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Non-technical summary

The impact of anthropogenic greenhouse gas emissions is subject to substantial un-

certainties which could be reduced by future learning. One view is that cost-intensive

measures should be postponed until better information is available. The contrary view

is that, because of the possibility of learning, one should pursue even stricter abatement

policies today in order not to irreversibly accumulate long-lived greenhouse gases in

the atmosphere (“irreversibility effect”).

While expected utility maximization (EU) is the most common decision criterion under

uncertainty, one may doubt the applicability of this concept to the problem of future

climate change: First, there is no objective probability assessment. Secondly, empirical

evidence indicates that, quite regularly, people do not maximize EU, particularly if

extreme outcomes are involved.

In this paper, I therefore analyze the irreversibility effect when people give more weight

to the worst case than standard expected utility (EU) maximizers do. Such a combi-

nation of EU and the MaxiMin criterion was suggested in the literature but has so far

only been applied to static, not to intertemporal problems.

I first study the effects of an increase of confidence, i.e. of a move from MaxiMin to

EU, on first period emission levels. Contrary to the intuitive results from the static

models, such increased confidence does not necessarily lead to an expansion of optimal

emissions. Analyzing the consequences of incorporating the prospective new infor-

mation into today’s decisions, I demonstrate that standard results from EU on the

irreversibility effect are fairly fragile to the weight attached to MaxiMin: For quadratic

utility functions the effects of learning are reversed if one moves away from EU. In

other words, whereas learning leads to higher emissions and the irreversibility effect

does not apply for high confidence levels (criteria close to EU), the irreversibility effect

holds for small levels of confidence in the probability assessment.

There is, however, the possibility of a negative value of learning. For quadratic utility

functions, it is shown that the irreversibility effect holds if and only if the value of

learning is negative. Taking the extended EU - MaxiMin criterion as a descriptive

model, this would explain if people who attach a large weight on the worst case choose

not to receive new information on the prospective damages. Consequences for the

applicability of generalized EU-MaxiMin are also discussed.
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1 Introduction

The impact of anthropogenic greenhouse gas emissions is subject to substantial un-

certainties which could be reduced by future learning. In this paper, I analyze how

this potentially better information in the future affects today’s choice of greenhouse

gas emissions when people give more weight to the worst case than standard expected

utility (EU) maximizers do. For such a combination of EU and the MaxiMin criterion,

I show that standard results on the effect of learning crucially depend on the weight

given to the worst case.

The criterion most prevailing in economic literature on decisions under uncertainty

is expected utility maximization (EU) which relies on a single (objective or subjec-

tive) probability distribution. For the problem of future climate change, however, one

may doubt the applicability of this concept. First, there is no objective probability

assessment. Although this is mentioned in the IPCC report1 (IPCC III 1996:65), it

is even better illustrated by a study by Morgan and Keith (1995). They state prob-

ability assessments of 16 climate experts for various climate-change-related aspects

which “indicate a greater disagreement than we believe is usually conveyed in scientific

consensus documents” (Morgan and Keith 1995:468A). Secondly, empirical evidence

indicates that, quite regularly, people do not maximize EU, in particular if extreme

low-probability outcomes are involved.2

A decision criterion sometimes suggested in the literature (recently by Bretteville 1999,

in similar form Chichilnisky 2000) is to put more weight on the worst case, thereby being

more sensitive to low probability catastrophic events. In other words, one maximizes

a weighted sum of expected utility and the utility in the worst case scenario.3 That is,

while there is some probability assessment, the confidence in this distribution is limited.

Here, for example, the probabilities may stem from an aggregation of several experts’

judgments.4 The weight attached to the expected utility maximization can thereby

1IPCC= Intergovernmental Panel on Climate Change which assesses the scientific, technical and

socio-economic information relevant for the understanding of human-induced climate change.
2For example, the behavior according to the Ellsberg-paradox (Ellsberg 1961) is on conflict with

EU. An overview on alternative decision criteria which can incorporate such deviations from EU is

given by Camerer and Weber (1992).
3This criterion can be understood as a special case of the axiomized Choquet-expected utility theory

which has been developed by Gilboa (1987) and Schmeidler (1989). See for example Eichberger and

Kelsey (1997) for an introduction to this theory.
4As mentioned by Morgan and Keith (1995), consensus methods like the Delphi method could be

applied in order to come up with some aggregated assessment. Alternatively, a decision maker could
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be interpreted as the confidence of the decision maker into the aggregated probability

assessment. To put it differently, the weight given to the worst case is a measure for

the degree of uncertainty.

Bretteville (1999) and Chichilnisky (2000) study the weighted EU and MaxiMin crite-

rion in a static context. Here, less confidence in the probability assessment generally

leads to increased abatement effort, i.e. less emissions. However, the nature of the

climate change problem suggests a dynamic approach which is taken in this paper:

On the one hand, uncertainty might be resolved over time. On the other hand, since

greenhouse gases accumulate in the atmosphere, the emissions are irreversible up to

the specific lifetime of greenhouse gases (eg. 120 years for CO2) and therefore the stock

cannot be reduced even if new information shows that global warming leads to severe

damages.

From a theoretical perspective, this issue of irreversibility of decisions has been ad-

dressed by Arrow and Fisher (1974), Henry (1974), Chichilnisky and Heal (1993) and

others. The basic finding is that making an irreversible decision induces some costs

(quasi-option value) because no change of decision is possible in light of new infor-

mation. Thus, if there is the possibility of additional future information it gets more

important to keep future options open, i.e. taking a more flexible position. With

respect to the greenhouse gas problem, this would imply that current emission lev-

els should be lower if we can learn more about damages in the future (referred to as

“irreversibility effect”).

However, as shown by Ulph and Ulph (1997) within a simple EU-model of global

warming (based on Epstein 1980), the irreversibility effect does not necessarily apply

to the greenhouse gas emissions. In their simulations, the possibility of future learning

leads to increased current period emissions for most parameters. For quadratic utility

functions, they even show that the irreversibility effect never holds. The reason is

that more flexibility with respect to the stock of greenhouse gases by pursuing stricter

abatement policies involves higher abatement costs.

In this paper, I analyze the irreversibility effect and explore the consequences of apply-

ing the weighted EU and Maximin criterion in a two period model. By analogy to Ulph

and Ulph (1997), decisions have to be made on greenhouse gas emissions and accumu-

late in the atmosphere. The stock of gases causes environmental damages which are

uncertain at the beginning of period 1. New information on the harmfulness arrives,

just middle the experts views by some technique.
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however, before the start of the second period, albeit before second period emission

level is fixed. Thus, second period emissions may be contingent on the received signal.

However, applying the weighted EU-MaxiMin criterion, this contingency may lead to

dynamically inconsistent decisions. That is, after receiving the signal and updating

the beliefs, the optimal decision may not be consistent with the emission level that was

considered to be optimal from an ex ante point of view.5 To overcome this problem,

the concept of behaviorally consistency was introduced by Karni and Safra (1989).

This concept — which I apply in this paper — allows to calculate optimal decisions by

standard backward induction.

I first study the effects of an increase of confidence, i.e. of a move from MaxiMin to EU,

on first period emission levels. Contrary to the intuitive results from the static models,

such increased confidence does not necessarily lead to an expansion of optimal emis-

sions. Analyzing the consequences of incorporating the prospective new information

into today’s decisions, I demonstrate that Ulph and Ulph’s result on the irreversibility

effect is fairly fragile to the weight attached to MaxiMin: For quadratic utility func-

tions, if one moves away from EU, the effects of learning are reversed. In other words,

whereas for high confidence levels, that is decision criteria close to expected utility

maximization, learning leads to higher emissions and the irreversibility effect does not

apply (Ulph and Ulph 1997), for small levels of confidence in the probability assessment

it is optimal to emit less than one would do if no learning were possible. Here, the

irreversibility effect holds.

As will be shown, the irreversibility effect can be related to the value of (costless)

learning, i.e. the difference in ex ante expected utility if future learning is / is not

taken into account. Due to deviations from EU, this value can be negative (see Wakker

1988). For quadratic utility functions it is shown that the irreversibility effect holds

if and only if the value of learning is negative. Taking the extended EU - MaxiMin

criterion as a descriptive model, this would explain uncertainty averse people (with low

confidence into the probability assessment) who choose not to receive new information

on the prospective damages. Such people would be afraid of getting an information

which indicates relative harmlessness of emissions whereas finally severe damages result.

Such an information would induce them to choose a higher emission level in period 2

than if learning would not be possible. Thus, if the information cannot be disregarded,

they would obviate this potential mistake of building up a too large stock by emitting

less in period 1.

5It was shown by Epstein and le Breton (1993) and Machina (1989) that this problem generally

may emerge when a non-expected utility framework is applied.
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The remainder of the paper is organized as follows. In section 2, I present the basic

model and study the general first order conditions in section 2.1. In section 2.2 the

effect of the confidence parameter, in section 2.3 the effect of learning is analyzed. The

final section 3 concludes.

2 The model

Consider a two period model with stock pollution. Emissions, e1 in period 1 and e2 in

period 2, yield flow benefits V l(el) in period l (increasing and concave), whereas the

stock at the end of period 2 causes some damage D(e1 + e2, s) (increasing and convex

in e) which depends on a parameter s ∈ S which captures the uncertainty at the start
of period 1. It is assumed that damage and marginal damage increase in s, i.e. s can

be interpreted as a damage parameter. Thus, the total payoff to the representative

consumer is specified as

u = U(e1, e2, s) = V
1(e1) + V

2(e2)−D(e1 + e2, s).6 (1)

I assume that after the first period, albeit before decisions on second period emissions

have to be fixed, new information on the state of nature, i.e. the expected damages,

may arrive. The set of possible signals, I, is assumed to be finite. A tuple (i, s) ∈ I×S
is referred to as a state of the world. Obviously, the decision maker can condition her

second period decisions on the new information, i.e. e2 = e2(i). In this paper I study

and compare two cases: The decision maker (i) could or (ii) could not take into account

the prospective new information when deciding about the first period emission level.

These cases are referred to as the “learning”-case “L” and the “non-learning” case “N”,

respectively.

The decision criterion analyzed in this paper gives more weight to the worst case than

a standard expected utility framework. Assuming that expected utility is based on a

probability distribution µ(i, s), ex ante welfare is given by

λ

Z
I×S

U(e1, e2(i), s)dµ(i, s) + (1− λ)min
(i,s)

U(e1, e2(i), s) (2)

6Note that under our assumptions s ≥ s̄ implies both, U(e1, e2, s) ≤ U(e1, e2, s̄) and Uel(e1, e2, s) ≤
Uel(e1, e2, s̄) for l = 1, 2, i.e. a larger damage parameter s implies both, less utility and a reduced

marginal utility.
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2.1 The optimal choice of emission levels

In the case “N” without learning, e2 clearly does not depend on the signal i. Hence,

the worst case is determined solely by the maximal damage parameter max s and the

optimal decision (eN1 , e
N
2 ) is given by the first-order-condition

0 = λ

Z
S
Uel(e1, e2, s)dµ(s) + (1− λ)Uel(e1, e2,max s) for l = 1, 2. (3)

A “rational” decision maker, however, conditions her e2-choice on the observed signal.

For the weighted EU - MaxiMin criterion, this may lead to temporally inconsistent

decisions: If the emission plan (e1, (e2(i))i) maximizes ex ante preferences (2), the

decision maker in general will deviate from this plan after receiving a signal i. This

inconsistency problem — which arises for all decision criteria that deviate from EU

(Machina 1989) — can be solved by concentrating on those emission plans that will be

stuck to after receiving the new information.7 In other words, given a signal i and a

first period emission level e1, optimal second period emissions, denoted by e
L
2 (e1, i),

maximize the updated preferences

λ

Z
S
U(e1, e2, s)dµ(s | i) + (1− λ)min

s
U(e1, e2, s)

= λ

Z
S
U(e1, e2, s)dµ(s | i) + (1− λ)U(e1, e2,max s) (4)

The first order condition is given by

0 = λ

Z
S
Ue2(e1, e

L
2 (e1, i), s)dµ(s | i) + (1− λ)Ue2(e1, e

L
2 (e1, i),max s) (5)

This choice of eL2 (e1, i) determines the ex ante worst case, i.e. the state of the world

which leads to the smallest utility and is given more weight. Note that the two pe-

riod structure implies that the worst case corresponds to a tupel (i, s). This worst

perceivable case occurs if the information i leads to maximal second period emissions

maxi e
L
2 (e1, i), but finally the worst state of nature max s is realized. This directly

follows from equation (5) and the assumption that marginal utility decreases in s. To

see this, note that

Ue2(e1, e
L
2 (e1, i),max s) ≤ 0.

Hence we obtain for all i ∈ I and s ∈ S

U(e1, e
L
2 (e

L
1 , i), s) ≥ U(e1, eL2 (e1, i),max s) ≥ U(e1,max

j
eL2 (e1, j)),max s).

7This solution concept of behavioral consistency was introduced by Karni and Safra (1989).
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Thus, the worst thing that can happen from an ex ante point of view is that the

damage from emissions is maximal although the information suggested emissions to be

relatively harmless. The optimal emission plan therefore solves

max
e1

·
λ

Z
I×S

U(e1, e
L
2 (e1, i), s)dµ(i, s) + (1− λ)U(e1,max

i
eL2 (e1, i),max s)

¸
, (6)

and results in the first order condition

0 = λ

Z
I×S

·
Ue1(e1, e

L
2 (e1, i), s) + Ue2(e1, e

L
2 (e1, i), s)

∂eL2 (e1, i)

∂e1

¸
dµ(i, s)

+ (1− λ)

·
Ue1(e1,max

i
eL2 (e1, i),max s)

+ Ue2(e1,max
i
eL2 (e1, i),max s)

∂max eL2 (e1, i)

∂e1

¸
. (7)

This optimal emission plan (eL1 , {eL2 (eL1 , i)}i) does not maximize the ex ante preferences,
although it is the best emission plan that the decision maker would stick to after

receiving new information. This discrepancy between ex ante preferences and the

choice of second period emissions based on updated preferences is indicated by the

fact that — differently from expected utility maximization — the partial derivatives with

respect to e2(i) do not cancel out. To see this, note that condition (5) implies thatZ
S
Ue2(e1, e

L
2 (e1, i), s)dµ(s | i) ≥ 0

on the one hand, but

Ue2(e1, e
L
2 (e1, i),max s) ≤ 0

on the other. Plugging this into (7), from the ex ante view, second period emissions

eL2 (e1, i) for i /∈ argmaxjeL2 (e1, j) are chosen at a level too low.8 Since first and second
period emission levels are negatively correlated (∂eL2 (e1, i)/∂e1), this discrepancy tends

to decrease eL1 . For i ∈ argmaxjeL2 (e1, j), however, the emission level is too high from
the ex ante point of view, in tendency increasing e1.

After having described how the decision maker finds the optimal emission level, in the

following sections the role of the confidence parameter λ for decisions and the role of

learning is analyzed.

8Given e1, maximization of (2) with respect to e2(i) would yield
R
S Ue2(e1, e2(i), s)dµ(s | i) = 0,

and, therefore, e2(i) > e
L
2 (e1, i)
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2.2 The impact of the confidence parameter

Let us first study the impact of the confidence parameter on the optimal emission

levels in the case “N”. Here, in line with the results in static models (e.g. Asheim and

Bretteville 2001), the effect is easily seen from (3): The larger λ, the less weight is

given to the worst case, i.e. to the maximal damage. Thus, marginal damage decreases

and first period emissions eN1 are increased, and analyze the partial derivative of (7)

with respect to λ.

For the “L”-case, however, this is different. To get an intuition on the differences, let

us consider only the direct effect of λ on the first order condition (7), i.e. we assume

for the moment that eL2 (·, i) are fixed.

Then, on the one hand, there is a similar effect as in the “N” case: By shifting the

weight away from the worst case, marginal utility of first period emissions emissions is

increased Z
Ue1(·, ·, s)dµ(i, s)− Ue1(·, ·,max s) > 0

Thus, first period emissions could be raised.

On the other hand, however, we have already noted that — from the ex ante view —

second period emissions are too low for i /∈ argmaxjeL2 (e1, j) (tending to decrease e1),
whereas they are too high for i ∈ argmaxjeL2 (e1, j) (implying a larger e1). For an
increase in λ, this discrepancy now is weighted more in the former case, less in the

latter case:

[

Z
Ue2(·, s)

∂eL2 (e1, i)

∂e1
dµ(i, s)]− Ue2(·,max s)

∂max eL2 (e1, i)

∂e1
< 0

Consequently, this effect tends to decrease first period emissions. In addition, clearly

also second period emissions eL2 (·, i) change with λ.

The sum of all effects has an ambiguous sign. That is, an increase of the confidence

parameter λ has an ambiguous impact on emissions eL1 in period 1. This claim is

illustrated by the following example:

Example 1 Let the utility function be given by

U(e1, e2, s) = −(1− e1)2 − (1− e2)2 − s(e1 + e2)2

The damage parameter s may take the values 0, 1, i.e. max s = 1. Let us assume that

two signal i = A,B are possible with µ(A) = 0.1, µ(B) = 0.9 where sA =
R
sdµ(s |

7



A) = 0, sB =
R
sdµ(s | B) = 1. Then, as derived in the appendix, the optimal emission

level in period 1 is given by

eL1 =
1− [λ R (N(i)2 + si)/(1 +N(i))2dµ(i) + (1− λ)(N(i)2 +max s)/(1 +N(i))2]

1 + λ
R
(N(i)2 + si)/(1 +N(i))2dµ(i) + (1− λ)(N(i)2 +max s)/(1 +N(i))2

where N(i) = λsi + (1− λ)max s.

For this example, first period emissions increase for small λ then decrease and finally

rise again. The emission level as a function of the confidence is illustrated in figure 1.
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Figure 1: eL1 as a function of the confidence level 0 ≤ λ ≤ 1 .

Thus, if the decision maker maximizes the weighted average of EU and worst case in

both periods, shifting the weight towards EU does not necessarily imply an increase

of emissions as one might expect if less weight is given to the worst case scenario.

This reverses the intuitive findings for the non-learning case and the static model (e.g.

Aaheim and Bretteville 2001). Rather, it was shown by the example that the optimal

emission level may decrease in λ.

2.3 The effect of learning

In this section, let us study the effect of learning on first period decisions, that is the

differences in first period emission levels between the cases with and without learning.
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Here, the qualitative effects of learning crucially depend on the confidence level λ which

is attached to EU. In other words, conclusions on the irreversibility effect from expected

utility maximization are fairly fragile to a slight change in the decision criterion. To

demonstrate this, I concentrate on the case of quadratic utility functions. On the one

hand, these can be interpreted as an approximation of an arbitrary function; on the

other hand, they build a clear-cut benchmark since Ulph and Ulph (1997) have shown

that the irreversibility effect does not hold for quadratic functions if EU is applied.

Assumption 1 Marginal utility and marginal damage are given by

V 1e1(e1) =

(
a11 − a12e1 for 0 ≤ e1 < a11/a12
0 for e1 > a11/a12

V 2e2(e2) =

(
a21 − a22e2 for 0 ≤ e2 < a21/a22
0 for e2 > a21/a22

De(e, s) = (b1 + sb2)(E0 + e)

where alt, bt, E0 ≥ 0 (l, t = 1, 2) and, further, s < s̄, guaranteeing positive emission

levels in both periods.

Note that E0 can be interpreted as the stock of greenhouse gases which already exists

at the beginning of period 1.9 A sufficient upper bound s̄ for the damage parameter

and the optimal emission levels are derived in the appendix. Clearly, ex1 (x = L,N)

depend on the confidence parameter λ. Their functional form is given by

ex1 =
a11 − [a21 + a22E0]Kx

a12 + a22Kx
(8)

where Kx = λ

Z
k(N(i), si)dµ(i) + (1− λ)k(min

i
N(i),max s) (9)

where k(·, ·) is defined in (14) in the appendix and N(i) = λ
R
sdµ(s | i)+(1−λ)max s

for the “L”-case and N(i) = N̄ := λ
R
sdµ(s) + (1− λ)max s for x = N .

To analyze how the effect of learning on first period decisions, that is the differences in

first period emission levels between the cases with and without learning, depends on

the confidence level, we compare (9) for x = N,L for different λ.

9In particular, the first unit of anthropogenic greenhouse gas would cause no harm (De(0, s) = 0

if E0 = 0).
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For λ = 1, one is obviously back to EU. As already mentioned by Ulph and Ulph

(1997), using the quadratic specification of the utility function the consideration of

learning possibilities leads to an increase of emissions. Hence, the irreversibility effect

does not hold. Thus, due to continuity, the same will hold true for large confidence

levels λ.

For λ = 0, i.e. the MaxiMin criterion, learning has no effect since in both periods only

the worst case matters and second period emissions do not depend on the signal which

is received before the start of period 2.

For small confidence levels λ, i.e. if much weight is given to the worst case, however,

the result of EU is reversed:

Proposition 1 Let the utility function satisfy assumption 1.

If the ex ante confidence in the probability assessment is low, i.e. close to zero, then the

irreversibility effect holds. That is, first period emission levels are lower in the learning

case, i.e. eL1 < e
N
1 .

To prove proposition 1 note again that learning has no effect on emissions if the uncer-

tainty is maximal, i.e. λ = 0.10 We therefore have to study the derivatives of eL1 and

eN1 with respect to λ at λ = 0. Whereas the first derivatives with respect to λ coincide,

the second derivatives satisfy the claimed relationship. The complete proof is given in

the appendix.11

Proposition 1 states that if the degree of uncertainty is high, the irreversibility effect

with respect to the stock of emissions leads to smaller first period emissions when

learning possibilities are taken into account. Thus, the standard result obtained from

expected utility maximization is reversed for large levels of uncertainty. I.e., the impli-

cations of learning capacities on today’s decision do heavily depend on the confidence

the decision maker has into the probability assessment. If the uncertainty aversion

with respect to environmental damage is very large, then more weight is given to the

irreversibility of damage due to climate change, and learning leads to lower emissions.

If the uncertainty is considered to be small, then the monetary irreversibility of capi-

tal expenditures to reduce CO2 emissions dominates and less strict abatement policies

would be chosen.

10This follows immediately from (9) since N(i) = max s for the “L” and the “N” case.
11At λ = 0, the first derivative of (9) w.r.t. λ are

R
k(N(i), si)dµ(i)− k(miniN(i),max s). Again,

N(i) = max s for both the “L”- and the “N”-case and therefore the first derivatives coincide. For the

second derivatives, we have to consider ∂k(·,·)
∂N(i) which is done in the appendix.

10



The following example illustrates the claim of proposition 1:

Example 2 Let the utility function again be given by

U(e1, e2, s) = −(1− e1)2 − (1− e2)2 − s(e1 + e2)2

where s can take the values 0 and 1. Two signals i = A,B can be received with ex ante

probabilities µ(A) = 0.1 and µ(B) = 0.9, respectively. The conditional probabilities are

assumed to be given by

µ(0 | A) = 0.75 = 1− µ(1 | A) and µ(0 | B) = 0.25 = 1− µ(1 | B)
In figure 2 we show the impact of the degree of confidence on optimal decisions. Here,

the difference between first period emissions in the “learning” and the “non-learning”

case, eL1 − eN1 , is depicted as functions of λ ∈ [0, 1]. The picture illustrates the well-
known fact that eL1 exceeds e

N
1 for expected utility maximization (λ = 1). However, this

relationship is reversed over a wide range of confidence levels. Thus, in our example

the irreversibility effect holds for most weights given to EU or MaxiMin respectively.
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Figure 2: eL1 − eN1 as a function of the confidence level 0 ≤ λ ≤ 1 .

2.4 The irreversibility effect and the value of learning

A critical feature of all decision criteria that are not consistent with EU is that there

exist situations where the value of learning is negative (Wakker 1988). This value is

11



defined by the difference WL −WN where W x denotes the ex ante (expected) utility

for the “learning” and “non-learning” case respectively which can be obtained from

(2). Therefore, in a framework where people have an additional choice on whether or

not to receive some information, they might choose to stay uniformed. Although being

a normative drawback for applying non-EU criteria, this might realistically describe

the behavior of some people.

For the model analyzed here, a negative value of learning can occur. In fact, it is

related to the irreversibility effect: On the one hand, for λ = 1, i.e. expected utility,

the value of learning clearly is positive, the irreversibility effect does not hold. On the

other hand, for MaxiMin (λ = 0), the value of learning is zero and decisions coincide

for the “N” and “L” case. More generally, the irreversibility effect and the value of

learning are connected:

Proposition 2 Let the utility function satisfy assumption 1. Then:

The value of learning is positive if and only if the irreversibility effect does not hold, i.e.

the consideration of learning possibilities leads to an increase of emissions (eL1 > e
N
1 ).

Thus, if we assume that the behavior of (some) people can be described by the weighted

EU and MaxiMin criterion, uncertainty averse people with a low confidence in the

probability distribution, could choose not to receive new information on the prospec-

tive damages. The reason being, that they would fear getting an information which

indicates relative harmlessness of emissions whereas finally severe damages result. Such

an information would induce them to choose a higher emission level in period 2 than if

learning would not be possible. Thus, if the information cannot be disregarded, they

would obviate this potential mistake of building up a too large stock by emitting less

in period 1 which leads to the irreversibility effect. However, in a broader framework,

where such people have the choice of whether or not to receive information, they would

prefer to avoid this thread by staying uniformed. That is, they would not reach the

situation in which the irreversibility effect matters.

3 Conclusions

In this paper I investigated decisions on abatement of greenhouse gas emissions under

uncertainty when based on a weighted average of EU and MaxiMin. Such a decision

criterion can be motivated in two different ways: First, because of the fundamental

12



uncertainties related to the climate change problem, there is not the single probability

distribution. Even if one tries to aggregate different expert’s opinions to a single mea-

sure one may be attempted to give more weight to the worst case in order to account

for unexpected contingencies and to behave cautiously. Second, the failure of expected

utility theory to explain behavior of individuals if confronted with fundamental uncer-

tainties motivates the analysis of alternative decision criteria. In this paper, emission

levels ere analyzed as a function of the weight attached to the worst case. Thereby,

standard results based on expected utility maximization were reconsidered in a broader

framework. In particular, the impact of getting new information was studied.

Within a simple two period model that captures some key features of global warming I

first showed that a larger weight on the worst case can lead to an increase of emissions.

The effect of learning on emissions is not clear in general, but depends qualitatively

on the confidence level: For the quadratic utility case, considering prospective learning

decreases today’s emissions if the weight on EU is small. To put it differently, if

the degree of uncertainty (the weight on the worst case) is high, the “irreversibility

effect” holds. This finding contrasts the standard results on the irreversibility effect

for expected utility maximizer which in our framework corresponds to high confidence

levels. Thus, if one behaves more cautiously by giving more weight to the worst case

scenario, learning possibilities enhance the importance to pursue a stricter abatement

policy today. In a broader framework, however, when people can choose whether

or not to receive the (costless) information, it may happen that she decides not to

learn because the value of information is negative. For quadratic utility functions this

situation coincides with the occurance of the irreversibility effect, i.e. the possibility

of learning does not lead to a higher abatement effort because in cases where the

irreversibility effect holds, no learning is preferred.

Summarizing, although a decision criterion that gives more weight to the worst case can

be motivated in several ways, there are problems of applying it to a dynamic framework

at least for normative reasons. A criterion where dynamic inconsistencies imply an

increase of emissions when the worst case is weighted more, and where information

may have a negative value and thus even costless learning is disregarded, can have

merits as a descriptive model but should not serve as a tool for policy advice.

4 Appendix

Sufficient conditions for an interior solution for the quadratic case:

13



To get an interior solution in period l, el, it suffices to have positive marginal utility at

el = 0. I.e., for el = 0: Uel(e1, e2, s) = al1 − (b1 + b2s)[E0+ et] > 0 (t 6= l) for all et and
s. The left hand side of this inequality decreases in s and et. We know: et < ēt, where

ēt denotes the maximal emission level in period t, that could be optimal ex post, i.e.

the optimal level for s = 0 and el = 0. Therefore, by definition, Ue1(ē1, 0, 0) = 0 and

Ue2(0, ē2, 0) = 0. For the quadratic case we obtain ēt =
at1−b1E0
at2+b1

. Therefore we have to

guarantee that al1 − (b1 + b2s)(E0 + ēt) > 0 for all s, i.e.

s < s̄ := min
l 6=t

½
al1 − b1(E0 + ēt)
b2(E0 + ēt)

¾
= min

l 6=t

½
(al1(at2 + b1)− b1(at1 + at2E0)

b2(at1 + at2E0)

¾
. (10)

Hereby it is assumed that the parameters guarantee s̄ > 0.

Optimal emission levels for the quadratic case:

We first derive the optimal second period emission levels given e1 for the cases “L” und

“N” simultaneously. We define N(i) = λ
R
sdµ(s | i) + (1 − λ)max s for the learning

case “L” and N(i) = N̄ := λ
R
sdµ(s) + (1− λ)max s for “N”. Then, using (5):

ex2(e1, i) =
a21 − (b1 + b2N(i))(E0 + e1)

a22 + b1 + b2N(i)
(11)

where x = L,N . Therefore:

∂ex2(e1, i)

∂e1
= − b1 + b2N(i)

a22 + b1 + b2N(i)
≤ 0. (12)

Plugging this into (7), we obtain:

0 = a11 − a12e1 + λ

· Z
(a21 − a22ex2(·))

∂ex2(·)
∂e1

− [(b1 + b2s)(E0 + e1 + ex2(·)](1 +
∂ex2(·)
∂e1

)dµ(i, s)

¸
+ (1− λ)

·
(a21 − a22max

i
ex2(·))

∂maxi e
x
2(·)

∂e1

− [(b1 + b2max s)(E0 + e1 +max
i
ex2(·)](1 +

∂maxi e
x
2(·)

∂e1
)

¸
.(13)

Note that

max
i
ex2(e1, i) = max

i

a21 − (b1 + b2N(i))(E0 + e1)
a22 + b1 + b2N(i)

=
a21 − (b1 + b2miniN(i))(E0 + e1)

a22 + b1 + b2miniN(i)
.
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For the non-learning case (x = N) we obtain eN2 (·) by setting N(i) = N̄ for all i.

Let us now derive the optimal first period emission levels. For shortness of presentation,

define si =
R
sdµ(s | i) and

k(n, s) =
1

(a22 + b1 + b2n)2

·
(b1 + b2n)

2 + a22(b1 + b2s)

¸
(14)

(15)

where n, s are reals. Then, from (13), we obtain for the emission level ex1 (x = L,N)

ex1 =
a11 − (a21 + a22E0)Kx

a12 + a22Kx
, (16)

where

Kx := λ

Z
k(N(i), si)dµ(i) + (1− λ)k(min

i
N(i),max s) (17)

and N(i) = λ
R
sdµ(s | i)+(1−λ)max s for the “L”-case andN(i) = N̄ := λ

R
sdµ(s)+

(1− λ)max s for x = N .

Proof of proposition 1:

We show that eL1 < e
N
1 for small λ. Using (16), it suffices to show that K

L > KN for

small λ. We show that (a) eL1 and e
N
1 and (b) the derivatives w.r.t λ coincide at λ = 0.

We therefore study the second derivatives which are derived in (c) and then compared

in (d).

(a)

For λ = 0 it follows for the “L”-case N(i) = λ
R
sdµ(s | i)+ (1− λ)max s = max s and

for x = N we get N̄ = N(i) = λ
R
sdµ(s)+ (1− λ)max s = max s. Remembering (17),

we immediately obtain KN = KL.

(b)

To prepare the proof, consider first the partial derivatives of k(n, s), defined in (14):

∂k

∂n
=

2a22b
2
2

(a22 + b1 + b2n)3
(n− s) (18)

∂k1
∂s

=
a22b2

(a22 + b1 + b2n)2
≥ 0 (19)

where ∂k
∂n
> 0(< 0) if n > s (n < s).

Note that

dKx

dλ
=

∂Kx

∂λ
+
X
i

∂Kx

∂N(i)

dN(i)

dλ
.

15



Here, using (17) it follows immediately

∂Kx

∂λ
=

Z
k(N(i), si)dµ(i)− k(min

i
N(i),max s). (20)

Noting that N(i) = max s at λ = 0 for all i for both the “learning”and the “non-

learning”-case, we immediately see that ∂KL

∂λ
= ∂KN

∂λ
at λ = 0.

Further, let us define δi = 1 if i = i∗ := argminj N(j) and δi = 0 otherwise. Then,

using (18) and (19) and N(i) = max s at λ = 0, we obtain for the derivatives of (17)

w.r.t. N(i):

∂Kx

∂N(i)
= λµ(i)

∂k(N(i), si)

∂n
+ δi(1− λ)

∂k(N(i),max s)

∂n| {z }
=0 for λ=0

(21)

= 0 for λ = 0

Thus, at λ = 0, dK
L

dλ
= dKN

dλ
.

(c)

We now derive the second derivatives d2KL

dλ2
and d2KN

dλ2
. Here, with (20) and (21) we

obtain at λ = 0:

d2KL

dλ2
=

∂2KL

(∂λ)2| {z }
=0

+2
X
i

∂2KL

∂λ∂N(i)

dN(i)

dλ
+
X
i

∂2KL

(∂N(i))2
(
dN(i)

dλ
)2 +

X
i

∂KL

∂N(i)| {z }
=0 for λ=0

d2N(i)

dλ2

= 2
X
i

∂2KL

∂λ∂N(i)

dN(i)

dλ
+
X
i

∂2KL

(∂N(i))2
(
dN(i)

dλ
)2. (22)

Thus, we have to study ∂2KL

∂λ∂N(i)
and ∂2KL

(∂N(i))2
. Taking into account (18), partial differen-

tiation of (20) w.r.t. N(i) gives at λ = 0:

∂2KL

∂λ∂N(i)
= µ(i)

∂k(N(i), si)

∂n
− δi

∂k(N(i),max s)

∂n

= µ(i)T (N(i))(N(i)− si)− δiN(i)−max s)T (N(i))
N(i)=max s
= µ(i)T (max s)(max s− si)

where T (N(i)) =
2a22b22

(a22+b1+b2N(i))3
and again δi = 1 if i = i∗ := argminj N(j) and δi = 0

otherwise.

Further, from (18) and (21) we obtain at λ = 0:

∂2KL

(∂N(i))2
= δi

∂2k(N(i),max s))

∂n2
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= δi

T (N(i)) + T (N(i))

a22 + b1 + b2N(i)
(N(i)−max s)| {z }

=0


= δiT (max s)

Plugging these partial derivatives into (22), we finally arrive at

d2KL

dλ2
= T (max s)

2X
i

µ(i)(max s− si) dN(i)
dλ| {z }

=si−max s

+(
dN(i∗)
dλ| {z }

=si∗−max s

)2


= T (max s)

"
−2
X
i

[µ(i)(max s− si)2] + (max s− si∗)2
#

for the “L”-case at λ = 0.

Changing si and si∗ into
R
sdµ(i, s) =

P
µ(i)si, we directly obtain the partial derivative

for the case x = N :

d2KN

dλ2
= −T (max s)[max s−

X
i

µ(i)si]2

Thus, d
2KL

dλ2
> d2KN

dλ2
at λ = 0 is equivalent to³

max s−
X

µ(i)si
´2
− 2

X
i

[µ(i)(max s− si)2] + ¡max s− si∗¢2 > 0.
(d)

Let us denote di = max s− si and w.l.o.g. we assume that d1 ≥ d2 ≥ . . ., i.e. i∗ = 1.
Then we have to show that

∆ := (
X
i

µ(i)di)2 − 2
X
i

µ(i)(di)2 + (d1)2 > 0

Now defining π(2) = µ(1)+µ(2) and π(i) = µ(i) for i ≥ 3, simple transformations lead
to:

∆ =

ÃX
i≥2

π(i)di

!2
− 2

X
i≥2

π(i)(di)2 + (d2)2

+ [d1 − d2][(d1 + d2)(1− 2µ(1) + µ(1)2) + 2µ(1)
X
i≥2
µ(i)di]| {z }

≥0

≥
ÃX
i≥2

π(i)di

!2
− 2

X
i≥2

π(i)(di)2 + (d2)2
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with strict inequality if d1 > d2. Repeating this procedure we get ∆ ≥ 0. Thus,
d2KL

dλ2
> d2KN

dλ2
, if not all di (si) coincide. Therefore, it finally follows that KL > KN for

small λ and the “N” emission level exceeds the emissions when learning is taken into

account. Q.E.D.

Proof of proposition 2:

Let us now compare the expected ex ante utility for “no-learning”,WN , and “learning”,

WL. Under assumption 1) we obtain:

V 1(e1) = − 1

2a12
(a11 − a12e1)2

ex2(e1, i) =
a21 − (b1 + b2N(i))(E0 + e1)

a22 + b1 + b2N(i)

e1 + e
x
2(e1, i) =

a21 + a22e1 − (b1 + b2N(i))E0
a22 + b1 + b2N(i)

V 2(ex2(e1, i)) = − 1

2a22
(a21 − a22ex2(e1, i))2

= −a21 + a22(E0 + e1)
2a22

µ
(b1 + b2N(i)

a22 + b1 + b2N(i)

¶2
Thus, the ex ante payoff W x is given by

W x = V 1(ex1) + λ

Z
V 2(ex2(e

x
1 , i))−D(ex1 + ex2(ex1, i), s)dµ(i, s)

+ (1− λ)[V 2(ex2(e
x
1 , i∗))−D(ex1 + ex2(ex1 , i∗),max s)]

= −(a11 − a12e
x
1)
2

2a12
− a21 + a22(E0 + e

x
1)

2a22

·
λ

Z
(b1 + b2N(i))

2 + (b1 + b2s)a22
(a22 + b1 + b2N(i))2

dµ(i, s)

+(1− λ)
(b1 + b2N(i∗))2 + (b1 + b2max s)a22

(a22 + b1 + b2N(i∗))2
¸

= −(a11 − a12e
x
1)
2

2a12
− (a21 + a22(E0 + e

x
1))

2

2a22
Kx

(16)
= −(a11a22 + a12a21 + a12a22E0)

2

2a12a22

Kx

(a12 + a22Kx)

Thus, we see that W x is decreasing in Kx. Therefore WL > (<)WN if and only

if KL < (>)KN : Combining this with eL1 > (<)eN1 if and only if KL < (>)KN ,

completes the proof. Q.E.D.
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