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Non-technical summary

Research question

Bitcoin was created in the midst of the Global Financial Crisis in 2009. Its design, to
some, represents a challenge not only to the role of established financial institutions but
also to discretionary monetary policy. Via its peer-to-peer payment system, bitcoins can be
transferred, also across-borders, with the help of just an internet connection, but without
the involvement of regulated banks. And as Bitcoin’s supply grows fairly mechanically and
is ultimately finite, this is sometimes argued to insulate it from supposedly inflationary
central bank policy. These design choices raise the question as to how Bitcoin valuations
respond to changes in monetary policy. Not only would this speak to Bitcoin’s role as an
inflation hedge but also shine light on its interactions with the broader financial system.

Contribution

The paper goes beyond reduced-from analyses of previous work on Bitcoin and cryptocur-
rencies and instead features a structural analysis. First, I analyze changes in high-frequency
price data of Bitcoin around monetary policy announcements by the FOMC and the ECB
Governing Council. The main empirical analysis then identifies US and euro area monetary
policy shocks in a macroeconometric framework in order to study their effects on Bitcoin
valuations as well as its broader ecosystem. In particular, the paper adopts an international
perspective by utilizing price differences of Bitcoin in local currencies relative to the US
dollar. In addition, I exploit the unique availability of blockchain data. From hundreds of
millions of transactions I construct time series estimates of cross-border flows and holdings
of Bitcoin in different currency areas and study how these respond to monetary policy.

Results

Monetary policy shocks emanating from both the US and the euro area are found to have
significant and persistent effects on Bitcoin valuations. Strikingly, however, I find that their
effects differ in sign: a disinflationary monetary tightening by the Eurosystem lowers valu-
ations, whereas a tightening by the US Federal Reserve increases Bitcoin prices. Whereas
the response to euro area monetary policy therefore is consistent with Bitcoin’s supposed
role as an inflation hedge (digital gold), for US shocks this effect must be overcompen-
sated by another channel. By linking the increased market value for Bitcoin to demand
from emerging markets, I argue that the response to US monetary policy reflects the tech-
nological and institutional particularities of Bitcoin that make it sought after as global
digital cash when economic and financial conditions deteriorate following the international
ramifications of US monetary policy.



Nichttechnische Zusammenfassung

Forschungsfrage

Bitcoin ist inmitten der Finanzkrise 2009 entstanden. Für einige Beobachter stellt sein De-
sign einen bewussten Gegenentwurf zum herkömmlichen Finanzsystem dar. Über Bitcoins
dezentralisiertes Zahlungssystem können Werte mithilfe nur einer Internetverbindung auch
über Ländergrenzen hinweg transferiert werden, ohne dass regulierte Finanzinstitutionen
involviert wären. Und weil die Menge an Bitcoins endlich ist, wird mitunter argumentiert,
dass Bitcoin einen Schutz gegen inflationäre Zentralbankpolitik biete. Diese Charakte-
ristika werfen die Frage danach auf, wie Bitcoin-Preise auf geldpolitische Veränderungen
reagieren. Nicht nur würde dies Einblicke in Bitcoins Rolle als Inflationsschutz gewähren,
sondern auch auf Wechselwirkungen mit dem herkömmlichen Finanzsystem hinweisen.

Beitrag

Das Forschungspapier analysiert die kausalen Einflusseffekte der Geldpolitik auf die Be-
wertung von Bitcoin. Zunächst werden Veränderungen von Bitcoin-Preisen in engen Zeit-
fenstern um geldpolitische Ankündigungen des Fed-Offenmarktausschusses und des EZB-
Rates untersucht. Die Hauptanalyse erfolgt dann auf Basis eines makroökonometrischen
Modells, mit dem strukturelle geldpolitische Schocks aus den USA und dem Euroraum
identifiziert und deren Wirkung auf Bitcoin untersucht werden. Ein besonderer Fokus
liegt dabei auf internationalen Aspekten, weshalb Preisunterschiede zwischen Bitcoin in
unterschiedlichen Währungen relativ zum US-Dollar in die Analyse einfließen. Zusätzlich
werden aus Blockchain-Daten auf Basis von Hunderten von Millionen von Transaktio-
nen Zeitreihen gewonnen, die gehaltene Bitcoin-Bestände und Bitcoin-Transfers zwischen
Währungsräumen abbilden.

Ergebnisse

Das Forschungspapier dokumentiert signifikante und lang anhaltende Effekte geld-
politischer Schocks auf Bitcoin-Preise. Bemerkenswerterweise unterscheidet sich die
Wirkungsrichtung dieser Effekte jedoch: Eine geldpolitische Straffung im Euroraum führt
zu einem Rückgang, während eine ebensolche Straffung in den USA eine Erhöhung
von Bitcoin-Bewertungen zur Folge hat. Während also die Reaktion auf Euroraum-
Geldpolitik mit der Rolle von Bitcoin als Inflationsschutz vereinbar ist, muss im Falle
US-amerikanischer Geldpolitik ein anderer Wirkungskanal eine bedeutendere Rolle spielen.
Die Ergebnisse deuten darauf hin, dass Bitcoin aufgrund seiner technologischen und institu-
tionellen Besonderheiten eine steigende Nachfrage vor allem aus Schwellenländern erfährt,
wenn sich die finanziellen Bedingungen aufgrund der besonders ausgeprägten Ausstrahl-
effekte US-amerikanischer Geldpolitik eintrüben.
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1 Introduction

The root problem with conventional currency is all the trust that’s required to make it work.
The central bank must be trusted not to debase the currency, but the history of fiat currencies
is full of breaches of that trust. Banks must be trusted to hold our money and transfer it
electronically, but they lend it out in waves of credit bubbles with barely a fraction in reserve.

– Satoshi Nakamoto in P2P foundation forum post, Feb. 11, 2009.1

Cryptocurrencies were conceived more than ten years ago when Nakamoto (2008) concep-
tualized Bitcoin as a decentralized electronic cash system. What distinguishes Bitcoin from
other globally traded financial assets is not only its establishing of a peer-to-peer payment
system that does not rely on incumbent financial institutions. It is also the rules governing
their supply that sets them apart. As these rules are typically fairly mechanical, this is
argued to insulate cryptocurrencies from the discretionary decision-making of major com-
mercial and central banks. Consequently, by some, cryptocurrencies are perceived as an
explicit challenge to perceived shortcomings in monetary policy and the existing monetary
and financial system.2

There is a growing literature on many aspects surrounding Bitcoin and the underlying
blockchain technology. In particular, there is now a number of papers on cryptocurrency
price behavior highlighting its large volatility and low connectivity to essentially any other
traditional asset or macroeconomic activity (Yermack, 2015; Liu and Tsyvinski, 2018). How-
ever, this literature is almost entirely concerned with reduced-form analyses and has largely
ignored the role of what Bitcoin was designed to challenge, if not replace – the discretionary
decisions of monetary policy makers. Against this background, this paper conducts a sys-
tematic empirical analysis of the effects of monetary policy on Bitcoin. Not only is such
a structural analysis important to understand Bitcoin’s supposed role as a hedge against
inflation, but it can also provide insights in what drives demand for Bitcoin more generally.

The analysis comprises two parts. First, using high-frequency price data, I document
that the already high price volatility of Bitcoin is systematically elevated in narrow time win-
dows around monetary policy announcements by the FOMC and ECB Governing Council,
indicating that monetary news do contain relevant information for cryptocurrency markets.
Regarding the direction of responses, there is no clear relation to changes in interest rates.
However, there are a few occasions where price responses are in line with those of stocks
and exchange rates for ECB announcements, whereas Bitcoin valuations respond inversely
to other risky asset prices after several announcements by the Fed.

1See http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source?id=
2003008%3ATopic%3A9402&page=1.

2Bitcoin’s inception coincides with the Great Financial Crisis 2008-09. Nakamoto’s disdain for both the
role of existing financial institutions and government involvement in their rescue cannot only be seen in the
above quote but also found its way in the Bitcoin blockchain: the first block of transactions includes the
now infamous text message "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks".

1

http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source?id=2003008%3ATopic%3A9402&page=1
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Second, motivated by these stylized facts, the main empirical analysis uses a weekly
proxy VAR framework to study the effects of structural monetary policy shocks on Bitcoin
prices. The analysis reveals a systematic pattern and long-lasting effects. In response to
disinflationary euro area monetary policy shocks, I find that Bitcoin prices persistently
decline – consistent with the view of Bitcoin as a form of digital gold: a hedge against
supposedly inflationary monetary policy. In stark contrast, however, an exogenous monetary
tightening by the Fed does not lead to a fall but an increase in Bitcoin valuations. I find that
this pattern also extends to central bank information shocks – surprise increases in interest
rates that are accompanied by rising stock market valuations (Jarociński and Karadi, 2020).
Also here, Bitcoin prices rise in tandem with inflation expectations in response to euro area
shocks, but fall after equivalent shocks emanating from the US.

In search for an explanation of these atypical responses to US monetary policy, I then
study its effects on further aspects of the Bitcoin ecosystem. Whereas a more pronounced
role of Bitcoin as a medium of exchange for day-to-day transactions does not seem to offer
a compelling explanation, the evidence points to an international dimension. First, I utilize
the established fact that cryptocurrency markets are not arbitrage-free but show sizable
and persistent valuation differences in different currencies (Makarov and Schoar, 2020). My
results show that Bitcoin prices expressed in emerging market currencies – above all the
Chinese yuan – increase especially strongly following a contractionary US monetary policy
shock. In contrast, this is not the case for the currencies of advanced economies. I then
corroborate the notion that the increased demand for Bitcoin primarily stems from emerging
markets by exploiting the availability of blockchain data. By constructing time series of
Bitcoin flows and holdings from hundreds of millions of transactions, I find that those
exchanges that support trading of Bitcoin against emerging market currencies experience
net inflows of coins, both in absolute terms and directly from other exchanges. Conversely,
fewer coins are held at advanced economy exchanges.

I interpret these findings in the context of the recently documented disproportionally
large effects that a US monetary tightening has on economic and financial conditions globally
(Rey, 2015; Miranda-Agrippino and Rey, 2020). The low correlation of Bitcoin prices
with other assets as well as the fact that Bitcoin is borderless and technologically largely
independent from incumbent (and regulated) financial institutions makes it suitable for
capital flight or as a vehicle currency. In that sense then, in response to US monetary policy
shocks, rather than serving as an inflation hedge (digital gold), Bitcoin seems to primarily
operate as a global digital cash whose technological and institutional characteristics make
sought after when pressure is put on the currencies of emerging economies in the face of
deteriorating economic and financial conditions.

I further substantiate these notions in two ways. First, I find that the impact of US
monetary policy shocks on Bitcoin prices is indeed mostly driven by monetary tightening
rather than easing measures. Second, I study the response of Bitcoin valuations to risk-shift
shocks that capture the willingness of investors to hold risky assets (Kroencke et al., 2021).
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The results confirm the view that the positive Bitcoin price response to contractionary US
shocks is not driven by changes in interest rates per se, but rather operate through their
impact on economic and financial conditions as well as investor risk perceptions.

Related Literature. The paper contributes to various strands of the literature. Most
fundamentally, it is related to the large literature on the effects of monetary policy on
asset prices (Kuttner, 2001; Bernanke and Kuttner, 2005; Gürkaynak et al., 2005; Gilchrist
et al., 2019; Gürkaynak et al., 2021; Kroencke et al., 2021), which I extend to cryptocurrency
markets.3 Notably, I uncover that Bitcoin prices respond qualitatively very differently to US
monetary policy shocks compared to other financial assets. Relatedly, the paper extends
the literature on the effects of monetary policy on capital flows (Kalemli-Özcan, 2019;
Chari et al., 2020) to cryptocurrencies based on blockchain data. Whereas US monetary
contractions are usually associated with net capital flows out of emerging markets, I find
evidence of an increase in the demand for, and net inflows of, Bitcoin.

Second, the paper contributes to the growing literature on cryptocurrency price behavior
as a guide to answer questions of whether Bitcoin is best thought of as a (speculative)
asset or a currency. These studies are usually based on reduced-form analysis and find
that cryptocurrency valuations have little if any relation to other financial assets (Liu and
Tsyvinski, 2018; Corbet et al., 2018; Baur et al., 2018), whereas their volatility is much larger
(Yermack, 2015). I focus on one particular driver of asset valuations – monetary policy –
and extend the literature methodologically by conducting a structural analysis. The paper
also relates to one strand of the literature that studies to what extent Bitcoin has safe
haven properties. While some authors have found evidence that Bitcoin might be used as
a hedge for exposure to several assets as well as global uncertainty (Dyhrberg, 2016; Bouri
et al., 2017a), other studies argue against a safe haven status of cryptocurrencies such as
Bitcoin (Smales, 2019; Baur and Hoang, 2020), with the exception of Asian stock markets
(Bouri et al., 2017b). Consistent with an important role for Asian markets, I find that
Bitcoin prices in Korean won and Chinese yuan appreciate particularly strongly following a
US monetary contraction and that coins flow to emerging market exchanges, the largest of
which for a long time operated in China.4

Third, the empirical literature on cryptocurrencies also encompasses work that studies
user behavior and trading relations from blockchain transaction data (Athey et al., 2016;
Tasca et al., 2016; Griffin and Shams, 2020), which here is adapted to an international
context. In particular, I compute time series estimates of blockchain trading activity that

3There are only a few papers that include some form of analysis of monetary policy on cryptocurrencies.
These, however, are narrowly focused on valuations, and are either concerned with volatility spillovers
(Corbet et al., 2020b), identify structural shocks of financial market variables recursively (Choi and Shin,
2020) or employ daily data in an event study analysis (Pyo and Lee, 2019). Finally, in a companion paper
(Karau, 2021a) I document the existence of pre-announcement drifts of Bitcoin prices to monetary news in
the spirit of Lucca and Moench (2015).

4The role of Chinese economic conditions in particular for cryptocurrency markets has been emphasized
also by Elsayed et al. (2020). They show that the Chinese yuan is the only major currency that affects
Bitcoin prices in a volatility spillover analysis in the spirit of Diebold and Yilmaz (2009).
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controls for transfers within different entities or users. A notable contribution of this pa-
per lies in identifying exchanges and computing time series of Bitcoin flows between them
according to which fiat currencies they support.5 The paper is also the first to compute
balances of these exchanges meant to proxy Bitcoin holdings in different currency areas.

Fourth, the paper contributes to the literature on the role of US monetary policy as
a main determinant of monetary and financial conditions globally (Rey, 2015; Miranda-
Agrippino and Rey, 2020). Degasperi et al. (2020) conduct a comprehensive analysis of
the international spillover effects of US monetary policy in a VAR framework. They focus
on macroeconomic variables and traditional financial markets and confirm that US shocks
have profound effects globally. Jarociński and Karadi (2020) study the effects of both US
and euro area monetary policy shocks and find them to yield broadly similar effects on
the macroeconomy. I extend these analyses to variables related to Bitcoin. Walerych and
Wesołowski (2020) show that US monetary policy shocks have larger spillover effects on
emerging economies than those emanating from the euro area. Caporin et al. (2020) present
a similar finding regarding the co-movement of global equity and CDS prices. I show that
also Bitcoin markets are affected differently from US and euro area monetary policy shocks.

From a methodological standpoint, the paper is most closely related to the literature
that uses instrumental variable techniques in a VAR framework (Mertens and Ravn, 2013;
Stock and Watson, 2018) to identify monetary policy shocks (Gertler and Karadi, 2015). In
particular, the paper relates to those isolating or controlling for information effects contained
in monetary announcements (Miranda-Agrippino and Ricco, 2021; Jarociński and Karadi,
2020). I show that this approach works well in relatively short weekly instead of longer
monthly time samples when using an instrument constructed via sign restrictions.

Outline. The paper is structured as follows. Section 2 presents some stylized facts of
Bitcoin price behavior in narrow windows around monetary announcements. Part 3 conducts
the main empirical analysis in a weekly proxy VAR framework. After outlining the model
(Section 3.1) and data (Section 3.2), Section 3.3 establishes the main results, which
are further explored in Section 3.4 and discussed in Section 3.5. Part 4 concludes.

2 Monetary Announcements and Bitcoin Prices –
Some Stylized Facts

I begin the empirical analysis by studying how Bitcoin (BTC) valuations respond in short
time windows around monetary announcements using high-frequency price data, following
the literature on the effects of monetary policy on financial markets (Gürkaynak et al., 2005;
Altavilla et al., 2019). This exercise serves two purposes. First, it establishes that monetary
news are not non-events for the Bitcoin market in the first place. Second, it gives a first

5The analytical firm Bitfury Crystal publishes reports on Bitcoin with year-by-year estimates of flows
between exchanges based on which countries these exchanges officially reside in, see Bitfury (2019).
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indication of the direction of the responses that motivate much of the subsequent structural
VAR analysis in Section 3.

BTC Price Volatility. It is well established that cryptocurrency prices feature signif-
icantly higher levels of volatility than other financial assets (Yermack, 2015). For instance,
the standard deviation of daily Bitcoin returns in USD from January 2014 to June 2021 is
almost 4 percent. This figure is roughly 4 times higher than that for returns of the S&P500
and 8 times higher than of the USD-EUR exchange rate.

Figure 1 shows that the already high volatility of Bitcoin prices is further elevated in
narrow windows around monetary announcements by the ECB (left) and Federal Reserve
(right panel).6 I compute realized volatilities as the standard deviation of Bitcoin returns in
five-minute spells in EUR (left) and USD (right boxes) in the same time period from January
2014 to June 2021. In each case, I compare the volatility around the announcement (light)
with that in comparable time windows on days that do not feature monetary news (dark
boxes).7

The box plots indicate that in all cases the distribution of volatilities is shifted upwards
in monetary announcement windows.8 This is the case irrespective of whether the monetary
news stems from the ECB or the Fed and holds for both considered fiat currencies.9 The
difference is also visible when comparing the means of the distributions statistically. In all
cases, a t-test on mean equality is rejected with p-values below 0.01. Hence, although cryp-
tocurrencies are sometimes perceived as being detached from the drivers of other financial
assets (Liu and Tsyvinski, 2018), monetary news appear to contain information of interest
to participants in these markets as well. Revealing this information then leads to levels of
valuation changes that are unusually high even for Bitcoin.10

Direction and Correlation of BTC Price Responses. The findings in Figure 1
raise the natural question as to the direction of Bitcoin price responses to monetary news.
In particular, it will be interesting to see if there is a clear relation to changes in interest
rates. A perhaps overly simplistic view based on standard asset pricing considerations would

6As in Gürkaynak et al. (2005), for FOMC announcements I use a time window of 10 minutes prior to
20 minutes after the FOMC press statement if there is no subsequent press conference. If there is one, the
window extends to 60 minutes after the beginning of the press conference as in Cieslak and Schrimpf (2019).
As in Altavilla et al. (2019), for the ECB I consider a window of 10 minutes prior to the press statement to
75 minutes after the beginning of the regularly held subsequent press conference.

7The raw data is gathered from the public website bitcoincharts.com that contains tick data for
dozens of Bitcoin exchanges. See Appendix A for details on the sources, data cleaning and computations.
As there are various days that feature extreme movements in Bitcoin prices of several dozen percent, for
the comparison I remove those days from the sample that are in the most volatile decile.

8The volatility of Bitcoin returns in EUR in the figure is somewhat higher than its counterparts in USD.
This, however, is merely an artifact of the somewhat lower quality of the underlying raw data series in the
early parts of the sample.

9It also holds for Bitcoin returns in CNY that are available in shorter time samples. Results for Bitcoin
returns in EUR and USD also look similar in shorter time samples.

10Similar results are obtained when using trading volumes at major Bitcoin exchanges, which are also
higher around monetary policy announcements.
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Figure 1: BTC Price Volatility Around Monetary Policy
Announcements by the FOMC and ECB Governing Council
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Note. Box plot of volatility of Bitcoin returns (in EUR and USD) in narrow windows of ECB Governing
Council meetings (left panel, 10 minutes prior to press statement until 75 minutes after the beginning
of the press conference) and FOMC meetings (right panel, 10 minutes prior to 20 minutes after press
statement / 60 minutes after the press conference (if there is one)), compared to days without monetary
announcements in comparable time windows. Plots exclude outlier values as determined by Stata. Based
on 5-minute spells. Days with 10 percent largest BTC price volatility removed. Time sample: January
2014 to June 2021. Source: author’s calculations based on data from bitcoincharts.com.

predict that an increase in interest rates should be associated with a decline in the value of
non-interest bearing assets such as Bitcoin. Figure 2 reveals that things are not quite as
simple. The figure shows scatter plots of changes in USD Bitcoin returns against changes in
2-year yields in German bunds (left) and US treasuries (right) for ECB Governing Council
and FOMC announcements, respectively. It makes apparent that there is no clear relation
between the two variables and indeed correlation coefficients are statistically insignificant
and close to zero in both cases.11

While it turns out to also be difficult to discern a clear general pattern of how Bitcoin
prices behave relative to other risky assets around monetary policy communication,12 it
might prove useful to observe the responses to those policy announcements that had a
clear impact on the the prices of traditional financial assets. Figure 3 depicts two such
occasions. Panel (a) shows returns of the Eurostoxx50, the USD-EUR exchange rate as
well as Bitcoin prices in EUR and USD around the ECB Governing Council announcement
on March 10, 2016. In it, the ECB communicated to the public a major set of policy

11For ECB Council announcements, the correlation is somewhat larger when computing Bitcoin returns
in EUR. The correlation remains statistically insignificant, however, and mainly reflect an appreciation of
the EUR against the USD that is generally associated with a rise in euro area interest rates.

12Figure C.1 reveals that there is a significant correlation of Bitcoin returns only with those of gold for
ECB Governing Council meetings. The size of the correlation coefficients, however, is often fairly sensitive
to the removal of outliers.
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Figure 2: Bitcoin vs. Stock Price Responses to Monetary
Announcements by the ECB Gov. Council and FOMC
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Note. Scatter plots of responses of 2-year government bond yields and Bitcoin prices in narrow win-
dows around ECB Governing Council (left) and FOMC announcements (right panel) between January
2014 and June 2021 (March 2021 for the left panel). Source: author’s calculations based on data from
bitcoincharts.com, Altavilla et al. (2019), Cieslak and Schrimpf (2019), Refinitiv.

changes meant to provide monetary stimulus.13 As panel (a) shows, these measures led to
an almost immediate increase in European stock valuations and an appreciation of the US
dollar against the euro. Qualitatively in line with these responses, Bitcoin prices in EUR
jumped after the press release and also Bitcoin prices in USD appreciated in the course of
the announcement window.

Contrast that with panel (b) in Figure 3 which shows responses to a monetary surprise
from the Federal Reserve. On December 14, 2016, the FOMC announced that it would
increase the target corridor for the effective federal funds rate by 25 basis points. This
perceived monetary tightening was followed by a fall in both the S&P500 as well as the euro
in terms of US dollars. However, in contrast to the responses to euro area monetary news,
Bitcoin prices did not follow stocks and exchange rates, but increased on the news.

To be sure, while there are a few more occasions with similar patterns,14 these curious
responses might prove to be isolated cases that do not necessarily point to a general pattern.
Indeed, the low levels of liquidity in Bitcoin compared to traditional financial assets and the
large volatility of Bitcoin prices could make it difficult to ascertain clear patterns of responses

13Next to lowering the interest rates for its main refinancing operations as well as its marginal lending
and deposit facilities, it announced in its press statement an expansion of monthly purchases of its asset
purchase program from 60 to 80 billion EUR and the launch of a new series of targeted long-term refinancing
operations (TLTROs).

14For instance, Bitcoin prices moved inversely to stocks and foreign exchange rates in response to FOMC
announcements on July, 30 2014 as well as on March, 18 2015. More recently, the opposite could be observed:
on March, 17 2021, stock prices rallied after an FOMC announcement, with Bitcoin prices also increasing
on the news.
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Figure 3: Examples of BTC Price Responses to Monetary News
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(a) ECB Gov. Council announcement on March 10, 2016
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(b) FOMC announcement on December 14, 2016
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Note. In both panels, the USD-EUR exchange rate is defined such that an increase refers to an ap-
preciation of the respective foreign currency. Dashed vertical lines indicate the beginning of the press
statements and press conferences, respectively. Shaded areas denote the time windows in which asset price
responses to monetary news are commonly measured. Source: author’s calculations based on data from
bitcoincharts.com, tickstory.com.

in high-frequency analyses.15 More fundamentally, it could be that it takes some time for
effects to materialize, especially if Bitcoin interacted with economic and financial conditions
in non-trivial ways. It would hence be of interest to assess to what extent any price effects
are sizable and persist over longer horizons. Answering these questions requires a structural
macroeconometric model that allows for feedback effects among a wide range of variables
of interest, and for the proper identification of monetary policy shocks. Such a model is
estimated in the main empirical analysis to follow and can also be used to study other parts
of the Bitcoin ecosystem that could point to potential explanations of the observed price
responses.

15What is more, Karau (2021a) shows evidence of anticipatory effects of monetary policy announcements
in Bitcoin markets. Whereas there is an upward drift in Bitcoin valuations prior to ECB Governing Council
announcements, for the FOMC the drift is downward. In that sense then, it could be that focusing attention
solely on the announcement window itself underestimates the effect of monetary policy on Bitcoin prices.
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3 Monetary Policy and the Bitcoin Market – Struc-
tural VAR Analysis

This part of the paper features the main empirical analysis based on various versions of
a weekly structural VAR model. Section 3.1 describes the model setup with a focus on
shock identification using an instrumental variable approach. Section 3.2 then provides
an overview of the extensive dataset employed to study how monetary policy shocks affect
cryptocurrency markets in the subsequent impulse response analysis. Section 3.3 features
the main results for US and euro area monetary policy shocks. Subsequently, motivated by
the response of Bitcoin prices to to Fed shocks, I focus on the effects of US policy that I
explore in detail in Section 3.4 and discuss in Section 3.5.

3.1 Model Description and Shock Identification

Shock Identification. The analysis is based on a structural VAR model estimated
in weekly frequency, detailed in Appendix B. Building on Stock and Watson (2018) and
Mertens and Ravn (2013) and following Gertler and Karadi (2015), I use an external instru-
ment in a proxy VAR to identify the structural monetary innovations, denoted as εpt . For
these instruments to be valid, the surprise series Zt needs to be relevant and exogenous as
follows:

E[Ztε
p
t
′] = φ 6= 0, (1)

E[Ztε
q
t
′] = 0, (2)

where εqt are structural shocks unrelated to monetary policy.
Often, researchers use high-frequency responses of short-term interest rates during nar-

row windows around monetary policy announcements as external instruments (Gertler and
Karadi, 2015; Caldara and Herbst, 2019). Movements of rates within these short time
intervals arguably represent new information that was not previously priced in and that
can plausibly be attributed to the monetary policy news, satisfying condition (1). How-
ever, a number of recent papers noted that, in the presence of information asymmetries
between the central bank and market participants, price responses during a narrow win-
dow around monetary policy announcements could contain "information effects" (Melosi,
2017; Nakamura and Steinsson, 2018; Miranda-Agrippino and Ricco, 2021; Jarociński and
Karadi, 2020; Kerssenfischer, 2019; Franz, 2020). This would be the case if, say, the central
bank has an informational advantage concerning the state of the macroeconomy. If so, this
additional information would be revealed, alongside any exogenous monetary policy shocks
alone, during monetary policy announcements. For instance, an increase in expected future
short-term interest rates following a monetary announcement might in some instances reflect
the market’s assessment that the central bank considers the economy to likely perform more
favorably than anticipated. One sign of such an effect would be a contemporaneous increase
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Table 1: Sign Restriction Identification for Proxy VAR Instrument

Monetary Information

High-frequency
response

Interest rate + +
Stock market index – +

Note. Sign restrictions for monetary and central bank information shocks. Restric-
tions are imposed only on impact. Instrument series Zt is selected as the median-
target series based on 1,000 draws.

in the price of risky assets like stocks. If the researcher then simply used the changes in
expected interest rates as an instrument in a proxy VAR, the exogeneity assumption (2) is
likely to be violated.16

Against this background, I do not simply use high-frequency responses of interest rates
as instruments Zt, but adopt the following strategy, reminiscent of the one used in Jaro-
ciński and Karadi (2020). Next to the change in interest rates around monetary policy
announcements, I additionally consider the response of stock market indices and feed both
into a sign restriction procedure in order to produce Zt. As laid out in Table 1, I define
those shocks as exogenous monetary innovations that lead to changes in interest rates and
stock prices in opposite directions, in line with standard theory.17

Monetary Policy Surprise Data. To compute the instrument series Zt I use two
databases that contain information on the changes of asset prices in narrow time windows
around monetary announcements. For FOMCmeetings I rely on the database by Cieslak and
Schrimpf (2019) that provides high-frequency responses of equity prices and interest rates
at various maturities until December 2017,18 which for robustness purposes I extend with
self-computed data from Refinitiv. For ECB announcements, I rely on the monetary event
study database by Altavilla et al. (2019),19 which includes an even richer set of variables and
is updated regularly.20 In order to take into account not only responses to the announcement
of policy statements but also to explanations provided to the public subsequently, I consider
responses in time windows that include central bank press conferences. Details are provided
in Appendix A.

16The researcher would then measure not the impulse response to an actual exogenous monetary policy
shock, but instead that to some combination of fundamental shocks the central bank responds to. Some
authors have recently argued against the prevalence of central bank informational advantages, see for in-
stance Hoesch et al. (2020) and Bauer and Swanson (2020). However, for the purpose here, all is needed is
to isolate pure monetary shocks from any other confounding factors revealed during the announcement.

17This identifying assumption is the same as in Jarociński and Karadi (2020) in order to isolate pure
monetary policy shocks. Different to them, however, I use the resulting shock series as an instrument in the
proxy VAR instead of directly as a first variable in a recursively identified model.

18Available at https://sites.google.com/site/ancieslak/.
19Available at https://www.ecb.europa.eu/pub/pdf/annex/Dataset_EA-MPD.xlsx.
20In order to ensure that my results are comparable across monetary areas, I confirm that I get essentially

the same responses when using the database by Cieslak and Schrimpf (2019) also for the euro area.
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Table 2: VAR Model Specifications

Variable Source (1) (2) (3) (4)
2-year interest rates Bloomberg • • • •
VIX/Vstoxx Bloomberg • • • •
S&P 500 / Eurostoxx50 S&P / Reuters • • • •
EUR-USD exchange rate ECB • • • •
BTC in USD bitcoinity.org • • • •
5-year inflation expectations Bloomberg •
Blockchain transfer volume (total) glassnode studio •
Blockchain transfer volume (median) glassnode studio •
Bockchain tx fee (avg.) blockchain.info •
Bockchain tx confirmation time blockchain.info •
BTC-fiat spreads w.r.t. USD bitcoinity.org, tickstory.com •

bitcoincharts.com, ECB, AC
BTC holdings at EME exchanges Bitcoin blockchain, AC •
BTC holdings at AE exchanges Bitcoin blockchain, AC •
Inter-exchange flows (EME) Bitcoin blockchain, AC •
Figures 5, 6 7 8 9

Note. The table lists the variables included in each proxy VAR model (either US or euro area), alongside
their sources. AC denotes author’s calculations, tx stands for transaction.

Model Variants. I consider a multitude of variables to investigate the impact of mon-
etary policy shocks on Bitcoin. Table 2 provides an overview of the model variants. Each
model has a set of core financial variables, including the price of Bitcoin in USD. Addition-
ally, I subsequently consider different sets of variables meant to investigate different aspects
of the Bitcoin ecosystem as explained below.

3.2 Data

In the following I describe the construction and sources of the time series used in the VAR
models. More details are provided in Appendix A and all computed time series are depicted
in Figure A.4.

Financial Market Data. The main time series of interest in the VAR models is the
price of Bitcoin, which is obtained in daily (and then transformed to weekly) frequency from
bitcoinity.org in multiple currencies.21 In addition, I include various other financial
market variables. As interest rates I use 2-year government bond yields (German bunds and
US treasuries, respectively). This is because the time sample under consideration includes
periods in which central bank policy rates stayed near zero for extended periods of time.
I hence follow the recent literature and consider somewhat long-term rates in order to
also capture innovations in forward guidance.22 I include stock market indices as well as
the EUR-USD exchange rate and market-based measures of inflation expectations derived
from inflation-linked swaps with a maturity of five years. Further, all VAR model variants

21In robustness exercises I use data from coinmarketcap.com and also compute weekly Bitcoin prices
from scratch using the high-frequency tick data employed in Section 2. In both cases find my results to
be essentially identical.

22I obtain very similar results when using 1-year rates or swap German bund yields with Eonia rates.
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contain a measure of implied stock market volatility such as the VIX that is frequently used
to control for perceived global uncertainty and investor risk appetite.23 Finally, model (3)
includes spreads of Bitcoin prices in several fiat currencies relative to its price in US dollars.
I follow Makarov and Schoar (2020) and compute the BTC-USD spread of a currency i as
(P i/B/P i/$)/P $/B, where P j/i is the price of currency i expressed in currency j. Details are
provided in Appendix A.

Aggregate Blockchain Transaction Data. I use various time series measuring
transfer activity of bitcoins at the aggregate level. First, average mining fees capture the
demand for transaction space in blocks added by miners to the blockchain. Relatedly, I
add a measure of the median time it takes for a transaction to be added that can equally
be thought of as capturing congestion in the peer-to-peer payment system. Both of these
series are obtained from blockchain.info. Second, I directly measure the amount of
Bitcoin transfers as captured in the blockchain. To that end, I do not simply use aggregate
measures as is sometimes done in applied work. As these series simply add up the reported
transactions, and transfers between addresses of the same entities are frequent and large,
using these data would tend to overstate or otherwise obfuscate the actual trading between
different agents. Instead, I rely on entity-adjusted measures of total (and median) transac-
tions that aim to filter out transfers that likely occur between the same entities by means
of clustering addresses. These data are obtained from glassnode studio.24

Bitcoin Holdings and Flows from Blockchain Data. Next to aggregate blockchain
transaction measures, I am interested in Bitcoin flows between, and Bitcoin holdings in, dif-
ferent geographical regions, as detailed below. As these are not readily available, I compute
them myself from scratch using blockchain data containing hundreds of millions of trans-
actions. In order to make this data useful for the analysis, there again needs to be an
adjustment that filters out transfers between the same entities. I therefore make use of pre-
clustered data (Kondor et al., 2014) by means of input-address or common-sender heuristics,
the most common approach in the literature. These heuristics map input (sender) and out-
put (receiver) addresses (public keys, equivalent to bank account numbers) in the form of
34-character strings into distinct users. Afterwards, I use external information to identify
significant entities within the Bitcoin ecosystem among these entities. To that end, I use
information from various websites that compile a large number of addresses, and employ
algorithmic means in order to identify so-called cold wallets. Extensive details on these
procedures are described in Appendix A.

23Results do not change when replacing the VIX with other measures of implied volatility (for instance
those used in Dew-Becker and Giglio, 2020) and are if anything even stronger when replacing it with
uncertainty indices that are available at a weekly frequency (for instance the Economic Policy Uncertainty
Index and the Equity Market-related Uncertainty Index of Baker et al., 2016).

24Conclusions drawn from the VAR results do to not change when I use entity-adjusted aggregate data
based on my own computations as outlined below.
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As it is generally difficult to precisely assign addresses to users in certain geographical
locations with accuracy,25 I focus on the largest and most important entities in the ecosys-
tem: the exchanges. This is useful for several reasons. First, through much of the time
sample under consideration, exchanges can generally be classified according to which fiat
currencies they offer. Hence, differences in Bitcoin valuations across currencies can directly
be attributed to supply and demand conditions at particular exchanges. Second, exchanges
are not mere trading platforms but store large amounts of customer funds. Tracking the
holdings of large exchanges then allows to assign particular fiat currencies to large amounts
of coins that these can be exchanged into. Third, and relatedly, a substantial share of trans-
action activity within the blockchain involves exchanges. To see that, consider Figure 4,
which depicts aggregated blockchain trading relations among the most active entities in the
Bitcoin ecosystem.26 All edges in blue denote transactions with an exchange, edges in red
denote transfers directly between exchanges. As the graph indicates, many of the large
exchanges are central entities within the Bitcoin network and trading among exchanges is
comparatively intensive.

For reasons that will become apparent below, I categorize all exchanges in two sets
of groups. Namely, I classify them according to whether they allow trading of Bitcoin
against one or more emerging market currencies or exclusively against currencies of advanced
economies.27 Table A.1 in Appendix A gives details on which (fiat) currencies can be traded
at the exchanges covered and shows the resulting time series.

I then compute two sets of time series. First, inter-exchange flows (corresponding to
the red edges in Figure 4), for which I track all Bitcoin flows that occur directly between
exchanges of the two groups. This measure has the advantage that it can be thought of
as a fairly direct metric of cross-border capital flows in Bitcoin, as for instance argued
in Bitfury (2019). However, despite frequent transactions between exchanges it turns out

25There are some attempts to link cryptocurrency usage to geographical regions, e.g. via IP addresses
(Lischke and Fabian, 2016) or probabilistic models (Athey et al., 2016). The most recent study is a report
published in September 2020 by the analytical firm Chainalysis. While these attempts are sometimes
comprehensive in scope, they cover only short time periods and generally do not aim to provide time series
of cross-border Bitcoin flows and holdings.

26For the purpose of this graph, I filter out aggregate transactions with less than 1 million US dollars and
entities involved in less than 20 trading relations. Labeled nodes in blue refer to exchanges, whereas grey
nodes are not classified.

27A categorization according to the available currency pairs will not only turn out to be economically
meaningful but also conceptually more useful than classifying them according their official country of res-
idence, as is sometimes done. For instance, the analytical firm Bitfury Crystal classifies exchanges based
where they are headquartered (Bitfury, 2019). As various important exchanges officially reside in tax havens
or countries with different currencies than the ones offered by the exchanges, such a categorization will be
of limited use for the purposes in this paper.
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Figure 4: Blockchain Trade Linkages of Highly Active Entities

Note. Aggregated transaction relations of significant entities in the Bitcoin ecosystem between 2009:01 and
2017:12. Thickness of edges denotes size of trading relation in USD, size of nodes denotes strength of entity
(number of relations in the graph weighted by their USD value). Nodes are in blue (denoting exchanges) or
grey (unknown entities); edges are in red (transaction between two exchanges), blue (between an exchange
and an unknown entity) or grey (between unknown entities). Graph contains only aggregated transaction
relations of more than 1mn USD and degree (number of distinct trading relations) of 20. Source: Bitcoin
blockchain, author’s calculations.

that the value transferred across borders, as measured in US dollar terms, is fairly small.28

I therefore complement inter-exchange transactions with a second metric. Specifically, I
compute the balances of the largest exchanges, i.e. their cumulated in- and outflows. The
resulting time series can be likened to a measure of Bitcoin holdings in different currency
areas. While this second measure is less direct, it has the advantage that it is much more
comprehensive.

28In fact, inter-exchange flows between broad geographic regions amount to only several millions of US
dollars per week in some periods of the time sample under consideration. These flows grow in size only
during and after the boom-bust period in Bitcoin prices in Winter 2017/18 but are still estimated in Bitfury
(2019) to be in the range of only several billion US dollars per year. This at least in part reflects the fact that
transactions are not captured if they do not occur directly between exchanges but involve any intermediate
wallets. In other words, the measured flows likely cover only a fraction of all transaction that actually occur
between different geographical locations.
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3.3 The Impact of Monetary Policy Shocks on Bitcoin Prices

This section features the main results, which I report in the form of dynamic responses to an
increase in 2-year interest rates of 10 basis points. All VAR model specifications are run in
weekly frequency with 8 lags.29 The main time sample starts in June 2013 which is chosen
for reasons of data availability and aspects related to the maturity of the ecosystem.30 Most
time series are available for the entire sample until June 2021, a few for a shorter duration.31

Model (1): Monetary Policy Shocks and Bitcoin Prices. Figure 5 shows re-
sponses to contractionary euro area (upper) and US (lower row) monetary policy shocks in
the baseline model. The VAR specification includes a number of financial market variables
next to the price of Bitcoin in USD. As the figure makes clear, shock identification in the
weekly setting works well in that it delivers plausible impulse responses that are in line with
both standard theory and findings in the literature.32 Following the monetary shock, risky
asset prices in the form of the S&P500/Eurostoxx fall, as does the price of foreign currency,33

whereas implied stock market volatility rises (not pictured). Also inflation expectations, as
measured via inflation-linked swaps with a maturity of 5 years, fall significantly, confirming
the disinflationary effects of the monetary policy shocks in both the US and the euro area.34

In notable contrast, the impact on the price of Bitcoin differs: whereas it persistently
falls in response to contractionary euro area monetary policy shocks, it increases following a
US monetary contraction. This finding adds weight to the observations made in Section 2
that Bitcoin prices even in short windows around FOMC announcements sometimes seem to
move inversely to other risky asset prices whereas they move in tandem after ECB Governing
Council decisions. Indeed, the VAR results show that this pattern is systematic and persist
for multiple weeks. Quantitatively, the effects seem particularly large at first (with impact
responses of around -20 and +7 percent, respectively), but are actually roughly in line
with the other asset prices in the model when taking into account the substantially larger

29Changing the number of lags does not noticibly change the results provided some reasonable minimum.
30Tasca et al. (2016) find that there is almost no commercial activity before 2013 and most blockchain

transactions are related to either mining or gambling. Further, the Bitcoin ecosystem was dominated by
one single exchange, Mt.Gox, prior to mid-2013 after which there was a massive outflow of coins and the
market became less centralized (Karau, 2021b). Finally, Urquhart (2016) finds that Bitcoin prices fail tests
of market efficiency before mid-2013 but not afterwards.

31This mostly concerns time series related to Chinese trading activity which fell and then stopped after
regulatory crackdowns by Chinese authorities in February and September 2017. It also applies to the
computed Bitcoin flows between and holdings of exchanges based on pre-clustered blockchain data, which
is available until the end of 2017.

32F statistics for instrument relevance lie around 12 for the US and 30 for the euro area model, indicating
sufficient instrument strength (>10).

33This result is not limited to the EUR-USD exchange rate but also applied to other foreign currencies,
among them those are often associated with benefiting from uncertainty such as the Japanese yen.

34The quantitative effects are generally larger in the euro area model, which however mostly reflects the
lower levels and higher persistence of interest rates in the euro area. Indeed, with the zero lower bound
on short-term interest rates more acute, 2-year interest rates in the euro area stood between -0.5 and +0.3
percent in the time sample under consideration, whereas 2-year US rates moved between 0 and 3 percent.
This then translates into larger effects of a given change in 2-year rates for the euro area model.
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Figure 5: IRFs to Contractionary US and EA Monetary Policy Shocks:
BTC and Other Asset Prices
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Note. Impulse responses to a contractionary euro area (upper) and US (lower panel) monetary policy
shock (model (1) in Table 2) identified as explained in Section 3.1. Shaded areas denote 68% and 90%
confidence bands. Time sample: June 2013 to June 2021.

volatility of Bitcoin prices in general.
What might explain the strikingly different responses of Bitcoin prices? The contrac-

tionary impact of euro area monetary policy seems in line with a view that sees Bitcoin’s
design as a counter model to discretionary monetary policy based on fiat money creation.
Indeed, Halaburda et al. (2020, p.53) write that "[e]nthusiastic supporters of cryptocurren-
cies often argue that Bitcoin will replace gold as the hedge against inflation". Accordingly,
a disinflationary shock should reduce the propensity to invest in Bitcoin, just as observed
in Figure 5. In contrast, the increase in Bitcoin prices in response to a US monetary
contraction is more difficult to interpret and demands a different explanation. While it can
by no means be excluded that the inflation hedge notion also plays a role with US monetary
policy, at the very least there needs to be an additional channel at work that dominates the
former and predicts an opposite effect.35

Central Bank Information Shocks and Bitcoin Prices. As outlined in Section
3.1, a recent literature noted that central bank rate hikes are often associated with increases
in stock market valuations instead of declines. An explanation put forth by a number of
authors is that central banks, by communicating their policy decisions, inform the public
about their forecasts for economic activity. If a rate hike is communicated to be due to an

35One might conjecture that the qualitatively different results are driven by opposing trends in interest
rates coupled with a generally increasing price of Bitcoin over time. Indeed, in much of the time sample
under consideration, interest rates in the US have risen, while the opposite is true for euro area rates.
Such a view, however, would be simplistic in that it is based on reduced-form trends rather than structural
analysis. Indeed, Figure A.1 shows that the external instrument used to identify the structural shocks is
fairly symmetrically distributed around zero for both the US and euro area with no discernible easing or
tightening bias. The same is true for the identified structural shocks themselves.
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Figure 6: IRFs to US and EA Central Bank Information Shocks:
BTC and Other Asset Prices
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Note. Impulse responses to an expansionary euro area (upper) and US (lower panel) central bank infor-
mation shock (model (1) in Table 2) identified as explained in Section 3.1. Shaded areas denote 68%
and 90% confidence bands. Time sample: June 2013 to June 2021.

improved economic outlook, market participants might adjust their own forecasts upward,
leading to a rise in the price of risky assets such as stocks despite the increase in interest
rates.

Estimating responses of Bitcoin valuations to these central bank information shocks
might therefore serve to gain a better understanding of the results found for monetary
policy shocks. In addition, identifying these shocks can also be used to test one potential
explanation for the positive response of Bitcoin prices to a US monetary tightening: that
Bitcoin is a bubble asset. For instance, in Blanchard and Watson (1982) a rational bubble
is characterized by the asset value growing in expectations with the risk-free interest rate.
To the extent that US short-term rates constitute the empirical counterpart, according to
this view, an exogenous rise in US rates might serve to increase, rather than lower, the price
of Bitcoin. Hence, if Bitcoin indeed is a rational bubble and unrelated to economic activity,
the rate hike associated with a central bank information shock should cause its price to
increase in the US model, just as in response to a monetary contraction.

Figure 6 shows impulse responses to the main variables in model (1) to a central
bank information shock, identified as explained in Table 1.36 In both models, stock prices
increase following the rate hike. Inflation expectations increase as well, especially strongly
and persistently so in the euro area model. This finding mirrors the result in Jarociński
and Karadi (2020)and Miranda-Agrippino and Ricco (2021) that central bank information
shocks are generally associated with rising prices, making them akin to demand shocks that
are revealed by the central bank. In contrast, the response of the EUR-USD exchange rate
seems almost entirely driven by the mechanical increase in the interest differential rather

36F statistics are lower in both the euro area and US VAR compared to the monetary policy shock and
drop somewhat below 10 in the US model. Results there should hence be interpreted with more caution.
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than the economic forces of the underlying shock.37

Strikingly, the responses of Bitcoin prices are different and again yield a mirror imagine:
whereas the euro area information shock increases Bitcoin valuations, the US shock has
the opposite effect and leads to a persistent decline. Therefore, it does not seem to be the
case that Bitcoin prices in the US model are merely driven by changes in interest rates, as
the rational bubble view would have it. Instead, the analysis points to a different pattern:
In the US model, Bitcoin valuations benefit from conditions that lower risky asset prices,
irrespective if these are caused by rising interest rates (following a monetary policy shock) or
associated with falling rates (following a central bank information shock). In contrast, in the
euro area model, Bitcoin valuations move in tandem with risky asset prices and benefit from
shocks that are inflationary, again irrespective of the direction of interest rates. Whereas
Figure 6 therefore adds weight to the view of Bitcoin as an inflation hedge following
euro area shocks, the findings for the US models still appear puzzling. In the following
I therefore analyze the response of different aspects of the Bitcoin ecosystem in order to
explore potential explanations for the peculiar US result. Before I do so, however, I briefly
outline some robustness checks for, and extensions of, the main results.

Robustness and Extensions. I make sure that my main results in the VAR analysis
are robust along a number of dimensions, as detailed in Appendix C. In particular, they
hold when changing the time sample (Figure C.2), when extending the instrument series
in the US model (Figure C.4) or when the logged price of Bitcoin enters in first differences
(Figure C.3). Notably, results also hold when computing impulse responses by means of
local projections as suggested by Jorda (2005) (Figure C.6).

In addition to robustness considerations, Appendix C.2 also provides some further
interesting results. First, I use the local projection framework to show that the effects of
euro area shocks are fairly symmetric, whereas the effects of US shocks seem to be driven
primarily by monetary contractions, in line with the view developed below. Second, I find
positive Bitcoin price responses to contractionary risk-shift shocks as well that have recently
been proposed by Kroencke et al. (2021) as a main driver of stock price movements following
FOMC announcements. Lastly, I verify that other cryptocurrencies with sufficiently long
time series available mostly respond qualitatively similarly to Bitcoin (Figure C.5).

3.4 Exploring the Impact of US Monetary Policy Shocks

In the following, I consider various aspects of the Bitcoin ecosystem, as laid out in Table
2. In model (2) I study the response of aggregate blockchain activity. Models (3) and (4)
then explore international aspects based on price spreads in different currencies as well as
Bitcoin holdings and flows measured via blockchain data.

37See Franz (2020) for an in-depth analysis of central bank information shocks on exchange rates.
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Figure 7: IRFs to Contractionary US Monetary Policy Shock:
Aggregate Blockchain Activity
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Note. Impulse responses to a contractionary US monetary policy shock (model (2) in Table 2) identified
as explained in Section 3.1. Shaded areas denote 68% and 90% confidence bands. Time sample: June
2013 to June 2021 (January 2020 for the entity-adjusted blockchain data in panels 1 and 2).

Model (2): Aggregate Blockchain Activity. One peculiar feature of Bitcoin lies
in its role as the medium of exchange in its own decentralized payment system. In partic-
ular, Bitcoin is often described as serving as a exchange medium not so much for ordinary
goods and services but for illicit transactions. For instance, the Economist magazine cites
data from Morgan Stanley according to which only three of the largest 500 online retailers
accepted Bitcoin for payments in 2017. In contrast, Foley et al. (2019) estimate that 26
percent of Bitcoin users and 46 percent of Bitcoin transactions in the blockchain are asso-
ciated with illegal behavior from 2009 to 2017. They conclude (p.1844) that the illegal use
of Bitcoin "is likely to be a meaningful contributor to [its] fundamental value." Accordingly,
Bitcoin’s value as a medium of exchange could increase following a monetary policy shock
if demand shifted towards these types of activities. More concretely, to the extent that a
US monetary contraction depresses trade and employment in the formal economy, it might
shift activity towards the underground economy.38 There, tax evasion or paying for illicit
employment or goods and services could be facilitated using Bitcoin’s decentralized and
pseudonymous payment system.

Figure 7 investigates if Bitcoin’s role as a medium of exchange could serve as an expla-
nation for the expansionary effects of a US monetary tightening. The first two panels depict
impulse responses of entity-adjusted measures of total and median blockchain transfer vol-
umes (in USD) to a US monetary tightening. If anything, the total value of transactions
goes down while the median transaction size does not respond significantly. In addition,
panels 3 and 4 show that metrics of blockchain congestion, which measure demand for space
in transaction blocks, even decline. Average mining fees, which users add to their transac-
tions in order to make it more likely that they are quickly added to the blockchain, fall by
20 percent on impact. And also the median time it takes for a transaction to be confirmed

38For instance, Schneider et al. (2010) find a negative correlation between estimates of the underground
economy, for instance based on cash usage and labor force participation, and formal economic activity in a
sample of more than 100 countries.
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Figure 8: IRFs to Contractionary US Monetary Policy Shock:
"Arbitrage Spreads"
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Note. Impulse responses to a contractionary US monetary policy shock (model (3) in Table 2) identified
as explained in Section 3.1. Shaded areas denote 68% and 90% confidence bands. Time sample: June
2013 to June 2021 (September 2017 for CNY, January 2020 for BRL spread).

falls by roughly one minute.39 Taking these responses together, the US monetary shock
seems to cause a fall in the demand for scarce transaction space, rather than an increase.
On balance then, these findings run counter to the notion that Bitcoin’s being used in more
day-to-day transactions generally, or as a medium of exchange for illicit activity specifically,
can account for the price increase following the US monetary policy shock.40

Model (3): Bitcoin Valuations in Different Currencies. Bitcoin is not native
to any one country and can be held by users, and transferred across borders, irrespective of
country of origin. Yet, cryptocurrency markets priced in different fiat currencies are not free
from apparent arbitrage opportunities. Makarov and Schoar (2020) for instance document
persistent spreads between the USD price of Bitcoin and the implicit USD price when buying
Bitcoin in other currencies and converting it using market exchange rates. They link the
existence of sizable spreads to the presence of capital controls, Kroeger and Sarkar (2016)

39This response is to some, but only limited, extent driven by a effects on mining profitability. I verify this
by adding the logged hash rate – the total computational effort devoted by all miners – and the time it takes
for blocks to get mined to the model. As mining rewards are denominated in bitcoins, an increase in the
price of Bitcoin raises incentives of miners to invest in computational power (Ma et al., 2018). Accordingly,
there is an increase in the hash rate and a corresponding fall in block creation times. The latter, however, is
comparatively small relative to the decline in median transaction confirmation times. This implies that the
reduced time it takes for transactions to get added to the blockchain is mainly driven by a fall in demand
rather than increased mining effort.

40This view is corroborated by including a direct measure of illicit transactions in the model, as for instance
computed by Foley et al. (2019). These authors estimate the share of transactions that can directly be linked
to illegal activity or indirectly suggest an illicit use due to the employment of techniques meant to obfuscate
transaction chains. Depending on the model specification, this measure either does not respond significantly
or even falls after the US monetary policy shock.
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point to transaction costs and price risk. As repatriating arbitrage profits requires capital
flows through the established and regulated financial system, capital controls, time delays as
well as withdrawal and deposit fees can prevent arbitrage trades from being readily realized,
if at all. As the spreads vary over time as well as in size and persistence across currencies, it
is instructive to see if they respond to monetary policy shocks. Such an analysis would give
an indication of whether the increased demand for Bitcoin following the shock is uniform
across currency areas.

Figure 8 reports impulse responses to the spreads computed for eight different fiat
currencies that show a clear pattern: the upper row reveals that spreads with respect to
advanced economy fiat currencies either do not respond (British pound) or even slightly fall
(euro, Japanese yen, Australian dollar). Contrast that with the second row which considers
emerging market fiat currencies. The first two panels show spreads with respect to currencies
of two Latin American economies with histories of instability (Mexican peso, Brazilian real),
the other two panels those of two Asian economies that feature various forms of restrictive
capital controls (Korean won, Chinese yuan).41 All four spreads increase, and especially the
response of the Chinese yuan spread is large and persists for several weeks.

In other words, while Bitcoin prices in US dollars increase following a US monetary
tightening, they increase especially strongly in emerging market economies. In contrast,
the rise in value is equally pronounced or even weaker when measured in fiat currencies of
advanced economies.42 Importantly, the increase in spreads in emerging market currencies
does not merely reflect increased frictions in international capital markets that might make
it more difficult to capitalize on price differences via arbitrage trades. This is because the
spreads are generally above unity, i.e. Bitcoin tends to be more expensive in the respective
emerging market currency than in US dollars, and significant deviations from unity are
almost exclusively positive.43 Accordingly, if arbitrage forces indeed were to become weaker
after a US monetary tightening – and increased demand for Bitcoin primarily stemmed from
advanced instead of emerging economies –, one would expect the spreads to mechanically
narrow instead of widen after the shock. In that sense then, the observed opening up of
spreads is evidence that the increased demand for Bitcoin must be stronger in emerging
markets than in the US or other advanced economies.

41Korea tightened capital controls in 2010 and limits the amount of money send abroad to 3,000 USD
per transaction and 50,000 USD per year per person, which is often argued to contribute to the large
deviations of Bitcoin prices in Korean Won, infamously known as the Kimchi premium (Choi et al., 2020).
Similarly, China tightened controls, allowing Chinese residents to exchange not more 100,000 USD per year
into foreign currency before 2017, which was then reduced to 50,000 USD. Further, Chinese banks have to
report sizable transactions to authorities and scrutiny is reported to have increased during the time sample
under consideration.

42Notably, this finding is despite the fact that the spreads across countries tend to move in tandem quite
a bit. For instance, the KRW and JPY spreads are highly correlated across time (Makarov and Schoar,
2020) but still respond very differently to US monetary shocks.

43See Makarov and Schoar (2020) or Figure A.4. One exception is the spread with respect to the Chinese
yuan, which dropped below unity for some time in mid 2017. However, the result of an increase in the CNY
spread after the US shock continues to hold when excluding this episode.
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Figure 9: IRFs to Contractionary US Monetary Policy Shock:
International BTC Flows and Holdings at Exchanges
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Note. Impulse responses to a contractionary US monetary policy shock (model (4)
in Table 2) identified as explained in Section 3.1. Shaded areas denote 68% and
90% confidence bands. Time sample: June 2013 to December 2017.

Model (4): International Bitcoin Capital Flows and Holdings. Finally, in
order to corroborate the notion that there is increased demand for Bitcoin in emerging
markets, I again make use of blockchain data. However, rather than looking at aggregate
transfer activity as in Figure 7, I study the response of Bitcoin holdings and flows more
directly. For that purpose, as outlined in Section 3.2, I identify addresses of dozens of large
Bitcoin exchanges from hundreds of millions of transaction contained in blockchain data.
These exchanges are then categorized according to whether they allow to trade Bitcoin
against an emerging market (EME) or only advanced economy fiat currency (AE). I then
compute net flows of Bitcoin between the two groups of exchanges as well as Bitcoin holdings,
and include them in my VAR framework. As indicated above, the series on the holdings
have the advantage that a much larger share of coins is captured, while the series on net
flows measure value transfers across borders more directly.

Figure 9 reports impulse responses. The first panel shows that holdings of coins at
emerging market exchanges tend to increase by roughly four percent following the US mon-
etary shock. In contrast, Bitcoin holdings fall in those exchanges that exclusively allow
trading against fiat currencies of highly-developed countries, implying a redistribution of
Bitcoin holdings across currency areas. Finally, the third panel shows that there is an
immediate increase in the direct net flows of coins from advanced to emerging market ex-
changes after the shock. Taken together, these findings again provide an indication that
the increased demand for Bitcoin following the US monetary shock is not uniform across
geographic regions or income levels, but stems primarily from emerging market economies.

3.5 Discussion

The different responses of Bitcoin valuations to structural shocks have implications for the
debate on how to best think of cryptocurrencies in general and on what drives the demand
for Bitcoin in particular. To begin with, as laid out in Section 3.3, it is noteworthy that
Bitcoin prices do not simply react to changes in interest rates per se: they respond very
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differently to monetary policy shocks on the one hand and central bank information shocks
on the other, although both feature a surprise increase in rates. In that sense then, the
underlying economics of the shock seems to primarily matter, pointing to a connection of
Bitcoin to the traditional financial system despite its apparent disconnect – e.g. the lack of
its use as a medium of exchange in the wider economy.

However, as regards the nature of such connection, the analysis reveals two distinct roles
that Bitcoin seems to play. Following shocks from the euro area, Bitcoin price responses are
in line with those of inflation expectations, a finding that is at least consistent with the view
that sees Bitcoin as a form of digital gold that by virtue of its mechanically increasing and
ultimately fixed supply offers investors protection from supposedly inflationary monetary
policy. In contrast, in response to US shocks, a counteracting channel seems to be at work
that leads to an increase in Bitcoin prices following a monetary contraction.

As explored in Section 3.4, the increased demand for Bitcoin seems to primarily stem
from market participants in emerging economies. This finding echoes the notion that US
monetary policy does not only have domestic but also substantial international ramifications.
A growing literature finds that US monetary policy drives a large part of global capital flows
and asset prices (Miranda-Agrippino and Rey, 2020). Rey (2015) argues that exchange
rate flexibility does not suffice to shield less developed countries from policy spillovers.
Degasperi et al. (2020) confirm this notion and find that detrimental effects of a US monetary
contraction are roughly twice as large for the median emerging market economy compared
to advanced economies.

Often-cited reasons for the importance of US policy lie in the role of the US dollar
in global trade invoicing,44 and the denomination of assets in the international financial
system.45 Bruno and Shin (2015) point to the role of globally active banks that provide USD-
denominated loans internationally but curtail lending following a US monetary tightening.46

Hofmann and Park (2020) show that a USD appreciation is associated with lower growth
prospects in emerging markets, with growth-at-risk being affected even more strongly.47

Kalemli-Özcan (2019) argues that emerging markets are most vulnerable to changes in
global investors’ risk perceptions that are driven by US monetary policy.

With emerging markets susceptible to US monetary policy shocks then, why would
44For instance, according to Iancu et al. (2020), more than 50 percent of all im- and exports are invoiced

in US dollars although the US accounts for only 10 percent of global trade. Gopinath et al. (2020) show
theoretically that the denomination of traded goods in a dominant currency can substantially increase
international spillovers of shocks originating from the dominant currency area.

45Iancu et al. (2020) report that roughly half of cross-border bank claims and outstanding global debt
securities as well as 75 percent of public debt economies are denominated in US dollars.

46Barajas et al. (2020) corroborate this notion and find that US dollar funding shortages negatively affect
lending of global banks in emerging markets.

47Also here, however, the reason for changes in interest rates seems to matter. Ahmed et al. (2021) show
theoretically that increases in US interest rates are not neccesarily contractionary and indeed can even have
a stimulative effect on emerging markets, reiterating the empirical analysis in Hoek et al. (2020). Camara
(2021) shows that central bank information shocks, although they increase interest rates in the US relative
to emerging markets, can strengthen rather than weaken emerging market currencies. Consistently with
the view developed here, Bitcoin prices fall after such an expansionary shock.

23



Bitcoin experience increased demand? One reason may be found in the well-documented
low correlation of cryptocurrencies with traditional financial assets and business cycles that
might – despite their volatile prices – grant it features akin to a safe haven in times of
market stress (Bouri et al., 2017b; Corbet et al., 2020a).

Another reason, however, may lie in the institutional and technological particularities of
Bitcoin and other cryptocurrencies. Payments can be made globally with the help of just
an internet connection and users are not differentiated according to geographic location.
Further, for much of the time sample under consideration, cryptocurrency markets were
largely unregulated in many countries. These features may help users avoid the vetting of
transactions by authorities or circumvent limits to cross-border value transfers altogether,
both of which are present in many emerging markets as measures to control capital flows (Lee
and Low, 2018).48 In other words, particularly in times of stress, for market participants
subject to these restrictions, Bitcoin may well be one of the few assets a flight into, or trading
with internationally, is possible at all. Relatedly, Bitcoin’s infrastructure can in principle
provide access to other traditional currencies. More specifically, it is generally possible to
buy Bitcoin on a local exchange and then transfer it via its payment system to an exchange
where it can be traded for foreign currency. In other words, Bitcoin might not be sought as
an investment in itself, but rather as a vehicle currency.49

More generally then, for market participants subject to capital controls and/or unstable
domestic currencies, Bitcoin’s value proposition might not so much lie in the feature often
stressed when it comes to its value, namely its scarcity due to its finite supply. Instead, it
seems to lie in the second defining feature of Bitcoin: its peer-to-peer decentralized payment
infrastructure that is in principle separate from the traditional, regulated financial system.
In other words, rather than constituting a form of digital gold in the sense of inflation hedge
against too easy US monetary policy, Bitcoin seems to have served primarily as a global
digital cash that is accessible internationally and is sought after following a contractionary
US monetary tightening.

To be sure, the role of Bitcoin and other cryptocurrencies has evolved in the past and
will continue to do so. Especially the recently observed demand from institutional investors

48Cifuentes (2018) offers an account of how cryptocurrencies are used to circumvent capital controls
in Latin American economies such as Argentina, see also Financial Times (2015). There is anecdotical
evidence of Brazilian and Nigerian entrepreneurs using Bitcoin to trade with foreign firms (Bitcoin.com,
2020; Coindesk.com, 2020) and of Chinese savers using Bitcoin to transfer wealth overseas (Cointelegraph,
2016). It is often alleged that fears of capital flight using Bitcoin was one of the main drivers of the regulatory
crackdown by Chinese authorities in 2017 (New York Times, 2017).

49Bitcoin’s decentralized system might be used to acquire USD-denominated assets indirectly, thereby
increasing the demand for, and value of, the vehicle currency in the process. A model that features such
effects can be found in Lyons and Viswanath-Natraj (2020). There, the authors want to explain why the
USD-backed stablecoin Tether sometimes has a value larger than one USD. Their rationale is that there are
two ways to invest in unbacked cryptocurrencies: via fiat currency and via Tether. If transaction costs for
the route via fiat currency increase, this boosts the value of the alternative, i.e. Tether. Hence, in Lyons and
Viswanath-Natraj (2020), Tether is used as a vehicle currency to invest in Bitcoin. Similarly, Bitcoin could
be used as a vehicle currency to invest in US dollar assets for international investors, such that its value
increases if it becomes more costly to acquire US dollars via the conventional financial system following a
US monetary contraction.

24



in advanced economies and increasing regulatory scrutiny worldwide might fundamentally
change what cryptocurrencies are primarily used for. The analysis here however reveals
that already in the past Bitcoin seems to have had connections to the traditional financial
system that are not obvious or easily ascertained from reduced-form analysis, and that had
important implications for its market value.

4 Conclusion

This paper documents that monetary policy innovations by both the Fed and the ECB
have a sizable impact on Bitcoin prices. Motivated by some stylized facts based on a high-
frequency analysis, I study the impact of structural monetary policy shocks in a weekly
proxy VAR setting on Bitcoin valuations as well as a broader set of variables related to the
cryptocurrency ecosystem. I first show that disinflationary euro area monetary policy shocks
lead to a persistent fall in Bitcoin valuations, whereas inflationary central bank information
shocks lead to a price increase. Conversely, I find a mirror image for US shocks: Bitcoin
prices increase after the monetary contraction but fall following the expansionary central
bank information shock.

While the response to euro area shocks is consistent with notions of Bitcoin as a digital
gold in the sense of an inflation hedge, I argue that for US shocks such an effect must be
overcompensated by an additional channel. In exploring potential explanations for the atyp-
ical responses to US monetary policy shocks, I find that Bitcoin prices in several emerging
market currencies increase particularly strongly after US monetary contractions – above
all the Chinese yuan. Further, based on blockchain transaction data, the paper documents
that coins systematically flow to exchanges that support trading of Bitcoin against emerging
market currencies in response to the shock. Similarly, Bitcoin holdings at these exchanges
increase. I conjecture that the technological and institutional particularities of Bitcoin make
it akin to a global digital cash that enables cross-border transactions and capital flight in
the face of deteriorating economic and financial conditions that contractionary US monetary
shocks have globally.

The findings in this paper have implications along multiple dimensions. From the per-
spective of policy makers it is important to understand the use cases of Bitcoin, which
was initially designed to challenge the existing monetary and financial system – both the
discretionary decision-making by central banks and the intermediating role of commercial
banks. Regulators are not only interested in the role of cryptocurrencies as speculative in-
vestments and the corresponding potential threats to financial stability. It is also important
to understand to what extent cryptocurrencies facilitate cross-border value transfers and
potential capital flight, and how they interact with the monetary transmission mechanism
more generally. Not least, this could provide insights into the use cases of global stablecoin
projects that currently occupy the minds of central bankers and regulators worldwide.
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A Data Appendix

High-Frequency Bitcoin Price Data. The high-frequency price data featured in
Section 2 is gathered from the website bitcoincharts.com/charts that contains
tick data for dozens of Bitcoin exchanges. I download price and volume data in USD
and EUR for various exchanges with large trading volumes and many observations over
as long time periods as possible. For Bitcoin prices in USD I choose data from Bitfinex,
Bitstamp, BTC-e, Coinbase, Kraken and Mt.Gox. For Bitcoin prices in EUR I use data
from Bitcoin.de, Bitstamp, Coinbase, Kraken, Mt.Gox and TheRockTrading.

In a next step I drop very small trades of below one unit of the respective currency. As
there is a substantial number of outliers in the raw data series, I then apply an hourly price
median filter. Specifically, for each hour I compute the median value of each exchange’s price
series and then drop all tick observations with values that depart more than ten percent in
either direction from the median quote. In addition, I comb through each time series and
manually remove a few more clear outliers not captured by the median price filter.

I then boil down the tick data to 1-minute and 5-minute observations and average the
price data across the currency-specific groups of exchanges. I do so by weighting the price
series according to trade volumes at the exchanges over the previous day. This process results
in high-frequency time series of USD and EUR Bitcoin prices spanning the period from 2013
to 2021. It should be noted, however, that in the earlier parts of the sample, trading even
at large exchanges was less frequent. As a consequence, there are some unavoidable gaps
especially in the EUR series. In the analysis in Section 2 I therefore generally focus on the
data with 5-minute spells and make sure that these data limitations do not unduly influence
my results.

Proxy VAR Instrument Based on High-Frequency Data. As mentioned in the
main text, the instrument series Zt are derived from two databases that contain information
on the changes of asset prices in narrow time windows around monetary announcements.
For the euro area, I rely on the monetary event study database by Altavilla et al. (2019) and
consider their monetary event window which spans the time window of roughly 15 minutes
prior to the ECB press statement to more than one hour after the beginning of the press
conference. For the US model, I use the database by Cieslak and Schrimpf (2019). Two
complications arise. First, not every FOMC meeting in the time sample under consideration
features a press conference after the chair’s press statement. I deal with this issue by making
use of the different time windows provided in the database by Cieslak and Schrimpf (2019).
The chosen window starts 15 minutes prior and ends 60 minutes after the meeting if there
is a press conference. If not, I consider a shorter time window of 10 minutes prior to 20
minutes after the press statement, as is common in the literature for the time period prior
to 2011, before the Fed started holding regular press conferences (Gürkaynak et al., 2005).
A second problem is related to the fact that the Cieslak and Schrimpf (2019) database
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Figure A.1: Instrument Zt Used in the Proxy VAR Models
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Note. Instrument series Zt computed as described in Table 1 based on data by Altavilla et al. (2019) (euro
area) and Cieslak and Schrimpf (2019). The depicted series for the US includes the sample period after
December 2017, which is based on self-computed changes interest rates and stock prices based on data by
the ECB, Refinitiv and tickstory.com.

ends in December 2017. Fortunately, the proxy VAR model employed throughout does not
necessitate that the time samples for the VAR estimation and that of the instrument series
are identical. I can therefore estimate the model in a more extensive sample ranging until
June 2021, although the information used for the identification of exogenous shocks will
stem from the earlier parts of the sample.

In order to gauge if my results would substantially change if the instrument series were
longer, I extend it for the later parts of the sample. For that purpose I use self-computed
changes in 2-year interest rates and the S&P500 in the same narrow time windows around
FOMC announcements. As this data is only available to me starting from mid-2019, there is
a substantial gap of around one and a half years (January 2018 until June 2019) that would
dilute the informational content of the instrument. I therefore fill this gap in two ways. For
stock prices, I use minute-by-minute data from tickstory.com. As for the interest rates
such data is not available, I use daily changes around the missing FOMC meetings. The
extended instrument series is employed in a robustness exercise in Figure C.4, producing
very similar results to those in Figure 5. It generally yields somewhat lower F statistics
for instrument strength, which remain slightly above 10, though.

Arbitrage Spreads. As described in Section 3.2, I follow Makarov and Schoar (2020)
and compute the BTC-USD arbitrage spread of a currency i as (P i/B/P i/$)/P $/B, where
P j/i is the price of currency i expressed in currency j. For the spread with respect to the
euro, I employ the high-frequency Bitcoin price data described above, in addition to minute-
by-minute data for the EUR-USD exchange rate from tickstory.com, to construct the
spreads. For the other fiat currencies, for which no continuous long-term high-frequency
Bitcoin price (or exchange rate) data are available, I rely on volume-weighted daily Bitcoin
price data stemming from bitcoinity.org, in combination with daily exchange rate
data from the ECB. In principle, using daily data with different fixings might introduce
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measurement error in the computed spreads. However, reassuringly, Figure A.2 shows
that the computed series are very similar to the ones in Makarov and Schoar (2020) –
based on high-frequency data – for the time period and currencies for which the samples
overlap. What is more, any inaccuracies stemming from using daily data should be more
problematic in the computation of Bitcoin spreads with respect to advanced economy fiat
currencies as spreads here are generally smaller and less persistent. The larger and more
persistent deviations observed for emerging market fiat currencies should therefore be more
much robust to using lower-frequency data.

Figure A.2: BTC Arbitrage Spreads, Own Caluclations in
Comparison to Makarov and Schoar (2020)
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Note. Bitcoin spreads for three fiat currencies relative to the price in US dollars,
plotted as daily averages. In the absence of sizable frictions to arbitrage, the com-
puted series would be close to unity at all times. Values above one indicate that
Bitcoin is more expensive in the respective currency than in US dollar, and vice versa.
Spreads in Makarov and Schoar (2020) based on maximum differences between ex-
changes from minute-by-minute data. Own computations for the euro spread based
on volume-weighted minute-by-minute data, for the Korean Won and Japanese yen
based on daily data.
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Blockchain Data. I obtain the entire Bitcoin blockchain containing the universe of
transactions from its inception to in January 2009 to February 2018 in pre-processed form
as an updated version of the dataset used in Kondor et al. (2014). As a first step, I drop
so-called change transactions that account for the difference between the total number of
Bitcoin sent by the input addresses and the amount received by the output addresses. Such
change is returned to the sender and therefore does not represent a meaningful transfer of
value. In addition, I drop all transactions related to Satoshi Dice, a gambling site that is
associated with a large share of trading activity in the early years of the Bitcoin network.50

Clustering. The Bitcoin blockchain contains input (sender) and output (receiver) addresses
(public keys, equivalent to bank account numbers) in the form of 34-character strings. In
order to map these into distinct entities or users, Kondor et al. (2014) apply the most com-
mon approach in the literature in the form of an input-address or common-sender heuristic.51

This approach in essence assumes that all input addresses in a particular transaction stem
from the same user. Additionally, if one of the input addresses is used in two or more
separate transactions, then all input addresses contained in these transactions are assumed
to stem from the same user. This assumption reflects the fact that initiating a transaction
necessitates to have it signed with the passwords (private keys, equivalent to PIN numbers)
of all input addresses, making it likely that the senders are actually the same entity. This
approach has the advantage that it is simple and generally avoids producing false positives,
i.e. clustering together addresses that do not in fact belong to the same user.52 It should be
noted, however, that false negatives cannot be ruled out, i.e. the heuristic will for instance
fail to cluster together two sets of addresses that one single entity uses entirely separately
from one another.53 Following the clustering procedure, the dataset contains a bit more
than 655 million transactions between roughly 350 million distinct entities. Finally, I drop
within-user transactions from the dataset as they again do not reflect the transfer of Bitcoin
between two actually distinct entities.

Labeling. As a next step, I use external information to identify significant entities within
the Bitcoin ecosystem. This is achieved with the help of external information from a

50Users can play on the site by making Bitcoin transactions. These do not represent actual trades but,
according to Kondor et al. (2014), produced over half of all Bitcoin activity in 2012. Following these authors,
I therefore drop all Satoshi-Dice-related addresses, which characteristically start with "1dice". The entity
Satoshi Dice itself remains in the dataset.

51See also e.g. Ron and Shamir (2013), Ober et al. (2013), Athey et al. (2016), Tasca et al. (2016), Griffin
and Shams (2020).

52Other heuristics employed in the literature, like change-address heuristics (see e.g. Meiklejohn et al.,
2013 and Garcia et al., 2014) can in principle improve upon input-address heuristics, but are prone to
producing false positives that would have to be eliminated in a very time-consuming manner. See Tasca
et al., (2016, pp.4-7) for a discussion.

53In addition, the emergence of so-called coinjoin practices in principle pose challenges to input-address
heuristics. In coinjoin transactions, multiple users agree to pool together transaction inputs, see http:
//www.coinjoinsudoku.com/advisory. This is in contrast to mixers or tumblers, which are third-
party services meant to obfuscate the link between sending and receiving addresses. These charge fees for
these services and involve their own sets of addresses in the process and are generally among the identified
entities discussed below.
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variety of different sources. The majority of addresses are based on information from
walletexplorer.com, a website that collects millions of addresses of publicly known
entities such as exchanges, mining pools, gambling sites, market places and others. The
information contained on the site is mostly based on manual interactions with the entities,
followed by the employment of input-address heuristics.54 Second, I use information on in-
dividual large exchanges from the Bitfury Crystal database (crystalblockchain.com),
which contains comprehensive coverage of exchange addresses as well as analytical tools to
track Bitcoin flows. Third, I track the 10 thousand richest addresses on chain.info/

richlist and include all wallets involved in transactions up to February 2018 of known
exchanges.

Finally, I identify so-called cold wallets of exchanges in the dataset. In contrast to
hot wallets the private keys to which are stored online, cold wallets allow for more secure
storage offline. Following many incidents of hacks and thefts of Bitcoin hot wallets, it is
common practice to keep only a fraction of coins in hot storage that are needed for day-
to-day trading activity. In order to accurately measure Bitcoin holdings of exchanges, it
is therefore essential to identify cold wallets, yet most publicly known addresses of large
exchanges naturally refer to hot wallets. Next to screening through so-called rich lists on
websites that track and label the largest individual wallets in the Bitcoin blockchain, I follow
Griffin and Shams (2020) and employ algorithmic means to find cold storage addresses.
Specifically, I define candidate cold wallets as those that at some point receive inflows on
at least four days in a month of at least 100 Bitcoins. In addition, I require that at least
90 percent of these inflows stem from the same known hot wallet of an exchange. I then
compute the balances of the candidate wallets and define all as cold wallets that at some
point had an aggregate balance of at least 1000 Bitcoins.

I confirm that this algorithm-based scheme identifies various cold wallets that are known
to belong to certain, often large, exchanges. However, I also verify that these algorithmic
means do not suffice to reliably identify all wallets that are plausibly used as cold storage
based on the manual tracking of Bitcoin flows. Consequently, I enrich the list of identified
cold wallet addresses substantially by manually investigating individual transactions of al-
ready known hot and cold wallets. This turns out to be important as for some exchanges it
seems to be common practice to move coins between hot and cold wallets not directly but
in multiple intermediate steps and detours that often involve the splitting up of large sums
into smaller transactions. On the other hand, very large cold wallets occasionally change
addresses in a few very large transactions from one address to the next without involving
the exchange’s hot wallets at all. Any algorithm based merely on regular flows from hot
into candidate cold wallets will fail to account for large cold wallets transitions.

54For Mt.Gox, the largest exchange in the early Bitcoin ecosystem, I instead mainly rely on information
from an in-depth analysis of Mt.Gox conducted by the Bitcoin security blog https://blog.wizsec.jp,
which contains detailed estimates of the balance of Bitcoin holdings at the exchange. A presentation of the
analysis is available at https://breaking-bitcoin.com/slides/CrackingMtGox.pdf.
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Figure A.3: Examples of Hot and Cold Wallet Interactions
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Note. Examples of Bitcoin flows between hot and cold storage meant to illustrate
patterns that guide the manual tracking of exchange wallets. Source: author’s
calculations based on blockchain data.

For the reasons outlined, I manually track sizable transactions of large exchanges’ ad-
dresses to identify additional cold (and also hot) wallets. Naturally, this process involves
some discretion as to whether a certain address can plausibly be linked to an exchange. In
order to design this process as objectively as possible, I generally look for the following pat-
terns. First, hot wallets accumulating a certain amount of Bitcoin balances over time that
are then emptied in one large transactions that often brings the balance of the hot wallet
address to or close to zero. I follow many of these transactions as they suggest a shifting of
funds to a cold wallet for safer storage. Second, and conversely, hot wallets being charged
from cold wallets in a number of relatively small transactions to provide enough coins for
day-to-day trading activity or to finance outflows. An example of this is shown in panel (a)
in Figure A.3 where the hot wallet of the Chinese exchange OKCoin receives two large
transactions from cold storage. Third, cold wallets being emptied into intermediate wallets
that are newly formed and exist for a limited number of time only, before being emptied
again into the same cold wallet or one of the exchange’s hot wallet. An example of this is
shown in panel (b) in Figure A.3 for the case of Bitfinex. Fourth, as indicated above, occa-
sionally large amounts of funds are shifted from one to another cold wallet directly in one or
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a few large transactions. As an example, consider panel (c) in Figure A.3 that shows the
balances of address 3A1KUd5H4hBEHk4bZB4C3hGgvuXuVX7p7t being emptied abruptly
in one large transaction of almost 100,000 coins, with the funds flowing to a well-known cold
wallet of Bitstamp with address 3Nxwenay9Z8Lc9JBiywExpnEFiLp6Afp8v.55

Taken together, I identify more than 10,000 addresses that can be linked to individual
exchanges and other entities. In conjunction with the clustering procedure, I am able to
label 223 of the entities in my dataset, making up more than 42 million addresses. Based on
these adjustments, I compute time series of aggregate blockchain transaction activity, as well
as flows between and the holdings of exchanges, as discussed in the main text. As the series
are sometimes volatile, I apply a 7-day moving average filter to all series computed from
blockchain data. The efforts in tracking exchanges accurately notwithstanding, realistically
it is unlikely that the list of identified addresses is entirely exhaustive. Given this uncertainty,
all estimates of flows between and holdings of exchanges should be regarded as approximately
lower bounds of actual activity. In general, due to the inherent limitations with the described
heuristics, all results based on blockchain data in the empirical analysis should be interpreted
as somewhat noisy estimates of the truth.

55For instance, Griffin and Shams (2020) identify 3Nxwenay9Z8Lc9JBiywExpnEFiLp6Afp8v as an
address of Bitstamp’s cold wallet.
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Table A.1: Exchanges Tracked in Blockchain Dataset

Exchange Supported currencies Emerging market Residence (if known)
AnxPro various Hong-Kong
Binance EUR, GBP, USDT Singapore / EU (Malta)
Bitbargain GBP
BitBay PLN EU (Malta)
Bitcoin24 EUR, GBP, PLN, USD UK
Bitcoin.de EUR EU (Germany)
Bitcoinica USD New Zealand
Bitfloor USD
Bithumb KRW • Korea
Bitso MXN • Mexico
Bitstamp EUR, USD UK
Bittrex USDT US
Bitvc CNY • Hong-Kong
Bit-x EUR, GBP, USD
Bleutrade USDT EU (Malta)
BTC38 CNY • China
BTC China CNY • China
BTC-e EUR, RUB, USD • EU (Cyprus)
BTCTrade CNY •
Bter CNY, USD • China
Bxinth THB • Thailand
Cavirtex CAD Canada
C-cex RUB • Russia
Cex.io EUR, USD UK
Coinbase USD US
Coinhako SGD
Coinspot AUD Australia
Cryptsy USD US
Exmo EUR, RUB, USD • UK
Foxbit BRL • BR
Gatecoin EUR, HKD, USD Hong-Kong
Gemini USD US
Hitbtc EUR, USD
Huobi CNY • Seychelles
Korbit KRW • Korea
Kraken EUR, USD US
LakeBTC CNY, USD • UK
Localbitcoins various • EU (Finland)
Maicoin CNY • Samoa
Matbea RUB • UK
Mercado BRL • BR
Mt.Gox various Japan
OKCoin CNY, USD • US
Paxful various US
Poloniex USDT US
Quadrigacx CAD Canada
TheRockTrading EUR EU (Italy)
Vircurex EUR, USD Belize
Virwox EUR, GBP, USD EU (Austria)
Yobit RUB •

Note. List of exchanges for which a set of addresses is available and which are therefore
included in the blockchain dataset used in Section 3. Exchanges classified according
to whether they allow trading against emerging market currencies. Source: Bitfury
(2019), Makarov and Schoar (2020), bitcoinity.org and various other websites
and online fora.
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Figure A.4: Time Series Employed in the Weekly Proxy VARs
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B VAR Estimation

Proxy VAR Model Description. The analysis is based on a structural VAR model
represented by

A0yt = k + A1yt−1 + ...+ Apyt−p + εt, εt ∼ N (0, I),

where yt is an (n × 1) vector of endogenous variables, and k is a vector of constants. The
corresponding reduced-form VAR is:

yt = c + B1yt−1 + ...+ Bpyt−p + ut, ut ∼ N (0,Σ),

with c = A−1
0 k and Bi = A−1

0 Ai and ut = A−1
0 εt.

I partition the shock vectors into those of monetary policy, εpt , and other shocks, εqt ′,
with corresponding residual vectors ut = [upt ,uqt ′]′. Denoting the impact matrix A−1

0 as S,
the interest lies in that set of coefficients, column s, that measures the initial impact to a
structural monetary policy shock. In what follows, I denote as sq the initial impact of εpt on
uqt , while sp is the corresponding impact on the reduced-form monetary policy residual upt .

Building on Stock andWatson (2018) and Mertens and Ravn (2013) and following Gertler
and Karadi (2015), I use high-frequency market responses as an external instrument in the
proxy VAR to identify the structural innovations εpt . For these instruments to be valid, the
surprise series Zt needs to be relevant and exogenous as follows:

E[Ztε
p
t
′] = φ 6= 0, (A.1)

E[Ztε
q
t
′] = 0. (A.2)

To estimate impulse responses to a structural monetary policy shock, I obtain estimates
of s as follows. I extract the residuals ut from the reduced-form VAR and use them in a
two-stage least squares regression which include Zt as instruments. In the first stage, upt is
linearly projected on Zt, delivering the fitted values ûpt . The latter, which are by assumption
orthogonal to the remaining shocks εqt , can be used in the second-stage regression:

uqt = sq

sp
ûpt + ξt. (A.3)

This procedure ensures that sq

sp is consistently estimated and can be used to obtain s. I then
normalize sp so that the initial interest rate response is equal to 10 basis points. Given the
modest number of observations and in order to avoid overfitting, I estimate the proxy VAR
via Bayesian methods using standard macroeconometric priors as described next.

Bayesian Estimation. As is common in the structural VAR literature, I employ Bayesian
techniques in order to impose more structure on the estimation and avoid overfitting given

42



the relatively modest size of observations. I use standard Minnesota priors (as in Litterman,
1986) that are cast in the form of a Normal-Inverse-Wishart prior, which conveniently is
the conjugate prior for the likelihood of a VAR with Gaussian innovations (see Miranda-
Agrippino and Ricco, 2018).

Consider the setup for the proxy VAR:

A0yt = k + A1yt−1 + ...+ Apyt−p + εt, εt ∼ N (0, I), (A.4)

where yt is an (n × 1) vector of endogenous variables, and k is a vector of constants. The
corresponding reduced-form VAR is:

yt = c + B1yt−1 + ...+ Bpyt−p + ut, ut ∼ N (0,Σ), (A.5)

with c = A−1
0 k, Bi = A−1

0 Ai and ut = A−1
0 εt.

For Bayesian estimation, I specify a multivariate normal distribution for the regression
coefficients, and an inverse Wishart distribution for the covariance matrix of the error term:

Σ ∼ IW(S, ν), (A.6)

β|Σ ∼ N (β,Σ⊗Ω). (A.7)

β = vec([c,B1, ...,Bp]′) are the stacked coefficient matrices and S, ν, β and Ω are hyperpa-
rameters. Specifically, S and ν are, respectively, the scale matrix and the degrees of freedom
of the prior inverse Wishart distribution. As is standard, I specify S as a diagonal matrix
with entries σ2

i equal to the residual variance of the regression of each variable onto its own
first lag. The degrees of freedom are set to ν = n+2 so as to ensure that the prior variances
of the coefficient matrices exist and E(β) = β and Var(β) = S⊗Ω.

I use a standard "Minnesota"-type prior in the spirit of Litterman (1986), which assumes
the coefficient matrices to be independently normally distributed. Specifically, their first
two moments are:

E[(Bl)i,j|Σ] =

δi i = j, l = 1

0 otherwise
(A.8)

Var[(Bl)i,j|Σ] =


λ2

l2
i = j,∀l

λ2

l2
Σi,i

σ2
j

i 6= j,∀l
(A.9)

where (Bl)i,j is the response of variable i to variable j at lag l. As the VAR is estimated
in levels, generally I set δi = 1, implying random-walk behavior of the underlying time
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series.56 As is common, I formalize the idea that more recent lags of a variable tend to be
more informative by specifying l2 in the variance entries. Hence, equation (A.9) ensures a
decaying variance of parameters for more distant lags and is, together with the assumptions
above, achieved by specifying

Ω =
φ 0
0 diag([12, 22, ..., p2])−1 ⊗ diag([σ2

1, σ
2
2, ..., σ

2
p])−1

 , (A.10)

where φ is a large number, implying a flat prior on the constant terms.
The hyperparameter λ controls the overall tightness of the Minnesota prior, which is

determined optimally in the spirit of hierarchical modelling as in Giannone et al. (2015).
Combining the prior specification with the likelihood function, the posteriors can be

shown to correspond to (see Miranda-Agrippino and Ricco, 2018):

Σ|y ∼ IW(S̄, ν̄) (A.11)

β|Σ,y ∼ N (β̄,Σ⊗ Ω̄), (A.12)

with
Ω̄ = (Ω + x′x)−1, (A.13)

β̄ = vec(B̄) = vec
(
Ω̄
(
Ω−1B + x′xB̂

))
, (A.14)

S̄ = B̂′x′xB̂ + B′Ω−1B + S +
(
y− xB̂

)′(
y− xB̂

)
− B̄′

(
Ω−1 + x′x

)
B̄, (A.15)

where xt = [1,yt−1, ...,yt−p] is the projection set of lagged endogenous variables. The
credible sets are then constructed by drawing from the posteriors and for each draw making
use of the external instruments approach outlined in the main text.

56As some of the variables could be considered to be a priori stationary – e.g. those that are first-
differenced in a robustness check –, I experiment with setting δi = 0, as in Banbura et al. (2010), but
generally find my results to be hardly affected.

44



C Additional Results

C.1 High-frequency Analysis

Figure C.1 depicts correlations of the USD Bitcoin price with that of other risky assets
that cryptocurrencies are frequently compared to.57 Again, it is well established that the
correlation of Bitcoin prices to traditional financial assets in general is low. For instance,
daily Bitcoin returns in USD between January 2014 and January 2020 (before the begin-
ning of the COVID-19 pandemic) yield statistically insignificant correlation coefficients of
below 0.05 with those of the S&P500, the USD-EUR exchange rate and the price of gold
in USD. Figure C.1 shows that the correlation coefficients are higher within narrow win-
dows of monetary policy announcements but remain mostly statistically insignificant. Only
the relation of Bitcoin returns to gold around ECB Governing Council announcements is
significantly elevated. This finding gives a first indication that Bitcoin could play a role
as a digital alternative to gold in hedging inflationary concerns, as is often argued by its
committed supporters.

C.2 Structural VAR

Robustness of VAR Results. I make sure that my main results in the VAR analysis
are robust along a number of dimensions. In particular, they hold when ending the time
sample in late 2017 before a major regulatory crackdown by Chinese authorities – which
effectively ended Bitcoin trading in Chinese yuan on exchanges and resulted in a structural
shift towards the US dollar – and the meteoric Bitcoin price increase in Winter 2017/18,
(Figure C.2), when starting the sample later (e.g. in 2015) or when excluding the COVID-
19 market crash in early 2020.

In addition, there might be concerns regarding the only partial overlap of the time
samples of the US VAR model on the one hand and the instrument series on the other.
As descibed in Appendix A, with the high-frequency price responses in the Cieslak and
Schrimpf (2019) database only available until the end of 2017, shock identification in the
baseline US model primarily stems from the earlier parts of the sample. Therefore, I verify
that the Bitcoin price response to a US monetary contraction looks similar when I extend
the instrument series, albeit imperfectly, in the later parts of the sample (Figure C.4).

Another concern could be related to stationarity given the enormous increase in the price
of Bitcoin over the sample period. Here I make sure that my results also hold when adding
the logged Bitcoin price in first (and even second) differences (Figure C.3) or when also
first-differencing the other non-stationary variables in the model.

Finally, I verify robustness with respect to the econometric approach, as discussed in the
following.

57For this comparison, I download one-minute data of the S&P500, Eurostoxx50, the USD-EUR exchange
rate and the price of Gold in USD from tickstory.com.
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Figure C.1: Correlation of BTC With Other
Assets Around Monetary Policy Announcements
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Note. Correlation of Bitcoin returns in USD with the prices of
conventional assets in narrow windows of ECB Governing Coun-
cil meetings (left) and FOMC meetings (right panel). Time
sample: January 2014 to June 2021. Shaded areas denote 95%
confidence bands. Source: author’s calculations based on data
from bitcoincharts.com, tickstory.com.

Local Projections. As a an additional robustness exercise I construct impulse re-
sponses following Jorda (2005) by relating the exogenous shocks to Bitcoin valuations in
a dynamic regression framework. Indeed, whereas local projections and VARs estimate the
same impulse responses in population, in finite samples the estimates might differ (Plagborg-
Møller and Wolf, 2021). It will hence instructive to assess if the responses of Bitcoin prices
to monetary policy shocks differ from the ones obtained in the VAR.

Formally, the regression framework reads

yt+h = αh + βhεs,t +
6∑
j=1

(γyhyt−j + γεhεs,t−j + Xt−jΓXh ) + t+ et, h = 0, 1, ...H (C.1)

where εs,t, is either the external instrument used to identify the respective structural shock
in the proxy VAR, or the identified shock itself,58 yt indicates the logged price of Bitcoin in
USD, Xt is a set of controls, and t is a time trend. The coefficients βh will then measure
the impulse response that are hence constructed without imposing a recursive VAR model
structure.

The first four panels in the first row of Figure C.6 reports results.59 As in the VAR
model, an exogenous monetary contraction in the euro area leads to a fall in the price
of Bitcoin, irrespective of whether it is measured by the instrument (first) or identified

58Piffer (2016) provides a guide on how to extract the shocks in a proxy VAR setting.
59Confidence bands are constructed using heteroskedasticity- and autocorrelation-robust Newey West

standard errors. When using only heteroskedasticity-robust White standard errors, as recently suggested
by Montiel Olea and Plagborg-Møller (2021) in a model with lag augmentation, results are almost identical.
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structural shock (second panel). Similarly, an otherwise equal contraction by the Fed has
the opposite effect, and increases Bitcoin valuations as in the VAR.60

Easing vs. Tightening. Next to being useful as a robustness check, local projections
naturally lend themselves to the study of nonlinearities. In particular, it is straightforward
to assess the differing impact of expansionary and contractionary shocks by simply splitting
up the shock measure into positive and negative values and use them separately in the
regressions. The first four panels in the second row of Figure C.6 report results for such
an exercise, whereby the impulse response to an easing is multiplied by minus one in order to
aid comparison. The figure reveals that an easing (solid lines, light bands) and a tightening
(dashed lines, dark bands) have fairly similar (absolute) effects in the euro area model. In
contrast, it seems to be primarily monetary contractions instead of expansions that drive
the Bitcoin price response in the US model. Notably, this finding further supports the view
developed in Section 3.4. In there, the focus lies on a tightening of Fed policy and its
detrimental effects on the value of emerging market currencies and global economic and
financial conditions. Hence, it is the negative impact of the tightening that makes Bitcoin
attractive as a safe haven asset, for capital flight or as a vehicle currency, and an easing of
monetary conditions arguably would not have same quantitative impact in reverse.

Monetary Policy and Risk-Shift Shocks. A recent paper by Kroencke et al. (2021)
argues that monetary policy announcements by the FOMC also contain "extended informa-
tion shocks" that are not associated with current and future risk-free interest rates, but can
instead be captured by price changes of risky assets. Using data on surprise responses of
CDS spreads, the VIX and the USD exchange rate, they construct a measure of risk shifts
employing factor analysis. They go on to show that these risk shifts drive a large portion
of the response of equity excess returns unexplained by changes in risk-free rates. Similar
to the case of central bank information shocks, it will be instructive to asses how Bitcoin
valuations respond to risk shifts. Whereas the former capture changes in economic outlook
that might be relevant for the decision to hold Bitcoin, the latter capture orthogonal shifts
in the willingness to take risky asset positions, which are arguably important as well.

The rightmost column in Figure C.6 depicts impulse responses to contractionary risk-
shift shocks. In the upper panel, again in corroboration of the results so far, the shock,
associated with a lower willingness to hold other risky assets, leads to an increase in Bitcoin
prices. In the lower panel, I again test whether the response is asymmetric. Similarly
to the case of the US monetary tightening, it is the contractionary shocks that drive the
results, whereas here an expansionary shock even leads to the opposite effect. Arguably,
this further corroborates the notion that Bitcoin valuations benefit from conditions that
have the opposite effect on risky asset prices.

60I obtain equally similar results to the VAR model when doing the same exercise with central bank
information shocks.
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Other Cryptocurrencies. I test whether I obtain similar responses to monetary pol-
icy shocks for similar cryptocurrencies for which there is sufficiently long time series data
available and which have similar characteristics in terms of decentralized transactions and
mechanical supply schemes. Figure C.5 shows that Litecoin (LTC), Ether (ETH) and
Bitcoin Cash (BCH) all respond similarly to Bitcoin to both euro area and US monetary
policy shocks, while the response of Ripple (XRP) is insignificant in the US model.

Figure C.2: Robustness: IRFs to US and EA Monetary Policy Shocks:
Shorter Time Sample
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Note. Impulse responses to a contractionary euro area (upper) and US (lower panel) monetary policy
shock in shorter time sample (June 2013 to September 2017). Remaining details as in Figure 5.
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Figure C.3: Robustness: IRFs to US and EA Monetary Policy Shocks:
BTC in first differences
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Note. Impulse responses to a contractionary euro area (upper) and US (lower panel) monetary policy
shock where Bitcoin prices enter in (logged) first differences. Remaining details as in Figure 5.

Figure C.4: Robustness: IRFs to US Monetary Policy Shocks:
Extended Instrument
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Note. Impulse responses to a contractionary and US monetary policy shock with an extended instrument
series. Remaining details as in Figure 5.
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Figure C.5: IRFs to Contractionary US Monetary Policy Shocks:
Other Cryptocurrencies

0 5 10 15 20 25
-40

-30

-20

-10

0

10

%

Bitcoin Cash (BCH)

0 5 10 15 20 25
-50

-40

-30

-20

-10

0

10
Litecoin (LTC)

0 5 10 15 20 25
-100

-80

-60

-40

-20

0

20
Ether (ETH)

0 5 10 15 20 25
-80

-60

-40

-20

0

Ripple (XRP)

0 5 10 15 20 25
-10

-5

0

5

10

15

20

%

Bitcoin Cash (BCH)

0 5 10 15 20 25
-10

-5

0

5

10

15

20
Litecoin (LTC)

0 5 10 15 20 25
-10

-5

0

5

10

15

20
Ether (ETH)

0 5 10 15 20 25
-20

-15

-10

-5

0

5

10
Ripple (XRP)

Note. Impulse responses of other cryptocurrency prices to a contractionary euro area (upper) and US
(lower panel) monetary policy shock. Remaining details as in Figure 5.

Figure C.6: IRFs of BTC Price to Monetary Policy-Related Shocks:
Local Projections
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Note. Impulse responses of Bitcoin prices in USD to US shocks in local projection analysis in equation
(C.1). First row shows local projection responses to instrument series and identified structural shocks
(panels 1-4) and risk-shift shocks as in Kroencke et al. (2021), which are defined as "contractionary" in
that they lead to declines in stock market prices. Shaded areas denote 68% and 90% confidence bands.
Second row compares easing (solid lines, light area, multiplied by minus one) with tightening (dashed lines,
dark areas).
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