QT(γ) for sufficiently large T. Thus the result follows from Theorem 3.4
of White (1996). �

Appendix A.3. Proof of Theorem 2

The proof consists of the following four steps.

(i) First we apply the mean value theorem for random functions to the first order condition
for a minimum of QT(γ). Since γ̂T

a.s.−→ γ0 and γ0 is interior to Γ, there is a neighbourhood
N ⊂ Γ of γ0 such that γ̂T ∈ N a.s. for sufficiently large T. Further, since ft(θ) is twice
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continuously differentiable on Θ uniformly in t, by Jennrich (1969, Lemma 3), for sufficiently
large T,

∇2
γQT(γ̃T)(γ̂T(ω)− γ0) = −∇γQT(γ0), (A1)

where ∇2
γQT(γ) is the Hessian matrix of QT(γ) and ‖γ̃T − γ0‖ ≤ ‖γ̂T − γ0‖.

(ii) Let ĀT(γ) = 2T−1 ∑T
t=1 E

{
∇γh′t(γ)W t∇γ′ht(γ)

}
and we show that∥∥∥∇2

γQT(γ̃T)− ĀT(γ0)
∥∥∥ a.s.−→ 0 as T −→ ∞. (A2)

Using Hölder’s, triangle and Cr inequalities we can verify that Assumptions A2
and A6 imply that ‖At(γ)‖ are dominated by uniformly Lr-bounded functions, where

At(γ) = 2∇γh′t(γ)W t∇γ′ht(γ) + 2
(

h′t(γ)W t
⊗

Iq+p+1

)
∇γ′vec

(
∇γh′t(γ)

)
.

Hence by the ULLN we have

sup
γ∈Γ

∥∥∥∥∥∇2
γQT(γ)− T−1

T

∑
t=1

EAt(γ)

∥∥∥∥∥ a.s.−→ 0 as T −→ ∞.

Moreover, by the triangle inequality we have∥∥∥∥∥∇2
γQT(γ̃T)− T−1

T

∑
t=1

EAt(γ0)

∥∥∥∥∥ ≤ sup
γ∈Γ

∥∥∥∥∥∇2
γQT(γ)− T−1

T

∑
t=1

EAt(γ)

∥∥∥∥∥
+ sup

K∈N

∥∥∥∥∥K−1
K

∑
t=1

EAt(γ̃T)− K−1
K

∑
t=1

EAt(γ0)

∥∥∥∥∥ a.s.

Since EAt(γ) is continuous on Γ uniformly in t and EAt(γ0) = 2E
{
∇γh′t(γ0)W t∇γ′ht(γ0)

}
,

equation (A2) follows by letting T → ∞ in the last inequality. Further, since ĀT(γ0) and
V T are uniformly nonsingular by Assumptions A7 and A9 respectively, for sufficiently
large T, we have

V−1/2
T ĀT(γ0)

√
T(γ̂T − γ0) = −V−1/2

T

√
T∇γQT(γ0)

+ V−1/2
T ĀT(γ0)

(
Ā−1

T (γ0)−∇2
γQ−1

T (γ̃T)
)

V1/2
T V−1/2

T

√
T∇γQT(γ0). (A3)

(iii) Now we use Cramér-Wold device (Rao 1973, p. 123) to show that

V−1/2
T

√
T∇γQT(γ0)

d−→ N
(
0, Iq+p+1

)
as T → ∞.

Let λ ∈ Rq+p+1 with ‖λ‖ = 1. Then it is sufficent to show that T−1/2 ∑T
t=1 λ′V−1/2

T St(γ0)
d−→

N(0, 1) as T → ∞, where St(γ0) = 2∇γh′t(γ0)W tht(γ0). By Assumption A9 we have
V−1/2

T = O(1) and, therefore, by Assumption A8 and applying again the Hölder’s and

Cr inequality the double array
{

mTt = λ′V−1/2
T St(γ0)

}
is uniformly Lr-bounded for all T

sufficiently large. Further, since {ht(γ0),Ft} is a martingale difference, we have E(mTt) = 0
and var

(
T−1/2 ∑T

t=1 mTt

)
= 1 for all T sufficiently large. It follows from Theorem 14.1 of

Davidson (1994) and Assumption A1 that {mTt} to be strong mixing of size −a. Hence by

Theorem 5.20 of White (2001) we have T−1/2 ∑T
t=1 mTt

d−→ N(0, 1) as T → ∞.

(iv) By (A2), Assumption A7 and Theorem 2.16 of White (2001), we have ∇2
γQ−1

T (γ̃T)−
Ā−1

T (γ0) = op(1). Since V−1/2
T

√
T∇γQT(γ0) = Op(1) from (iii), it follows that

V−1/2
T ĀT(γ0)

(
Ā−1

T (γ0)−∇2
γQ−1

T (γ̃T)
)√

T∇γQT(γ0) = op(1).
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By the method of subsequences (Davidson 1994, Theorem 18.6), there exists a subse-
quence {T′} such that

V−1/2
T′ ĀT′(γ0)

(
Ā−1

T′ (γ0)−∇2
γQ−1

T′ (γ̃T)
)√

T′∇γQT′(γ0)
a.s.−→ 0 as T′ → ∞,

which implies

V−1/2
T′
√

T′(ĀT′(γ0) (γ̂T′ − γ0) +∇γQT′(γ0))
a.s.−→ 0 as T′ → ∞.

Finally since {T′} is arbitrary, we have

V−1/2
T ĀT(γ0)

√
T(γ̂T − γ0) + V−1/2

T

√
T∇γQT(γ0)

P→ 0 as T −→ ∞,

and the proof is completed by applying the result (2c.4.12) of Rao (1973). �

Appendix A.4. Proof of Theorem 3

Let R′ = 1√
T
(R′1, R′2, . . . , R′T), M ′ = 1√

T
(M ′1, M ′2, . . . , M ′T), R′t = ∇γh′t(γ0)W tU1/2

t

and M ′t = ∇γh′t(γ0)U
−1/2
t . Then the proof follows by noting that

E
{(

R−M E−1{M ′M
}

E
{

M ′R
})′(

R−M E−1{M ′M
}

E
{

M ′R
})}

(A4)

is nonnegative definite matrix. Moreover the equality in (A4) holds if W t = U−1
t , t =

1, 2, . . . , T, which justifies Equation (6). The equivalence between Equations (6) and (7)
follows from substituting Ω−1

t and Bt in Equation (7). �
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