

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Beerli, Andreas; Indergand, Ronald; Kunz, Johannes S.

Working Paper

The supply of foreign talent: How skill-biased technology drives the location choice and skills of new immigrants

GLO Discussion Paper, No. 998

Provided in Cooperation with:

Global Labor Organization (GLO)

Suggested Citation: Beerli, Andreas; Indergand, Ronald; Kunz, Johannes S. (2021): The supply of foreign talent: How skill-biased technology drives the location choice and skills of new immigrants, GLO Discussion Paper, No. 998, Global Labor Organization (GLO), Essen

This Version is available at: https://hdl.handle.net/10419/247714

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

The supply of foreign talent: How skill-biased technology drives the location choice and skills of new immigrants*

Andreas Beerli ETH, Zurich RONALD INDERGAND SECO

JOHANNES S. KUNZ Monash University

December 13, 2021

Abstract

An important goal of immigration policy is to facilitate the entry of foreign-born workers whose skills are in short supply in national labor markets. In recent decades, information and communication technology [ICT] has fueled the demand for highly educated workers at the expense of lower educated groups. Exploiting the fact that different regions in Switzerland have been differentially exposed to ICT due to their pre-ICT industrial composition, we present evidence suggesting that more exposed regions experienced stronger ICT adoption, accompanied by considerably stronger growth in relative employment and wage-premia for college-educated workers. Following this change in the landscape of relative economic opportunities, we find robust evidence that these regions experienced a much stronger influx of highly educated immigrants in absolute terms as well as relative to lower educated groups. Our results suggest that immigrants' location decisions respond strongly to these long-run, technology-driven changes in their economic opportunities.

Keywords: immigrant sorting, international migration; skill-biased technical change; information and communication technology; skill supply;

JEL-codes: F22, J61, J24, J31, J23

^{*}Addresses: Beerli: ETH Zurich, KOF Swiss Economic Institute and Immigration Policy Lab, LEE G 116, Leonhard-strasse 21, 8092, Zürich. E-mail: beerli@kof.ethz.ch; Indergand: State Secretariat for Economic Affairs, Holzikofenweg 36, CH-3003 Bern. Email: ronald.indergand@seco.admin.ch; Kunz: Centre for Health Economics, Monash Business School, 900 Dandenong Road, 3145 Caulfield East, Vic, Australia; E-mail: johannes.kunz@monash.edu.

We thank Klaus Zimmermann (the editor) and five anonymous referees, as well as, Michael Amior, Daniel Auer, David Autor, David Dorn, Georg Graetz, Jeffrey Grogger, Dominik Hangartner, David Johnston, Brian Kovak, Claudio Labanca, Alan Manning, Klaus Neusser, Gianmarco Ottaviano, Giovanni Peri, Pichler Stefan, Kevin Shih, Michael Siegenthaler, Chad Sparber, Kevin Staub, Steve Stillman, Rainer Winkelmann, Ulrich Woitek, Fabrizio Zilibotti and Josef Zweimüller and seminar participants at AASLE (Sydney), Econometrics Workshop (Wellington), University of Zurich, University of Bern, London School of Economics and Political Science, University of California in Davis, EEA and the University of Pennsylvania for valuable comments and discussions. A previous version of this paper circulated under the title "Which Factors Drive the Skill Mix of Migrants in the Long-Run?" The views expressed in this paper are those of the authors and do not necessarily represent those of the State Secretariat for Economic Affairs. Kunz acknowledges funding by the Early Career Research Grant (ECR), Monash Business School.

1 Introduction

International migrants in developed countries are increasingly highly educated. The number of immigrants with a tertiary degree heading to OECD countries grew by nearly 130% between 1990 and 2010 (OECD, 2013). Foreign-born talent is unevenly distributed not only across destination countries, with four Anglo-Saxon countries (the USA, the UK, Canada, and Australia) accounting for nearly 70% of all high-skilled immigrants in 2010, but also across regions within destination countries (Kerr et al., 2016; Peri, 2016). Understanding the driving forces behind the growth and unequal geographical distribution of foreign talent is important. Several studies highlight that high-skilled migrants positively contribute to growth and innovation (Beerli et al., 2021; Kerr and Lincoln, 2010; Peri, Shih and Sparber, 2015), to trade (Gould, 1994; Head and Ries, 1998), may have positive effects on public finances in host countries (Dustmann and Frattini, 2014), and often positively affect natives in the labor market (Beerli et al., 2021); although some studies also find negative labor market impacts (Borjas and Doran, 2015; Doran, Gelber and Isen, 2016). Consequently, policies facilitating the entry of foreign talent are popular among policymakers.¹

Evidence from previous research based on cross-country data typically highlights that destination countries with higher earnings inequality attract larger shares of immigrants with a college degree (Grogger and Hanson, 2011). The growth in earnings inequality, on the other hand, has also been at the focus of a separate literature, reviewed by Acemoglu and Autor (2011) and Autor (2015), that documents the profound impact of information and communication technology [ICT] on the labor markets in OECD countries in the last 30 years. New automation technologies, substituting for middle-skilled jobs and complementing high-skilled ones, fueled the demand for talent and contributed to an increasing earnings inequality. Little is known, however, whether and how immigrants respond to these changing economic opportunities brought about by technological change. As promoting the entry of foreign talent is one commonly argued policy response to the growing inequality and "shortage of skills", it is crucial to understand how skill-biased changes in demand affect the flow, skill types, and location decision of immigrants.

In this paper, we provide comprehensive evidence that the local growth in foreign-born talent is a response to shifts in the local demand for skills driven by exposure to computerization. We focus on Switzerland which is well-suited to study high-skilled immigration. From 1990 to 2010, the country experienced a considerable inflow of immigrants, increasing the share of foreign-born citizens from 20% to 29%. Among these, the share of people

¹ In the U.S., for instance, some politicians want to increase the selectiveness of its immigration policy by introducing a point-based system akin to the ones in Canada or Australia and abolish its current family-centered approach (Economist, 2017).

with a tertiary education grew from 17% to 44%, overtaking the share of natives (25% in 2010).² In 2002, Switzerland implemented a free movement policy [FMP], which abolished immigration restrictions for all EU citizens, but not for those from other parts of the world. This policy change allows us to study whether increased openness to immigration affected the skill supply of foreign workers. We exploit census data detailing the educational attainment of immigrants from an extensive set of origin countries settling in Swiss local labor markets from 1990–2010.³ Our focus on local labor markets as destinations, where newly arriving immigrants settle, is motivated by testable predictions about the impact of ICT exposure on local economic opportunities. We augment these hypotheses with those from the literature on the location choice of immigrants with different skills. Together, this produces novel insights on the effects of ICT exposure on local economic opportunities and immigrants' response to them. We proceed in three steps.

First, we document the change in economic opportunities across local labor markets in Switzerland. We hypothesize that local labor markets are differentially exposed to computerization to the degree their industries were initially specialized in occupations with a high routine task content. This hypothesis is inspired by the work of Autor and Dorn (2013) who documented the impact of ICT on local labor markets in the US more generally but not on newly arriving immigrants. The (testable) assumption is that ICT substitutes for workers with intermediate skills employed in routine-intensive occupations (e.g. clerks, assembly line workers, machine operators) and complements highly educated workers in occupations with a high degree of abstract tasks, such as managers, professionals, and technicians. Falling ICT costs induce firms to substitute routine-intensive employment for computer capital and hire workers complementary to it. We exploit that a region's industry mix in 1970 strongly determines its specialization in routine employment in later decades. This allows us to use a region's industry specialization in 1970 as an instrument for its routine specialization in our sample period, 1990 to 2000. Paralleling the US experience, we find that local labor markets with higher initial routine specialization experienced stronger ICT investment and adoption, stronger employment growth at the top of the wage distribution, and a larger reduction of employment in intermediate wage ranks. Furthermore, we find evidence for a considerable increase in the wage gap between college and middle-educated workers in these regions. A novel result is that, in contrast to evidence for the US, we find no indication of stronger employment growth at the bottom of the skill distribution due to ICT, in so-called manual or low-skilled service jobs. The ICT-induced growth of low-skilled service jobs, therefore, may be seen as less

²Meanwhile, the share of middle educated remained constant at 26%, while the share of low educated decreased strongly from 57% to 29% (cf. table C3).

³A note on terminology. We define commuting zones [CZs] as local labor markets and use both interchangeably. We refer to skills as different levels of education unless otherwise specified.

robust to changes in context. Similarly, the wage gap between middle and lower-educated workers did not change differentially across regions. We interpret these findings as suggestive evidence that progress in ICT fueled the demand for high-skilled workers in Swiss regions and, thus, increased the economic opportunities for them (relative to those with intermediate skills).

Second, the main result of this paper is that the changes in economic opportunities due to ICT exposure had a strong impact on the skill mix of newly arriving immigrants. Our empirical analysis is guided by a simple location choice model (e.g. Grogger and Hanson, 2011). Consistent with the prediction from this framework, we find that regions with higher routine specialization, and hence a larger increase in economic opportunities for talented workers, experienced a considerably stronger inflow of highly educated immigrants while the inflow of middle-educated immigrants was weaker in both decades between 1990 and 2010. Our preferred specification suggests that, on average, a 5 percentage point higher local routine specialization (roughly equal to the cross-region interquartile range) led to a 14% higher inflow of tertiary educated immigrants relative to those with middle education. At the lower end of the skill spectrum, we find no evidence for a differential inflow of immigrants with intermediate relative to lower skills. This is consistent with the insignificant change in the relative economic opportunities of the lower two skill groups. The change in the education mix of immigrants is paralleled by a change in their occupational composition: while the typical, newly arriving immigrant in 1990 was working in a lower qualified occupation such as craft, elementary, and service occupations, ICT exposed regions attracted more new immigrants working as professionals, managers and technicians and fewer working in middle-skilled craft occupations. We explore numerous alternative explanations for the differential inflow of highly and moderately skilled immigrants including the regional importance of ethnic networks, agglomeration effects, offshoring, and manufacturing decline. None of these factors nor a comprehensive set of sensitivity analyses invalidate these findings. Investigating the heterogeneity of these effects across sectors and regions, we find a much more pronounced inflow of highly educated immigrants into the service sector compared to manufacturing.

Third, we analyze whether and how the inflow and location decisions of immigrants with different education levels changed when immigration restrictions were significantly altered. We exploit that Switzerland adopted a free movement policy in 2002, which liberalized access to the Swiss labor market for workers from EU member states. Immigration from other countries continued to be subject to quotas and restrictions. Using a difference-in-differences strategy, we find that the FMP strongly increased the inflow of EU relative to non-EU immigrants in all education groups. We cannot reject the hypothesis, however, that the policy only affected the total inflow of immigrants but not

the relative supply by skill group.

Taken together, our results suggest that exposure to skill-biased technology led to strong shifts in the relative demand for highly educated versus middle educated workers, changing their relative economic opportunities. The change in the landscape of relative economic opportunities attracted the supply of foreign talent (in absolute as well as relative terms). The last part of our analysis suggests that the abolishment of immigration restrictions did not alter this response.

This paper makes important advances to a number of literatures. First, it relates to a growing literature on the determinants of talent flows and immigrant sorting across destination countries and regions (see, inter alia, Beine, Bertoli and Fernández-Huertas Moraga, 2016; Parey et al., 2017). While the growth in highly skilled migration and their clustering in Anglo-Saxon countries or across regions in the U.S. has been highlighted previously (Kerr, 2019; Peri, 2016), we know relatively little about factors driving these patterns across time and space. An exception is Grogger and Hanson (2011) who show that countries with higher earnings inequality attract a higher share of tertiary educated immigrants, a phenomenon referred to as positive sorting. We extend this analysis in at least four ways. First, we find evidence for positive sorting already in 1990 in different regions within Switzerland as one destination country. Second, an important novel finding is that positive sorting accentuated considerably between 1990 and 2010. This is consistent with the increase in the number and clustering of immigrant talent across countries documented globally. Third, to the best of our knowledge, this is the first paper extending prior work by highlighting the central role of skill-technology as one specific cause for these trends. Fourth, by exploiting on a plausibly exogenous shock to a full range of relative economic opportunities, we offer an alternative way to the common approach in the literature studying immigrant sorting which typically correlates immigrant flows with potentially endogenous earnings differentials.⁴ This is advantageous since earnings differentials might only capture part of the relative differences in economic opportunities, as pointed out by Amior and Manning (2018, p1942), that foreign-born workers factor into their immigration decision (next to employment opportunities created). In short, our findings show that Gould and Moav (2016, p1090)'s observation that economic inequality "determine[s] how a country competes internationally to attract high skill immigrants" extends even to the sub-national local labor market level. Second, our paper relates to a larger literature documenting the impact of ICT on local labor markets within countries.⁵

⁴An exception is Wilson (2020) who studies the migration response to fracking.

⁵After Autor, Levy and Murnane (2003)'s seminal contribution introducing the task framework to evaluate the impact of ICT in the U.S. labor market, its impact have also been studied in the U.K. (Goos and Manning, 2007), Europe (Goos, Manning and Salomons, 2014), Germany (Dustmann, Ludsteck and Schönberg, 2009; Spitz-Oener, 2006), and across countries (Michaels, Natraj and Van Reenen, 2014).

This literature highlighted several adjustment mechanisms, e.g. the within-country reallocation of high-skilled workers across differentially exposed regions and of low-skilled workers across occupations (Autor and Dorn 2013; Autor, Dorn and Hanson 2015), and the predominant role of young workers in the growth of high-skilled employment (Autor and Dorn, 2009). In this paper, we highlight the entry and endogenous location decision of newly arriving immigrants as one important, and previously undocumented, local adjustment mechanism to the impact of ICT. Larger entry of foreign-born talent is one way how the local supply of skills may increase. This channel is complementary and potentially faster than the endogenous skill supply through youth's investment in higher education. Concurrently developed as our paper, Mandelman and Zlate (Forthcoming) and Basso, Peri and Rahman (2020) show for the U.S. that the ICT-induced growth in low-skilled service sector jobs at the bottom of the wage distribution documented by Autor and Dorn (2013) is mainly driven by low-skilled foreign workers. Our findings illustrate that the absorption of foreign workers into low-skilled service jobs is possibly specific to context. For the Swiss context, we show that the absence of a strong differential response of middle-to-low educated immigrants can be rationalized by the fact that economic opportunities did not change differentially in the lower half of the wage distribution. We do find, however, a strong response of highly educated immigrants adopting work in high-paying occupations which was more modest in the U.S.

Finally, our study contributes to the literature evaluating the effect of immigration policies on the inflow of immigrants and their impact on the local economy. Earlier studies pointed to a complementarity between weaker immigration restrictions and greater demand-pull forces in destination countries leading to larger total inflows of immigrants (Mayda, 2010; McKenzie, Theoharides and Yang, 2014; Ortega and Peri, 2013). One example from our context is Beerli et al. (2021) who find that the abolishment of immigration restrictions for EU workers in Switzerland after 2002 led to a strong inflow of mostly highly educated immigrants and benefitted firms in skill-intensive sectors and those expressing difficulties to recruit skilled workers prior to the reform. Our paper's results highlight that a strong, long-term, and technology-induced increase in the demand for skills is the underlying cause that led to relatively stronger inflows of highly educated immigrants. This trend in the skill mix was already present before the reform. Yet, the reform accentuated the inflows of immigrants in all education groups and might have allowed regions with the largest skill demand to attract even more talent.

⁶Beerli et al. (2021) exploit that the reform led to a stronger inflow of cross-border workers in regions close to the Swiss border. While we focus on newly arriving resident immigrants in this paper, we provide suggestive evidence that the skill mix of cross-border workers responded in a similar way to ICT exposure (see table C7). In addition, we also show that the influx of cross-border workers in regions close to the border did not alter the response of newly arriving resident immigrants there (in table C6).

The remainder of this study proceeds as follows. In Section 2, we lay out the conceptual framework and empirical strategy of our main specifications. In Section 3, we describe the data and variable construction we use, the context of immigration policies, and present descriptive statistics. In Section 4, we discuss our main results: the impact of ICT exposure on economic opportunities, the response in the skill mix of immigrants, and to which degree the free movement policy affected this response. Section 5 concludes our paper. All referenced supplementary material (including tables and figures denoted with alphabetic letters) can be found in Beerli, Indergand and Kunz (2021).

2 Conceptual framework and empirical strategy

2.1 Modeling immigrant sorting

We are interested in how newly arriving immigrants sort into local labor markets based on ICT-induced changes in economic opportunities. To fix ideas, we specify a simple but general gravity model with linear utility analogous to Grogger and Hanson (2011).⁷ We adapt their sorting equation with two education groups to our context with three education groups. This allows capturing potentially non-monotone effects along the skill distribution.

In this model (c.f. Grogger and Hanson, 2011, equation 6), immigrant sorting can be written as

$$\ln \frac{N_{rst}^j}{N_{rst}^{j-1}} = \alpha^j (v_{rt}^j - v_{rt}^{j-1}) - \alpha^j (g_{rst}^j - g_{rst}^{j-1}) + (q_{st}^j - q_{st}^{j-1})$$
 (1)

where the (log) number of individuals with education level j (relative to those with education j-1), $\ln \frac{N_{rst}^j}{N_{rst}^{j-1}}$, migrating from source country s to destination region r in year t is a function of three education-specific difference vectors: (i) destination characteristics (pull factors), $v_{rt}^j - v_{rt}^{j-1}$, such as education-specific wages, employment possibilities, or the region's general amenities, (ii) source country characteristics (push factors), $q_{st}^j - q_{st}^{j-1}$, such as wages, political stability, and supply of skills, (iii) destination-by-source characteristics, $g_{rst}^j - g_{rst}^{j-1}$, most commonly considered the pecuniary and non-pecuniary costs of migrating from r to s, such as source-country and skill-specific immigration

⁷For a recent review, see Beine, Bertoli and Fernández-Huertas Moraga (2016) that discusses the motivation and microeconomic foundation of gravity models in migration research more generally.

restrictions or psychological costs of moving.⁸

To study the long-run impact of destination regions' potential exposure to ICT adoption, we take the first difference across decades of equation (1). This cancels factors common to both education groups that do not change across decades, e.g. local amenities, bilateral geographic distances, or language. Then, the *change* in the relative number of immigrants by education group is a function of *education-specific changes* in push and pull factors as well as changes in bilateral migration costs. The coefficient vector α^j governs the impact of these factors. For instance, setting j = 3, an ICT-induced rise in the wage premium for high relative to middle education, i.e. $w_{rt}^3 - w_{rt}^2$, would, *ceteris paribus*, lead to an increase in the number of highly relative to middle educated immigrants, i.e.

$$\alpha_{wage}^{3} = \frac{\partial \ln \frac{N_{rst}^{3}}{N_{rst}^{2}}}{\partial (w_{rt}^{3} - w_{rt}^{2})} > 0.$$

2.2 EXPOSURE TO ICT

Our main interest lies in estimating the effect of changing economic opportunities in destinations $(v_{rt}^j - v_{rt}^{j-1}) - (v_{rt-1}^j - v_{rt-1}^{j-1})$ on the change in the skill mix of immigrants, $\ln \frac{N_{rst}^j}{N_{rst}^{j-1}} - \ln \frac{N_{rst-1}^j}{N_{rst-1}^{j-1}}$. The standard approach in the literature is to estimate equation (1) using differences in income levels between education groups, both in destinations and origin countries and proxies or high-dimensional fixed effects to absorb bilateral migration costs, (see e.g. Bertoli and Fernández-Huertas Moraga, 2013). In contrast, we exploit the exposure to ICT as a plausibly exogenous and skill-biased demand shock in Swiss local labor markets. By focusing on labor markets within a country, this approach eliminates several potential confounders associated with location choice of a more diverse set of destinations as in a cross-country comparison.

Based on testable predictions from a large body of literature on ICT and job polarization, we hypothesis that ICT affected economic opportunities in Swiss local labor markets differently to the degree they were differentially specialized in routine-task intensive jobs in the pre-ICT era.¹⁰ The idea is that ICT substitutes for workers employed in occupa-

⁸In the structural model of Grogger and Hanson (2011), immigrant sorting depends only on education-specific wages in the destination and source countries, education-specific migration costs, and the skill supply in the source country. In their case, the pull vector, $v_{rt}^j - v_{rt}^{j-1}$, includes only wages and the push-vector, $q_{st}^j - q_{st}^{j-1}$, corresponds the sum of skill supply and wages in the source-country, i.e., $\ln(N_{st}^j/N_{st}^{j-1}) - \alpha^j(v_{st}^j - v_{st}^{j-1})$. In our equation (1), the push- and pull vector include a more general representation of economic opportunities including wages and also employment possibilities. We will see in section 4.1 that wage changes capture only part of ICT-induced changes in economic opportunities for immigrants.

⁹Note that in the estimation, we allow the parameters to be different for push- and pull-factors and for bilateral migration costs.

¹⁰The idea of routine intensity as a proxy for relative demand shifts affecting the wage differential of workers with different educational backgrounds or skills has found wide application in the literature on skill-biased technical change and job polarization. See Acemoglu and Autor (2011) for an overview of the relevant literature.

tions with a high content of routine manual or routine cognitive tasks, such as assembly line workers or bank clerks, respectively, which typically had intermediate wage levels. On the other hand, ICT complements workers in managerial or professional occupations, typically entrusted with non-routine, abstract, creative, or problem-solving tasks at the top of the wage distribution. Relative to rather slow progress in the 1960s and 1970s, computing prices fell more rapidly after 1980 which continued well until the mid-2000s and made microprocessors widely available (Nordhaus, 2007). This provided strong incentives for firms to substitute ICT for routine workers, driving down their wages and employment opportunities. In contrast, it increased the demand for workers in abstract occupations leading to wage and employment gains for them.

Autor and Dorn (2013) provide evidence that these predictions have geographical impact: local labor markets in the US with a larger historical specialization in routine employment experience larger wage and employment growth in high-paying and low-paying occupations relative to those with intermediate pay. Thus, these regions experience the typical wage and employment polarization. In addition, Michaels, Natraj and Van Reenen (2014) show that ICT affected workers with different education levels differently. Since middle-educated workers were more likely to work in routine occupations and college-educated workers worked more in abstract occupations, ICT lowered employment and wages for the first group and increased it for the latter. For lower-educated workers, the effect was ambiguous since they worked in occupations intensive in routine-and non-routine manual tasks.

We measure a local labor market's potential exposure to the impact of ICT by the degree it was historically specialized in routine-task intensive occupations. To allow comparisons with international evidence, we closely follow Autor and Dorn (2013) in the construction of this measure. We proceed in two steps. First, we merge measures of an occupation's intensity in three tasks (routine, manual, abstract) available in the US Department of Labor, Employment and Training Administration (1977)'s Dictionary of Occupational Titles (DOT) with occupations in the Swiss Census data. We combine the task measures from the DOT to create a measure of routine intensity by occupation,

$$RTI_{kt_0} = \ln \left(T_{k,t_0}^R \right) - \ln \left(T_{k,t_0}^M \right) - \ln \left(T_{k,t_0}^A \right)$$
 (2)

where T_{k,t_0}^R , T_{k,t_0}^M , and T_{k,t_0}^A denote an occupation k's intensity in routine, manual, and abstract tasks in the base period t_0 , here 1980. Each task is measured on a zero to ten scale, with ten meaning that the task is most heavily used in this occupation. A limitation of these DOT variables is that they do not have a cardinal scale. Akin to the literature, we

¹¹See more details on task measures and construction of routine share in appendix A.

transform the RTI measure into percentile values corresponding to the percentile rank in the 1980 distribution of the RTI measure across occupations. Therefore, the constructed index, RTI_{k,t_0} , rises if routine tasks are used more intensively in an occupation and falls with the use of manual and abstract tasks.

Second, we classify occupations as routine-intensive if they fall into the top-third of the employment weighted distribution of the RTI measure.¹² Then, we calculate for each local labor market the employment share in routine-intensive occupations as

$$RSH_{rt} = \left(\sum_{k=1}^{K} L_{rkt} \times 1[RTI_{k,t_0} > RTI_{t_0}^{P66}]\right) \left(\sum_{k=1}^{K} L_{rkt}\right)^{-1}$$
(3)

where L_{rkt} is the employment in occupation k in region r and decade t. 1[.] indicates that an occupation k is routine intensive as defined above.

Taken together, the prediction from the literature is that local labor markets with a larger initial share of routine employment, as measured above, experience a larger positive demand shift for high relative to middle-educated workers, while the demand shift between middle and low is ambiguous:

$$\frac{\partial [(v_{rt}^3 - v_{rt}^2) - (v_{rt-1}^3 - v_{rt-1}^2)]}{\partial RSH_{rt}} > 0 \quad \text{and}$$

$$\frac{\partial [(v_{rt}^2 - v_{rt}^1) - (v_{rt-1}^2 - v_{rt-1}^1)]}{\partial RSH_{rt}} \le 0.$$

2.3 Empirical strategy and identification

To test these predictions, we estimating the following reduced form equation

$$\ln \frac{N_{rst}^{j}}{N_{rst}^{j-1}} - \ln \frac{N_{rst-1}^{j}}{N_{rst-1}^{j-1}} = \tau^{j} RSH_{rt-1} + x'_{rst-1} \gamma^{j} + \delta_{st-1}^{j} + \delta_{c}^{j} + \varepsilon_{rst-1}^{j}, \tag{4}$$

where we estimate separate models for (i) highly relative to middle educated immigrants, and (ii) middle relative to low educated immigrants. Thus, all the estimated parameters are allowed to be j-specific. The key parameter of interest, τ^j , measures the degree to which Swiss local labor markets with higher specialization in routine employment experience larger growth in the number of individuals with the higher education level (j) relative to those with a lower education level (j-1). Given suggestive evidence on how ICT exposure impacts relative economic opportunities in section 4.1, we conjecture that it affects the relative inflow of high-to-middle educated immigrants positively $(\tau^3 > 0)$ and has an ambiguous effect on the relative inflow of middle-to-low educated

¹²The choice of the 66 percentile and the log aggregation are *ad hoc* but have been implemented in several contexts and shown to be robust to using alternatives cut-offs (Autor and Dorn, 2013).

immigrants $(\tau^2 \leq 0)$.

We include a full set of source-by-decade fixed effects, δ_{st}^{j} , to absorb any variation from source country-specific push-factors by decade. This is important as we stack the two sets of first-differences, 1990-2000 and 2000-2010, in our baseline regression although we also explore estimates separately by decade (cf. Autor and Dorn, 2013; Autor, Dorn and Hanson, 2013). Furthermore, we include fixed effects for cantons, δ_c^j , the Swiss equivalent to the U.S. state with commuting zones as a nested geographical subunit. This allows absorbing regional trends in attractiveness associated with, for example, institutional or cultural differences across regions. Conditioning on Canton fixed effects implies that the identifying variation of our ICT exposure comes from a cross-sectional within-Canton variation of RSH_{rt} . Finally, we assess the importance of local area characteristics, origin country characteristics, and their interactions in x_{rst-1} , e.g., the pre-existing share of immigrants from s in r, which accounts for variation in bilateral migration costs. For all of these variables we use beginning of period values. ε_{rst-1}^{j} denotes an error term.

This approach has two advantages compared to using local wage differentials by education as measures for a region's economic opportunities. First, wage differentials may be endogenous to immigration.¹⁴ Second, demand-induced changes in economic opportunities might only partly be reflected in wage changes due to wage rigidities or institutional constraints (see Cadena and Kovak 2016 for a similar argument). We overcome both issues by exploiting the exposure to ICT as a plausibly exogenous shift to local skill demand and, thus, a shift in skill-related economic opportunities (reflected in both wages and employment).

We use an instrumental variable strategy that extracts the long-run, quasi-fixed component of the routine employment share akin to Autor and Dorn (2013) or Autor, Dorn and Hanson (2013). The basic idea is to exploit only variation in local routine task specialization that is due to a region's industry specialization determined *prior* to the strong advancement in computerization after 1980. This also allows circumventing the potential reverse causality concerns that the inflow of highly educated immigrants could spur technological change as in Lewis (2011). Thus, we use the industry composition of regions in the first available Swiss census in 1970 as an instrument for the observed

 $^{^{13}}$ Appendix figure C1 illustrates the spatial distribution of the routine share in Swiss commuting zones across decades. Table C1 shows that the within Canton variation in the routine share is usually larger than the between Canton variation.

¹⁴For our analysis period, Beerli et al. (2021) provide evidence that abolishment of immigration restrictions with the Free Movement of Persons treaty after 2002 between Switzerland and the EU increased wages of highly educated native workers but not of lower educated natives in regions close to the Swiss border.

routine share in later decades:

$$\widetilde{RSH}_{r1970} = \sum_{i} \frac{L_{ir1970}}{L_{r1970}} \times RSH_{i-r1970}, \tag{5}$$

where $\frac{L_{ir1970}}{L_{r1970}}$ is an industry *i*'s employment share in total employment in region r in 1970. $RSH_{i-r1970}$ is an industry *i*'s share of workers employed in routine occupations, averaged across all regions in 1970 except region r. The product of these two measures gives the predicted value of a commuting zone's share in industry employment which is based on its industry mix in 1970 and an industry's typical share of workers in routine occupations nationally.¹⁵

This approach has been used extensively in the literature, and its relevance and validity were established in various contexts.¹⁶ In the Swiss case, the relevance is very high, confirming the usefulness of the approach in our setting and data. Table C2 shows that a region's industry composition in 1970 is a strong predictor of its routine employment share both in 1990 and 2000 as well as when we stack both decades. The F-statistics are well beyond conventional rules of thumb. For each percentage point increase in the historical share, the contemporaneous share rises by approximately half a percentage point. Moreover, the historical routine share can explain roughly 70 percent of the geographical variation in the contemporaneous routine share (as indicated by the R²s).

The validity of this instrumental variable strategy hinges on the untestable assumptions (i) that conditional on covariates (and fixed effects), the initial routine specialization in 1970 only affects the differential inflow of immigrants by education through its effect on a commuting zone's beginning of period routine specialization, and (ii) the causality does not run the other way round, i.e. from immigrant inflows to the initial routine specialization. In this respect, the static nature of this instrumental variable approach has, akin to a large literature on job polarization, advantages and disadvantages that should be kept in mind when interpreting the results. On the one hand, exploiting the predetermined industry specialization in 1970 allows for a clean extraction of the long-run component in routine specialization and addresses potential concerns about reverse causality. The 1970 industry composition captures much of the conditional variation in

The potential concern about the construction of both the local routine share, RSH_{rt} , and of its instrument, \widetilde{RSH}_{r1970} , is that we use total employment including immigrants. If the employment of previous immigrants was highly concentrated in routine intensive jobs, higher routine shares could be correlated with stronger ethnic networks with previous immigrants as in (Card, 2001). We directly test the robustness of our main estimates by controlling for ethnic networks in table 4 and also show robustness when the routine share, and its instrument, is constructed with native employment only in table C8

¹⁶Examples of countries in which the approach has been applied include, among others, Germany (Borrs and Knauth, 2021; Rendall and Weiss, 2016), the U.S. (Lordan and Neumark, 2018; Zhang, 2019), the UK (Montresor, 2019), and several EU countries (Blanas, Gancia and Lee, 2019).

routine specialization in later decades, evident in the strong first stage and the similarity between OLS and 2SLS estimates shown below (see table 3). On the other hand, exploiting the pre-determined industry specialization prevents including fixed effects at lower levels, e.g. at the CZ-level.

In section 4.3, we provide several pieces of evidence corroborating the validity of this approach. First, we show that routine specialization is not spuriously correlated with other factors that could affect the inflow of immigrants with different education levels. Including such other factors, x_{rst-1} , into our specification changes the effect of our main regressor little. Similarly, we get qualitatively similar results when we use different samples, only use native employment to construct the routine share variables or collapse our data at the level of municipalities and include CZ-fixed effects that absorb CZ-trends. Most notably, we show that there are no pre-trends in differential inflows of immigrants by education: in the 1970s, i.e. the decade prior to rapid computerization, regions with different degrees of initial routine specialization experienced essentially similar inflow from immigrants with different education levels.¹⁷

A final point, related to the interpretation of the RSH measure, is whether it is a good proxy for the extent to which the falling price of ICT after 1980 induced firms to computerize routine tasks and, thereby, replace workers previously entrusted with these tasks. In appendix A.2 we provide suggestive evidence corroborating the interpretation of a commuting zones' initial routine specialization as exposure to computerization between 1990 and 2010 for the Swiss context. Exploiting auxiliary data from the KOF Innovation Survey, a representative survey of Swiss establishments, we show that a higher initial routine specialization is associated with (i) a higher increase in the share of computer users inside firms, and (ii) a higher growth in the share of investment going to ICT technology (both software and hardware). Using data from the Swiss Census, we provide additional evidence that higher initial routine specialization is correlated with (iii) larger growth in the share of workers employed as computer professionals, and (iv) stronger declines in the share of workers employed as clerks, machine operators and craft workers generally considered as routine intensive occupations.¹⁸

¹⁷One question is whether immigrants make dynamic, forward-looking settling decisions and take into account future relocations within Switzerland at the time of arrival. To address these decisions empirically, we would require a structural approach (Buchinsky, Gotlibovski and Lifshitz, 2014; Gallin, 2004) and longitudinal information which is not included in the census data. We believe that such forward-looking considerations are less relevant in our context for the following reasons: (1) on-ward migration of immigrants in Switzerland is quite small even on the municipality level (approximately 6-11 percent in 2000, see Liebig, Puhani and Sousa-Poza, 2007), (2) our baseline sample considers commuting zones as destinations for which this concern is probably even smaller, (3) effects from (directly) neighboring regions are absorbed by canton fixed effects.

 $^{^{18}}$ See appendix A.2 for details on data and variables related to computerization.

3 Data, institutions, and descriptive statistics

3.1 Data sources

Our main data source is the Swiss Census in 1990 and 2000, covering the full resident population and in its successor the Structural Surveys. The latter is a yearly micro-census from which we pool the years 2010 to 2012 to gain accuracy. We classify individuals as *new immigrants* (we will use new and recent immigrants interchangeably hereafter), if they were born abroad, arrived in Switzerland less than 5 years prior, and resided in Switzerland in the census year. We focus on newly arriving resident immigrants since they represent the typical "international migrant" discussed in the literature (e.g. Grogger and Hanson, 2011) and are most affected by the change in economic opportunities discussed in this paper.¹⁹

Among new immigrants, the census allows distinguishing 33 different origin countries based on the country of residence 5 years prior to the census.²⁰ We classify individuals into three education groups using the International Standard Classification of Education (ISCED) as in Dustmann, Ludsteck and Schönberg (2009). Highly-educated individuals hold a tertiary degree (ISCED 5 and 6), whereas middle-educated individuals hold a degree from a secondary school (ISCED 3 and 4). Low-educated individuals are those with compulsory education only or less (ISCED 0, 1 and 2). As destinations, we use the 106 Swiss commuting zones (CZs) defined by the Federal Statistical Office (Schuler, Dessemontet and Joye, 2005). CZs are constructed to represent local labor markets such that the majority of people commute to work within its boundaries.

Our base sample consists of the *population* of new immigrants, older than 15 years of age with non-missing information in education and place of residence (when we focus on workers, we use those aged 18-64). We then aggregate these into year, CZ, origin country, and education group cells and deal with the presence of zero or missing bilateral migration stocks by adding one to all cells. This is done to prevent sample selection due to zero-migration flows (when using log numbers) and to keep a consistent sample throughout.

¹⁹Note that this definition does not include cross-border workers. The latter group of foreign-born workers resides in one of the neighboring countries (Germany, Italy, France, Austria) and commutes to work in the Swiss border region daily. Thus, they are not included in the Census residency population. Their labor supply is very concentrated close to the Swiss border and negligible farther away (Beerli et al., 2021). For these reasons, cross-border workers face a quite different set of incentives affecting their decision of where to work compared to typical resident immigrants discussed in the literature. We find similar effects of ICT exposure on this group's education levels but abstract from them in the analysis for data consistency reasons.

²⁰See additional details on the construction of the origin country information in appendix A. One origin country-category subsumes missing origin information. We present robustness to dropping this category from the sample in table C8.

This procedure is robust to several alternative adjustments.²¹ Differencing across decades leaves us with a sample of 6,996 observations (2 decades \times 33 origin countries \times 106 CZs) for each education group.

In Section 4.1, we use additional datasets to measure the impact of ICT on economic opportunities by skill type in Swiss local labor markets. First, we use the Swiss Earnings Structure Survey (SESS) to illustrate the effect of ICT on mean hourly wages by education group. The SESS collects labor market and demographic information of individuals employed in a representative sample of private sector companies biannually between 1994 and 2010. We restrict the sample to all employees (natives and immigrants) with non-missing information regarding wages, hours worked, place of work, and basic demographic variables.²² We complement this data with the Swiss Labor Force Survey (SLFS) that allows measuring wages at the level of detailed ISCO occupations. Using the same sample restriction as for the SESS, we compute the average log hourly wage for each ISCO occupation to measure skill rank in the pooled SLFS sample covering 1991-1993, as explained in more detail below. Finally, to assess the firm-level investment in ICT we rely on the KOF Innovation Survey, which we discuss in more detail in Appendix A.2.

To analyze the impact of the FMP policy in Section 4.5, we replace the source-by-decade fixed effects with a rich set of controls for time-varying origin country push factors described in more detail in Appendix A. In particular, we include proxies for the change in skill supply in origin countries, proxies for wage differences between education groups in origin countries, and a set of additional origin-by-decade controls.

3.2 Immigration policy context

Before 2002, people from all origin countries who wanted to work and reside in Switzer-land had to apply for a resident permit.²³ Permits were subject to global yearly quotas set by the federal government and distributed to Cantons proportionally based on population size. Cantonal immigration offices granted permits conditional on employment and

 $^{^{21}}$ Bilateral stocks should be positive in expectation (cf. arguments in Ortega and Peri, 2013), though some might be zero in finite populations. To assess the sensitivity of our results based on the log transformation (Silva and Tenreyro, 2006), we do a number of different robustness checks. First, we use the hyperbolic sine transformation instead of the log(x+1) transformation which gives almost identical results (table C8). Second, in a previous version of this paper, Beerli and Indergand (2016) provide evidence that the routine share has a qualitatively similar effect on education group shares of immigrants. The latter outcome measure is not affected by the zero cells problem.

²²We drop individuals with real hourly wages below the 1st and above the 99th percentile of the wage distribution each year to avoid effects from outliers.

²³Here, we focus on immigration policies from 1990 to 2010. Appendix B provides further details on immigration policies and Kunz (2016) reviews the migration history prior to the sample period.

only if no equally qualified native could be found for a given job vacancy.²⁴ Immigrants from EU17 and EFTA countries were granted priority in awarding permits relative to immigrants from other countries (e.g. those from the US or Canada). The implementation of the EU's free movement of persons (FMP) principle after 2002 gradually liberalized access for EU workers to the Swiss labor market. Residency in Switzerland remained conditional on employment but restrictions on employment were gradually and, later, fully abolished. For immigrants from non-European origin countries, all restrictions remained similar to those in the 1990s. Thus, this policy change affected immigrants from different origins differently but was implemented nationwide (and hence did not differ across regions) and did not include targeting certain skills. We interpret the implementation of the FMP as an exogenous change to migration restrictions. In fact, accepting the FMP policy as one of the EU's central pillars, was a necessary concession made to Switzerland to pass a larger package of bilateral agreements.²⁵

In table C3 we show the number of new immigrants by origin country group (EU and non-EU) and education level.²⁶ In 1990, roughly 60% of all new immigrants arrived from European countries (old and new member states). Between 1990 and 2010, the number of new arrivals from the EU increased considerably, while the corresponding number from non-EU countries decreased slightly. Thus, by 2010, immigrants from EU countries constituted 80% of all new arrivals. In contrast to the absolute numbers, the change in the skill mix of EU and non-EU countries was remarkably similar. Both origin groups experienced a strong decrease in the share of low educated and a strong increase in the share of highly educated individuals. The share of middle-educated remained roughly constant in both groups. Although the levels are different, the changes in high-to-middle educated shares are very similar, suggesting a similar response to local pull factors, irrespective of the origin country.

It is a natural question to ask to which degree the changes in education levels among immigrants simply resemble those in their origins? In our baseline specification, we cannot answer this question as gains in educational attainment in origin countries are fully absorbed through source-by-decade fixed effects. Table C4 provides further insights on this by showing average education levels, separately for EU and Non-EU countries. First, immigrants were *positively selected* already in 1990 paralleling the observation by

²⁴Firms needed to provide details about working conditions and job requirements to Cantonal migration offices prior to hiring immigrants. They needed to demonstrate that a search for suitable native workers was unsuccessful. Migration offices, in turn, checked whether equally qualified native workers were registered as unemployed. This procedure imposed particular administrative hurdles and costs for hiring immigrants.

²⁵The FMP policy's limited popularity was a major reason why the entire bilateral package had to go through a national referendum vote in May 2000, in which it was approved, and, yet, the Swiss population voted in favor of reintroducing immigration restrictions in February 2014.

²⁶Table C11 provides summary statistics for the full list of origin countries in our sample.

Grogger and Hanson (2011). Second, immigrants became more positively selected between 1990 and 2010. While the share of low educated fell almost equally among immigrants as in the origin countries, the share with a college education grew three to four times faster among immigrants than in their origins. In contrast, the share of the middle educated stagnated among immigrants and grew strongly in origin countries. This suggests the gain in educational achievement in origin countries did not mechanically change education among new immigrants.

3.3 Characteristics of local labor markets and task-based specialization of education groups

To understand the endogenous immigration responses due to computerization, we analyze immigration into Swiss commuting zones (CZs) with different levels of exposure to ICT. Table 1 presents descriptive summary statistics, separately for CZs above and below the regional median routine share in 1970, i.e. $\widetilde{RSH}_{j,1970}$ (as defined by equation, 5). A few facts are noteworthy. First, high routine CZs represent a larger share of total Swiss employment throughout all years. Second, these regions have different industrial compositions. A lower share of their workforce is employed in agriculture/mining and construction/utilities while they are relatively more intensive in high-tech manufacturing and knowledge-intensive services. Paralleling the US experience (Autor and Dorn, 2013), this highlights that regions with high routine intensity are not only those with a high manufacturing share but those with a larger skill-intensive service sector (see also the map in figure C1). We will explore differential impacts across sectors further in section 4.4. Third, both the wage levels for all three education groups as well as wage differences between groups are higher in routine intensive CZs. For instance, highly (middle) educated earn roughly 20 (8) Swiss Francs more per hour than the middle (low) educated whereas the same gap is 16 and 6 Swiss Francs in low routine regions in 1990. Fourth, consistent with higher earnings for more educated workers, higher routine regions had a slightly higher share of tertiary educated immigrants already in 1990 (18 versus 12%). This is consistent with the *positive sorting* documented in a cross-sectional analysis of cross-country migration (Grogger and Hanson, 2011). Yet, the immigrant's overall skill mix is remarkably similar across the two regions, where the low-skilled share strongly dominates in the 90s (56 and 61 percent of immigrants are low educated). The focus of this paper is on the change rather than the level, i.e. to which degree ICT accentuated the positive sorting of talent. Lastly, the time dimension in the table reveals that both regions' employment reduced during the 1990s, and strongly expanded between 2000 and 2010.

Table 1: Characteristics of high and low routine regions 1990-2010

	CZs above median \widetilde{RSH}_{r1970}			CZs below median \widetilde{RSH}_{r1970}			
	Level Changes		Level	Changes			
	1990	2000-1990	2010-2000	1990	2000-1990	2010-2000	
# total employment	2,033,934	-219,023	537,657	675,576	-11,252	260,756	
Share high routine occupations $(\%)$	0.34	-0.02	-0.03	0.30	-0.01	-0.02	
Industry shares							
Agriculture/Fishing/Mining (%)	0.03	0.00	-0.00	0.08	-0.01	-0.03	
High-tech manufacturing (%)	0.10	-0.02	-0.01	0.08	-0.01	-0.01	
Low-tech manufacturing (%)	0.10	-0.02	-0.02	0.12	-0.02	-0.02	
Construction/Utilities (%)	0.09	-0.02	0.00	0.11	-0.02	0.00	
Knowledge intensive services (%)	0.34	0.08	0.03	0.26	0.06	0.04	
Less Knowl. intens. services (%)	0.34	-0.02	-0.00	0.34	-0.00	0.00	
Wage structure (in CHF)							
Hourly wage highly educated	55.88	0.55	1.68	48.07	0.78	1.48	
Hourly wage middle educated	35.58	0.46	0.05	31.68	0.83	0.75	
Hourly wage low educated	27.43	0.33	0.28	25.67	0.48	1.33	
Wage difference high vs middle	20.30	0.09	1.63	16.39	-0.05	0.73	
Wage difference middle vs low	8.15	0.13	-0.23	6.01	0.35	-0.58	
New immigrants							
# new immigrants	180,300	-39,275	230,289	53,612	-20,049	63,391	
Share highly educated (%)	0.18	0.22	0.07	0.12	0.16	0.05	
Share middle educated (%)	0.26	-0.02	0.01	0.27	-0.00	0.05	
Share low educated (%)	0.56	-0.20	-0.08	0.61	-0.15	-0.10	

Notes: This table shows levels of descriptive statistics in 1990 and their changes (1990-2000, 2000-2010), separately for commuting zones above and below the median of their historical routine share \widetilde{RSH}_{r1970} . Apart from the wage measures, data are from the Swiss Census 1970, 1990, 2000 and the Structural Surveys 2010-2012. Total employment is based on those 18-64 year old. Employment share by industry follow the Eurostat classification of industries group, see appendix A.1. Wages correspond to real log hourly wages in 2010 Swiss Francs and are taken from the SESS 1994-2010.

Source: Swiss census 1970, 1990-2010, SESS 1994-2010, own calculations.

For ICT to have differential effects on workers with different education levels, they need to cluster in occupations with different task content. In table C10 we show – based on the task data from US DOT and Swiss census data from 1990 – that this is indeed the case. Each of the task measures is standardized to have a mean zero and standard deviation one. We observe that, in the general workforce, highly educated workers cluster in occupations with a high abstract and both a low routine and a low manual task content. The occupational specialization of workers with a middle education level has an above-average routine and below-average abstract and manual content. As expected, lower educated workers are most heavily employed in occupations with a high manual task content. In contrast to highly educated workers, they work in occupations that are also slightly below average in routine content.

Contrasting the specialization of highly educated immigrants to their group in the general workforce, we observe a similar abstract task content level and a slightly higher routine level, consistent with occupational downgrading at arrival (Dustmann, Schönberg and Stuhler, 2016). Among middle-educated immigrants, abstract task content is much lower, and both routine and manual task content considerably higher. Low-educated immigrants, in turn, show a low specialization in abstract, a high manual and also an above-average routine task specialization.

In sum, if ICT replaces employment in routine tasks and complements workers entrusted with abstract and cognitive tasks as Autor, Levy and Murnane (2003) argue, we would expect a positive effect on the demand for highly educated at the expense of middle educated workers and an ambiguous effect on those with lower skills. Specifically, for immigrants, ICT substitution of routine tasks could affect both middle and low-educated immigrants due to the above-average specialization in these tasks in both groups.

4 Results

4.1 The skill-biased effect of technology on local labor market opportunities

Based on the conceptual framework in section 2, we should observe that destination regions with higher skill-premia attract, ceteris paribus, more highly educated immigrants, if the latter sort themselves across destinations according to skill-related economic opportunities. In this section, we present suggestive evidence that regions that were more exposed to ICT due to their historical industry specialization not only computerized more routine jobs and adopted more ICT (documented in section 2.3) but also experience a differential change in economic opportunities (in both wages and employment) across the skill-spectrum.

We start by analyzing how the relative employment opportunities changed with the regional routinization potential. Panel A of figure 1 depicts for each percentile of the skill distribution in 1990 the 20-year change in its employment share.²⁷

Regions with an above-median routine employment share in 1970 (grey diamonds) are separately depicted from those below (black circles). These changes are remarkably similar in shape to those in the US (cf. Autor, 2015; Autor and Dorn, 2013) at the top half of the skill distribution (as measured by the occupations' mean wages in 1990). In contrast to the US experience, however, the figure shows no strong employment growth at the bottom of the skill distribution. This highlights that the strong growth in low educated service jobs documented for the U.S. is possibly a specific feature in that context.

²⁷To allow comparison with a large literature, we followed the convention in the literature on labor market polarization and measured skill percentiles by the occupational mean log wages in 1990 (Acemoglu and Autor, 2011).

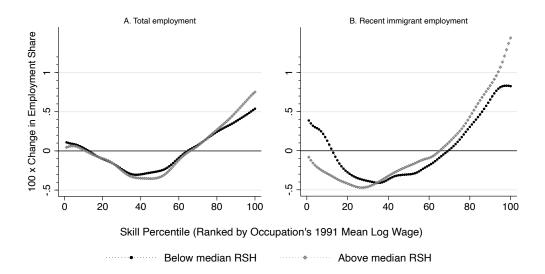


Figure 1: Smoothed changes in employment share 1990-2010 in percentiles of the 1990 wage distribution, for CZs above and below the median \widetilde{RSH}_{r1970}

Note: The figure plots the 20-year change in employment shares of occupations ranked by their skill percentile, separately for commuting zones above or below the median of the historical routine share \widetilde{RSH}_{r1970} . Following Autor and Dorn (2013), we construct skill percentile ranks of four-digit ISCO-2008 occupations computing their average real log hourly wages (in 2010 levels) based on the pooled SLFS years 1991-1993, using survey weights and hours worked. If an occupation contributes to more than one percentile rank, we allocate them based on their fraction of the occupation that maps into each percentile rank. We then simply calculate the difference between 2010 and 1990 employment shares within these percentile rank cells.

Source: Swiss census 1970, SLFS 1991-1993 and 2009-2011, own calculations.

Panel B in figure 1 allows comparing the changes in employment observed among new immigrants to those for all workers (in panel A). We see that employment changes among new immigrants follow a similar pattern as the change in the overall employment distribution. In both panels, the reduction in the middle-paying occupations is more pronounced in high routine areas. Yet, these changes are considerably more accentuated among new immigrants: the strong reduction in the middle, as well as the strongest increase at the top of the skill distribution, is 1.5 to 2 times as strong compared to the total workforce. The increase at the top of the wage distribution is more pronounced in high routine areas both among natives and much more so for new immigrants. In contrast, high routine areas also show a decrease in employment at the bottom of the wage distribution for immigrants, which is not present for the overall workforce. This might be explained by the fact that immigrants in the lowest skill groups were also employed in occupations with a high routine task content, as documented in section 3.3. More concretely, table C9 shows the change in the occupational structure among immigrants. The typical newly

arriving immigrant in 1990 worked in low-paid occupations such as crafts and related trades, service, and elementary occupations. By 2010, regions with higher ICT exposure experienced stronger growth particularly among highly paid professionals, which became the largest occupation group, and to a lesser degree among managers and technicians. These regions also saw a stronger reduction in middle-paying occupations such as craft workers.

In sum, we observe polarization in the upper half of the skill spectrum but much less so at the bottom. These employment changes are generally more pronounced for new immigrants compared to the overall workforce (implicitly more than those of natives). We interpret this as the first evidence that the entry of skilled immigrants is an important adjustment channel to these long-run technological changes. This adds an interesting new perspective on Borjas's (2001) hypothesis that immigrants act as arbitrageurs of economic opportunities and thus grease the wheel of the labor market. Recent evidence for this hypothesis has been presented by Cadena and Kovak (2016) for the case of low-skilled immigrants in the US. In contrast to the experience from the US context (Autor and Dorn, 2013; Basso, Peri and Rahman, 2020), we observe no strong growth at the bottom of the skill distribution neither overall nor by new immigrants, but strong differential employment growth in the upper-half.

Next, we evaluate whether changes in employment opportunities are paralleled by changes in the relative wages across skill groups. To this end, we investigate how workers' wages evolved across local labor markets and education groups. Given the clustering of workers with heterogeneous skills in occupations with different task content (cf. table C10), we expect the high-to-middle wage premium to increase. Table 2 presents the results of a reduced form regression testing this hypothesis, analogous to the (first stage) estimation of our main specification (4). The dependent variable is the change in the wage difference between high and middle (panel A) or middle and low educated workers (panel B).²⁸ The table presents the coefficient estimates from our instrument, the routine share measure in 1970. The wage difference is calculated by each education group's average wage in levels and logs, pooling native and immigrant workers. Columns 1 and 3 report estimates with specifications including fixed effects only, whereas columns 2 and 4 also include commuting zone characteristics (which we discuss in detail below). Note that our wage data is based on a relatively small self-reported survey; therefore, we interpret these results, although strongly consistent, cautiously as suggestive evidence.

²⁸To avoid spurious effects from demographic trends, we purge wages from individual-level demographic characteristics. We do this by obtaining the residuals from a regression of individual-level wages (in absolute levels or logs) on a rich set of demographic variables (dummies for gender, marital status, immigrant status, and cubics in potential labor market experience) each year. These residuals are averaged by education level, CZ, and year, analogous to our main specification.

Table 2: Effect of ICT exposure on relative wages: 2sls

Dependent variable: Differences in residual wages estimated in stacked decadal differences

	Wages		Log wages	
	(1)	(2)	(3)	(4)
Panel a: High/Middle educated				
\widetilde{RSH}_{r1970}	10.112 (4.919)	10.996 (5.042)	0.187 (0.078)	0.254 (0.085)
Panel b: Middle/Low educated				
\widetilde{RSH}_{r1970}	2.232 (1.958)	-4.362 (2.126)	0.063 (0.064)	-0.128 (0.073)
\overline{N}	210	210	210	210
Covariates		\checkmark		\checkmark

Notes: This table shows the effect of the historical routine specialization in 1970, \widehat{RSH}_{r1970} , on the stacked changes (1994-2000, 2000-2010) in the difference of the average wage (in absolute levels or logs), $\Delta(w_{rt}^j-w_{rt}^{j-1})$, of highly educated and middle educated individuals (panel A) and middle and low educated individuals (panel B). Regressions include fixed effects for Cantons, decades, and Nuts II regions and covariates as specified in table 4 (column 6). Standard errors in parentheses are clustered by CZ. Wage measures are based on SESS data as described in Appendix A.1.

 $Source\colon$ Swiss census 1970, 1990-2010, SESS 1994, 2000, and 2010, own calculations.

Keeping this limitation in mind, the estimates in panel A indicate that ICT exposure indeed had a strong positive effect on returns to education. The estimate in column 2 (and 4), for instance, indicates that a one percentage point higher routine share in 1970 is significantly associated with the average hourly wage difference between those groups by roughly 10 Swiss Francs (0.18 percent) in one decade. Economically, this is a meaningful effect: the corresponding hourly wage difference grew by 2.5% more $(0.25 \times 5(IQR) \times 2$ decades) on average in CZs at the 75th percentile compared to a CZ at the 25th percentile of the initial routine share distribution between 1990 and 2010. In contrast to the effect on the top end of the wage distribution, we do not find a significant or even a negative association of the historical routinization on the wage difference at the lower end of the wage distribution, i.e. between middle and low educated workers.

Taken together, the evidence presented in figure 1 and table 2 suggests that in areas with higher ICT exposure both earnings and employment opportunities for workers at the top of the skill distribution increased relative to the middle. Consequently, we expect highly educated immigrants to sort themselves into those regions while observing a relative reduction in the inflow of middle-educated. The lack of differential changes in the lower parts of the skill distribution suggests small or no relative effects between these

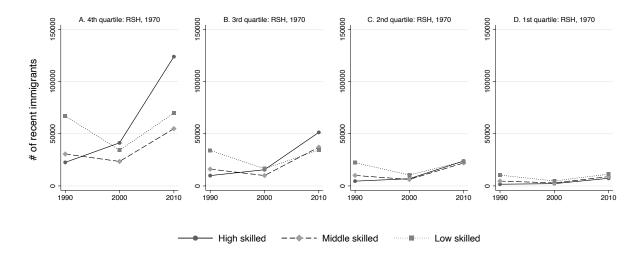


Figure 2: Total number of recent migrants by education and \widetilde{RSH}_{r1970} Quartiles Note: This figure plots the total number of recent immigrants by education group (high, middle, low), separately for commuting zones in each quartile of the historical routine share \widetilde{RSH}_{r1970} (Panel A to D).

Source: Swiss census 1970, 1990-2010, own calculations.

groups.

4.2 SKILL-BIASED TECHNICAL CHANGE AND HIGH SKILLED MIGRATION

Turning to our main analysis of the endogenous response in the skill mix of recent immigrants. Figure 2 shows the descriptive total number of new immigrants by education group in each decade from 1990 to 2010. CZs are grouped into quartiles (Panel A to D) of the pre-ICT specialization in routine occupations in 1970.

This figure visualizes our main story remarkably. First, total immigration to Switzerland increased considerably from 1990 to 2010, and more than doubled over the two decades, from roughly 230 to 500 thousand (cf. also table 1). Second, the evolution was very heterogeneous across skill groups. In all regions, the number of highly educated migrants was smaller than those of middle or low educated in 1990. In later years, they grew substantially, overtaking the other skill groups by 2010 in all but the lowest quartile. In contrast, both the inflow of middle and low educated migrants contracted between 1990 and 2000 and grew much slower thereafter (compared to highly educated). Third, these trends are much more pronounced in CZs with a higher routine share in 1970 and fall throughout all panels, which is a remarkable result pointing to the consistency of our proposed channels. Even more so, the inflow of highly educated migrants grew progressively more between 1990 and 2000 in high-RSH regions, while the inflow of less-educated contracted strongly. Between 2000 and 2010, high-routine CZs experienced a substantial acceleration in the inflow of highly educated while the inflow of lower educated groups

grew, but to a much smaller extent. In the lowest routine CZs, however, all education groups grew slightly more strongly but more similar in the last decade. It is striking that our hypothesis is evident already in these descriptive plots where along the quartiles, there is an obvious increase in the growth of high relative to middle-educated. Worth noting, the strong growth in the (overall) number of immigrants in the 2000s might reflect the implementation of the FMP policy, a point to which we return below. Lastly, we can observe that the share and number of low-educated immigrants settling in high routine-share areas was very high in 1990.

Table 3 presents our main results, i.e. the estimated effect, τ , of routine specialization from regression specification (4). In each regression (columns 1–3 and 5), we instrument RSH_{rt} with its historical share \widetilde{RSH}_{r1970} and include fixed effects at the level of Cantons and origin-country-by-decade. We use two-way clustered standard errors at the CZ and source country level as these might be correlated and are not nested (Cameron, Gelbach and Miller, 2011).²⁹ The regressions include 33 source countries in 106 CZs, 2 decadal differences (stacked), and are estimated separately for high-vs-middle (panel A) and middle-vs-low educated (panel B). Panel C, D, and E show the decomposition into separate estimates for the change in the number of high, middle, and low educated immigrants as dependent variables, respectively.

The results again confirm our previous conjectures. Column 1 in panel A shows that a one percentage point higher routine share implies a 1.4 percent increase of highly educated relative to middle-educated immigrants between 1990 and 2000. This effect is statistically significant and even increases in the following decade to 3.2 percent (column 2).³⁰

Column 3 stacks the decadal changes in the education ratios which produces a statistically significant average effect of 2.2 percent. The impact on the skill-mix of immigrants is also economically meaningful: CZs with a 5 percentage points (roughly the interquartile range in the 90s, cf. table C1) higher initial routine specialization experienced an approximately 11 percent larger inflow of immigrants with high relative to middle education per decade. The estimates in panel B, in contrast, show that ICT did not have a significant effect on the relative inflow of middle to low educated immigrants. Column 4 provides OLS estimates, which are slightly larger than the 2SLS estimate. This suggests

²⁹Note that using origin-decade fixed effects and clustering standard errors is analogous to using regressions based on data aggregating all immigrants at the level of CZs. Hence, these recessions essentially use variation across 106 CZs and 2 decades. Since we will augment these regressions below with origin country-specific variables, we use disaggregated data for consistency throughout (for a detailed discussion on using aggregate variables in non-aggregate models, see Lang and Gottschalk, 1996). All regressions are unweighted following Solon, Haider and Wooldridge (2015). Table C8, shows results are qualitatively similar if we use (beginning-of-period) destination region population weights.

³⁰Note that the effects in the second decade (2000-2010) is not statistically different from the effect in the first decade (1990-2000) when we test this in a regression including the RSH variable interacted with a dummy for the second decade.

Table 3: Effect of ICT exposure on skill composition of New Immigrants: 2SLS and OLS

Dependent variable: Differences in log numbers and ratios of recent immigrants by education group

	2SLS			OLS	2SLS	
	2000-1990	2010-2000	Stack	xed	1980-1970	
	(1)	(2)	(3)	(4)	(5)	
Difference in log ratios						
Panel a: High/Middle educated	l					
RSH_{rt}	1.397	3.195	2.232	2.665	0.125	
	(0.568)	(1.847)	(0.975)	(0.768)	(0.305)	
Panel b: Middle/Low educated						
RSH_{rt}	0.417	-1.397	-0.425	-0.485	-0.096	
	(0.503)	(1.060)	(0.520)	(0.435)	(0.219)	
Difference in log numbers						
Panel c: High educated						
RSH_{rt}	0.423	3.122	1.677	1.860	-0.506	
	(0.723)	(1.814)	(1.043)	(0.791)	(0.296)	
Panel d: Middle educated						
RSH_{rt}	-0.974	-0.073	-0.556	-0.805	-0.631	
	(0.655)	(0.915)	(0.397)	(0.396)	(0.428)	
Panel e: Low educated						
RSH_{rt}	-1.391	1.324	-0.131	-0.321	-0.535	
	(0.575)	(0.966)	(0.564)	(0.510)	(0.408)	
N	3,498	3,498	6,996	6,996	3,498	
First stage: F-statistic $(p$ -value)	65.2(0.00)	67.0(0.00)	71.4(0.00)		216.6(0.00)	

Notes: This table shows the effect of higher routine share on the change in the log ratio of new immigrants with high and middle education level (panel A), middle and low education (panel B), and separately for the change in the log number of immigrants by education level (panel C–E), based equation (4). Column 1 and 2 show the effect on the change in the number of immigrants from 1990 to 2000 and 2000 to 2010, respectively. Column 3 and 4 stack the changes of both decades in one regression. In columns 1-3 and column 5, the beginning of period routine share, RSH_{rt} , is instrumented with its historical routine specialization in 1970, RSH_{r1970} . Column 4 shows the OLS effect. Column 5 show the effect on the change in the number of immigrants by education level from 1970 to 1980. Regressions include fixed effects for Cantons, origin countries, decades, and origin-decades-interactions and standard errors are clustered by CZ and origin country.

Source: Swiss census 1970, 1990-2010, own calculations.

that IV leads to a more conservative estimate of the impact of ICT exposure on the inflow of highly educated immigrants. The small difference between IV and OLS (akin findings in Autor and Dorn, 2013) suggests that there is little endogeneity remaining after conditioning on our very large set of fixed effects.

Column 5 performs an important placebo-test: the local routine share is *not* correlated with changes in the skill-mix of newly arriving immigrants in the 1970s, the last decade

before the acceleration in the fall of computing prices and widespread ICT adoption. This highlights that the regions with higher routine specialization essentially attracted similar amounts of highly educated immigrants (relative to middle educated) in the 1970s when ICT adoption was relatively low. This lends further credibility that our identification strategy indeed picks up an effect of exposure to computerization.

Decomposing these relative effects in panels C-E, reveals first that a higher initial routine share is associated with a larger inflow of highly educated immigrants throughout both periods, particularly between 2000 and 2010.³¹ Second, ICT exposure is associated with weaker inflows of middle-educated immigrants in both periods. Thus, the strong positive effect we find in panel A is, in fact, a combination of a positive effect on high and a negative one on middle-educated immigrants. Third, the disaggregation by decade shows that the positive effect in panel A results from a greater negative effect on middle educated between 1990 and 2000. Between 2000 and 2010, the strong positive effect on the highly educated dominates. Fourth, ICT exposure led to a significant reduction in the number of low-educated immigrants between 1990 and 2000 and had a positive but insignificant effect on their number between 2000 and 2010. The negative effect on the low-educated in the first decade can be rationalized, as mentioned above, by the fact that a substantial part of this group was employed in routine intensive occupations in 1990 which were subsequently automated. Automation might have been facilitated by the generally low economic performance in this decade. Evidence from the U.S. suggests that routine-biased technical change accelerates during economic downturns (Hershbein and Kahn, 2018). In sum, the combined effects in panels A and B are a result of mostly negative effects on the middle and low end of the skill spectrum between 1990 and 2000. After 2000, ICT induced stronger growth at the poles of the skill distribution, particularly at the top end.

4.3 Robustness

Next to historical routine task specialization, several other factors might explain why some regions experience stronger inflows of highly educated immigrants. We assess these factors in table 4 by augmenting specification (4) with covariates at the level of CZs considered important in the literature on bilateral migration and job polarization which have not already been differenced out or absorbed in the Canton fixed effects.³²

In column 1, we include an indicator for CZs in which a university was established

 $^{^{31}}$ The estimates in panel A (and B) can be expressed as a linear combination of the estimated effects in panels C and D (D and E, respectively).

³²By including dyadic covariates such as migrant networks the source dimension becomes important, consequently, an aggregate regression would not yield identical results, cf. Footnote 29.

 Table 4: Robustness of effect of ICT exposure on skill composition of new immigrants:

								Workers		
	Population					All Manu.		Service		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Difference in log ratios										
Panel a: High/Middle edu RSH_{rt}	$cated \\ 1.612$	2.275	1.840	2.103	3.953	2.824	3.077	1.032	2.781	
100 117 t	(0.880)	(0.982)	(0.895)	(0.995)	(0.692)	(0.752)	(0.598)	(0.596)	(0.743)	
University $City_r$	0.329 (0.063)					0.174 (0.054)	0.138 (0.073)	0.117 (0.071)	0.171 (0.078)	
Share N_{rs1970}		-2.023 (0.917)				-2.216 (1.004)	-0.758 (1.609)	1.645 (2.245)	0.287 (1.460)	
Share E_{rs1970}^3			$0.200 \\ (0.062)$			$0.140 \\ (0.057)$	0.091 (0.039)	-0.012 (0.041)	0.087 (0.034)	
Share E_{rs1970}^2			$0.161 \\ (0.071)$			0.112 (0.066)	0.074 (0.046)	0.035 (0.045)	0.068 (0.037)	
Offshoring potential rt				0.038 (0.034)		0.019 (0.032)	$0.003 \\ (0.035)$	0.044 (0.024)	-0.017 (0.033)	
Share manufacturing rt					-1.531 (0.422)	-1.076 (0.395)	-0.924 (0.384)	-0.049 (0.240)	-1.114 (0.380)	
$Panel\ b:\ Middle/Low\ educ$ RSH_{rt}	-0.497 (0.513)	-0.458 (0.530)	-0.417 (0.552)	-0.268 (0.523)	0.421 (0.543)	0.932 (0.685)	0.552 (0.646)	0.392 (0.408)	0.379 (0.566)	
University $City_r$	0.038 (0.075)					-0.053 (0.088)	0.046 (0.085)	-0.018 (0.043)	0.087 (0.077)	
Share N_{rs1970}		1.542 (0.872)				1.211 (0.771)	1.393 (0.956)	2.256 (0.726)	2.640 (0.779)	
Share E_{rs1970}^3			-0.040 (0.063)			-0.067 (0.064)	-0.037 (0.040)	-0.015 (0.020)	-0.027 (0.042)	
Share E_{rs1970}^2			0.033 (0.060)			0.010 (0.058)	-0.013 (0.049)	-0.052 (0.030)	0.004 (0.049)	
Offshoring potential rt				-0.046 (0.035)		-0.053 (0.035)	-0.010 (0.023)	-0.008 (0.013)	-0.013 (0.023)	
Share manufacturing rt					-0.753 (0.271)	-0.926 (0.338)	-0.459 (0.310)	-0.188 (0.205)	-0.364 (0.274)	
Difference in log numbers Panel c: High educated										
RSH_{rt}	1.082 (0.962)	1.571 (1.041)	1.385 (0.995)	1.574 (1.057)	3.683 (0.667)	2.799 (0.754)	1.983 (0.614)	$0.270 \\ (0.589)$	1.666 (0.676)	
Panel d: Middle educate RSH_{rt}	-0.530 (0.396)	-0.704 (0.402)	-0.456 (0.405)	-0.529 (0.402)	-0.270 (0.445)	-0.026 (0.508)	-1.094 (0.461)	-0.762 (0.394)	-1.115 (0.481)	
Panel e: Low educated RSH_{rt}	-0.033 (0.530)	-0.246 (0.564)	-0.039 (0.561)	-0.261 (0.569)	-0.691 (0.646)	-0.957 (0.672)	-1.645 (0.766)	-1.154 (0.637)	-1.494 (0.634)	
N	6,996	6,996	6,996	6,996	6,996	6,996	6,784	6,784	6,784	

Notes: This table shows the effect of higher routine share on the change in the log ratio of the number of new immigrants with high and middle education level (panel A), middle and low education (panel B), and separately for the change in the log number by education level (panel C–E), based equation (4). Changes in the number of immigrants by education by decade (1990–2000, 2000–2010) are stacked in one regression with the beginning of period routine share, RSH_{rt} , instrumented with its historical routine specialization in 1970, \widetilde{RSH}_{r1970} . Column 1 to 6 shows the effect on the full population of new immigrants and column 7 to 9 on new immigrant workers by sector of employment. Column 1 and 2 include an indicator for a University city and the share of an origin country on the total number of immigrants, respectively. Column 3 includes each origin countries share of highly and middle educated immigrants in 1970. Column 4 and 5, respectively, include Blinder and Krueger (2013)'s measure for potential offshoring (as described in Appendix A.1) and the local employment share of manufacturing. Column 6 uses all variables jointly. Covariates correspond to the beginning of period values. Regressions include fixed effects for Cantons, origin countries, decades, and origin-decades-interactions and standard errors are clustered by CZ and origin country.

Source: Swiss census 1970, 1990-2010, own calculations.

prior to 1990.³³ The literature suggested that opportunities for university education might provide an entry to a local labor market for highly-educated immigrant workers (Grogger and Hanson, 2013; Kato and Sparber, 2013). Indeed, the estimated coefficient suggests that CZs with a university attract more highly relative to middle educated. Since most universities in Switzerland are located in larger cities, this effect could also be consistent with an agglomeration effect, i.e. individual workers enhancing each other's productivity (and wages) by working close to other skilled individuals as suggested by Kerr et al. (2016) and Moretti (2004).³⁴

In column 2, we test the importance of ethnic networks in explaining differential skill-inflow. While gains in educational attainment in origin countries are absorbed in the fixed effects, local changes in immigrants' skill mix might still be affected by pre-existing networks that facilitate their economic integration or provide some sort of amenity or information about the destination environment (Card, 2001; Patel and Vella, 2013). In line with this hypothesis, our measure of networks, the share of immigrants from the respective source countries in 1970, raises the share of middle-educated immigrants relative to both high and low educated immigrants. As an additional hypothesis, we test whether destinations with initially very low levels of highly educated immigrants subsequently experience larger inflows from them, simply due to mean reversion as pointed out by Michaels, Natraj and Van Reenen (2014). Column 3 shows that the previous results are unaffected when we control for the initial share of both highly- and middle-educated by origin country in 1970 which also accounts for the low-educated share.

The impact of offshoring and trade with low-wage countries has been discussed in the literature as an important alternative factor affecting the local relative demand for skills (Autor, Dorn and Hanson, 2013, 2015; Dauth, Findeisen and Suedekum, 2014; Goos, Manning and Salomons, 2014). Specifically, firms might move offshorable tasks abroad to lower-wage countries while focusing more on higher-skilled tasks at home. Jobs intensive in offshorable tasks might also be more intensive in routine tasks.³⁵ In column 4, we include a proxy from Blinder and Krueger (2013) on how susceptible local employment

 $^{^{33}\}mathrm{Prior}$ to 1990, the following CZs contained a university: Basel, Bern, Fribourg, Geneva, Neuchâtel, Lausanne, St.Gallen, Zurich.

³⁴Note that the presence of universities could also raise the skill supply of natives which could mediate the response of immigrants depending on the degree of imperfect substitutability between natives and immigrants and the size of human capital externalities.

 $^{^{35}\}text{In}$ our data, the correlation between task offshorability and routine intensity is relatively low ($\rho=$ -0.096) at the local level.

is to offshoring.³⁶ The estimates are very small and statistically insignificant and leave our main estimate unaffected.

Relatedly, we test in column 5 for an effect of a CZ's initial share of employment in manufacturing (Gould, 2019). The estimated coefficient shows that a higher manufacturing share increases the inflow from lower education groups, i.e. lowering both the high-to-middle and middle-to-low educated ratio. Interestingly, however, including this control increases the effect of ICT exposure on both high-to-middle and middle-to-low educated immigrants. In other words, when we compare regions with a similar manufacturing share, those with a higher routine specialization experience even faster growth of highly educated relative to middle educated immigrants. We will discuss the manufacturing sector's role in more detail in the next section.

Column 6 presents a robust effect of initial routine specialization when we include the full set of explanatory variables in the model. The estimated impact on the high-to-middle educated ratio increases considerably, which translates into an economically large effect. At the interquartile range of the 1990 routine specialization, more routine intensive regions experienced roughly a 14 (5 \times 2.824) percent larger inflow in the number of highly educated immigrants relative to those with middle education per decade. In contrast, the effect on the middle-to-low educated ratio is small and not statistically significant.

We performed several additional robustness checks to test the sensitivity of our results with respect to changes in specification and samples. First, table C5 shows qualitatively similar results if we run our main specification with data collapsed at the municipality instead of the CZ level which allows including CZ fixed effects. Second, based on our baseline CZ-level sample, table C8 explores robustness when using the number of immigrants at the beginning of the period to weight cells, using the inverse hyperbolic sine instead of the log transformation for the dependent variable, dropping immigrants in the missing origin country category, keeping only immigrants in prime-age (below 50), and using only natives to construct the contemporaneous routine share variable in 1990 and 2000 or its instrument based on the 1970 industry specialization, or using both. All of these tests yield qualitatively similar results. A third concern is that strong inflows of mostly highly educated cross-border workers in regions close to the Swiss border, as shown in Beerli et al. (2021), might crowd out some of the responses of newly arriving

³⁶We follow the convention in the literature on controlling for the *potential to offshore* a specific task and not for *actual offshoring* as the latter could be itself an outcome from the technical displacement of routine occupations. We use Blinder and Krueger (2013)'s measure for offshoring potential based on worker characteristics such as occupations and education levels (see details of construction in Appendix A.1. To complement this analysis, table C8 (columns 6 and 7) shows that our main estimate is qualitatively similar if we include a measure of Chinese import penetration inspired by Autor, Dorn and Hanson (2013). This is interesting, as the importance of trade with China grew after China's WTO accession in 2001 and had differential effects on workers by skill in other countries, e.g. in Germany (Dauth, Findeisen and Suedekum, 2014) or Norway (Balsvik, Jensen and Salvanes, 2015).

resident immigrants. Table C6 shows that both the border and the non-border region experienced similar inflows as we observe in the whole sample of regions. While the point estimate of the effect on middle-to-low educated immigrants differs across regions, neither this effect nor the effect on high-to-middle educated immigrants is significantly different across regions.

In sum, these results highlight that changing labor market opportunities strongly affect which types of immigrants choose to settle in destination regions. Local ICT exposure induced a much stronger inflow of highly relative to middle-educated immigrants. Echoing existing evidence that the ICT-induced growth in high-paying abstract occupations is mainly driven by the labor market entry of young workers (as opposed to old workers) in the U.S. (Autor and Dorn, 2009). Our findings point to the recruitment of international migrants as another, most likely, faster adjustment channel. In addition, our results imply a strong technology-skill complementarity were highly educated immigrants follow technology. Highlighting a different perspective of this complementarity, Lewis (2011) presented evidence that inflows of low-skilled immigrants delayed the adoption of automation technology in the U.S. Our results imply also the supply of skills may follow technology. Of course, it is warranted to ask, which comes first. We believe that our results are unlikely to be driven by reverse causality as we exploit only the pre-determined variation in ICT exposure and control for existing immigrant networks. Also, the fact that the share of low-skilled was very high in highly exposed regions in 1990 (cf. table 1) runs counter this argument.

4.4 Heterogeneity in sorting across sectors

Next, we examine whether the exposure to technology affects the skill mix of immigrants differently in the manufacturing and the service sector. The structural changes in the sectoral level brought about by ICT have been assessed for non-immigrant populations in the U.S. (Autor, Dorn and Hanson, 2015), for instance, find that ICT, in the form of automation capital, reduced routine employment among production workers in the manufacturing sector in the 1980s. In subsequent decades, the effect of ICT, in the form of computers, was increasingly concentrated in the service sector reducing routine (cognitive) employment, e.g. in clerical occupations. Complementary evidence by Gould (2019) underscores that the decline of manufacturing is an important labor market disruption affecting relatively low-skilled workers in relatively well-paying jobs.

To investigate heterogeneous effects across sectors, columns 7 to 9 in table 4 present estimates from regressions for the subsample of workers by industry of employment analogous to specifications to the full immigrant population. Compared to the effect on the full population in column 6, the estimates in column 7 show a somewhat stronger ef-

fect of ICT exposure on the inflow of highly relative to middle immigrants in the total workforce. This confirms that economic opportunities affect workers and not necessarily people outside of the workforce, which reinforces our confidence in our proposed causal mechanism of labor market incentives. The effect is composed of a slightly weaker effect on the inflow of highly educated workers and a much stronger and significant negative effect on middle and low-educated workers.³⁷ When we split immigrant workers into those employed in manufacturing (column 8) and services (column 9), it is evident that the effect of ICT exposure is most prominent in the latter. In the manufacturing sector, we only find a strong negative effect on middle-educated immigrants while the positive effect on highly educated is more muted (panel C and D in column 8). Together, this produces a much weaker and insignificant effect on the relative inflow of high-to-middle educated immigrants in the manufacturing sector (panel A in column 8). The effect of ICT on the inflow of middle relative to low educated immigrants is never significant. In the previous section, we found that the regional manufacturing share is negatively associated with the change in the high-to-middle educated ratio. The result in column 8 suggests that routinization changed the skill mix of immigrants more in the service than in the manufacturing sector.

In sum, these results suggest that although present in both sectors and regions, the ability to attract foreign-born talent due to computerization is most pronounced in the service sector and in regions specialized in services.

4.5 Source country heterogeneity and the role of the Free Movement of Persons Policy

An important motivation of immigration policies is facilitating the entry of workers whose skills are scarce in the national labor market. Given the evidence presented above, a relevant question from a policy perspective is whether and how the response of immigrants to economic incentives changes when immigration restrictions are altered decisively. The Swiss experience between 1990 and 2010 is interesting in this regard as it allows evaluating the effects of the introduction of a free movement policy. As explained above, immigration restrictions for EU residents were progressively abolished after 2002, allowing them to adopt work unrestrictedly in Switzerland after 2007. In contrast, immigration from non-EU countries remained subject to quotas and further administrative hurdles. In this section, we answer two questions: (i) to which degree, if at all, did the lower cost of immigration for EU residents affect the skill mix of immigrants? and, (ii) did the openness allow immigrants to respond more strongly to local demand for skills?

³⁷In addition, we show in table C12 that this negative effect is most pronounced in the first decade (1990-2000) when Switzerland experienced only modest overall economic growth.

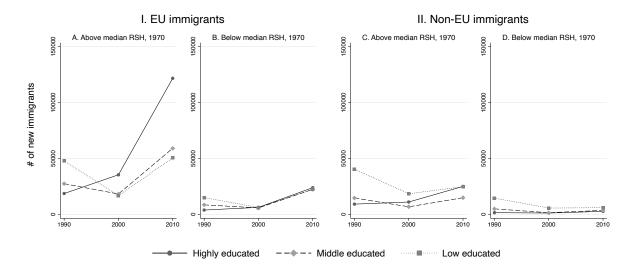


Figure 3: Total number of recent immigrants by skill by \widetilde{RSH}_{r1970} areas and source country

Note: This figure plots the total number of recent immigrants by education group (high, middle, low) from European and Non-European countries, separately for commuting zones above and below the median of the historical routine share \widetilde{RSH}_{r1970} . We drop immigrants with missing source country information, from Poland, Romania, Hungary, and (former) Czechoslovakia which became EU member states within the time of analysis (results are not driven by this exclusion).

Source: Swiss census 1970, 1990-2010, own calculations.

Figure 3 presents the effects of the policy by plotting the number of new immigrants from each education group in each decade, separately for CZs above and below the median routine share in 1970, and separately for immigrants from EU countries (panel A and B) and non-EU countries (panel C and D). Roughly the same trends are evident as in figure 2: i.e. CZs with a routine share above the median experience a stronger inflow of highly relative to middle educated immigrants. Yet, the number of immigrants from EU countries increased much stronger between 2000 and 2010 compared to those from non-EU countries, as one would expect given lower immigration restrictions. Moreover, the larger inflow among EU immigrants is particularly pronounced in CZs with above-median routine share. Hence, this descriptive evidence suggests that the policy increased the inflow of immigrants from EU countries and likely induced stronger inflows to regions with higher skill demand.

Empirically, we evaluate the effects of this policy by including an indicator for the FMP in equation (4), where FMP_{st} is an interaction of a dummy for immigrants from European origin countries and a dummy for the decade between 2000 and 2010, i.e. $1(s = EU) \times 1(t = 2000)$. In this regression, we measure whether the skill mix changes differently with the FMP policy for immigrants from the EU compared to immigrants from non-EU countries, irrespective of their destination within Switzerland. Since origin and time fixed effects absorb differential effects by decade and origin country trends, this

effect is identified as the difference-in-difference effect where non-EU immigrants serve as a control group. Importantly, the identification of this effect hinges on the assumption of a parallel trend, i.e. that there are no changes affecting EU and non-EU immigration other than the policy. To support the validity of this assumption, we include a rich set of source-by-decade control variables, as it is a standard in the international migration literature (see, *inter alia*, Mayda, 2010; Ortega and Peri, 2013).³⁸ We are, however, hesitant to interpret this effect as causal, since the stable unit treatment value assumption (SUTVA) may be violated, e.g. if larger inflows of EU citizens crowd out (or crowd in) non-EU immigrants. Even without a fully causal interpretation, this is a policy-relevant comparison providing suggestive evidence on how an immigration policy can moderate the response of immigrants to long-run labor demand shifts.

Table 5 presents the results of the augmented regressions. In columns 1 and 2, the dependent variable is the change in the log ratio of highly relative to middle and middle relative to low educated immigrants as before, respectively. Columns 3-5, show results when the outcome is the log difference in the number of new immigrants with a high, middle, and low education level, respectively. In panel A, we allow the policy to have only a direct effect on immigration. Focusing first on the coefficient of RSH_{rt} in panel A, we observe that the estimates presented here are of roughly the same magnitude as our baseline estimate (in table 4). This assures that the included origin country covariates capture most of the source-by-decade effects. The estimated coefficient of FMP_{st} is positive and large when each education group is considered separately. This suggests that policy increased the inflow of immigrants from EU countries in all three education groups by roughly 35 to 49 percent relative to those from non-EU countries. For the group of highly educated immigrants, the policy effect has a similar magnitude as a 10percentage point higher routine share would produce (roughly 2 times the interquartile range). These effects are economically large for all education groups. Their similar size, however, explains why the effect of the policy on the relative inflow by education groups is not statistically significant (shown in columns 1 and 2).

Panel B allows for an interaction effect with the local routine specialization, as figure 3

³⁸In particular, we include the following variables with origin-country decade variation: the decadal changes in an origin country's Gini-coefficient to measure inequality, in its PolityIV score to measure political for civil rights protection, in its GDP per capita, and an indicator for whether there was a conflict in the source country that could increase the number of asylum seekers. To control for changes in the skill supply by source-country, we include the decadal changes in the log ratio of the high-to-middle educated (column 1) and the middle-to-low educated (column 2) origin country population, and the change in the population log number by education (column 3–5). Note that due to the inclusion of skill-specific source-country controls, the coefficient estimate in column 1 (column 2) can only be decomposed approximatively (but not precisely) be into the estimates in column 3 and 4 (column 4 and 5), respectively. See Appendix A.1 for the construction of these variables and table C13 for their coefficient estimates.

Table 5: Effect of ICT exposure and Free Movement Policy on skill composition of New Immigrants: 2sls

Dependent variable: Stacked decadal differences in log numbers and ratios by educated group

	Difference i	n log ratios	Differe	Differences in log numbers				
	High/Mid	Mid/Low	High	Middle	Low			
	(1)	(2)	(3)	$\overline{(4)}$	(5)			
Panel a: direct effe	ect of migrati	on policy						
RSH_{rt}	3.318 (0.768)	0.720 (0.761)	3.309 (0.807)	-0.009 (0.579)	-0.729 (0.748)			
FMP_{st}	-0.065 (0.187)	0.016 (0.105)	0.392 (0.148)	0.499 (0.216)	0.309 (0.222)			
Panel b: interactio	n effect of m	igration polic	ey with sk	ill demand				
RSH_{rt}	2.974 (0.613)	0.776 (0.787)	2.365 (0.728)	-0.609 (0.784)	-1.385 (0.834)			
$RSH_{rt} \cdot FMP_{st}$	1.372 (1.605)	-0.227 (1.285)	3.762 (2.004)	2.390 (1.564)	$2.617 \\ (1.851)$			
N	5,936	5,936	5,936	5,936	5,936			
Covariates $_{rst}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			

Notes: This table shows the effect of higher routine share on the change in the log ratio of the number of new immigrants with high and middle education level (column 1), middle and low education (column 2), and separately for the change in the log number of new immigrants by education level (columns 3–5), based equation (4). Changes in the number of immigrants by education by decade (1990–2000, 2000–2010) are stacked in one regression with the beginning of period routine share, RSH_{rt} , instrumented with its historical routine specialization in 1970, $R\bar{S}H_{r1970}$. Regressions in panel A include a dummy for European origin countries interacted with a dummy for the the decade 2000–2010, i.e. $FMP_{st} = 1(s = EU) \times 1(t = 2000)$. These regressions omit origin-by-decade fixed effects and include instead origin-by-decade controls for push-factors, i.e., decadal changes in the GINI coefficient, real GDP per capita, the Polity4 score, a conflict dummy, and decadal changes in the log ratio of the high-tomiddle educated (column 1) and the middle-to-low educated (column 2) origin country population, and the change the population log number by education (column 3-5), see details in appendix A.1. In regressions in panel B, FMP_{st} is interacted with the routine share variable and instrumented with $RSH_{r1970} \cdot FMP_{st}$. The main effect of the FMP variable is absorbed by source-by-decade fixed effects. All regressions include the covariates from table 4 column 6. We dropped the EU10 members which changed their EU status between 2000 and 2010; the results are robust so they are included in the policy group.

Source: Swiss census 1970, 1990-2010, own calculations.

suggests.³⁹ This interaction term allows evaluating whether the inflow of immigrants by education group from the EU to regions with large skill demands was different after the

³⁹Note that we instrument this interaction term with our instrument, as in equation (5), interacted with the policy indicator. This specification also includes the full set of origin-by-decade fixed effects absorbing the main effect of the policy, FMP_{st} .

policy was implemented. We find that CZs with higher ICT exposure experienced larger inflows of immigrants from all education groups as represented by the generally positive effects of the interaction term $RSH_{rt} \cdot FMP_{st}$ in columns 3-5. However, this interaction effect is only significant for the highly educated group. This indicates that regions with a higher ICT exposure were able to attract even more highly educated immigrants from EU countries after the free movement policy was implemented. Although this effect is also positive for two other education groups, it is roughly one percentage point smaller and neither statistically significant nor different from the effect on highly educated. This is why we cannot rule out that the policy did not affect the relative inflow of immigrants from different education groups as indicated by the insignificant coefficient of the interaction term (in columns 1 and 2).

Taken together, these results suggest that, at the national level, the policy led to a significantly larger inflow of immigrants from all education groups. Inspecting heterogeneous effects by region, we observe that the policy has not altered the relative flow of highly educated immigrants to regions with strong ICT-induced skill-demand. If anything, the policy allowed regions with stronger demand to attract even more highly educated immigrants after immigration restrictions were abolished. Our findings complement the evidence presented in Beerli et al. (2021), who find that the FMP policy led to a strong inflow of mostly highly educated immigrants and allowed firms to expand, become more productive, and innovate. These positive effects on firms were particularly present in high-tech manufacturing, in skilled services, and among firms reporting a shortage of qualified workers in the mid-1990s. Our results highlight the role of computer technology driving the demand for skills and affecting the location decision of new immigrants, already prior to the reform.

5 Conclusion

Promoting the entry of foreign-born workers whose skills are in high demand in the national labor market is an important aspect of immigration policy in many countries. In the last decades, most developed countries experienced rapid growth in the demand for skills and an increase in wage inequality as a consequence of the widespread adoption of information and communication technology. Yet, there is no evidence informing policy-makers of whether and how newly entering immigrants respond to these structural trends in the labor market and how immigration policies might affect this response. Previous research has focused on documenting the effects of ICT on skill-specific employment within the US (Autor and Dorn, 2013) and, separately, on how higher levels of inequality are correlated with the distribution of college-educated immigrants across countries (Grogger

and Hanson, 2011).

Building on these insights, this paper provides comprehensive evidence of how newly entering immigrants respond to these ICT-induced changes in economic opportunities and to which degree immigration policies modify this response. Our focus is on Switzerland, which experienced a boom in high-skilled immigration between 1990 and 2010. We exploit that different local labor markets, where new immigrants settle, were differentially exposed to ICT due to their pre-existing industrial specialization in routine-task intensive occupations.

First, we document the effects of ICT exposure on the economic opportunities of workers endowed with different skills. Paralleling the experience in the U.S., we find regions with initial routine specialization experienced stronger growth in employment and relative wages at the top of the wage distribution compared to the middle. Different from the US context, however, we cannot reject the hypothesis that wages and employment did not change differentially for workers in the middle compared to those at the bottom of the wage distribution. Second, we present evidence that the skill mix of newly settling immigrants strongly responded to these changes in local economic opportunities. In particular, we find that regions with higher routine specialization attract stronger inflows of immigrants with a college education while the inflow of immigrants with an intermediate, secondary education was much weaker between 1990 and 2010. This effect is economically meaningful: on average across decades, ICT increased the relative number of high to middle educated among new arrivals by roughly 14 percent for a 5 percent difference in routine specialization (roughly the interquartile range across regions). In contrast, and also consistent with the insignificant change in relative economic opportunities at the bottom of the wage distribution, there is no differential inflow of middle relative to low educated foreign-born. These findings are robust to a large set of alternative explanations and sensitivity checks. These effects are considerably more pronounced in the service compared to the manufacturing sector. This evidence is strongly consistent with the hypothesis that newly entering immigrants are a selected group of individuals in strong pursuit of economic opportunities. Third, we exploit that Switzerland implemented the free movement policy after 2002 which gradually abolished all immigration restrictions for EU citizens but not for those from other countries. We find that the policy increased the total inflow of immigrants from EU countries (relative to those from other countries) but did not affect the relative size of different education groups at the national level. Contrary to fears expressed in the public debate, the opening of borders did not led to a massive influx of lower-educated immigrants nor did it lower the response of immigrants to skill-demand. If anything, it allowed regions with strong ICT-induced demand for skills to attract even larger numbers of highly educated foreign workers.

Our findings highlight the role of newly arriving immigrants as an important and previously undocumented channel of local adjustment to long-run ICT-induced structural change. To which degree this flexible supply of foreign-born talent allows reducing the economic inequality due to ICT is an important topic for future research.

References

- Acemoglu, Daron and David H. Autor. 2011. Chapter 12 Skills, Tasks and Technologies: Implications for Employment and Earnings. In *Handbook of Labor Economics*, ed. David Card and Orley Ashenfelter. Vol. 4, Part B Elsevier pp. 1043 1171.
- Amior, Michael and Alan Manning. 2018. "The Persistence of Local Joblessness." *American Economic Review* 108(7):1942–1970.
- Autor, David H. 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation." *Journal of Economic Perspectives* 29(3):3–30.
- Autor, David H. and David Dorn. 2009. "This Job Is "Getting Old": Measuring Changes in Job Opportunities Using Occupational Age Structure." American Economic Review: Papers and Precedings 99(2):45–51.
- Autor, David H. and David Dorn. 2013. "The Growth of Low Skill Service Jobs and the Polarization of the US Labor Market." *American Economic Review* 5(103):1553–1597.
- Autor, David H., David Dorn and Gordon H. Hanson. 2013. "The China Syndrome: Local Labor Market Effects of Import Competition in the United States." *American Economic Review* 103(6):2121–2168.
- Autor, David H., David Dorn and Gordon H. Hanson. 2015. "Untangling Trade and Technology: Evidence from Local Labour Markets." *Economic Journal* 125(584):621–646.
- Autor, David H., Frank Levy and Richard J. Murnane. 2003. "The Skill Content of Recent Technological Change: An Empirical Exploration." Quarterly Journal of Economics 118(4):1279–1333.
- Balsvik, Ragnhild, Sissel Jensen and Kjell G Salvanes. 2015. "Made in China, sold in Norway: Local labor market effects of an import shock." *Journal of Public Economics* 127:137–144.
- Barro, Robert J. and Jong Wha Lee. 2013. "A New Data Set of Educational Attainment in the World, 1950 to 2010." *Journal of Development Economics* 104(0):184 198.
- Basso, Gaetano, Giovanni Peri and Ahmed Rahman. 2020. "Computerization and Immigration: Theory and Evidence from the United States." Canadian Journal of Economics 53(4):1457–1494.
- Beerli, Andreas and Giovanni Peri. 2017. "The Labor Market Effects of Opening the Border: New Evidence from Switzerland." KOF Working Papers No. 431, June 2017.
- Beerli, Andreas, Jan Ruffner, Michael Siegenthaler and Giovanni Peri. 2021. "The Abolition of Immigration Restrictions and the Performance of Firms and Workers: Evidence from Switzerland." *American Economic Review* 111(3):976–1012.
- Beerli, Andreas, Ronal Indergand and Johannes S Kunz. 2021. "The supply of foreign talent: How skill-biased technology drives the location choice and skills of new immigrants." GLO discussion paper series. Mimeo .
- Beerli, Andreas and Ronald Indergand. 2016. "Which Factors Drive the Skill-Mix of Migrants in the Long-Run?" Mimeo.
- Beine, Michel, Simone Bertoli and Jesús Fernández-Huertas Moraga. 2016. "A Practitioners' Guide to Gravity Models of International Migration." World Economy, Special Issue: International Migration and Inequality Across Countries. 39(4):496–512.
- Bertoli, Simone and Jesús Fernández-Huertas Moraga. 2013. "Multilateral resistance to migration." *Journal of Development Economics* 102:79–100.
- Blanas, Sotiris, Gino Gancia and Sang Yoon Lee. 2019. "Who is afraid of machines?" *Economic Policy* 34(100):627–690.
- Blinder, Alan S. and Alan B. Krueger. 2013. "Alternative Measures of Offshorability: A Survey Approach." *Journal of Labor Economics* 31(2):97–128.
- Borjas, George J. 2001. "Does Immigration Grease the Wheels of the Labor Market?" Brookings Papers on Economic Activity 2001(1):69–133.
- Borjas, George J. and Kirk B. Doran. 2015. "Cognitive mobility: Labor market responses to supply shocks in the space of ideas." *Journal of Labor Economics* 33(S1):S109—-S145.

- Borrs, Linda and Florian Knauth. 2021. "Trade, technology, and the channels of wage inequality." European Economic Review 131:103607.
- Buchinsky, Moshe, Chemi Gotlibovski and Osnat Lifshitz. 2014. "Residential location, work location, and labor market outcomes of immigrants in Israel." *Econometrica* 82(3):995–1054.
- Bundesrat. 1991. "Bericht des Bundesrates zur Ausländer- und Flüchtlingspolitik.". http://www.amtsdruckschriften.bar.admin.ch/viewOrigDoc.do?id=10051898
- Bundesrat. 2002. "Botschaft zum Bundesgesetz über die Ausländerinnen und Ausländer.". https://www.admin.ch/opc/de/federal-gazette/2002/3709.pdf
- Cadena, Brian C and Brian K Kovak. 2016. "Immigrants Equilibrate Local Labor Markets: Evidence from the Great Recession." *American Economic Journal: Applied Economics* 8(1):257–90.
- Cameron, Colin A., Jonah B. Gelbach and Douglas L. Miller. 2011. "Robust Inference With Multiway Clustering." *Journal of Business & Economic Statistics* 29(2):238–249.
- Card, David. 2001. "Immigrant Inflows, Native Outflows, and the Local Labor Market Impacts of Higher Immigration." *Journal of Labor Economics* 19(1):22–64.
- Dauth, Wolfgang, Sebastian Findeisen and Jens Suedekum. 2014. "The rise of the east and the far east: German labor markets and trade integration." *Journal of the European Economic Association* 12(6):1643–1675.
- Doms, Mark, Timothy Dunne and Kenneth R. Troske. 1997. "Workers, wages, and technology." Quarterly Journal of Economics 112(1):253–290.
- Doran, Kirk, Alexander Gelber and Adam Isen. 2016. "The Effect of High-Skilled Immigration Policy on Firms: Evidence from Visa Lotteries." *Mimeo*.
- Dustmann, Christian, Johannes Ludsteck and Uta Schönberg. 2009. "Revisiting the German Wage Structure." Quarterly Journal of Economics 124(2):843–881.
- Dustmann, Christian and Tommaso Frattini. 2014. "The fiscal effects of immigration to the UK." *Economic Journal* 124(580):593–643.
- Dustmann, Christian, Uta Schönberg and Jan Stuhler. 2016. "The impact of immigration: Why do studies reach such different results?" *Journal of Economic Perspectives* 30(4):31–56.
- Economist. 2017. "Immigrants to America are better educated than ever before.".

 https://www.economist.com/news/united-states/21723108-far-being-low-skilled-half-all-legal-migrants-have-college-degrees-immigrants
- Gallin, Joshua Hojvat. 2004. "Net migration and state labor market dynamics." *Journal of Labor Economics* 22(1):1–21.
- Goos, Maarten and Alan Manning. 2007. "Lousy and Lovely Jobs: The Rising Polarization of Work in Britain." Review of Economics and Statistics 89(1):118–133.
- Goos, Maarten, Alan Manning and Anna Salomons. 2014. "Explaining Job Polarization: Routine-Biased Technological Change and Offshoring." *American Economic Review* 104(8):2509–2526.
- Gould, David M. 1994. "Immigrant links to the home country: empirical implications for US bilateral trade flows." The Review of Economics and Statistics pp. 302–316.
- Gould, Eric D. 2019. "Explaining the Unexplained: Residual Wage Inequality, Manufacturing Decline and Low-skilled Immigration." *Economic Journal* 129(619):1281–1326.
- Gould, Eric D. and Omer Moav. 2016. "Does high inequality attract high skilled immigrants?" *Economic Journal* 126(593):1055–1091.
- Grogger, Jeffrey and Gordon H. Hanson. 2011. "Income Maximization and the Selection and Sorting of International Migrants." *Journal of Development Economics* 95(1):42–57.
- Grogger, Jeffrey and Gordon H. Hanson. 2013. "The Scale and Selectivity of Foreign-Born PhD Recipients in the US." American Economic Review 103(3):189–92.
- Head, Keith and John Ries. 1998. "Immigration and trade creation: econometric evidence from Canada." Canadian Journal of Economics pp. 47–62.

- Hershbein, Brad and Lisa B. Kahn. 2018. "Do Recessions Accelerate Routine-Biased Technological Change? Evidence from Vacancy Postings." *American Economic Review* 108(7):1737–1772.
- Heston, Alan, Robert Summers and Bettina Aten. 2011. Penn World Table Version 7.1. Center for International Comparisons of Production, Income and Prices at the University of Pennsylvania.
- Kato, Takao and Chad Sparber. 2013. "Quotas and Quality: The Effect of H-1B Visa Restrictions on the Pool of Prospective Undergraduate Students from Abroad." Review of Economics and Statistics 95(1):109–126.
- Kerr, Sari Pekkala, William Kerr, Çauglar Özden and Christopher Parsons. 2016. "Global talent flows." *Journal of Economic Perspectives* 30(4):83–106.
- Kerr, William R. 2019. The Gift of Global Talent: Innovation Policy and the Economy. Stanford University Prss.
- Kerr, William R. and William F. Lincoln. 2010. "The Supply Side of Innovation: H-1B Visa Reforms and US Ethnic Invention." *Journal of Labor Economics* 28(3):473–508.
- Kunz, Johannes S. 2016. "Analyzing Educational Achievement Differences between Second-Generation Immigrants: Comparing Germany and German-speacking Switzerland." German Economic Review 17(1):61–91.
- Lang, Kathleen M. and Peter Gottschalk. 1996. "The Loss in Efficiency from Using Grouped Data to Estimate Coefficients of Group Level Variables." Computational Economics 9(4):355–361.
- Lewis, Ethan. 2011. "Immigration, Skill Mix, and Capital Skill Complementarity." Quarterly Journal of Economics 126(2):1029–1069.
- Liebig, Thomas, Patrick A Puhani and Alfonso Sousa-Poza. 2007. "taxation and internal migration—evidence from the swiss census using community-level variation in income tax rates." *Journal of Regional Science* 47(4):807–836.
- Lordan, Grace and David Neumark. 2018. "People versus machines: The impact of minimum wages on automatable jobs." *Labour Economics* 52:40–53.
- Mandelman, Federico S. and Andrei Zlate. Forthcoming. "Offshoring, Automation, Low-Skilled Immigration, and Labor Market Polarization." $American\ Economic\ Journal:\ Macroeconomics$.
- Marshall, Monty G., Ted R. Gurr and Keith Jaggers. 2014. Polity IV Project: Political Regime Characteristics and Transitions, 1800–2013. Technical report University of Maryland.
- Mayda, Anna Maria. 2010. "International Migration: A Panel Data Analysis of the Determinants of Bilateral Flows." *Journal of Population Economics* 23(4):1249–1274.
- McKenzie, David, Caroline Theoharides and Dean Yang. 2014. "Distortions in the international migrant labor market: Evidence from Filipino migration and wage responses to destination country economic shocks." American Economic Journal: Applied Economics 6(2):49-75.
- Michaels, Guy, Ashwini Natraj and John Van Reenen. 2014. "Has ICT Polarized Skill Demand? Evidence from Eleven Countries over Twenty-Five Years." Review of Economics and Statistics 96(1):60–77.
- Montresor, Giulia. 2019. "Job polarization and labour supply changes in the UK." Labour Economics 58:187-203.
- Moretti, Enrico. 2004. "Estimating the Social Return to Higher Education: Evidence from Longitudinal and Repeated Cross-Sectional Data." Journal of Econometrics 121(1):175–212.
- Nordhaus, William D. 2007. "Two Centuries of Productivity Growth in Computing." *Journal of Economic History* 67(1):128–159.
- OECD. 2013. "OECD Science, Technology and Industry Scoreboard 2013.".
- Ortega, Francesc and Giovanni Peri. 2013. "The Effect of Income and Immigration Policies on International Migration." *Migration Studies* 1(1):47–74.

- Parey, Matthias, Jens Ruhose, Fabian Waldinger and Nicolai Netz. 2017. "The Selection of High-Skilled Emigrants." Review of Economics and Statistics 99(5):776–792.
- Patel, Krishna and Francis Vella. 2013. "Immigrant Networks and Their Implications for Occupational Choice and Wages." Review of Economics and Statistics 95(4):1249–1277.
- Peri, Giovanni. 2016. "Immigrants, productivity, and labor markets." *Journal of Economic Perspectives* 30(4):3–29.
- Peri, Giovanni, Kevin Shih and Chad Sparber. 2015. "STEM workers, H-1B visas, and productivity in US cities." *Journal of Labor Economics* 33(Part 2, July 2015):S225–S255.
- Rendall, Michelle and Franziska J Weiss. 2016. "Employment polarization and the role of the apprenticeship system." European Economic Review 82:166–186.
- Schuler, Martin, Pierre Dessemontet and Dominique Joye. 2005. Eidgenössische Volkszählung 2000: Die Raumgliederungen der Schweiz. Swiss Federal Statistical Office.
- Sheldon, George. 2007. Migration, Integration und Wachstum: Die Performance und Wirtschaftliche Auswirkung der Ausländer in der Schweiz. Technical report Forschungsstelle für Arbeitsmarkt- und Industrieökonomik (FAI), Universität Basel.
- Silva, JMC Santos and Silvana Tenreyro. 2006. "The log of gravity." Review of Economics and Statistics 88(4):641–658.
- Solon, Gary, Steven J. Haider and Jeffrey M. Wooldridge. 2015. "What Are We Weighting For?" Journal of Human Resources 50(2):301–316.
- Spitz-Oener, Alexandra. 2006. "Technical Change, Job Tasks, and Rising Educational Demands: Looking outside the Wage Structure." *Journal of Labor Economics* 24(2):235–270.
- UCDP/PRIO. v4-2015. "UCDP/PRIO Armed Conflict Dataset v.4-2015." http://www.pcr.uu.se/research/ucdp/datasets/ucdp_prio_armed_conflict_dataset/.
- US Department of Labor, Employment and Training Administration. 1977. Dictionary of Occupational Titles: Fourth Edition. Washington, DC: US Government Printing Office.
- Wilson, Riley. 2020. "Moving to economic opportunity: the migration response to the fracking boom." *Journal of Human Resources* April 9:0817–8989R2.
- Zhang, Miao Ben. 2019. "Labor-technology substitution: Implications for asset pricing." The Journal of Finance 74(4):1793–1839.

Appendix to

The supply of foreign talent: How skill-biased technology drives the skill mix of immigrants Evidence from Switzerland 1990-2010

Andreas Beerli, Ronald Indergand, Johannes S. Kunz

A Data construction

A.1 Construction of variables for main analysis

Swiss Census data Our main data source is the Swiss Census in 1990 and 2000, covering the full resident-population, and its successor the Structural Surveys. The latter is a yearly mico-census from which we pool the years 2010 to 2012 to gain accuracy. Observations from the Structural Survey are weighted using the official sampling weights. Additional details:

- Origin county information For the Structural Survey waves 2010 to 2012, the information on the year of arrival is missing in some entries. In this case, we classified foreign-born residents as recent immigrants if they had a short-term residency permit (B, L). Using the last residency country reflects more closely the immigration decision compared to using the country of birth as origin. The correlation between the two classifications of origin is very high in our sample. As the census does not distinguish different places of origin for immigrants from Ex-Yugoslavia, we aggregate immigrants from all available countries of former Yugoslavia in the Structural Surveys 2010-2012. We proceed similarly with immigrants from the Czech Republic and Slovakia. One origin country category subsumes missing origin information, which we drop in a robustness check.
- Manufacturing and service sector We classify workers in NACE Rev 1.1 codes 15-37 as "manufacturing sector" and codes 60-99 as "service sector". Agriculture/Fishing/Mining comprises NACE Rev 1.1. industries 01, 02, 05, 10-14. High-tech manufacturing is NACE Rev 1.1 industries 24, 29, 30, 31, 32, 33, 34 and 35 excluding 35.1. Low-tech manufacturers are the remaining manufacturing categories. Knowledge-intensive services are NACE Rev 1.1 industries 61, 62, 64, 65-67, 70-74, 80, 85, 92.

Task measures We use measures of routine, abstract and manual task content provided by Autor and Dorn (2013) for US 2000 census occupations (occ2000) from the US Department of Labor, Employment and Training Administration (1977)'s Dictionary of Occupational Titles (DOT). Abstract task content represents the arithmetic mean of non-routine analytical tasks and non-routine interactive tasks originally used in Autor, Levy and Murnane (2003). Similarly, routine task content is the arithmetic mean of non-routine manual and non-routine cognitive task content. We use a crosswalk from the US National Crosswalk Service Center to

match these variables to the International Standard Classification of Occupations (ISCO-88) available in the Swiss Census.

These task measures represent subjective evaluations by Department of Labor experts, on an ordinal zero to ten scale, about the extent to which an occupation involves certain types of activities or requires certain types of worker aptitudes Autor, Levy and Murnane (2003, Data appendix). A limitation of these DOT variables is that they do not have a cardinal scale. For this reason, we follow Autor and Dorn (2013) and transform the RTI measure into percentile values corresponding to the percentile rank in the 1980 distribution of the RTI measure across occupations.

Swiss Earnings Structure Survey (SESS) To analyze the effect of local ICT exposure on wages by education level between 1990 and 2010 we use the Swiss Earnings Structure (SESS). The SESS is available in even years between 1994 and 2010 and covers between 16.6% (1996) and 50% (2010) of total employment in Switzerland. It is a stratified random sample of private and public firms with at least 3 full-time equivalents from the manufacturing and service sectors.

We restrict the sample to individuals (natives and immigrants) with age between 18 and 65 years working in the private sector with non-missing information regarding wages, full-time equivalents, place of work, education, nationality, and other basic demographics. We only include workers employed in private-sector firms, as the coverage of the public sector is not complete between 1994 and 2010.

This data contains the gross monthly wage for each individual worker (in the month of October) in Swiss Francs. This wage measure includes social transfers, bonuses, and one-twelfth of additional yearly payments. To get the real hourly wage of an individual worker at constant 2010 prices, we divide this measure by the number of hours worked in October and use the consumer price index to deflate it. To calculate average wages by education level, we drop individuals with real hourly wages below the 1st and above the 99th percentile of the wage distribution each year to avoid effects from outliers. Note that SESS data are only available for 105 of 106 commuting zones.

Swiss Labor Force Survey (SLFS) Since the SESS has no data on standardized occupation groups (as the detailed 4-digit ISCO occupations in the Swiss Census), we use additional information on wages in ISCO occupations from the Swiss Labor Force Survey (SLFS). The SLFS is the equivalent of the US Current Population Survey and was conducted yearly in the second quarter of the year in our period of interest. It covers roughly 17'000 individuals (or 0.5% of households) prior to 2002 and about 50'000 (1.5%) from 2002 onward.

We pool the three SLFS years 1991–1993 and use similar sample restrictions and variable definitions as with the SESS to compute average real hourly wages per 4-digit ISCO occupation group.

Offshorability Blinder and Krueger (2013) provide different measures of the exposure to offshoring, depending on individual worker level characteristics such as occupations or education levels. We use their measure for different education levels assessed by professional

coders that is judged by the authors to provide the most accurate assessments of offshorability. We matched this measure to the education levels in the Swiss census. For each commuting zone, we computed the average level of susceptibility to offshoring depending on the educational distribution of total employment at the beginning of a decade. The measure was further normalized to have mean zero and standard deviation one across CZs in 1980. We also tested other measures of the offshorability from Goos, Manning and Salomons (2014) and Autor and Dorn (2013) which did not alter our main effect in a significant way.

Chinese import penetration Using data from the UN COMTRADE database, we measure the local-labor-market exposure to import competition from China as the change in Chinese import exposure per worker in a region. Following Autor, Dorn and Hanson (2013) closely, Chinese imports to Switzerland per industry are distributed to the region according to its share of national industry employment, i.e.

$$\Delta IPW_{rt}^{China-Swiss} = \sum_{r} \frac{L_{irt}}{L_{it}} \frac{\Delta M_{rt}^{China-Swiss}}{L_{rt}},$$

where $\Delta M_{rt}^{China-Swiss}$ is the observed change in Swiss imports from China in industry i between start and end of the decades t, L_{rt} the total start of the period employment in region r and L_{irt}/L_{it} is region r's share in national employment of industry i.

To address endogeneity, we also use the standard instrumental variable, i.e. a variable that calculates the region's share of trade import per industry to other high income countries (Australia, Canada, Japan, New Zealand, Norway, Singapore, Sweden, United Kingdom, following Dauth, Findeisen and Suedekum 2014), also based on its share of total industry employment, i.e.

$$\Delta IPW_{rt}^{China-Other} = \sum_{r} \frac{L_{irt-1}}{L_{it-1}} \frac{\Delta M_{rt}^{China-Swiss}}{L_{rt-1}}.$$

Origin country push factors To analyze the impact of the FMP policy in Section 4.5, we replace the source-by-decade fixed effects by a rich set of controls for time-varying origin country push factors described here:

- Skill supply in origin country: We include proxies for the change in skill supply when computing the population size of education groups in each origin country based on data from Barro and Lee (2013). They report population size and the percentage of the population in different levels of completed educational attainment for a large set of countries between 1950-2010. We define 'no schooling attainment' and 'primary schooling attainment' as low educated, 'secondary schooling attainment' as middle educated and 'tertiary schooling attainment' schooling attainment as highly educated. We use the aggregate of Croatia, Serbia and Slovenia to calculate the education measure for 'Ex-Yugoslavia' and of the Czech Republic and Slovakia for measure of 'Czechoslovakia'.
- Wage differences by education in origin country: To create a proxy for wage differences between education groups in origin countries we use Gini coefficients from the

UNU-WIDER World Income Inequality Database. We use Version 2.0c (May 2008). Generally, we only included inequality measures based on disposable income. As there were numerous sources for Gini coefficients for some countries, we computed averages for a given country-year cell. The averaging resulted usually in little differences compared to relying only on a single datasource. For other countries such as China or India, inequality measures based on disposable income were scant or unavailable. In these cases we also included studies that calculated Gini coefficients based on consumption or net income data.

• Additional push factors: As additional controls, we use per capita GDP (Heston, Summers and Aten, 2011) and a country's polity IV score as a measure for civil rights protection and democratisation (Marshall, Gurr and Jaggers, 2014). To measure exposure to civil conflict, we retrieve information related to whether a country was exposed to conflict in a decade with at least 25 battle-related fatalities from Armed Conflict Dataset (UCDP/PRIO, v4-2015).

A.2 Data and evidence on local ICT exposure

To document that our local measure of ICT exposure is associated with the adoption of and investment in ICT in period of our analysis we exploit auxiliary data from the KOF Innovation and ICT Survey. This survey covers a representative sample of Swiss firms in the manufacturing and service sector and included questions on (i) firms' investment in ICT (hard and software) as a share of their total investment, and (ii) the share of employees using ICT in the waves 2000, 2002, 2005, 2008 and 2011. To gain precision we pool two waves, those 2000 and 2002 and those 2008 and 2011, to compute (i) the average share of investment going to ICT and (ii) the average share of workers using ICT for our analysis years 2000 and 2010, respectively.

Table A1 reports the results of regressions specification (4) with the change in PCs per worker (Panel A) or change in the share of ICT investment on total investment (Panel B) as dependent variable, respectively. Following an approach by Autor and Dorn (2013) and Doms, Dunne and Troske (1997) we treat the first available level in 2000 as the change from 1990 to 2000, assuming that PC usage/investment was close to zero in all areas prior to 1990. This is the dependent variable in column (1). In column (2), the outcome is computed as the change from the 2000 to the 2010 level. Column (3) stacks both first differences. In column (4), we present results from a long-difference regression where the level in 2010 is treated as the change between 1990 and 2010, again assuming a zero level in all regions in 1990. Panel A and B in A1 show that firms in regions with a higher routine share of employment in 1970 experience both (i) a stronger increase in the share of their workforce using computers (Panel A), and (ii) a stronger growth in the share of investment going to ICT (Panel B) in both decades between 1990 and 2010. Panel C and D provide two additional pieces of evidence based on Swiss Census data. In particular, they show regions with a higher historical routine specialization experienced (iii) larger growth in the share of workers employed as computer professionals (ISCO-88 4-digit category (2130, 2131, 2139, 2144, 3114, 3122 – virtually

identical when using 3-digit 213 and 312, only), and (iv) stronger declines in the share of workers employed as clerks, machine operators and craft workers (ISCO 1-digit category 4, 8, and 7, respectively) generally considered as routine intensive occupations.

Table A1: RSH AND TECHNOLOGICAL CHANGE: OLS

-	Dependent variable: Decadal change in firm measures of technological progress											
	2000-1990	2010-2000	Stacked	2010-1990								
	(1)	(2)	(3)	(4)								
Panel a: Ch	ange in shar	re of compute	er users									
\widetilde{RSH}_{r1970}	1.041	-0.028	0.507	1.012								
	(0.272)	(0.247)	(0.146)	(0.293)								
N	104	103	207	103								
Panel b: Ch	Panel b: Change in share of ICT investment											
\widetilde{RSH}_{r1970}	0.264	0.447	0.355	0.713								
	(0.202)	(0.177)	(0.088)	(0.176)								
N	100	100	200	103								
Panel c: Ch	ange in shar	re of IT work	kers									
\widetilde{RSH}_{r1970}	0.027	-0.004	0.012	0.023								
, 10, 0	(0.007)	(0.007)	(0.005)	(0.010)								
N	106	106	212	106								
Panel d: Ch	ange in shar	re of routine	manual w	orkers								
\widetilde{RSH}_{r1970}	-0.067	-0.084	-0.075	-0.150								
	(0.060)	(0.022)	(0.031)	(0.062)								
N	106	106	212	106								

Notes: Regressions specification (4) as in Table 3. The firm-level information is based on the KOF Innovation and ICT Survey, we include "the share of employees using computers" (panel a) and "the share of ICT related investment in total investment' (panel b). Firm responses are averaged at the level of CZ using survey weights. We pool the waves 2000, 2002 and 2008, 2011 to increase sample size. The regression includes decadal and canton fixed effects. Standard errors are clustered at the CZ level.

Source: Swiss census 1970, 1990-2010, KOF Innovation and ICT Survey 2000, 2002, 2008, 2011, own calculations.

B Details on Immigration Policies 1980-2010

Since the early 1970s, Swiss immigration policy was characterised by global quotas. Each year, a number of new permits would be allocated to Cantons proportional to population size. Cantonal administrations would grant these permits to firms which wanted to hire foreign workers if no equally qualified natives could be found for a given job ("priority requirement"). Exempted from the quota were family members of foreign residents and previous seasonal workers who spent at least five consecutive seasons working in Switzerland (Sheldon, 2007).

Starting in 1991, residency permits were granted primarily to immigrants from EU17/EFTA countries. Immigration from other countries remained restricted to 'highly qualified' individuals (Bundesrat, 1991).⁴⁰ Global quotas remained in place, however, until 2002.

On June 1 2002, the Free Movement of Persons Agreement (AFMP) with the EU was enacted. With the AFMP, the federal government introduced separate quotas for immigrant workers from EU17/EFTA and non-EU countries. After June 1 2004 the priority requirement for natives was abolished and the border region was completely liberalised for cross-border workers from EU17/EFTA countries but not for resident immigrants.⁴¹ After June 1 2007, workers from EU17/EFTA countries had unrestricted access to the Swiss labor market.

For Eastern European countries joining the EU in 2004 (EU8), the AFMP was enacted on June 1, 2006, with the introduction of a separate quota. On May 1st, 2011, these quotas were abolished granting free movement.⁴² Access was facilitated in a similar step-wise fashion for Romania and Bulgaria starting on June 1, 2009.

Access for immigrants from non-EU countries, however, kept being subject to quotas and qualification restrictions throughout our analysis period (Bundesrat, 2002).

⁴⁰High qualification not only included "managers, specialists and qualified professionals" but was defined broadly to also include specialised construction workers, for example (Bundesrat, 1991, 2002). EU17 countries include Germany, France, Italy, Luxembourg, Netherlands, Denmark, Ireland, United Kingdom, Greece, Portugal, Spain, Finland, Austria, Sweden, Cyprus and Malta. EFTA countries include Iceland, Norway and Liechtenstein.

⁴¹Cross-border workers are individuals commuting to work in Switzerland from abroad. Prior to June 1 2004, these workers were also subject to entry restrictions. As cross-border workers are not in our data set, we refer to (Beerli and Peri, 2017) for an extensive discussion.

 $^{^{42}}$ Quotas were re-introduced between between April 2012 and 2014 for workers from EU8 countries and between April 2013 and 2014 for EU17/EFTA countries.

C Appendix figures and tables

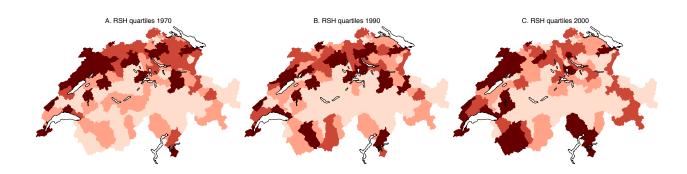


Figure C1: Geographical distribution of RSH quartiles by decade

Note: Figure presents within decade RSH quartiles over the map of Switzerland, darker areas refer to higher quartiles.

Source: Swiss census 1970, 1990, 2000, Geocoding BFS, 2017.

Table C1: RSH DESCRIPTIVE STATISTICS

				Standard deviation						
	mean	p25	p75	all	between CZs	within CZ				
\widetilde{RSH}_{r1970} RSH_{r1990} RSH_{r2000}	0.25	0.23	0.28	0.068 0.038 0.034	0.050 0.028 0.025	0.053 0.031 0.027				

Notes: Number of commuting zones (CZ) N=106, unweighted average and sample statistics. of IV and beginning RSH measure. The mean number of CZ within cantons are 7.1 and standard deviation 3.7. Source: Swiss census 1970, 1990-2010, own calculations.

Table C2: RSH ON SKILL COMPOSITION: FIRST STAGE

Dependent variable: Conte	mporaneo	ous routine	share
	1990	2000	Stacked
	$\overline{(1)}$	$\overline{(2)}$	(3)
Panel a: only fixed effects ((correspon	nding to Ta	ble 3)
\widetilde{RSH}_{r1970}	0.486	0.421	0.454
	(0.060)	(0.051)	(0.053)
F statistic	49.4	50.8	62.5
\mathbb{R}^2	0.697	0.665	0.645
Panel b: with covariates (c	orrespond	ling to Colu	umn 6, Table 4)
\widetilde{RSH}_{r1970}	0.489	0.390	0.409
	(0.057)	(0.057)	(0.056)
F statistic	22.8	16.5	26.1
\mathbb{R}^2	0.786	0.711	0.698
\overline{N}	106	106	212
Mean dependent varriable	0.254	0.251	0.253

Notes: Regressions include, 106 CZ and 2 time periods in Column (3). All regressions include fixed effects for cantons and decades. Standard errors in parentheses are clustered by CZ level.

Table C3: Skill mix of New Immigrants by Origin Country Group

Origin			Edu	c. group	share	Educ. group ratio		
country	# new immigrants	Origin share	high	middle	low	high/ middle	middle/ low	
Panel A: 1990								
EU Non-EU All origins (incl. missing)	125,576 85,875 233,912	0.59 0.41	0.19 0.13 0.17	0.30 0.23 0.26	$0.51 \\ 0.64 \\ 0.57$	0.65 0.55 0.63	0.59 0.36 0.46	
Panel B: Change 1990-201	0							
EU Non-EU All origins (incl. missing)	196,482 -8,173 234,356	0.21 -0.21	0.29 0.23 0.27	-0.02 0.01 0.00	-0.27 -0.24 -0.28	1.06 0.94 1.05	0.61 0.24 0.89	

Notes: All origins also include missing information on origin countries, hence EU plus non-EU are less than the total number of immigrants. Note that we get qualitatively similar results if we compare educational attainment between immigrants and the origin country population separately for different age groups (e.g. age 15-35, 36-55,>55). We compute the average education group shares of EU and non-EU countries using the number of new immigrants each decade in Switzerland as weights.

 Table C4:
 SKILL-MIX OF NEW IMMIGRANTS AND ORIGIN COUNTRY POPULATION BY ORIGIN

 COUNTRY GROUP

country	Educa	ation grou	p share	Education §	group ratio					
group	high	middle	low	high/middle	middle/low					
Panel a:	New in	nmigrants	in Switz	erland						
1990										
EU	0.19	0.30	0.51	0.65	0.59					
Non-EU	0.13	0.23	0.64	0.55	0.36					
Change 1990–2010										
EU	0.29	-0.02	-0.27	1.06	0.61					
Non-EU	0.23	0.01	-0.24	0.94	0.24					
$Panel\ b.$	Origin	country p	opulation	n of immigrant	s					
1990										
EU	0.09	0.37	0.54	0.25	0.69					
Non-EU	0.11	0.35	0.54	0.32	0.64					
Change 1	990-20	010								
EU	0.07	0.24	-0.31	0.02	2.04					
Non-EU	0.08	0.15	-0.23	0.06	0.97					

Notes: Education group shares and ratios among new immigrants (Panel A) in Switzerland replicated from table C3. The education group shares and rations in the origin country population (Panel B) is computed using mean education group shares in the origin country groups (EU and non-EU) Barro and Lee (2013) using the number of new immigrants per origin country in Switzerland as weights.

 $Source\colon$ Swiss census and Barro and Lee (2013), 1990-2010, own calculations.

 Table C5:
 Specification check:
 Robustness with respect to geographic level of analysis

Dependent variable:	Decadal diff	erences in lo	g numbers	s and ratios	by education	group					
Analysis level			Munic	ipality							
	2000-1990	2010-2000	Stacked	2000-1990	2010-2000	Stacked					
	(1)	$\overline{(2)}$	$\overline{(3)}$	$\overline{(4)}$	$\overline{(5)}$	$\overline{\qquad \qquad }$					
Difference in log ratios											
Panel a: High/Middl	le educated										
RSH_{rt}	0.715	0.383	0.561	0.668	0.275	0.486					
	(0.156)	(0.149)	(0.124)	(0.151)	(0.137)	(0.113)					
Panel b: Middle/Lou	educated										
RSH_{rt}	0.161	0.155	0.158	0.174	0.187	0.180					
	(0.146)	(0.164)	(0.104)	(0.155)	(0.172)	(0.104)					
\overline{N}	87,325	87,290	174,615	87,325	87,290	174,615					
Canton fixed effects	\checkmark	\checkmark	\checkmark								
CZ fixed effects				\checkmark	\checkmark	\checkmark					

Notes: This table shows the effect of a higher routine share on the on the change in the log ratio of new immigrants with high and middle education level (panel A), and middle and low education (panel B) on the municipality level. Regressions include 3 time periods times 106 CZ times 32 source countries, and fixed effects for cantons, source countries, decades, and source times decade. Standard errors in parentheses are clustered by CZ and origin country.

Source: Swiss census 1970-2000, Strukturerhebung 2010-12, own calculations.

Table C6: Heterogeneity by Border and Non-Border region

Dependent variable: Differences in log ratios of recent immigrants by education group

	Baseline Tab.5 Col. 6	Border region	Non-border region
	(1)	(2)	(3)
Difference	in log ratios		
Panel a:	High/Middle	educated	
RSH_{rt}	2.824	3.738	2.970
	(0.752)	(1.423)	(1.014)
Panel b:	Middle/Low e	educated	
RSH_{rt}	0.932	-1.732	1.758
	(0.685)	(1.041)	(1.014)
N	6,996	3,036	3,960

Notes: See Table 5 in main text for Baseline specification in Column (1). In Columns (2) and (3), same regressions are estimated on the subsample of border regions (30 minutes travel distance from the border), and non-border regions (all other). The coefficients in Columns (2) and (3) are not significantly different from each other (high-mid: p=0.795 and mid-low: p=0.715).

Table C7: ICT AND SKILL-MIX OF CROSS-BORDER WORKERS

Dependent variable: Differences in log ratios of cross-border workers by education group

	OLS	IV	IV + Covariates
	(1)	(2)	$\overline{\qquad (3)}$
Difference in log ratios			
Panel a: High/Middle education			
RSH_{rt}	4.460	4.867	4.305
	(2.555)	(2.594)	(4.104)
Panel b: Middle/Low education			
RSH_{rt}	-0.511	1.731	1.464
	(2.527)	(2.102)	(4.033)
N	212	212	212
Extended Covariates			\checkmark

Notes: This Table presents additional results using the same specification as in the main Table but on the (non-resident) cross-border worker population. Note that there is no source country dimension thus the number of observations is equal to the number of commuting zones. As for the main results we assess the log ratios by education of the cross-border workers. Column (1) presents the OLS results, (2) the IV, and (3) IV including all covariates on the commuting zone level (as in Table 4), excluding the shares of origin that are source country specific.

Table C8: Further robustness tests: Weighting, dropping missing countries, inverse hyperbolic sine, age of immigrants, excluding immigrants from RSH measures, including import competition

Dependent variab	ole: Differ	rences in log	ratios of r	ecent imn	nigrants by e	ducation g	groups			
			Drop		Subset:	RSH	(IV) - natives	only	Trac	de(IV)
	Base	Weighting	Missing	IHS	Prime age	$\overline{\mathrm{RSH}_{nat}}$	$RSH-IV_{nat}$	Both	Trade	Trade IV
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Panel a: High/M	Tiddle edu	cated								
RSH_{rt}	2.824 (0.752)	$4.318 \\ (1.039)$	3.003 (0.748)	3.032 (0.865)	2.958 (0.766)	3.432 (1.025)	3.344 (0.759)	3.610 (0.915)	3.140 (0.752)	3.206 (0.711)
IPW_{rt}									-0.050 (0.066)	-0.122 (0.256)
Panel b: Middle/	Low educ	cated								
RSH_{rt}	0.932 (0.685)	$1.521 \\ (1.068)$	0.852 (0.711)	1.120 (0.827)	0.317 (0.629)	0.368 (0.729)	0.221 (0.608)	0.238 (0.659)	0.071 (0.652)	0.023 (0.669)
IPW_{rt}									0.138 (0.045)	0.191 (0.210)
N Ext. Covariates	6,996 ✓	6,996 ✓	6,784 ✓	6,996 ✓	6,996 ✓	6,996 ✓	6,996 ✓	6,996 ✓	6,996 ✓	6,996 ✓

Notes: This table shows analogous regressions as in Table 4 (including all covariates) in main text. Column (1) replicates the main estimates from the Table 4, Column (2) uses beginning of period population size as weights, Column (3) drops missing sources counties, Column (4) replaces the log(y+1) using hyperbolic sine transformations, (5) considers the subset of prime-age immigrants (ages between 25-50), (6) replaces the RSH with an identical measure that is based only on natives, (7) uses the RSH-IV only based on natives, and (8) both RSH and RSH-IV based on natives only. Column (9) and (10) replace the offshoring measure with local labour-market exposure to import competition is the change in the Chinese import exposure per worker in a region (Autor, Dorn and Hanson, 2013), as a covariate (Col. 9) and with the additional corresponding instrument using IPW (Col. 10) to other countries: Australia, Canada, Japan, New Zealand, Norway, Singapore, Sweden, United Kingdom, following (Dauth, Findeisen and Suedekum, 2014). Standard errors are clustered by CZ and origin country.

Table C9: EMPLOYMENT DISTRIBUTION OF NEW IMMIGRANTS ACROSS OCCUPATIONS AND REGIONS

		Wage		CZs belo \widetilde{RSR}	_		CZs abo \widehat{RSF}	Relative	
		percentile rank, 1990	1990	2010	2010– 1990	1990	2010	2010– 1990	$\begin{array}{c} \text{change} \\ (7)-(4) \end{array}$
1-digit ISCO 88 occupation		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Managers	86	0.02	0.11	0.09	0.04	0.14	0.10	0.01
2	Professionals	78	0.04	0.14	0.09	0.08	0.21	0.13	0.04
3	Technicians and Associate Professionals	69	0.09	0.14	0.05	0.11	0.17	0.06	0.01
4	Clerical Support Workers	53	0.03	0.07	0.03	0.05	0.06	0.02	-0.01
8	Plant and Machine Operators & Assemblers	47	0.05	0.05	0.00	0.05	0.03	-0.01	-0.01
7	Craft and Related Trades Workers	36	0.26	0.19	-0.08	0.22	0.12	-0.10	-0.02
5	Services and Sales Workers	30	0.21	0.18	-0.03	0.19	0.15	-0.04	-0.01
9	Elementary Occupations	27	0.27	0.11	-0.15	0.25	0.10	-0.15	0.00
6	Skilled Agricultural Workers	23	0.02	0.02	-0.01	0.02	0.01	-0.01	0.00

Notes: This table presents the share of new immigrants employed in 1-digit ISCO occupations (ranked by their wage percentile in Column 1) in commuting zones below the median routine share in 1970 in year 1990 and 2010 (Column 2 and Column 3) and above (Column 5 and Column 6) along with their changes 1990—2010 in Columns 4 and 7, respectively. Column 8 shows the differential change of regions above compared to those below the median routine share.

Source: Swiss census 1970, 1990-2010, own calculations.

Table C10: Descriptive Task Content of Education Groups in 1990

		Task Co	ontent	
Education Group	abstract	routine	manual	RTI
Panel A: T	otal Workf	orce		
High	0.79	-0.32	-0.19	-0.31
Middle	-0.10	0.12	-0.06	0.11
Low	-0.44	-0.05	0.34	-0.03
Panel B: R	ecent Imm	igrants		
High	0.72	-0.16	-0.16	-0.26
Middle	-0.41	0.25	0.34	-0.06
Low	-0.70	0.08	0.61	-0.09

Notes: Task measures taken from DOT data as described in Section 2.2. Routine intensity (RTI) calculated as in Equation (2). Task measures and RTI scores are first standardised to have mean zero and standard deviation one in the entire workforce in 1990. Then, averages are computed over all workers in an education group using employment weights. Agricultural workers have been omitted from this table.

Source: Swiss census 1990, own calculations.

Table C11: Education group shares by origin country

					1990					Change	1990 -	2010	
	Origin	Origin	Educ	. group	share	Educ. g	roup ratio	Origin	Educ	. group	share	Educ. g	roup ratio
	Country	share	\overline{H}	M	L	H/M	M/L	share	\overline{H}	M	L	H/M	M/L
1	Austria	0.023	0.20	0.62	0.18	0.32	3.53	-0.003	0.34	-0.26	-0.07	1.17	-0.09
2	Belgium	0.007	0.54	0.35	0.12	1.54	2.99	0.000	0.19	-0.19	-0.00	3.03	-1.60
3	Canada	0.006	0.50	0.34	0.16	1.46	2.13	0.001	0.26	-0.20	-0.06	3.81	-0.64
4	Chile	0.002	0.23	0.30	0.47	0.77	0.65	-0.000	0.23	-0.12	-0.11	1.75	-0.13
5	China	0.003	0.49	0.17	0.34	2.78	0.51	0.006	0.05	-0.02	-0.03	0.64	-0.01
6	Germany	0.085	0.40	0.49	0.10	0.82	4.74	0.183	0.13	-0.10	-0.03	0.53	0.72
7	Denmark	0.004	0.37	0.43	0.20	0.88	2.13	-0.001	0.38	-0.24	-0.14	3.10	1.07
8	Algeria	0.002	0.33	0.34	0.33	0.98	1.04	0.000	0.04	-0.09	0.05	0.51	-0.39
9	Spain	0.057	0.05	0.17	0.78	0.30	0.22	-0.034	0.45	0.01	-0.46	2.41	0.35
10	Finland	0.002	0.48	0.40	0.12	1.21	3.32	0.001	0.28	-0.22	-0.07	3.01	0.17
11	France	0.057	0.30	0.48	0.22	0.61	2.16	0.024	0.36	-0.29	-0.07	2.83	-0.88
12	Greece	0.003	0.37	0.27	0.37	1.36	0.74	0.002	0.40	-0.13	-0.27	4.19	0.68
13	Hungary	0.003	0.45	0.39	0.16	1.18	2.40	0.007	0.05	0.01	-0.06	0.07	1.62
14	Israel	0.002	0.43	0.34	0.23	1.28	1.49	-0.001	0.22	-0.13	-0.09	1.86	0.03
15	India	0.010	0.16	0.16	0.67	1.01	0.24	-0.002	0.69	-0.10	-0.60	12.60	0.56
16	Iran	0.004	0.22	0.31	0.47	0.70	0.67	-0.001	0.29	-0.05	-0.25	1.22	0.54
17	Italy	0.079	0.11	0.27	0.63	0.39	0.43	-0.013	0.33	0.03	-0.36	1.10	0.68
18	Japan	0.006	0.55	0.20	0.25	2.71	0.80	-0.002	0.25	-0.06	-0.19	2.91	1.40
19	Balkan countries	0.210	0.07	0.26	0.67	0.25	0.39	-0.131	0.05	0.08	-0.12	0.08	0.23
20	Lebanon	0.019	0.10	0.24	0.66	0.43	0.36	-0.017	0.36	-0.06	-0.29	2.22	0.11
21	Liechtenstein	0.002	0.17	0.62	0.21	0.28	3.03	-0.001	0.27	-0.33	0.06	1.22	-1.94
22	Netherlands	0.014	0.45	0.40	0.16	1.13	2.49	-0.003	0.31	-0.25	-0.06	4.14	-1.08
23	Poland	0.005	0.42	0.37	0.22	1.14	1.68	0.010	0.07	0.01	-0.08	0.18	0.97
24	Portugal	0.163	0.01	0.13	0.86	0.10	0.15	-0.050	0.07	-0.02	-0.05	0.63	-0.01
25	Romania	0.005	0.31	0.29	0.40	1.06	0.72	0.002	0.22	0.00	-0.23	0.75	0.95
26	Sweden	0.006	0.57	0.29	0.14	1.96	2.11	-0.001	0.16	-0.13	-0.03	2.65	-0.65
27	Tunesia	0.004	0.14	0.44	0.43	0.31	1.02	0.001	0.21	-0.21	-0.01	1.22	-0.48
28	Czech Rep.+Slovakia	0.003	0.42	0.42	0.16	0.99	2.65	0.012	-0.10	0.17	-0.06	-0.46	3.43
29	Turkey	0.073	0.03	0.14	0.83	0.24	0.17	-0.056	0.16	0.05	-0.21	0.76	0.14
30	United Kingdom	0.020	0.53	0.26	0.20	2.02	1.29	0.016	0.27	-0.15	-0.12	4.80	0.14
31	USA	0.024	0.67	0.19	0.15	3.53	1.30	-0.000	0.17	-0.09	-0.07	5.25	-0.00
32	Vietnam	0.001	0.04	0.18	0.78	0.23	0.23	0.000	0.27	0.13	-0.41	0.77	0.61
33	Missing	0.096	0.16	0.18	0.66	0.88	0.28	0.050	0.18	0.01	-0.19	0.86	0.13

Notes: Table presents descriptive origin share and within origin education shares, and corresponding 20-year changes by individual countries. Swiss census 1970, 1990-2010, own calculations.

Table C12: APPENDIX TO COLUMN 7-9 OF TABLE 4

Dependent variable: Differences in log numbers and ratios of recent immigrants by education group and sector												
	2000-1990			2010-2000			High Manu. regions			Low Manu. regions		
	Workers	Manu.	Service	Workers	Manu.	Service	Workers	Manu.	Service	Workers	Manu.	Service
	(1)	(2)	(3)	$\overline{\qquad \qquad }$	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Difference i	n log ratios	5										
Panel a: High/Middle educated												
RSH_{rt}	2.613	1.061	2.405	3.648	1.449	3.097	1.829	1.848	0.958	3.336	1.749	2.613
	(0.683)	(0.526)	(0.793)	(0.870)	(1.065)	(1.098)	(1.665)	(2.111)	(1.555)	(0.972)	(0.521)	(0.981)
Panel b: Middle/Low skilled												
RSH_{rt}	0.362	0.499	-0.199	0.299	-0.089	0.688	2.402	0.685	2.275	0.183	0.460	0.156
	(0.622)	(0.308)	(0.800)	(0.909)	(0.275)	(0.654)	(1.130)	(1.373)	(1.159)	(0.899)	(0.506)	(0.830)
Difference in log numbers												
	High educa											
RSH_{rt}	0.863	-0.286	0.318	2.793	0.713	2.708	2.353	1.934	1.424	2.023	1.193	1.422
	(0.758)	(0.592)	(0.793)	(1.194)	(1.132)	(1.240)	(1.645)	(1.846)	(1.606)	(0.756)	(0.609)	(0.645)
Panel d:	Middle edi	icated										
RSH_{rt}	-1.750	-1.348	-2.087	-0.855	-0.736	-0.389	0.525	0.086	0.467	-1.313	-0.556	-1.191
	(0.730)	(0.586)	(0.854)	(0.579)	(0.480)	(0.782)	(0.998)	(1.207)	(0.679)	(0.958)	(0.447)	(0.876)
Panel e: Low educated												
RSH_{rt}	-2.112	-1.847	-1.889	-1.154	-0.647	-1.078	-1.877	-0.599	-1.809	-1.496	-1.016	-1.347
, ,	(0.745)	(0.687)	(0.794)	(1.179)	(0.714)	(0.945)	(1.350)	(1.284)	(1.302)	(0.981)	(0.489)	(0.887)
\overline{N}	3,392	3,392	3,392	3,392	3,392	3,392	3,392	3,392	3,392	3,392	3,392	3,392
Covariates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Notes: Standard errors in parentheses are clustered by CZ and origin country. Regressions include fixed effects for cantons, origin countries, decades, and origin times decade. City is an indicator for Basel-Stadt, Bern, Genf, Lausanne, Zurich. Share of immigrant from the same origin in the 70s. Contemporaneous High skilled and low-skilled education share. We have dropped the EU10 members which changed their EU status between 2000 and 2010.

Source: Swiss census 1970-2000, Strukturerhebung 2010-12, own calculations.

 Table C13:
 APPENDIX TO TABLE 5

Dependent variable: Stacked decadal differences in log numbers and ratios by education group

	Difference i	n log ratios	Differences in log numbers								
	High/Mid	Mid/Low	High	Middle	Low						
	(1)	(2)	$\overline{(3)}$	(4)	$\overline{\qquad \qquad } (5)$						
Panel a: Additive migration policy costs, covariates in decadal differences											
RSH_{rt}	3.318	0.720	3.309	-0.009	-0.729						
	(0.768)	(0.761)	(0.807)	(0.579)	(0.748)						
FMP_{st}	-0.065 (0.187)	0.016 (0.105)	0.392 (0.148)	0.499 (0.216)	0.309 (0.222)						
$\Delta \operatorname{Gini}_{st}$	0.080 (1.231)	-1.392 (1.012)	0.018 (1.443)	-0.939 (2.002)	1.345 (1.995)						
$\Delta \ \mathrm{GDP}_{st}$	-0.383 (3.166)	9.159 (4.961)	-1.880 (3.876)	-0.325 (5.703)	-11.688 (6.040)						
$\Delta \text{ Polity}4_{st}$	-0.001 (0.010)	-0.013 (0.015)	-0.020 (0.008)	-0.013 (0.015)	-0.005 (0.016)						
$Conflict_{st}$	0.537 (0.154)	0.017 (0.407)	-0.970 (0.230)	-1.325 (0.367)	-1.543 (0.198)						
$\Delta ilde{y}_{st}^{j}$	0.076 (0.313)	0.156 (0.323)	0.387 (0.191)	-0.828 (0.895)	-0.580 (0.211)						
Panel b: Additive migration policy costs, covariates in beginning of period lev											
RSH_{rt}	3.318	0.720	3.309	-0.009	-0.729						
	(0.768)	(0.761)	(0.807)	(0.579)	(0.748)						
FMP_{st}	-0.062 (0.184)	0.098 (0.098)	0.271 (0.149)	0.432 (0.296)	0.245 (0.283)						
Panel c: Multiplicative migration policy costs, covariates in decadal differences											
RSH_{rt} rsh	2.974	0.776	2.365	-0.609	-1.385						
	(0.613)	(0.787)	(0.728)	(0.784)	(0.834)						
$RSH_{rt} \cdot FMP_{st}$	1.372 (1.605)	-0.227 (1.285)	3.762 (2.004)	2.390 (1.564)	2.617 (1.851)						
Panel d: Multiplicative migration policy costs, covariates in beginning of period levels											
RSH_{rt}	2.974	0.776	2.365	-0.609	-1.385						
	(0.613)	(0.787)	(0.728)	(0.784)	(0.834)						
$RSH_{rt} \cdot FMP_{st}$	1.372 (1.605)	-0.227 (1.285)	3.762 (2.004)	2.390 (1.564)	2.617 (1.851)						
N	5,936	5,936	5,936	5,936	5,936						
Covariates	✓	\checkmark	\checkmark	√	\checkmark						

Notes: Standard errors in parentheses are clustered by CZ and origin country. Regressions include fixed effects for cantons, origin countries, decades, and origin times decade. City is an indicator for Basel-Stadt, Bern, Genf, Lausanne, Zurich. Share of immigrant from the same origin in the 70s. Contemporaneous High skilled and low-skilled education share. We have dropped the EU10 members which changed their EU status between 2000 and 2010.