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Abstract

Using a structural life-cycle model and data on school visits from Safegraph and school
closures from Burbio, we quantify the heterogeneous impact of school closures during the
Corona crisis on children affected at different ages and coming from households with dif-
ferent parental characteristics. Our data suggests that secondary schools were closed for
in-person learning for longer periods than elementary schools (implying that younger chil-
dren experienced less school closures than older children), and that private schools experi-
enced shorter closures than public schools, and schools in poorer U.S. counties experienced
shorter school closures. We then extend the structural life cycle model of private and
public schooling investments studied in Fuchs-Schündeln, Krueger, Ludwig, and Popova
(2021) to include the choice of parents whether to send their children to private schools,
empirically discipline it with data on parental investments from the PSID, and then feed
into the model the school closure measures from our empirical analysis to quantify the
long-run consequences of the Covid-19 school closures on the cohorts of children currently
in school. Future earnings- and welfare losses are largest for children that started public
secondary schools at the onset of the Covid-19 crisis. Comparing children from the top-
to children from the bottom quartile of the income distribution, welfare losses are ca. 0.8
percentage points larger for the poorer children if school closures were unrelated to income.
Accounting for the longer school closures in richer counties reduces this gap by about 1/3.
A policy intervention that extends schools by 3 months (6 weeks in the next two summers)
generates significant welfare gains for the children and raises future tax revenues approxi-
mately sufficient to pay for the cost of this schooling expansion.
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1 Introduction

Governments around the world responded to the Covid-19 health crisis by shutting down eco-

nomic and social activity, resulting in severe recessions and closed schools for much of 2020.

The economic consequences of these lockdown measures triggered a large scientific and popular

literature. As many countries are on the path of economic recovery from this crisis, focus is

shifting from the short- to the long run consequences of the crisis. One such concern is the long-

run impact of the significant loss of instructional time in schools during 2020-21 on children’s

education, earnings potential and future welfare.

In this paper we use a structural life-cycle model and data on school visits from Safegraph and

school closures from Burbio to quantify the heterogeneous impact of school closures during the

Covid-19 crisis on children affected at different ages and coming from households with different

socio-economic parental characteristics. Our data suggests that secondary schools were closed

for in-person learning for longer periods than elementary schools (implying that younger children

experienced shorter school closures than older children), and that private schools experienced

shorter closures than public schools, and schools in poorer U.S. counties experienced shorter

school closures. We use these empirical facts as inputs for a positive and normative analysis

of the long-run consequences of the observed Covid-19-induced school closures on the affected

children. To do so, we extend the structural life cycle model of schooling investments studied in

Fuchs-Schündeln, Krueger, Ludwig, and Popova (2021) to include the choice of parents whether

to send their children to private schools, empirically discipline it with data on parental investments

from the PSID, and then feed into the model the school closures measures from our empirical

analysis to quantify the distributional consequences of the Covid-19 school closures.

We highlight two main findings. First, the aggregate losses of human capital, college attain-

ment, the present discounted value of earnings and welfare are predicted to be large: for example,

the present discounted value (PDV) of future gross earnings (after the current school children

enter the labor market) falls by 1.73% and the welfare losses amount to 1% of permanent con-

sumption.1 These results materialize despite the fact that parents optimally adjust their private

time- and resource investment into their children, as well as inter-vivos transfers of wealth to

their offspring.

Second, if all children had their schools closed for the same amount of time, then younger

children, and those from disadvantaged backgrounds would suffer larger welfare losses, as our

1These losses are larger than in the first version of our previous paper because there we had assumedthat school closures would last 25% of the two year interval from March 2020 to March 2022. Our empir-ical work in this paper suggests that this assumption, made before the fall of 2020, turned out to be toooptimistic for the average school.
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previous work suggested.2 However, due to the significant empirically documented differences

in the extent of the school closures these conclusions are partially overturned, and partially

accentuated. The fact that, on average, secondary schools were closed much longer than primary

schools leads to the finding that it is children just starting secondary school that endure the

largest losses in their earnings capacity (a reduction of the PDV of earnings of more than 2%)

and welfare (a decline of 1.17%).

With respect to socio-economic characteristics we make two key empirical observations. First,

private schools, on average, were closed for significantly fewer days than public schools, and private

schools are dis-proportionally frequented by children from parents with higher socio-economic

characteristics (in the model, associated with higher education, higher wealth and being married).

However, focusing on only public schools, these were closed for longer in counties with higher

average income.

The quantitative model then maps these empirical findings into the expected differential wel-

fare consequences for children. Those attending private schools on average lose half a percentage

point less welfare (measured in terms of permanent consumption), relative to those children at-

tending public schools, accentuating the larger welfare losses poorer children have in the absence

of differential school closures. Within public schools, however the income gradient of welfare

losses goes in the opposite direction since poorer areas in the U.S., especially in the South but

also the Midwest, saw shorter school closures on average than the more affluent regions on both

coasts. Of course, children from poorer households are still worse off and might have been affected

more severely from the Covid-19 crisis along many other dimensions, but the fact that, again on

average, their schools were locked for shorter periods of time than the schools in richer coun-

ties implies that the losses in human capital, lifetime earnings, and ultimately, welfare, are more

benign than those children from richer families (or more precisely, residing in richer counties).

Finally, and motivated by the significant and heterogeneous human capital and welfare losses

we consider potential policy interventions designed to mitigate the instructional losses from the

Covid-19 crisis. One such proposal is to keep schools open for parts of future summer periods

to make up the lost time. In the model, since we have a well-defined cost of schooling and

model-predicted consequences of additional schooling on future human capital, earnings and

taxes, we can ask whether such a measure is a positive net present discounted value proposition

for households. Furthermore, since a policy intervention that keeps all schools open might not be

2This result is driven by the two key properties of the human capital production function, as emphasizedby Cunha and Heckman (2007): self productivity (holding current investment constant, larger human capitaltoday leads to higher human capital tomorrow) and dynamic complementarity: the marginal product ofinvestment into human capital today is increasing in the already accumulated stock of human capital). As aconsequence, the loss of learning experienced by younger children accumulates over time, leading to largerhuman capital losses for these younger children, relative to their older brothers.
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feasible due to scarcity in the availability of teachers or physical infrastructure, we also investigate

for which group of students such a policy intervention is especially promising, both in terms of the

budgetary consequences for the government and in terms of welfare for the individual students.

We find that for the average child the welfare gains from expanded schooling are significant

(0.21% in terms of consumption equivalent variation), and induce an increase in future revenues

from labor income and consumption taxes approximately sufficient to pay for the entire cost of

the reform; that is, the reform is essentially budget-neutral. Finally, the welfare gains from the

expansion are highest for children from income-poor households, whereas the fiscal consequences

for the government look most favorable if the intervention is targeted to children from the most

affluent households.

The remainder of the paper proceeds as follows. In the next section we briefly relate our

model to the existing literature. Section 3 describes the data we use to construct measures of

school closures and the empirical measures of school closures we will employ in the structural

model. That model is spelled out in Section 4 and calibrated in Section 5. We present the results

on the differential welfare consequences of the school closures in Section 6 and Section 7 contains

the counterfactual policy analysis. Section 9 concludes. Details about the construction of the

data as well as the dynamic programs in the model can be found in the appendix.

2 Related Literature

Our paper is part of the massive literature on the consequences of the Covid-19 epidemic on the

economy. The early literature focused on short-run predictions of the evolution of the health crisis

and the economic recession, triggered by a fall in the healthy work force and its desire to work in

risky sectors, the demand for goods and services induced by falling household incomes as well as

massive government-mandated economic lockdowns. Representative contributions in economics

include Atkeson (2020), Fernandez-Villaverde and Jones (2020), Greenstone and Nigam (2020)

and Alemán et al. (2021) on the health side and Eichenbaum et al. (2020) as well as Krueger

et al. (2020), Moll et al. (2020) on the economic side. A subset of this literature (see e.g.

Argente et al. (2020), Acemoglu et al. (2020), Glover et al. (2020), Brotherhood et al. (2020))

has considered optimal lockdown policies, where the main benefit of shutting down part of the

economy is a slower transmission of the virus, and the main cost is modeled as the reduction of

economic activity and thus incomes of individuals of current working age. The potential impact

of closing schools as part of the lockdown is not considered in these papers.

Complementary to this literature, our paper takes a longer-run perspective and analyzes the

consequences of one specific aspect of the crisis, school closures, that initially did not receive much

attention, likely due to the fact that the main costs associated with this non-pharmacological
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intervention accrue mostly in the medium to long-run when the cohort of school children af-

fected by school closures enter the higher education- or labor market. In our previous work

(Fuchs-Schündeln et al., 2021) we used a structural life cycle model to quantify the impact of

a hypothetical school closure for 12 months on average human capital accumulation, lifetime

earnings and welfare. In the current paper we build on this framework, but turn to micro data

from Safegraph and Burbio to measure the actual length of school closures, and crucially, argue

that there is significant heterogeneity across school types (public versus private), grade level (ele-

mentary versus secondary), and parental backgrounds in the extent to which schools were closed.

This analysis is motivated by an emerging body of evidence that learning achievement during

the pandemic was substantially lower than in prior years, suggesting that the virtual instruction

brought about by school closures was much less effective than traditional in-person instruction.3
Therefore, our paper combines the structural literature modeling human capital accumulation

in children of school age and public education (see e.g. Cunha et al. (2006), Cunha and Heckman

(2007), Cunha et al. (2010), Caucutt and Lochner (2020), Kotera and Seshadri (2017), Lee

and Seshadri (2019), Yum (2020), Caucutt et al. (2020), Jang and Yum (2021) and especially

Agostinelli et al. (2020)) with the empirical literature that has compiled direct data on school

closures or estimated the extent of school closures indirectly.4
The Safegraph visits data employed in this paper has been used by other studies to measure

social distancing behavior, the impact of the pandemic on in-person services, and industry af-

filiation of particular businesses (e.g. Allcott et al. (2020), Goolsbee and Syverson (2021), or

Kurmann et al. (2021) among many others). The papers closest to ours are Chernozhukov et al.

(2021) and Bravata et al. (2021) who estimate the association between changes in Safegraph

visits to schools and the spread of Covid-19 at the county level, as well as Parolin and Lee (2021)

who use the Safegraph data to construct a school closure index and, like us, match the Safegraph

data with information from NCES and other sources to relate their school closure index to grade

level (elementary versus secondary) and a variety of socioeconomic indicators.5 Different from

these papers, we build on the approach by Kurmann and Lalé (2021) and combine the Safegraph

visits data with data on learning modes by Burbio to estimate a mapping of changes in school

visits with learning modes. This allows us to construct a measure of effective schooling time by

3See for example Dorn et al. (2021), Kogan and Lavertu (2021), or Lewis et al. (2021).4A complementary, empirically oriented literature, assesses the importance of instruction time or school-ing inputs for student outcomes, see e.g. Lavy (2015), Carlsson et al. (2015), Rivkin and Schimann (2015),Fitzpatrick et al. (2011), Pischke (2007) and Jaume and Willén (2019).5Chernozhukov et al. (2021) also use data from MCH Strategy on different school learning modes topredict Covid infection rates.
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school type (public versus private school), grade level, and parental background, which in turn

constitutes a crucial input for our model simulations.6

3 Data

In this section we describe the data and procedures to measure effective schooling time during the

pandemic. We start with the Safegraph data, how we measure changes in visits to schools, and

how we match the schools with records from the National Center for Education Statistics (NCES)

to obtain information on different school characteristics. Then, we show how we use Burbio data

on school learning modes to map changes in school visits to effective in-person learning. Finally,

we present empirical results by school characteristic that serve as input for the structural model

simulations.

3.1 Measuring Effective In-person Learning

3.1.1 Safegraph School Visit Data

The main source of information for measuring the length of effective schooling time comes from

Safegraph, which provides data for over 6 million Places of Interest (POIs) for the U.S. using

cell phone pings.7 From this large set of POIs we extract establishments with North American

Industry Classification System (NAICS) code 611110 (“Elementary and Secondary Schools”)

that are present in Safegraph’s Weekly Patterns, which provides data on weekly visits by POI.

We then match Safegraph’s POIs with NAICS code 611110 by school name and address to public

and private schools from the Department of Education’s National Center for Education Statistics

(NCES), resulting in about 102,500 high-quality matches of schools with Safegraph data on

weekly visits. Appendix B provides details of the matching procedure and results. Relative to the

universe of schools in the NCES, we lose about 22,000 schools, but the matched school sample

remains highly representative of the overall population of schools in terms of socioeconomic and

geographic makeup.

3.1.2 Measuring Changes in School Visits

The Safegraph data provides weekly visit counts for each school by dwell times. There are D = 7

dwell time intervals (less than 5, 5 to 10, 11 to 20, 21 to 60, 61 to 120, 121 to 240, more than

6See Kurmann and Lalé (2021) for details on the estimation approach and a more in-depth analysis ofthe predictors of effective schooling time.7A cell phone ping is the process of determining the location of a cell phone at any given point in time.
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240 minutes), Denoting weekly visits counts as vj,t (d) for d = 1, . . . , D, the total visits count

for school j in week t is vj,t =
∑D

d=1 vj,t (d) .

As Figure 6 in the appendix shows, prior to the pandemic, both aggregate total visit counts

and aggregate visits longer than 240 minutes per day decline markedly during the weeks of

Thanksgiving, Christmas, and Summer break. In addition and in line with the public health

emergency on March 13, 2020, both visits series drop precipitously during the week of March 15

to March 21, 2020 and remain substantially lower thereafter. Appendix Figure 6 also shows that

there is substantial week-to-week variation in visit counts, as well as an overall upward trend in

visit counts. The trend could be due to increased cell phone usage by students and teachers, but

it could also be due to an increase in the number of cell phone devices sampled by Safegraph.

To control for the latter and reduce the high frequency variation that is driven by changes in

Safegraph’s sample size, we normalize visit counts by the weekly counts of SG devices at the

county level.

As opposed to Chernozhukov et al. (2021), Bravata et al. (2021), and Parolin and Lee (2021)

who consider year-over-year changes in weekly Safegraph visits to schools, we construct changes

in visits relative to average visits prior to the pandemic. This has the advantage that we do not

need to correct for holidays and other idiosyncratic variations in visits that fall on different weeks

across years, thereby reducing measurement error. The construction involves 4 steps:

1. For each school j, we define weights ωj (d) as:

ωj (d) =

∑t1
t=t0

vj,t (d)∑t1
t=t0

vj,t
,

where t = t0, . . . , t1 denotes the base period (beginning of November 2019 through the end

of February 2020, excluding the weeks of Thanksgiving, Christmas and the New Year); and

ωj (d) measures the contribution of a dwell time d to school j’s raw visits counts during

the base period.

2. Using the weights, we measure weighted weekly visits at school j in week t as

ṽj,t =
1

nc(j),t

D∑
d=1

ωj (d) vj,t (d) ,

where nc(j),t denotes the normalization by SG devices during week t in county c (j) in

which the school j is located. As discussed above, this normalization reduces the impact

of changes in the number of cell phone devices sampled by Safegraph on visit counts.
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3. Given weighted school visits in week t, we measure the percent change in school visits as

dj,t =
ṽj,t − ṽj,0
ṽj,0

× 100,

where ṽj,0 = 1
t1−t0+1

∑t1
t=t0

ṽj,t is the mean value of ṽj,t during the base period.

4. In order to reduce noise in dj,t, we top-code dj,t at 100%. In addition, if in any t outside of

the base period dj,t > 25 while dj,t−1 ≤ 25 and dj,t+1 ≤ 25, we replace dj,t by the average

of dj,t−1 and dj,t+1. This adjustment implements the assumption that during the school

year 2020-21, schools did not reopen for only one week at a time.

In order to further reduce measurement error, we drop schools with sparse or very noisy visit

data and apply weights to ensure that the remaining sample of roughly 70,000 schools remains

representative of the full sample of schools in the U.S. See Appendix B.1 for details on the sample

selection criteria and weighting procedure.

Figure 1 presents histograms of the distribution of changes in school visits dj,t during three

subperiods (averaged over the weeks within a given subperiod). The figure clearly shows that

relative to the pre-pandemic period, school visits declined massively during March-May 2020, and

were still significantly lower during September-December 2020 and (less so) during January-May

2021.

Figure 1: Distribution of changes in school visits for selected subperiods
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Figures 2 to 4 show the geographical variation in county average school visit changes for the

three subperiods. During March-May 2020, school visits in most counties were 75 to 100 percent

below pre-pandemic levels, without much regional variation. During September-December 2020,

in contrast, we observe substantial variation in school visits across different regions, as many

schools in the Southern, Midwestern, and Central Northern parts of the U.S. reopened while

schools in the Western and Eastern parts remained largely closed. During January-May 2021,

the situation becomes again more even, with school visits returning towards pre-pandemic levels

in most counties except on the West Coast, parts of the East Coast, and a few other counties

across the U.S.

Figure 2: Average change in school visits by county: March-May 2020

Figure 3: Average change in school visits by county: September-December 2020
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Figure 4: Average change in school visits by county: January-May 2021

3.1.3 From Changes in School Visits to Effective In-person Learning

In order to map the change in school visits at the individual school level into a measure of

effective in-person learning, we relate our school visit data to estimates of school learning mode

from Burbio. Burbio is a private company that collects data for 1,200 public school districts

representing 47 percent of U.S. K-12 student enrollment in over 35,000 schools in all 50 states.

The data is aggregated to the county level and primarily used for commercial purposes, but the

company generously shared the data with us and other researchers. The information on learning

mode consists of weekly indicators between mid-August 2020 and mid-June 2021 that for each

county provide the percent of public school students engaged in either Traditional, Hybrid, or

Virtual learning mode. Traditional means that students attend in-person school every day of the

week; Hybrid means that students attend 2-3 days per week in-person; and Virtual means that

students do not attend school in person. Appendix B.2 contains more details about the Burbio

data.

We construct county-level averages Lc of the fractions that public school students spent in

learning mode L ∈ {traditional,hybrid,virtual} between week t0 and week tn

Lc =
1

T

tn∑
t=t0

Lc,t, (1)

where Lc,t denotes the percent of students in county c who spent week t in learning mode L; and

T = tn − t0 + 1 is the number of weeks considered. For instance, Lc = 0.33 for L = traditional

computed from September 2020 to June 2021 means that public school students in county c

spent one third of the school year 2020-2021 in traditional learning mode.
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Next, we define the fraction of the school year that students in county c effectively spent in

in-person learning mode as T
∗
c = T c + γHc and the fraction effectively spent in virtual learning

mode as V
∗
c = V c + (1− γ)Hc, where γ measures the fraction of total student-days that are

spent in person when the learning mode is hybrid. We then relate these measures to the change

in Safegraph school visits with the following linear regression

T
∗
c = α + βdc + εc,

or equivalently,

T c = α + βdc + γHc + εc, (2)
where dc is the student-weighted average of changes in school visits across schools in county c.

The regression tells us not only how a given change in school visits maps into effective in-person

learning relative to its pre-pandemic level, T
∗
c , but also the average proportion γ of in-person

learning when students are in Hybrid mode. Since T c+Hc+V c = 100 and thus V
∗
c = 100−T ∗c ,

the regression also tells us how a given change in school visits maps into effective virtual learning

mode V
∗
c .

We estimate (2) using Burbio and Safegraph data for Fall 2020 only. The reason we are not

using data for Winter and Spring 2021 is that during this period, school districts increasingly

moved away from virtual learning. As a result, changes in traditional learning T c are close to

linear with hybrid learning Hc ≈ 100−T c. In a regression context, this implies γ → 1 and β → 0

since dc is subject to idiosyncratic noise. During Fall 2020, in contrast, there are changes across

all three learning modes, which enables us to identify the mapping between T c and dc, controlling

for Hc.

Table 1 reports the results of the estimation. In column (1), we consider all counties for

which we have data on both Burbio learning modes and Safegraph school visits (3,049 out of

3,124 available counties in Burbio). The sample represents almost 95 percent of all public-school

students in the U.S. The mapping between the different variables is tightly estimated, with a

R2 of over 0.5 and highly significant coefficients. A 1 percentage point decline in school visits

reduces the fraction of weeks spent in effective in-person learning by 1.14 percentage points,

and the estimated fraction of hybrid learning mode spent in in-person learning mode is 0.5 or

2.5 days out of a 5 day school week. Closer inspection of the data reveals that the resulting

relationship between effective in-person learning mode T
∗
c and change in school visits is indeed

well represented by a linear function. Finally, the estimated intercept is 101.67, close to the

predicted value of 100 when school is fully in-person (i.e. dc = 0 and Hc = 0).
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Table 1: Regression of traditional learning against changes in school visits

(1) (2) (3) (4)
Change in Safegraph visits dc 1.14*** 1.12*** 1.13*** 1.15***(0.01) (0.01) (0.01) (0.01)Burbio’s Hc -0.50*** -0.49*** -0.48*** -0.43***(0.01) (0.01) (0.01) (0.01)Intercept 101.67***(0.76)Adjusted R2 0.513 0.513 0.522 0.589
N of counties 3,049 3,049 2,438 794
N of students (in thousands) 48,013 48,013 47,250 40,485% of all public-school students 94.5 94.5 92.9 79.6

Notes: Safegraph and Burbio data for Fall term 2020 (weeks of September 27 - October 3 to December 13- December 19, excluding the week of Thanksgiving). All regressions are weighted by student enrollment atthe county level. (∗) In columns (2)–(4) the intercept is constrained to 100.

As robustness checks, in column (2) we restrict the intercept to 100 and rerun the regression,

while in columns (3) and (4), we reduce the sample to the counties with at least 5 schools

for which we have data, respectively to the counties in the top-25 percent of the population

distribution. The results are strikingly robust across the different specifications: a 1 percentage

point decline in school visits reduces the fraction of weeks spent in effective in-person learning

by 1.14 percentage points, and Hybrid learning mode is estimated to correspond to a fraction of

0.43 to 0.49 of in-person learning mode.

In sum, the regressions confirm that there is a tight linear relationship between change in

school visits and effective in-person learning. We therefore feel confident to use this mapping to

infer effective schooling time at the individual school level.

3.2 Effective schooling time by school characteristic

In the model simulations below, effective schooling time over the two-year period between Summer

2019 and Summer 2021 will be an important input to quantify the consequences of learning loss

during the pandemic. We proceed as follows to infer this value from our data on school visit

changes. According to the NCES table of “Number of instructional days and hours in the

school year” (https://nces.ed.gov/programs/statereform/tab5_14.asp), there are 180

instructional days per year in almost every state. Dividing this number by 5 (since weekends are
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excluded from the counts), we obtain 36 weeks of potential schooling per year.8 Equivalently,

we have 72 weeks of potential schooling for the two-year period between Summer 2019 and

Summer 2021. For the 25 weeks between September 2019 and mid-March 2020 that precede the

pandemic, we set effective school time to 100 percent. For the remaining 11 weeks of the 2019-

2020 school year (week of Mar 15 - Mar 21 through the week of May 24 - May 30) and the 36

weeks of the 2020-2021 school year, we calculate effective schooling time using the estimates in

Table 1; i.e. for the set of schools with a certain characteristic k (e.g. public vs private schools),

we take the average student-weighted change in school visits dk and calculate effective schooling

time as T̂
∗
k + φV̂

∗
k, where T̂

∗
k = 100 + β̂dk, V̂

∗
k = −β̂dk, and φ ∈ [0 1] denotes the effectiveness

of virtual learning. Thus, our estimate of effective schooling time during the two-year period from

2019 to 2021 as a percent of what schooling time would have been without the pandemic is

1

72

(
25× 100 + (72− 25)

(
T̂
∗
k + φV̂

∗
k

))
Table 2 shows effective schooling time by school characteristics under different assumptions

about the effectiveness of virtual learning. Across all schools in the sample, school visits declined

by student-weighted average of 55 percent over the period from mid-March 2020 through the

end of the 2020-21 school year. If virtual learning has zero effectiveness, then this decline in

school visits together with the estimated coefficients in Table 1 between 1.12 and 1.15 implies

an estimated loss of effective schooling time of (1.12 + 1.15)/2×−55% = −62.5% during that

period. Consequently, the effective schooling time over the two-year period from Summer 2019

to Summer 2021 equals 59.2%, which is shown in the top-left corner of the first panel of Table

2. If instead, virtual learning has a 25% effectiveness, the implied effective schooling time equals

69.4%, as shown in the top-left corner of the second panel of Table 2. Finally, if virtual learning

has a 50% effectiveness, the implied effective schooling time equals 79.6%, as shown in the

top-left corner of the third panel of Table 2.

The remainder of Table 2 reports results of the same calculations separately for public versus

private schools and for elementary versus secondary schools. Private schools experience on aver-

age smaller drops in school visits during the pandemic than public schools. Similarly, elementary

schools experience smaller drops in school visits than secondary schools (either private or public,

although for public schools the difference between elementary and secondary schools is larger).

As a result, effective schooling time is the highest for private elementary schools and the lowest

for secondary public schools.

8As an illustration, the 36 weeks of potential schooling can be obtained by taking the 52 weeks in a yearand subtracting 13 weeks for summer break and 3 weeks for winter break, Thanksgiving, and other holidays.
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Table 2: Estimates of effective schooling time over the 2019-2021 period
Without virtual learning

All Elementary Secondary
All 59.2 62.2 52.3[58.3, 60.1] [61.4, 63.1] [51.2, 53.3]
Public schools 58.5 62.0 51.7[57.6, 59.5] [61.1, 62.8] [50.6, 52.8]
Private schools 65.9 66.2 62.1[65.2, 66.7] [65.5, 67.0] [61.2, 62.9]

With virtual learning, 25% effectiveness
All Elementary Secondary

All 69.4 71.7 64.2[68.7, 70.1] [71.0, 72.3] [63.4, 65.0]
Public schools 68.9 71.5 63.8[68.2, 69.6] [70.8, 72.1] [63.0, 64.6]
Private schools 74.4 74.7 71.6[73.9, 75.0] [74.1, 75.2] [70.9, 72.2]

With virtual learning, 50% effectiveness
All Elementary Secondary

All 79.6 81.1 76.1[79.1, 80.1] [80.7, 81.5] [75.6, 76.7]
Public schools 79.3 81.0 75.9[78.8, 79.7] [80.6, 81.4] [75.3, 76.4]
Private schools 83.0 83.1 81.0[82.6, 83.3] [82.7, 83.5] [80.6, 81.5]

Notes: The upper panel reports the share of potential schooling time over the 2019-2021 period that waseffectively spent in the classroom. The middle and lower panel reports the share of potential schoolingtime over the 2019-2021 period that was effectively devoted to learning, assuming that virtual learning isrespectively 25% and 50% as effective as in-person learning. In each cell, the bracketed numbers correspondto lower and upper bounds based on the Burbio estimates reported in Table 1, and the point estimate iscomputed as the mid-point of the interval.
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Table 3: Estimates of effective schooling time: High vs. low household income

Without virtual learning
All Elementary Secondary

Top quartile of household income 54.5 58.0 46.8[53.5, 55.5] [57.1, 58.9] [45.6, 48.0]
Bottom quartile of household income 63.9 66.6 58.2[63.1, 64.7] [65.9, 67.3] [57.2, 59.1]

With virtual learning, 25% effectiveness
All Elementary Secondary

Top quartile of household income 65.9 68.5 60.1[65.1, 66.6] [67.8, 69.2] [59.2, 61.0]
Bottom quartile of household income 72.9 74.9 68.6[72.3, 73.5] [74.4, 75.5] [67.9, 69.3]

With virtual learning, 50% effectiveness
All Elementary Secondary

Top quartile of household income 77.2 79.0 73.4[76.7, 77.7] [78.5, 79.5] [72.8, 74.0]
Bottom quartile of household income 82.0 83.3 79.1[81.6, 82.4] [82.9, 83.7] [78.6, 79.5]

Notes: The upper panel reports the share of potential schooling time over the 2019-2021 period that waseffectively spent in the classroom. The middle and lower panel reports the share of potential schoolingtime over the 2019-2021 period that was effectively devoted to learning, assuming that virtual learning isrespectively 25% and 50% as effective as in-person learning. In each cell, the bracketed numbers correspondto lower and upper bounds based on the Burbio estimates reported in Table 1, and the point estimate iscomputed as the mid-point of the interval.

Table 3 reports results for schools located either in a county ranked in the top or the bottom

quartile of the household income distribution. Perhaps somewhat surprisingly, schools in afflu-

ent counties generally experienced a larger decline in school visits and therefore lower effective

schooling time during the pandemic than schools in counties with low household income. As

shown in separate work by Kurmann and Lalé (2021), this difference is primarily due to the fact

that the affluent counties are disproportionally located in states where schools remained closed

or did not return to full in-person instruction. Within quartiles of average household income, the

difference in effective schooling time between elementary and secondary schools remains similar

as reported in Table 2.

To sum up, the results in this section reveal sizable differences in effective schooling time across

different types of schools. In the model-based analysis that follows, we will exploit this variation in
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effective schooling time to analyze the extent to which they result in heterogeneous earnings- and

welfare losses for children in different school types, grades and with different household income.

4 A Quantitative Life Cycle Model with Education Choices

After having measured the extent and variation of school closures in the data, we now describe

the structural life cycle model that we will employ to measure the heterogeneous consequences

for lifetime earnings, welfare, and taxes paid of the school closures we observed empirically in the

previous section. We first describe the demographics, timing, stochastic structure, endowments,

preferences and government policy and then formulate the individual decision problems recursively,

since this is the representation we will compute. Since this model shares many features with the

one used in Fuchs-Schündeln et al. (2021) we will focus on the novel features relative to their

model when presenting the recursive representation of the model, relegating a complete account

of all other dynamic programming problems of the model to Appendix A.

4.1 Individual State Variables, Risk, and Economic Decisions

We model individuals living in discrete time and denote the current period by t. Ours is a par-

tial equilibrium model where individuals of two generations, a parent generation and a children

generation, live through a full life cycle. When children live in the parental household, the key

education investment decisions (whether to send the child to private or public school, and how

much time and resources to invest into the child during her schooling years) are being taken by

parents. The child generation makes one key decision upon becoming an independent household:

equipped with inter-vivos transfers of the parent it decides what tertiary education, if any, to

attain. After this decision this generation lives through a standard consumption-saving life cycle

model; the same is true for the parental generation after the children have left the household.

The timing and events in the model are summarized in Figure 5; we now turn to a more detailed

description of the underlying heterogeneity of individuals and of each phase of the life cycle they

undergo.

Individuals are part of either the child or parental generation, k ∈ {ch, pa}. They differ

in their marital status m ∈ {si,ma} for single and married, their age j ∈ {0, . . . , J < ∞},
where a model period and age j spans two years in real time, their asset position a, their current

human capital h, their education level e ∈ {no, hs, co} for no higher education (no high school

completion), high school attendance and completion, college attendance and completion, and

idiosyncratic productivity risk modeled as a two state Markov process with state vector η ∈
{ηl, ηh}, where ηl is low and ηh is high labor productivity, and transition matrix π(η′ | η) and a
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transitory shock ε ∈ {ε1, . . . , εn}. Parents decide to send their children either to public or private

school, s ∈ {pu, pr}, and school type then becomes a state variable of the child. All individual

state variables and the range of values they can take are summarized in Table 4.

Table 4: State Variables

State Var. Values Interpretation
k k ∈ {ch, pa} Generation
m m ∈ {si,ma} Marital Status
j j ∈ {0, 1, . . . , J} Model Age
a a ≥ −a(j, e, k) Assets
s s ∈ {pu, pr} School Type
h h > 0 Human Capital
e e ∈ {no, hi, co} Education
η η ∈ {ηl, ηh} Persistent Productivity Shock
ε ε ∈ {ε1, . . . , εn} Transitory Productivity Shock

Notes: List of state variables of the economic model.

4.1.1 Demographics

Parents give birth to children when they are of age jf . We denote the number of children a

parental household has by ξ(e,m), which differs by marital status and educational attainment of

the parents. There is no survival risk and all households live until age J . Therefore the cohort size

within each generation remains constant over time. We now describe in detail how life unfolds

first for parents and then for children, as summarized in Figure 5.

4.1.2 Life of the Parental Generation

In the model, parental households start their economic life at age jf just before their children

are born. Their initial characteristics include their exogenous marital status m, education level e,

initial idiosyncratic productivity states η and ε and initial assets a. These initial states are

exogenously given to the household, and drawn from the population distribution Φ(e,m, η, ε, a)

which are estimated directly from the data, as described in the calibration section.

Parents then observe the innate ability (initial human capital) h = h0(e,m) of their children at

child model age j0 = 0 (real biological age 4), which depends on parental education e and marital

status m. Based on parental state variables e,m, η, ε, a and the child’s innate ability h0(e,m),

parents first decide whether they will send their children to a public or a private school, s ∈
{pu, pr}, from age js > j0 (real biological age 6) of the child onward. If parents opt for private

school, then throughout the schooling period they pay private school tuition f(j, s = pr) > 0,
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Figure 5: Life-Cycle of Child and Parental Households
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which depends on a child’s age j because we distinguish between tuition for primary and secondary

education.9 Attendance in public schools is free, f(j, s = pu) = 0.

Children live with their parents until child age ja (parental age (jf + ja)), at which point

they leave the household to form their own independent household. During these years (parental

ages j ∈ {jf , ..., jf + ja}), parents invest resources im and time it into their children, which

together with schooling is(j) determines the evolution of a child’s human capital. Conditional on

school type (public or private), parents take age-dependent schooling inputs is(j) as given. As a

result of these choices, the human capital of a child during school ages evolves according to

h′ = g
(
j, h, i(im, it, is(j), s)

)
, (3)

where g is a function of the child’s age j (to reflect age differences in the relative importance

of education inputs) as well as a function of the school type s (to reflect potential productivity

differences across the two school types), and depends positively on the three inputs (parental

resources im, parental time it and schooling input is(j)).

When children leave the household at parental age jf + ja, their parents may give them

inter-vivos transfers b ≥ 0. This is the final interaction between parents and children, after which

the two households separate. Note that since children in high school continue their education for

one period after they have left the parental household, parental transfers to those children who

attend a private high school have to be at least as large as private school tuition, i.e., we impose

the stricter constraint b(·, s = pr) ≥ f(ja, s = pr).

The remainder of parental life then unfolds as a standard consumption-saving life cycle model.

Throughout their working ages, parental households spend an exogenous amount of time `(m) >

0 on market work which differs by marital status. Labor productivity and thus individual wages

are determined by an exogenous productivity profile ε(j, e,m) that depends on household age j,

education e, marital status m, and is impacted by a persistent shock η and a transitory shock ε.

The persistent shock η follows a first-order Markov chain with state space {ηl, ηh}, transition

matrix π (η′ | η) and initial distribution Π. The transitory shock can take values ε ∈ {ε1, ε2} and

is drawn from distribution ψ(ε).

Current labor income of parents of age j, education e and marital status m and hit by shocks

(η, ε) is then given by

y = w · ε(j, e,m) · η · ε · `(m). (4)
In addition to making human capital investment decisions for their children when these are

present in the household, parents in each period make a standard consumption-saving choice,

9We also assume that at age j0 (age 4 in real time) children go to kindergarten for free, f(j = 0, s) = 0.
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where household asset choices are subject to a potentially binding borrowing constraint a′ ≥
−a(j, e,m, pa), which will be parameterized such that the model replicates well household debt

at the age at which households have children jf . The borrowing limits decline linearly to zero

over the life cycle towards the last period of work. Parents work until retirement at age jr, at

which point the start to receive per-period retirement benefits bp > 0 until the end of life at

age J ; these benefits are earnings-history-dependent.

Table 5 summarizes the choices of parents described thus far, and those of children, to which

we turn next.

Table 5: Per Period Decision Variables

Dec. Var. Values Decision Period Interpretation
c c > 0 j ≥ ja Consumption
a′ a′ ≥ −a(j, e,m, k) j ≥ ja Asset Accumulation
s s ∈ {pu, pr} j = jf School Type
it it ≥ 0 j ∈ {jf , ..., jf + ja − 1} Time Investments
im im ≥ 0 j ∈ {jf , ..., jf + ja − 1} Monetary Investments
b b ≥ 0 j = jf + ja Monetary Inter-vivos Transfer
e e ∈ {no, hi, co} j = ja (Higher) Education

Notes: List of decision variables of the economic model.

4.1.3 Life of the Children Generation

Children born at age j = 0 are economically inactive for the first ja−1 periods of their life. After

their parents have decided on the the type of school s ∈ {pu, pr} a child’s human capital during

ages j ∈ {0, ..., ja−1} evolves as the outcome of parental investment decisions (im, it) described

above and schooling input is(j). At the beginning of age ja, and based on both the level of

human capital as well as the financial transfer b from their parents (which determines their initial

wealth a), children make a discrete higher education decision e ∈ {no, hs, co}, where e = no

stands in for the choice not to complete high school, hs for high school completion, and co for

college completion, respectively. For simplicity, children are stand-in bachelor households through

their entire life-cycle.

Acquiring a high school or college degree e ∈ {hs, co} comes at a utility cost (psychological

cost) p(s, e, ep, h), which is decreasing in the child’s acquired human capital h and also depends

on parental education ep as well as on whether the student attended private or public school, s ∈
{pu, pr}. In addition, college education requires a monetary cost ι ≥ 0. Children may finance

some of their college expenses by borrowing, subject to a credit limit given by −a(j, e, ch), which

is zero for e ∈ {no, hs}, i.e. for individuals not going to college. As was the case for parents,
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this limit decreases linearly with age and converges to zero at the age of retirement jr, requiring

the children generation to pay off their student loans prior to their retirement.

Youngsters who decide not to complete high school, e = no, enter the labor market immedi-

ately at age ja. Those who decide to complete high school, but not to attend college, do so at

age jh > ja. While at high school, {ja, ..., jh − 1}, they work part-time at wages of education

group e = no, and those children attending a private high-school also have to pay the school

tuition f(j, s = pr) > 0. Those youngsters who decide to attend college enter the labor market

at jc > jh and also work part-time at wages of education group e = no during their high-school

and college years {ja, jc − 1}.
When the children generation enters the labor market (either without a high-school diploma,

with a high-school degree of with a college degree), the acquired human capital during the

school years is mapped into an idiosyncratic permanent labor productivity state γ(e, h), which

is increasing in acquired human capital h and also positively depends on education e to re-

flect differential complementarities between education and human capital in the generation of

earnings. When starting to work, children also draw the persistent productivity shock η, which

follows the same first-order Markov chain as for the parental generation, and stochastic transitory

productivity ε ∼ ψ(ε). Labor income of children during the working period is then given by

w · γ(e, h) · ε(j, e, si) · η · ε · `(si).

We restrict attention to the two generations directly impacted by the Covid-19 school crisis, and

thus assume that the child generation does not have offspring of their own. As a consequence

the remaining decision problem of the child generation, after labor market entry, constitutes a

completely standard life-cycle consumption-saving problem.

4.2 Recursive Formulation of the Decision Problems

Our model is a partial equilibrium model where the only interaction of the decision problems

comes in the period in which the children generation leaves the household. Furthermore, children

do not make economic decisions prior to that period. We can therefore solve the entire model

backward, starting from the retirement phase of the children generation. The details of those

recursive problems not spelled out explicitly in the main text are contained in Appendix A.

4.2.1 Children

The children generation undergoes three distinct phases, first making the education decision, and

then and living through a working phase and a retirement phase with which we begin.

21



The Retirement Phase During the retirement phase, at ages {jr, ..., J}, the children gener-

ation solve a standard consumption-saving (c, a′) maximization problem, facing a typical budget

constraint of the form:

c(1 + τ c) + a′ = a(1 + r(1− τ k)) + pen(e, ηjr−1, h)− T (pen(e, ηjr−1, h))

where pen(e, ηjr−1, h) is pension income, whose dependence on ηjr−1 (the persistent income

state in the period prior to retirement), education e and human capital h captures the progressive

nature of the social security system in past earnings, which are in turn determined by (e, ηjr−1, h).

The function T (·) represents a progressive labor income tax code, and capital and consumption

are taxed at proportional rates (τ k, τ c). The associated value function at the time of retirement

is given by V (jr, e, η; a) with η = ηjr−1.

Working Life Let V (j, e, η, ε; a) denote the value function of a children household (assumed

to be single) aged j that has entered the labor market with education level e, human capital h

and has received stochastic income shocks (η, ε). This value function is the result of a standard

consumption-saving maximization problem, as for retired households, but with budget constraint

now given by

c(1 + τ c) + a′ = a(1 + r(1− τ k)) + y(1− τ p)− T (y(1− 0.5τ p))

y = wγ(e, h)ε(e, j, si)ηε`(si)

Here (1 − 0.5τ p)y is taxable labor income, with τ p being the social security payroll tax. The

argument of the tax function T encodes that employer contributions to social security are not

taxable income. In addition to the budget constraint, the household faces an age-, education,

and generation-specific borrowing limit a′ ≥ −a(j, e, ch).

The Higher Education Choice The key choice of the children generation impacted by the

Covid-19 crisis and associated loss in schooling is the higher education decision this generation

will make in the model right after the establishment of an independent household, and after

having received inter-vivos transfers from their parents. 16-year-olds have three discrete choices

e ∈ {no, hs, co}: they can either decide to drop out of high school and enter the labor market

directly at age 16, or complete high school prior to labor market entry at age 18, or third, go to

and complete college at age 22 prior to labor market entry. To spell out this higher education

decision problem, we first have to specify the values from each of these three discrete options.
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Dropping Out of High School Members of the children generation that made the decision

to drop out of high school at model age ja (real age 16), i.e. chose e = no, directly enter the

labor market with permanent deterministic productivity γ(e, h), then draw the persistent income

shock η ∼ Π(η) (which then evolves according to the Markov transition matrix π(η′ | η)) and

the transitory income shock ε ∼ ψ(ε). The expected value of entering the labor market as a

high-school drop-out is then given by10

V (ja, e = no, a, h) =
∑
η

Π(η)
∑
ε

ψ(ε) V (ja, e = no, η, ε, a, h)

where V (j, e, η, ε, a, h) is the lifetime utility of a worker of age j with assets and human capital

(a, h) that has drawn productivity shocks (η, ε), as defined in the previous paragraph.

Completing High School Youngsters that at age ja decide to complete high school but

not attend college (i.e. choose e = hs) work part-time during high school at a deterministic wage

and then enter the labor market two years later at j = ja + 1, when they draw stochastic labor

productivity η ∼ Π(η), ε ∼ ψ(ε). In contrast to the e = no group, for children choosing e = hi

their school type s is a relevant state variable because children in private high school have to pay

the private school tuition f(j, s = pr). Parental education ep is a state variable since the utility

cost of completing high school p(s, hs, ep, h) depends on the eduction of their parents. Expected

lifetime utility from high school completion is then given by

V (ja, s, e = hs, ep, a, h) = max
c,a′

{
u(c)− v(χ(hs)`(si))− p(s, hs, ep, h)+

β
∑
η′

Π(η′)
∑
ε′

ψ(ε′)V (ja + 1, e = hs, η′, ε′, a′, h)
} (5)

subject to

a′ + c(1 + τ c) = a(1 + r(1− τ k)) + y(1− τ p)− T (y(1− 0.5τ p))− f(j, s) (6a)
y = wγ(no, h)ε(no, j, si)χ(hs)`(si) (6b)
a′ ≥ 0. (6c)

That is, high-school students work for high-school drop-out wages wγ(no, h) for a fraction χ(hs)

of their time `(si) and obtain period utility from consumption u(c) and disutility from (exogenous)

labor supply v(χ(hs)`(si)). The utility cost p(s, hs, ep, h) associated with attending high school is

10Since high-school drop-outs do not pay private school tuition any longer, nor face utility costs of attend-ing school or college (which depends on the education of their parents), neither school type s nor parentaleducation ep is a state variable for high-school drop-outs.
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decreasing in the human capital h previously acquired by the student. Children form expectations

over their stochastic labor market productivity when they enter the labor market upon graduating

at age ja+ 1. Their remaining life (labor market and retirement phases) then unfold as described

above.

Obtaining a College Degree Children who decide, at age ja, to attend, and by assump-

tion, to complete, college (i.e choose e = co), during high school age ja solve the same problem

as those who chose a high school education (e = hs), with the difference that the continuation

value differs at age ja + 1 (the youngster goes to college rather than entering the labor market).

Thus the value of choosing, at age ja, the college option, is given by

V (ja, s, e = co, ep, a, h) = max
c,a′

{
u(c)− v(χ(hs)`(si))− p(s, hs, ep, h)+

βV (ja + 1, e = co, ep, a
′, h)

} (7)
where V (ja + 1, e = co, a′, h) is expected lifetime utility at age ja + 1 (age 18 in real time)

from entering college. The budget set is identical to that in equations (6). Note that this value

function still depends on parental education ep because the utility cost from attending college

p(co, ep, h) will be, but no longer on high school type s.

Finally, during the two college periods students pay college tuition ι and work part-time at

high-school wages. Furthermore, they can borrow up to a limit a(j, co, ch) to pay for tuition.

Thus their budget set is described by

a′ + c(1 + τ c) = a(1 + r(1− τ k)) + y(1− τ p)− T (y(1− 0.5τ p))− ι (8a)
y = wγ(hs, h)ε(hs, j, si)χ(co)`(si) (8b)
a′ ≥ −a(j, co, ch). (8c)

The Bellman equation differs slightly between age ja+1 and ja+2 since at the first age students

have two years (one model period) left in college, whereas at age ja+2 their continuation value is

determined by labor market entry as college graduate. Thus the corresponding Bellman equations

are

V (ja + 1, co, ep, a, h) = max
c,a′
{u(c)− v(χ(co)`(si))− p(co, ep, h) + βV (ja + 2, co, ep, a

′, h)}
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and

V (ja + 2, co, ep, a, h) = max
c,a′

{
u(c)− v(χ(co)`(si))− p(co, ep, h)+

β
∑
η′

Π(η′)
∑
ε′

ψ(ε′) · V (ja + 3, co, η′, ε′, a′, h)
}
.

which are both maximized subject to equations (8). Here, as before, V (ja + 3, co, η′, ε′, a′, h) is

expected utility lifetime from entering the labor market as a college graduate at age ja + 3 (age

22 in real time) with (human) capital (a′, h) and having drawn initial shocks (η′, ε′).

The Education Decision At age ja, based on their initial asset position a, their acquired

human capital h, the type of school they attended s and the education of their parents ep

children make an education decision e ∈ {no, hs, co}. Above, we have spelled out the values

V (ja, s, e, ep, a, h) for these three choices. The choice is simply to choose the alternative that

gives the highest expected lifetime utility, and the pre-education decision value function of children

aged ja (which will enter parental lifetime utility through one-sided altruism) is given by:

V (ja, s, ep, a, h) =

max
e∈{no,hs,co}

{V (ja, e = no, a, h), V (ja, s, e = hs, ep, a, h), V (ja, s, e = co, ep, a, h)} . (9)
In the computational implementation, we additionally apply Extreme Value Type I (Gumbel) dis-

tributed taste shocks to smooth this discrete decision problem.11 Accordingly, youngsters choose

the three education alternatives with state (ja, s, ep, a, h)-specific probabilities π(ja, s, e, ep, a, h),

for e ∈ {no, hs, co}.

4.2.2 Parents

Given the focus of the paper, we model parental households as becoming economically active at

the beginning of age jf > ja when they give birth to children. Since human capital formation of

parents is completed at this stage, we normalize parental human capital to h = 1 and let it be

constant over the remainder of parental life. Children live with adult households until they form

their own households and make decisions as described above. Household separation occurs at

parental age jf + ja, after which the parental generation lives through a standard life cycle model

whose recursive formulation is described in Appendix A.2. Let V (ja+jf+1, e,m, η′, ε′, a′) denote

the expected lifetime utility (explicitly spelled out in the Appendix) from this life cycle of a parent

11Given this structure, the set of individuals exactly indifferent between two education choices is of mea-sure zero and thus it is inconsequential how we break the indifference.

25



household at the beginning of age ja+jf +1 with education and marital status (e,m), stochastic

productivity shocks (η′, ε′) and assets a′. Working backward in age, we now discuss the inter-

vivos transfer decision when children leave the household, the child human capital investment

decisions, and finally, the school choice (private or public school).

Inter-Vivos Transfers At parental age jf + ja children leave the household, and at this age

parents can make inter-vivos transfers b. These transfers immediately (that is, within the period)

become assets of their children. The dynamic program of parents at this age then reads is

V (ja + jf , s, e,m, η, a, h) = max
c,b,a′

{
u

(
c

1 + 1m=maζa

)
− v

(
`(m)

1 + 1m=ma

)
+β
∑
η′

π(η′|η)
∑
ε′

π(ε′)V (ja + jf + 1, e,m, η′, ε′; a′) + νV

(
ja, s, ep,

b

1 + r(1− τ k)
, h

)}
(10)

subject to

a′ + c(1 + τ c) + ξ(e,m)b = a(1 + r(1− τ k)) + y(1− τ p)− T (y(1− τ p))

y = wε(e, j,m)ηε`(m)

a′ ≥ a(ja + jf , e,m, pa).

Here V
(
ja, s, ep,

b
1+r(1−τk)

, h
)

is the pre-education decision value function of their children de-

fined in equation (9), and the parameter ν measures the intensity of altruism of parents towards

their children.12 Note that the school type s seizes to be a state variable in the value function

of parents at age jf + ja + 1 because children have left the household and thus pay the private

school tuition (if they attend a private school) themselves. Also notice that private school fees

are no longer present in the parental budget constraint because these fees are now paid by the

children if they decide to continue with high school.

Investment Decision The value function of children in the previous dynamic program that

parents solve at age jf + ja includes their human capital h since it determines both the higher

education decision as well as future earnings of this generation directly. We now turn to the

accumulation of this human capital when the children are of school age and reside with their

12Note that since assets in the value function enter the budget constraint as being multiplied by the gross,after-tax interest rate 1+ r(1− τk), and since inter-vivos transfers are received in the same period in whichthey are made and thus do not accrue interest, these transfers b have to be divided by 1 + r(1− τk) on theright hand side of the Bellman equation above.
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parents (at parental ages {jf , ..., jf + ja − 1}). During these ages parents invest resources im

and time investments it into each of their ξ(e,m) children and pay private, child-age dependent

per-child school tuition f(j − ff , pr) > 0 in case children attend private school. Parents derive

utility from per capita consumption of its household members and suffer disutility from hours

worked in the market and at home taking care of their children (rather than enjoying leisure).

The dynamic program during this stage of the parental life cycle can then be written as

V (j, s, e,m, η, ε, a, h) = max
c,im,it,a′,h′

{
u

(
c

1 + ζcξ(e,m) + 1m=maζa

)
−v
(
`(m) + κ · ξ(e,m) · it

1 + 1m=ma

)
+ β

∑
η′

π(η′|η)
∑
ε′

ψ(ε′)V (j, s, e,m, η′, ε′; a′, h′)

}

subject to

c(1 + τ c) + a′ + ξ(e,m) (im + f(j − jf , s)) = a(1 + r(1− τ k)) + y(1− τ p)− T (y(1− 0.5τ p))

y = wε(e, j,m)ηε`(m)

a′ ≥ −a(j, e,m, pa)

h′ = g(j − jf , s, h, i(im, it, is(j − jf )))

The parameter κ is a weight on time spent with children, and reflects the possibility that reading

to children carries a different disutility (or even positive utility) of time than work. Note that

the sum of hours worked and time investment in children in the function v(·) is divided by the

number of working household members.

Private Schooling Decision At the very start of the parental life cycle, at age jf and after

observing the innate human capital h = h0(e,m) of their children (and after having observed

their own transitory and persistent earnings shocks (η, ε)), parents decide on whether to send

their children to a public or a private school. For computational tractability we assume that

this decision is permanent and irreversible. The optimal choice of whether to send their children

to private school depends on the initial characteristics of the parents (e,m, a) (their education,

martial status and financial wealth) and trades off the cost of private school tuition throughout

the child’s schooling years with higher productivity in the human capital production function

and thus higher human capital (and associated higher chance of attending college) as well as
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ultimately, higher expected earnings of their children. The optimal choice of parents is given by13

s =

pu if V (jf , s = pu, e,m, η, ε; a, h0) ≥ V (jf , s = pr, e,m, η, ε; a, h0)

pr otherwise.
(11)

This education choice s then becomes a state variable in the parents’ dynamic programs going

forward, as described above.

4.3 Government

The government runs a pension system with a balanced budget. It also finances exogenous

government spending, expressed as a share of aggregate output G/Y , and aggregate education

spending on public schools (for pre-tertiary and tertiary education) through consumption taxes,

capital income taxes and the progressive labor income tax system T (y). In the initial pre-Covid-

19 scenario, the government budget clears by adjustment of the average labor income tax rate

encoded in T (.). In the thought experiment with school closures we hold fiscal policy constant,

therefore implicitly assuming that the budget deficits or surpluses generated by a change in private

behavior are absorbed by government debt which is serviced or repaid by future generations not

explicitly modeled.

4.4 The Covid-19 Thought Experiment

We compute an initial stationary partial equilibrium with exogenous wages and returns prior to

model period t = 0. In period t = 0, the COVID-19 shock unexpectedly hits, and from that

point on unfolds deterministically. That is, factor prices and fiscal policies are fixed by our partial

equilibrium assumption, and households, after the initial surprise, have perfect foresight with

respect to aggregate economic conditions. The COVID-19 crisis impacts the economy through

an education crisis: the government temporarily closes schools, represented in the model by

a temporary reduction in school investment is(j) into child human capital production. The

reduction of is(j) differs by type of school s and age of the child j. We then trace out the

impact of these temporary shocks on parental human capital inputs (both time and money)

and intergenerational transfer decisions, as well as on the education choices, future earnings in

the labor market, and ultimately, the distribution of welfare of the children generation, focusing

specifically on the impact of the heterogeneity in the length of school closures by school type and

13As with the children’s tertiary education decision, we assume that additionally parents are hit with Ex-treme Value Type I (Gumbel) distributed taste shocks to smooth this discrete decision problem and turnsthe discrete choice into a choice probability.
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the age of children. Since children in the model differ by age and the type of school they attend

at the time of the shock (as well as in terms of parental characteristics), so will the long-run

impact on educational attainment, future wages, and welfare.

5 Calibration

A subset of parameters is calibrated exogenously not using the model. These first stage pa-

rameters are summarized in Table 6. The second stage parameters are those that are calibrated

endogenously by matching moments in the data and are summarized in Table 7. We next describe

in detail our choice and sources of first stage parameters and the moments we match to calibrate

the second stage parameters.

5.1 Data

In the first stage of calibration we use PSID data to estimate the deterministic age wage profiles

and to construct the initial distribution of parents. Furthermore, we use NSLY79 data to estimate

education-specific human capital gradients of the non-age related wage component. Finally, in

the second stage of the calibration we use the Child Development Supplement (CDS) of the

PSID, surveys I-III, to obtain empirical moments related to the child human capital and parental

investments into children.

PSID. The initial distribution of parents by marital status, education, number of children and

assets is constructed based on the four most recent PSID waves: 2011, 2013, 2015 and 2017.

We use the PSID family files and keep only parents in the sample (i.e., only observations where

children are present in the household). We keep only observations with positive hours and labor

income of the household head. This leaves us with 7591 observations. Labor earnings and wealth

are inflated to 2010 dollars using the CPI . Deterministic age wage profiles are estimated using a

PSID sample from 1967 to 201315 based on observations from both households with and without

children.

NLSY79. We use the NLSY79 dataset provided in the replication files of Abbott et al. (2019).

Following their approach, we approximate adult human capital by the test scores taken from the

Armed Forces Qualification Test AFQT89.

15We thank Chris Busch for helping us with the data.
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Table 6: First Stage Calibration Parameters
Parameter Interpretation Value Source (data/lit)

Population
j = 0 Age at economic birth (age 4) 0
ja Age at beginning of econ life (age 16) 6
jh Age at finishing HS (age 18) 7
jc Age at finishing CL (age 22) 9
jf Fertility Age (age 32) 14
jr Retirement Age (age 66) 31
J Max. Lifetime (age 80) 38
ξ(e,m) Fertility rates see main text PSID 2011-2017
Φ(jf , e,m) Distribution of parents by martial status andeducation, age jf

see main text PSID 2011-2017
Preferences

θ Relative risk aversion parameter 1
ϕ Curvature of labor disutility 0.5

Labor Productivity
{ε(j, e,m)} Age Profile see main text PSID 1968-2012
[εl, εh] Realizations of Transitory Shock [0.881, 1.119] PSID 1968-2012
[ηl, ηh] States of Markov process [0.8226, 1.1774] PSID 1968-2012
πhl Transition probability of Markov process 0.0431 PSID 1968-2012
χe Hours worked for students, as a fraction of fulltime (HS and CL) {0.2, 0.5} see main text
γ(e, h) Ability gradient of earnings see main text NLSY79

Endowments
r (Annual) interest rate 4.0% Siegel (2002)
l(m) Average hours worked by marital status (an-nual) {1868, 3810} PSID 2011-2017
Φ(a|jf , e,m) Asset distr-n of parents by martial status andeducation, age jf

see main text PSID 2011-2017
a(jf , e,m, pa) Borrowing limit for parents at age jf see main text PSID 2011-2017
rp(m = si, e, pa) Education-specific repayment amount for par-ents: singles see section 5.5.4 {0.006, 0.083, 0.151}

rp(m = ma, e, pa) Education-specific repayment amount for par-ents: couples see section 5.5.4 {0.048, 0.129, 0.110}

Ability/Human Capital and Education
f(j < 4, s = pr) Private school tuition (primary) 3294$ PSID CDS I-III
f(j ≥ 4, s = pr) Private school tuition (secondary) 6588$ PSID CDS I-III
ι College tuition costs (annual, net of grants andsubsidies) 14756$ Krueger and Ludwig (2016)
a(j ∈ [jh, jc−1], co, ch) College borrowing limit 45000$ Krueger and Ludwig (2016)
rp(ch) Repayment amount for children who choosecollege 0.049 see section 5.8
σh Elast of subst b/w human capital and CES inv.aggr. 1 Cunha et al. (2010)
σg Elast of subst b/w public inv. and CES aggr. ofprivate inv. 2.43 Kotera and Seshadri (2017)
σm Elast of subst b/w monetary and time inv. 1 Lee and Seshadri (2019)
κm3 CES share parameter of monetary and time inv.(age bin 6-8) 0.5 normalization
κsj = κ̄s, j > 0, s ∈
{pr, pu}

Share of government input for ages 6 and older 0.676 Kotera and Seshadri (2017)
Φ(h(j = 0)|ep, yp, ap) Innate ability dist-n of children by parentalchar-s see main text PSID CDS I
h0 Normalization parameter of initial dist-n of ini-tial ability 0.1248 PSID CDS I-III

Government policy
isj Public pre-college education spending by age 6, 299$ 14 UNESCO (1999-2005)
τc Consumption Tax Rate 5.0% legislation
τ̃k Capital Income Tax Rate 20% legislation
τp Soc Sec Payroll Tax 12.4% legislation
G/Y Government consumption to GDP 13.8% current value

Notes: First stage parameters calibrated exogenously by reference to other studies and data.
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Table 7: Second Stage Calibration Parameters
Parameter Interpretation Value

Preferences
β Time discount rate (target: asset to income ratio, age 25-60) 0.9773
ν Altruism parameter (target: average IVT transfer per child) 0.7755

Labor Productivity
ρ0(e) Normalization parameter (target: E[γ(h | e)] = 1) [0.2965, 0.0497,−0.2514]

Human Capital and Education
κ Utility weight on time inv. (target: average time inv.) 1.1024
ακ

h

0 Slope parameter of ln

(
1−κh(j)

κh(j)

)
(target: average monetary inv.) −0.3988

{ακh

1 ακ
h

2 } Age-dependency of κh (target: slope of time inv.) {0.2465, 0.0020}
ακ

m

1 Age-dependency of κm (target: slope of money inv.) 0.1493
κg0 Share of government input for age bin 4-6 (target: average time inv.age bin 4-6) 0.5554
Bs Productivity parameter for s = pr (target: fraction of group s = pr) 1.5103
Ā Investment scale parameter (target: average HK at age ja) 1.1906
Ã Investment scale parameter for e = hs, j = ja (target: average HKat age ja+1) 1.0657
φ utility costs e = hs (target: fraction of group e = hs) -2.2373
ϑ(s = pr, ep = no) =
ϑ(s = pr, ep = hs)

utility cost shifter s = pr, ep = no ∧ ep = hs (target: conditionalfraction of group s = pr) 0.6588
%̃(ep = no) = %̃(ep =
hs)

utility costs e = co, ep = no ∧ ep = hs (target: fraction of group
e = co) -0.9782

%̃(ep = co) utility costs e = co, ep = co (target: conditional fraction of group
e = co) -1.0493

Government policy
λ Level parameter of HSV tax function (balance gvt budget) 0.8933
ρp Pension replacement rate (balance socsec budget) 0.1893

Notes: Second stage parameters calibrated endogenously by targeting selected data moments.
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PSID CDS. To obtain child related statistics by parental characteristics, we merge the CDS

data files with the PSID family files of the respective waves. As children of married couples, we

consider children for whom both caregivers correspond to the household head and the spouse in

a PSID household,16 and for whom at least one of the caregivers is the biological parent. This

leaves us with 4393 observations (2419 children) for the three waves of the survey. All children

for whom the reported school type is private (354 observations) are classified as going to private

schools—including those for whom parents report zero expenses on schooling fees17. The average

schooling fee used as an exogenous input in the model is computed based on reported average

expenses on schooling fees for children attending private schools. All descriptive statistics are

computed using cross-sectional sample weights provided in the survey.

5.2 Age Brackets

The model is calibrated at a biannual frequency. We initialize the parental economic life-cycle

when their children are of age 4, which is model age j = 0. The reason for this initialization

age is the calibration of the initial human capital endowment h(j = 0), which is informed by

data on test score measures at child biological ages 3 to 5, as described below. Thus, children

are irrelevant to the economic model for the first 3 years of their biological lives. Parental age

at the economic “birth” of children is jf = 14, which we also refer to as “fertility” age. This

corresponds to a biological age of 32, when children are of biological age 4.18 Children make the

higher eduction decision at biological age 16, model age ja = 6. Children who complete high

school stay in school for one additional model period, thus high school is completed at jh = 7.

Children who attend college stay in college for two model periods, thus college is completed

at jc = 9. Retirement is at the exogenous age jr = 31, corresponding to biological age 66.

Households live at most with certainty until age J = 38, biological age 80.

5.3 Prices

We normalize wages to w = 1 and directly parameterize the income process. The interest rate is

set to an annual rate of 4% based on Siegel (2002).

16In case of singles, only the household head is the primary caregiver.17These observations can be either due to misreporting or represent those children who receive full schol-arship.18Thus, children are biologically born at parental age 28.
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5.4 Preferences

The per period subutility function u(x) is of the standard iso-elastic power form

u(x) =
1

1− θ
(
x1−θ − 1

)
.

We set θ = 1 (logarithmic utility), and consequently child and adult equivalence scale parameters

are irrelevant for the problem. In the parental household’s problem, the per period subutility

function v(x) is

v(x) = x1+ 1
ϕ

so that if x = `, parameter ϕ can be interpreted as a Frisch elasticity of labor supply. In our

model of exogenous labor supply this interpretation of course seizes to be relevant, but it provides

us with a direct way of calibrating the power term of the utility function. We set ϕ = 0.5 based

on standard estimates of the Frisch elasticity.

When children live in the parental household, we have x = `(m)+κ·ξ(e,m)·it
1+1m=ma

. `(m) are hours

worked by marital status, which we estimate from the data, giving annual hours of `(si) = 1868

and `(ma) = 3810. The time cost parameter κ is calibrated to match average time investments

by parents into the education of children, giving κ = 1.10 (with further details described below

as part of the calibration of the human capital technology).

When children attend high school or college, they experience utility costs for e ∈ {hs, co}
according to the cost function

p(s, e, ep;h) = φ(1 + %(ep)1j∈[jh,jc−1]1e=co) +
1

h
− ϑ(s, ep)

Utility costs of obtaining a high-school degree are equal to φ + 1
h
− ϑ(s, ep) and are thus

monotonically decreasing and convex in the acquired human capital h and are shifted down

by the school specific term ϑ(s, ep), which reflects private benefits from private school atten-

dance. Utility costs for obtaining a college degree depend on parental education and are equal

to, %̃(ep) + 1
h
≡ φ(1 + %(ep)) + 1

h
.

We normalize the benefit parameter of attending a private school to zero for parents with a

college degree, ϑ(s = pr, ep = co) = 0, and further restrict ϑ(s = pr, ep = no) = ϑ(s = pr, ep =

hs) which we calibrate to match the conditional share of children in private school for both parental

education groups of 9.71%. This gives ϑ(s = pr, ep = no) = ϑ(s = pr, ep = hs) = 0.66. The

remaining parameters of the cost function are calibrated to match education shares in the data for

the three groups e ∈ {no, hs, co}. We measure these shares for adults older than age 22—which
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is the labor market entry age of all education groups in the model—and younger than age 38

based on the PSID waves 2011, 2013, 2015 and 2017.19 Parameter φ is calibrated to match the

fraction of children without a high school degree of 12.16%, giving φ = −2.24. With regard to

the additional utility costs during the college period we restrict %̃(no) = %̃(hs) and calibrate it to

match the fraction of children with a college degree of 33.21% giving %̃(no) = %̃(hs) = −0.98.

Finally, parameter %̃(ep = co) is calibrated to match the fraction of children in college conditional

on parents having a college degree of 63.3%, cf. Krueger and Ludwig (2016), giving %̃(co) =

−1.05.

Households discount utility at rate β. We follow Busch and Ludwig (2020) and calibrate it to

match the assets to income ratio in the PSID for ages 25 to 60 giving an annual discount factor

of β = 0.98.

Utility of future generations is additionally discounted at rate ν. Parameter ν is chosen so

that average per child inter-vivos transfer is ca. 61,200$, as implied by the Rosters and Transfers

supplement to the PSID (based on monetary transfers from parents to children until age 26, see

Daruich (2020)). This gives ν = 0.78.

5.5 Initial Distribution of Parents

For the initial distributions of parents at the fertility age, we restrict the sample to parents aged

25-35, leaving us with 3,024 observations.20

5.5.1 Marital Status

Marital status is measured by the legal status of parents. This gives a share of singles of 51.7%

and a share of married households of 48.3%.

5.5.2 Education Categories

We group the data by years of education of household heads older than age 22. Less than high

school, e = no, is for less than 12 years of formal education. High school completion (but no

college) is for more than 12 but less than 16 years of education. College is at least 16 years of

education. The population shares of parents in the three education categories by their marital

status are summarized in Table 8.21
19Observe that we do not impose that children have the same education shares as parents.20For education, which is not changing much with age, we keep parents aged 22 or above.21The educational distribution is consistent with many other studies based on the PSID, cf., e.g., Heathcoteet al. (2010).
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Table 8: Fraction of Households by Education for each Marital Status

Education e/Marital Status m si ma
no 0.2194 0.1621
hs 0.6064 0.5577
co 0.1742 0.2802

Notes: Fraction with education e ∈ {no, hs, co} by marital status.

5.5.3 Demographics

The number of children by marital status and education of parents ξ(e,m) is computed as the

average number of children living in households with household heads aged 25-35. It is summarized

in Table 9.

Table 9: Number of Children by Marital Status and Education

Education e/Marital Status m si ma
no 2.36 2.33
hs 1.86 2.15
co 1.77 1.96

Notes: Number of children by marital status and education.

5.5.4 Assets

Conditional on the initial distribution of parents by marital status and education, we measure

the distribution of assets according to asset quintiles, which gives the initial distribution Φ(a |
jf , e,m). We set the borrowing constraint of parents as follows. First, we calculate average assets

(debt) of the lowest asset quintile at age jf from the data and set it equal to a(jf , e,m, pa),

the initial debt of parents in the lowest asset quintile in the model. The result is summarized in

Table 10.

For all ages j > jf we then compute the borrowing limit recursively as:

a(j, e,m, pa) = a(j − 1, e,m, pa)(1 + r)− rp(e,m, pa) (12)
where rp(e,m, pa) is chosen such that the terminal condition a(jr, e,m, pa) = 0 is met.
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Table 10: Lower Asset Limit by Marital Status and Education

Education e |Marital Status m si ma
no -2,380 -18,931
hs -33,065 -51,332
co -60,037 -43,629

Notes: Lower asset limit for parents at model age jf , by marital status and education, expressed in 2010
dollars.
5.5.5 Income

We draw initial income shocks assuming independence of the asset position according to the

stationary invariant distribution of the 2-state Markov process, thus Π(ηh) = 0.5.

5.6 Productivity

We use PSID data to regress by education of the household head log wages measured at the

household level on a cubic in age of the household head, time dummies, family size, a dummy for

marital status, and person fixed effects. Predicting the age polynomial (and shifting it by marital

status) gives our estimates of ε(e,m, j). We next compute log residuals and estimate moments

of the earnings process by GMM and pool those across education categories and marital status.22
We assume a standard process of the log residuals according to a permanent and transitory shock

specification, i.e., we decompose log residual wages ln (yt) as

ln (yt) = ln (zt) + ln (εt)

ln (zt) = ρ ln (zt−1) + ln (νt)

where εt ∼i.i.d Dε(0, σ2
ε), νt ∼i.i.d Dν(0, σ2

ν) for density functions D, and estimate this process

pooled across education and marital status. To approximate the persistent component in our

model, we translate it into a 2-state Markov process targeting the conditional variance of zt, con-

ditional on zt−2, (1 +ρ2)σ2
ν (accounting for the two year frequency of the model). The transitory

component is in turn approximated in the model by two realizations with equal probability with

the spread chosen to match the respective variance σ2
ε . The estimates and the moments of the

approximation are reported in Table 11.

We set the fraction of time working during high school to χ(hs) = 0.2, which can be

interpreted as a maximum time of work of one day of a regular work week. In college, students

may work for longer hours and we accordingly set χ(co) = 0.5.

22We thank Zhao Jin for sharing her code with us.
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Table 11: Stochastic Wage Process

Estimates Markov Chain Transitory ShockParameter ρ σ2
ν σ2

ε πhh = πll [ηl, ηh] [εl, εh]Estimate 0.9559 0.0168 0.0566 0.9569 [0.8226, 1.1774] [0.881, 1.119]

Notes: Estimated moments of residual log wage process.

The mapping of acquired human capital into earnings according to γ(e, h) is based on Abbott

et al. (2019). We use their data—the NLSY79, which includes both wages and test scores z

of the Armed Forces Qualification Test (AFQT)—to measure residual wages ω(e) of education

group e (after controlling for an education specific age polynomial) and run the regression

ln (ω(e)) = ρ1(e) · ln
(z
z̄

)
+ υ(e),

where υ(e) is an education group specific error term and z̄ are average test scores. We denote

the education group specific coefficient estimate by ρ̂1(e), see Table 12. The estimated ability

gradient is increasing in education reflecting complementarity between ability and education. In

the model, we correspondingly let

ln (γ(e, h)) = ρ0(e) + ρ̂1(e) · ln
(
h

h̄

)
,

where h̄ is average acquired human capital at j = ja (biological age 16) and ρ0(e) is an education

group e specific normalization parameter, chosen such that E [γ(h | e)] = 1 for all e. The

normalization—which gives ρ0(e) = 0.30, 0.05,−0.25, for e ∈ {no, hs, co}, respectively—implies

that the average education premia are all reflected in ε(e, j,ma), which in turn are directly

estimated on PSID data.

Table 12: Ability Gradient by Education Level

Education Level Ability GradientHS- 0.351 (0.0407)(HS & CL-) 0.564 (0.0233)(CL & CL+) 0.793 (0.0731)
Notes: Estimated ability gradient ρ̂1(e), using NLSY79 as provided in replication files for Abbott et al. (2019).
Standard errors in parentheses.
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5.7 Human Capital Production Function

At birth at age j = 0, the innate ability (initial human capital) h = h0 of children is determined,

conditional on the distribution of parents by parental characteristics ep,mp, by the function

h0(ep,mp). We calibrate the distribution from the Letter Word test score distribution in the PSID

Child Development Supplement (CDS) surveys I-III, and match it to parental characteristics by

merging the survey waves with the PSID. Table 13 reports the joint distribution of average test

scores of the children by parental education and marital status. We use this test score distribution

as a proxy for the initial human capital distribution of children conditional on parental education

and marital status.23 We base the calibration of the initial ability distribution of children on this

data by drawing six different types of children depending on the combination of marital status

(2) and parental education (3). Children’s initial human capital is normalized as the test score

of that mp, ep-group relative to the average test score. We further scale the resulting number by

the calibration parameter h̄0 and, thus, initial human capital of the children is a multiple of h̄0.

Parameter h̄0 is calibrated exogenously to match the ratio of mean test scores at ages 3-5 to mean

test scores at ages 16-17, which gives h̄0 = 0.125. Initial abilities relative to average abilities and

the corresponding multiples of h̄0 for the six types are contained in Table 13.

Table 13: Initial Ability by Parental Education

Marital Status and Educ of HH Head Avg. Score Fraction of h̄0Single Low 35 0.843Single Medium 38 0.906Single High 46 1.107Married Low 39 0.945Married Medium 41 0.984Married High 45 1.085
Notes: Estimated initial ability of children as measured by the letter word test in the Child Development
Supplement Surveys 1-3 (years 1997, 2002, 2007) of the PSID.

At ages j0, . . . , ja − 1 children receive parents’ education investments through money and

time im(j), it(j) and school input is(j). Education investments of the respective education

institution s ∈ {pu, pr} are certain, known by parents, and equal across children. In the baseline

pre-Covid-19 scenario we normalize the education input in both institutions to 1 unit of time,

thus is(j) = 1 for both s and all j. In private school one unit of time leads to a higher

productivity than in public schools which is reflected in a productivity parameter Bs. Specifically,

23Importantly, by correlating the test score distribution with these parental characteristics, we do notpose a causal link between parental education and children’s characteristics. The test scores just give us aconvenient way to proxy the initial joint distribution.
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we normalize Bs = 1, for s = pu and calibrate Bs > 1, for s = pr endogenously to match the

average fraction of parents with children in private schools of 11.24% observed in the data. This

gives Bs = 1.51 for s = pr. Given these inputs, human capital is acquired in a multi-layer human

capital production function

h′(j) =
(
κh(j)h1− 1

σh + (1− κh(j))i(j, s)1− 1

σh

) 1

1− 1
σh (13a)

i(j, s) = Ā

(
κs(j) (1j≥jeB

sis(j))1− 1
σs + (1− κs(j))

(
ip(j)

īp

)1− 1
σe

) 1

1− 1
σs (13b)

ip(j) =

(
κm(j)

(
im(j)

īm,d

)1− 1
σm

+ (1− κm(j))

(
it(j)

īt,d

)1− 1
σm

) 1

1− 1
σm

, (13c)

which partially features age dependent parameters for calibration purposes. We divide the endoge-

nous age dependent per child monetary and time investments by the parents im(j), it(j), as well

as the CES aggregate of these (normalized) investments, ip(j), by their respective unconditional

means through which we achieve unit independence.

The outermost nest (first nest) augments human capital and total investments according to a

CES aggregate with age-specific parameter κh(j) and age-independent substitution elasticity σh.

We set σh = 1,24 and calibrate κh(j) to match (per child) time investments by age of the child.

We model age dependency as

ln

(
1− κh(j)
κh(j)

)
= ακ

h

0 + ακ
h

1 · j + ακ
h

1 · j2 (14)

and determine ακ
h

1 , ακ
h

2 by an indirect inference approach such that the age pattern of log per

child time investments in the data equals the pattern in the model for biological ages 6 to 14

of the child. Recall that we in turn match the average level of time investments at biological

ages 6 to 14 by calibrating the utility cost parameter κ. Time investments at biological age 4 are

matched differently, with details described below. The intercept term ακ
h

0 is calibrated to match

average monetary investments. Consistent with Cunha et al. (2010), we find that the weight on

acquired human capital at age j is increasing in j, so that investments become less important

in the course of the life-cycle. While our model is not directly comparable to their empirical

analysis,25 also the magnitude of κh(j) is similar.

In the second nest, we restrict κs(j) = κ̄s=pu = κ̄s=pr = κ̄s for j > 0 and calibrate it

exogenously according to the estimates for the US by Kotera and Seshadri (2017)—who estimate

24That is approximately the mean value of the parameter for young and old children in Cunha et al. (2010)25Total Investments in our model in the first nest include government investments from the second nest,and we do not distinguish explicitly between cognitive and non-cognitive skills.
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the parameters of a CES nesting of private and public education investments similar to ours—

giving κ̄s = 0.676.

At biological age 4 of the child, children are still in kindergarten. To take into account this

structural break in the process of education according to the institutional setting, we separately

calibrate κe0 to match the average time investments by parents into their children at biological

age 4 of the child. This gives κe0 = 0.56.

We restrict the substitution elasticity σs to be the same for private and public schools,

σs=pu = σs=pr and calibrate it with reference to Kotera and Seshadri (2017) who estimate

an elasticity of substitution between private and government investment of σs = 2.43. Thus,

parental investments ip(j) and government investments is=pu(j) are gross substitutes but substi-

tution across these education inputs is far from perfect.

Ā is a computational normalization parameter which we choose such that average acquired

human capital is equal to 1, sufficiently below the maximum human capital gridpoint, giving Ā =

1.19.

The third nest augments the endogenous age specific per child monetary and time investments.

As in Lee and Seshadri (2019) we restrict σm = 1. The age dependency of κm(j) is specified as

ln

(
1− κm(j)

κm(j)

)
= ακ

m

0 + ακ
m

1 · j.

We calibrate ακ
m

0 to achieve the normalization κm(3) = 0.5, and ακ
m

1 is calibrated to match the

monetary investment profile, which is relatively flat in the data.

At age ja the human capital process is extended to the high school period (i.e., for all children

with education e = hs and e = co). Time and monetary investments by parents in this phase of

the life-cycle are zero, because children have already left the parental household and the human

capital production function at j = ja, e ∈ {hs, co} is

h′(j) = Ã

(
κh(6)h1− 1

σh + (1− κh(6))

(
ig

īg

)1− 1

σh

) 1

1− 1
σh

. (15)

We compute κh(6) as a predicted value from the above described regression in (14) and calibrate

the additional scaling parameter Ã such that the ratio of average human capital at j = 6

(biological age 16) to average human capital at age j = 5 is equal to the ratio of test scores of

ages 16− 17 to age 14− 15 of 1.07. This gives Ã = 1.07.
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The production function in (15) is an approximation as it ignores parental inputs entirely,26
reflecting that parental inputs may not be that effective at that age. The specification also

ignores that children may invest into the human capital formation themselves, which may be of

particular relevance for our main experiment of school closures. We thus regard our model of

biological age 16 children as a crude approximation and will accordingly not put a key emphasis

on those children when discussing our results. However, it is important for parental decisions at

younger child ages that parents do foresee that the human capital process for age 16 children

continues when children have left the household, which is our main motivation for extending the

human capital accumulation process beyond that age.

5.8 College Tuition Costs & Borrowing Constraint of Children

We base the calibration of college tuition costs and borrowing constraints for college youngsters

on Krueger and Ludwig (2016). The net price ι (tuition, fees, room and board net of grants and

education subsidies) for one year of college in constant 2005 dollars is 13,213$. In 2008 dollars,

the maximum amount of publicly provided students loans per year is given by 11, 250$, which is

the children’s borrowing limit in the model for e = co and j ∈ [jh, jc− 1]. For all ages j ≥ jc we

let

a(j, co, ch) = a(j − 1, co, ch)(1 + r)− rp(ch)

and compute rp such that the terminal condition a(jr, co, ch) = 0 is met.

5.9 Government

The government side features the budget of the general tax and transfer system and a separate

budget of the pension system. In the general budget the revenue side is represented by consump-

tion, capital income and labor income taxes. The consumption tax rate is set to τc = 5% based

on Mendoza et al. (1994), and the capital income tax rate to τk = 20%, which is the current

statutory capital income tax rate on long-term capital gains (assets held longer than a year) for

households in the highest income tax bracket.

The labor income tax code is approximated by the following two-parameter function, as in,

e.g., Benabou (2002) and Heathcote et al. (2017):

T (y) = y − λy1−τ ,

26It would not be possible in our setup to model parental inputs at that age because children have alreadyleft the household.
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where τ is the progressivity parameter and λ determines the average tax rate. We set τ = 0.18

as suggested by estimates of Heathcote et al. (2017) and calibrate λ endogenously to close the

government budget, giving λ = 0.89.

Exogenous government spending (net of spending on education) is set to G/Y% = 13.8%.

In addition, the government spends on schooling for children and pays the college subsidy for

college students. The former we approximate as 5000$ per pupil based on UNESCO (1999-2005)

data, as for example in Holter (2015). The latter is set to 38.8% of average gross tuition costs, as

in Krueger and Ludwig (2016). Assuming, as in Krueger and Ludwig (2016), that the difference

between net and gross tuition costs is due to both a public and a private subsidy with the latter

not being explicitly modelled in our setup27 gives an average public subsidy of $6, 119 per student.

As for the pension system, the payroll tax τ p is set to the current legislative level of 12.4%

and the pension benefit level relating average pension benefits to average net wages is endoge-

nously chosen such that the benefits of the parent generation equal their contributions, giving a

replacement benefit level of ρp = 0.19.

5.10 Calibrating the School Closures Experiments

The calibration of the length of school closures is based on Table 2 which shows the effective

schooling time, as percent of the total available time in the two year interval starting from March

2020, for different groups of students and under different assumptions on the effectiveness of

online learning format. The crucial model input is the fraction of instructional time lost due

to Covid-19 school closures, which is simply given by 1 minus the respective entry in Table

2. Our benchmark results are derived under the assumption that online schooling formats do

not contribute to human capital accumulation, i.e., the first panel of Table 2. We relax that

assumption in our sensitivity analysis of Section 8 by assuming a 50% effectiveness of online

formats (third panel of Table 2).

6 Results

In this section we document the positive and normative consequences from the differential school

closures documented in the empirical part of the paper assuming zero effectiveness of online

formats.

27The private subsidy is set to 16.6% of average gross tuition costs as in Krueger and Ludwig (2016).
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6.1 Young and Old Children

In Table 14 we display the impact of the differential school closures on tertiary education attain-

ment, human capital, the present discounted value of future earnings and welfare, broken down

by the age of the child. Holding the length of school closures constant, younger children are

more adversely affected from the Covid-19 school crisis than older children; as we explained in

Fuchs-Schündeln et al. (2021), this is a direct consequence of the self-productivity and dynamic

complementarity in the production of human capital. However, as we saw from the empirical

section, secondary schools were closed for significantly longer than primary schools. As a con-

sequence of these two competing factors, it is the youngest secondary school children that are

most severely affected by the Covid-19 school closures.

Table 14: Aggregate Outcomes for Main Experiments

baseline Change for Children of Biological Ageaverage 4 6 8 10 12 14
change in %pshare s = no 12.16% 1.55 1.10 2.22 1.77 1.79 1.38 1.06share s = hs 54.60% 0.36 0.24 -0.23 0.22 0.54 0.67 0.69share s = co 33.24% -1.91 -1.34 -1.99 -1.99 -2.33 -2.05 -1.76change in %av HK 1.00 -2.77 -2.12 -3.19 -2.86 -3.26 -2.81 -2.38PDV gross earn $845,149 -1.73 -1.32 -1.97 -1.79 -2.05 -1.77 -1.50PDV net earn $695,548 -1.39 -1.05 -1.59 -1.44 -1.64 -1.41 -1.19child CEV - -0.99% -0.77% -1.14% -1.02% -1.17% -1.01% -0.86%

Notes: share s ∈ {no, hs, co}: education share in respective education category s = no: less than highschool, s = hs: high school, s = co: college; av HK: average acquired human capital at age 16; PDV grossearn: present discounted value of gross earnings assuming labor market entry at age 22 and retirementat age 66; PDV net earn: present discounted value of net earnings; CEV: consumption equivalent variation.Columns for biological ages 4-14 show the respective percentage point changes of education shares, thepercent changes of acquired human capital and average earnings, and the CEV expressed as a percentchange, for children of the respective age at the time of the school closures. Column “average” gives therespective average response. The CEV is the consumption equivalent variation welfare measure.

6.2 Public vs. Private Schools

According to our empirical estimates, private schools were closed significantly shorter than public

school. We now quantify the impact of these differences in Tables 15, 16 and 17 which display

the differential impact, by school type, of the Covid-19 crisis on human capital, lifetime earnings

and welfare (measured in consumption-equivalent variation).
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Table 15: Acquired Human Capital by School Type

baseline %-Change for Children of Biological Ageaverage 4 6 8 10 12 14public 0.96 -2.87 -2.22 -3.30 -2.92 -3.39 -2.93 -2.48private 1.29 -2.17 -1.50 -2.58 -2.52 -2.49 -2.13 -1.80

First we note that children attending private schools would have higher human capital and

lifetime earnings in the absence of the Covid-19 shock, see the second columns of Tables 15 and

16. This is due to the fact that children attending private schools tend to come from affluent

parents with higher education that on average invest more into their children (which also tend to

have higher initial human capital); this selection effect is compounded by the higher productivity

of private schools in the human capital production function.

Table 16: Average gross lifetime earnings by school type

baseline %-Change for Children of Biological Ageaverage 4 6 8 10 12 14public 821,404 -1.77 -1.37 -2.01 -1.79 -2.09 -1.82 -1.54private 1,034,791 -1.49 -0.99 -1.72 -1.78 -1.75 -1.48 -1.24

As Table 15 shows, the longer school closings of public schools lead to larger human capital

losses from the Covid-19 crisis among its pupils (−2.87 vs. −2.17), which translates into larger

declines in lifetime earnings (both directly and indirectly though the larger impact on high school

and college attendance rates). As Table 16 shows, the net present value of gross lifetime earnings

falls by −1.77% among children attending public schools, but only −1.49% for those in private

school. This translates into differential welfare losses for the two groups of −1.04% and −0.64%,

respectively, as Table 17 shows.

Table 17: Child CEV by school type

average 4 6 8 10 12 14public -1.04% -0.81% -1.19% -1.05% -1.22% -1.06% -0.90%private -0.64% -0.43% -0.75% -0.71% -0.73% -0.64% -0.55%
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6.3 Income-Rich vs. Income Poor Households

One of the most intriguing and perhaps surprising empirical findings was that children in income-

poorer regions (counties) saw their schools closed for shorter periods than their brethren in more

affluent places. We now quantify the differential welfare impact of these observations using our

structural model.

Table 18: Child CEV: Bottom, Top Parental Income Quartile, Homogeneous Schooling In-puts

average 4 6 8 10 12 14bottom -1.30% -1.09% -1.49% -1.31% -1.51% -1.30% -1.10%top -0.53% -0.33% -0.59% -0.54% -0.63% -0.57% -0.52%

Comparing children from the top- to children from the bottom quartile of the income distri-

bution, welfare losses are 0.77 percentage points larger for the poorer children if school closures

were unrelated to income (−1.30% compared to −0.53%), see Table 18. Accounting for the

longer school closures in richer counties reduces this gap to 0.54 percentage points (−1.11%

compared to −0.57%), as documented in Table 19. Therefore, although poorer children are still

more severely affected by the pandemic, this force reduces the gap by about 1/3 (0.54 versus

0.77 percentage points).

Table 19: Child CEV: Bottom, Top Parental Income Quartile, Heterogeneous Schooling In-puts

average 4 6 8 10 12 14bottom -1.11% -0.93% -1.29% -1.13% -1.27% -1.10% -0.93%top -0.57% -0.35% -0.61% -0.57% -0.69% -0.63% -0.58%

7 Counterfactual Policy Analysis

In this section we conduct counterfactual policy experiments. Specifically, we evaluate the conse-

quences of keeping the schools open for an additional 3 months in the two year period following

the Covid-19 pandemic; this corresponds to one full summer or two half summers of additional

schooling starting in 2022.
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7.1 Fiscal Consequences of the Covid-19 Induced Human Capital Losses

To give this thought experiment some context, in Table 20 we report the consequences for

tax revenues from the school closures reported in the previous subsection. It is clear that, on

account of the massive decline in future labor income taxes, the fiscal situation of the government

deteriorates significantly. Overall, tax revenues fall by almost 2.5% relative to pre-Covid-19 times.

Table 20: Change of Present Discounted Value of Tax Revenues [in %]

Revenue source All Lab. Inc. Cap. Inc. Cons.-2.44 -7.10 0.23 -0.95
Notes: The table shows the change in the present discounted value of tax revenue (in %). Revenue source:All: sum of all tax sources; lab.: from labor income taxes; cap.: from capital income taxes; cons.: fromconsumption taxes.

7.2 National Schooling Expansion

This raises the question whether keeping schools open in the summer to partially compensate

for the human capital losses is a positive net present value proposition. Table 21 shows that,

on average across households, the net present value of the future labor income gain from the

intervention net of the cost of the schooling extension is positive at $1, 018. Alternatively put,

for each of the $1, 396 spent on each child, the present discounted value of that child’s lifetime

earning increases by $1.73, for a total gain of $2, 414. As Table 22 shows, the welfare gain for the

average child from this intervention amounts to 0.21% of lifetime consumption. In other words,

a national 3 months schooling expansion compensates for more than 1/5 of the welfare losses of

children induced by the Covid-19 shock.28

Table 21: NPV of Intervention for the Household Sector

baseline Abs Change for Children of Biological Ageaverage 4 6 8 10 12 14NPV household (in $) 0.00 1,018 1,487 1,347 1,170 948 726 428

28Note that if the goal of the government would be to fully offset the welfare losses that affected childrenincur as a result of school closures then the public schooling input during the 2 years following the lockdownof schools would have to be increased by ca. 67%, taking into account the crowding-out of parental invest-ments as well as the fact that the human capital production function exhibits self-productivity and dynamiccomplementarity, and thus the Covid-19 schooling losses make future investments into human capital lessproductive.
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Table 22: (Net) Child CEV: Intervention

average 4 6 8 10 12 14(Net) CEV children: Intervention 0.21% 0.29% 0.26% 0.22% 0.19% 0.16% 0.14%

The government, though the tax system, of course only captures a part of the increase in

the net present value of earnings. As Table 23 shows, the reform turns out to be approximately

self-financing in net present value terms and, therefore, there is no impact of the reform on the

government budget.

Table 23: NPV of Intervention: Government

baseline Abs Change for Children of Biological Ageaverage 4 6 8 10 12 14NPV government 0.00 -0.00 0.16 0.11 0.05 -0.04 -0.13 -0.15

Table 24 shows the drop in the present discounted value of tax revenues following the after-

Covid schooling expansion. Recall from Table 20 that the Covid shock reduces future tax revenue

by 2.4%. This loss is reduced to 1.9% by the schooling intervention, as Table 24 demonstrates.

Thus, even though this policy reform approximately pays for itself (given the assumptions on the

cost of the schooling expansion), it is insufficient to raise tax revenues to pre-Covid levels. Larger,

longer lasting schooling interventions would be necessary to achieve that objective.

Table 24: Change of Present Discounted Value of Tax Revenues: Covid Shock and Post-Covid Schooling Expansion [in %]

Revenue source All Lab. Inc. Cap. Inc. Cons.-1.94 -5.72 0.22 -0.75
Notes: The table shows the change in the present discounted value of tax revenue (in %). Revenue source:All: sum of all tax sources; lab.: from labor income taxes; cap.: from capital income taxes; cons.: fromconsumption taxes.

7.3 Schooling Expansion for Selected Subgroups of the Population

Next, we consider the question which groups to prioritize, in terms of additional schooling. We

consider the two income groups of parents studied in Section 6.3 and ask which group of children
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to prioritize if scarcity of school buildings, availability of teachers or other constraints makes an

expansion of school for the entire children population infeasible, or too large a program from

a fiscal perspective. The answer to this question is not obvious: on one hand, children from

poorer families accumulate less human capital and have lower lifetime utilities to start with even

without the Covid-19 school closures, and sustain larger welfare losses than income-rich children,

although the shorter school closures (relative to those of income richer children) mitigate this gap

somewhat, see Section 6.3. This suggests that poorer children would reap larger benefits from

the additional schooling, an argument that underlies most policy proposals for selective school

expansions in the U.S. On the other hand, precisely because children from income-richer families

accumulate more human capital and have a higher propensity to go to college pre-Covid-19, they

tend to have higher earnings and pay more taxes. Therefore, from a fiscal perspective it might

be this group whose Covid-19-induced loss of human capital an expansion of schooling should

tackle.

Table 25: NET Child CEV: Bottom and Top Parental Income Quartile, HeterogeneousSchooling Inputs

average 4 6 8 10 12 14bottom 0.28% 0.41% 0.36% 0.31% 0.26% 0.22% 0.14%top 0.09% 0.08% 0.10% 0.09% 0.08% 0.07% 0.13%

Tables 25 and 26 show the results, and indeed confirm that implementing a school summer

program in the next two summers has a significantly positive welfare impact on children, and that

these welfare gains are especially large for younger children from poorer parental backgrounds. As

a potentially desirable side effect, earnings and welfare inequality would fall under such a selective

school expansion policy.

On the other hand, the budgetary consequences of such a school expansion are much more

favorable if focused on children from more affluent social backgrounds. Table 26, which displays

the per-child29 fiscal consequences from the school expansion shows that the typical child from

a poor parental background pays an additional $1, 396 − $146 = $1, 250 of taxes due to higher

human capital induced by the schooling reform, whereas for an affluent child the same number

is $1, 470. Therefore a government exclusively concerned about the fiscal impact of the reform

29Even though the top and bottom quartile of the parental income distribution has the same numberof parents and the school expansion costs the same per child by assumption, the total size of the programdiffers slightly if bestowed upon the poor and the rich children, since income poorer parents have on averageslightly more children.
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would select the top-, rather than the bottom quarter of the parental income distribution as the

target for the reform.

Table 26: NPV Government (in $): Bottom and Top Parental Income Quartile, Heteroge-neous Schooling Inputs

average 4 6 8 10 12 14bottom -147 129 42 -50 -155 -273 -574top 74 196 192 84 -48 -177 200

8 Sensitivity Analysis

In this section we document the sensitivity of our results with respect to the effectiveness of virtual

learning formats. Thus far we had assumed that students learning online do not accumulate any

human capital. This assumption can reflect the low productivity of online learning, the missing

IT infrastructure at home even when online learning is offered and in principle effective, or the

adverse effects of being on electronic devices constantly that negate any positive human capital

accumulation. We now display selected results under the assumption that online learning format

are partially effective in imparting human capital on students.

8.1 Consequences of Smaller Effective School Closures

In Table 2 of Section 3 we summarized effective schooling times during the 2020-2021 period.

The baseline results thus far were derived under the results in the first panel; now we use the

numbers from the third panel, which assume a 50% effectiveness of online formats. Qualitatively,

under this assumption school closures are shorter, and the dispersion in school closures by school

types (public vs. private and primary vs. secondary) and county income is smaller. To give

one summary measure, if virtual learning is completely ineffective, the loss in schooling input

(averaged over all school types) was 40.8% over a two year period, and with 50% effectiveness

this number is roughly cut in half, to 20.6% (compare the first entries in the first and third panel

of Table 2, respectively).

Table 27 displays the consequences for educational attainment, human capital, the present

discounted value of earnings and welfare measured in terms of consumption-equivalent variation.

Compared to the benchmark results in Table 14 we see that all qualitative results from Section

6 remain fully intact, but its magnitudes become smaller, which is to be expected because the
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effective size of the negative schooling shock is roughly cut in half. Interestingly, the reduction in

the negative impact on human capital, earnings and welfare is less than half its previous magnitude.

In our model, where future human capital accumulation depends positively on current human

capital (due to self-productivity and dynamic complementarity in the human capital production

function), the costs of school closures are strictly convex in its length. The results in Table 27

exactly display this feature.

Table 27: Aggregate Outcomes for Main Experiments: 50% Effectiveness of Virtual Learn-ing

baseline Change for Children of Biological Ageaverage 4 6 8 10 12 14
change in %pshare s = no 12.16% 0.70 0.45 1.03 0.82 0.81 0.62 0.48share s = hs 54.60% 0.18 0.20 -0.12 0.11 0.25 0.31 0.32share s = co 33.24% -0.88 -0.65 -0.92 -0.93 -1.06 -0.93 -0.80change in %av HK 1.00 -1.28 -0.98 -1.49 -1.34 -1.49 -1.28 -1.08PDV gross earn $845,149 -0.80 -0.61 -0.92 -0.84 -0.93 -0.81 -0.68PDV net earn $695,548 -0.64 -0.48 -0.74 -0.67 -0.75 -0.64 -0.54child CEV - -0.46% -0.35% -0.53% -0.47% -0.53% -0.46% -0.39%

The same observation applies to the differences in lifetime earnings and welfare across children

attending public versus private schools. Table 2 of Section 3 shows that if online educational

formats are somewhat effective substitutes for in-person learning, then the gap across these school

types in the effective length if school closures shrinks, and so do the differences in the earnings

and welfare losses between its graduates, as can be gauged by comparing Tables 28 and 29 with

their counterparts, Tables 16 and 17 from Section 6.

Table 28: Average gross lifetime earnings by school type

baseline %-Change for Children of Biological Ageaverage 4 6 8 10 12 14public 821403.99 -0.81 -0.63 -0.94 -0.84 -0.95 -0.82 -0.70private 1034790.88 -0.70 -0.47 -0.78 -0.84 -0.82 -0.69 -0.58

Finally, Table 30 shows welfare losses of children whose parents are in the bottom and the top

quartile of the income distribution, respectively. Compared to Table 19 from Section 6, under the
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Table 29: Child CEV by school type

average 4 6 8 10 12 14public -0.48% -0.37% -0.56% -0.49% -0.56% -0.48% -0.41%private -0.30% -0.21% -0.35% -0.34% -0.34% -0.30% -0.26%

assumption of 50% effectiveness of virtual learning the magnitude of welfare losses is smaller for

both groups and the difference between the two groups shrinks as well (as does the share of the

gap under homogeneous school closure lengths that is being closed due to low-income regions

experiencing shorter school closures).

Table 30: Child CEV: Bottom, Top Parental Income Quartile, Heterogeneous Schooling In-puts

average 4 6 8 10 12 14bottom -0.51% -0.42% -0.61% -0.54% -0.59% -0.51% -0.43%top -0.26% -0.16% -0.28% -0.27% -0.31% -0.28% -0.26%

8.2 School Time Extensions

Perhaps most importantly, how do shorter and less dispersed effective school closures impact

the positive and normative implications of government schooling interventions from Section 7?

Table 31 summarizes the welfare consequences from the reform (measured again in terms of

consumption equivalent variation), and Tables 32 and 33 show the fiscal consequences for private

households and the government, respectively.

Table 31: (Net) Child CEV: Intervention

average 4 6 8 10 12 14(Net) CEV children: Intervention 0.21% 0.30% 0.26% 0.23% 0.19% 0.16% 0.15%

Compared to the benchmark results, with lower schooling losses the impact of additional

schooling in the summer on the present discounted value of household earnings and tax revenues

is somewhat larger (so that the intervention now generates net revenue for the government,

although its magnitude is relatively small at $26 per capita). The welfare gains for children from
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Table 32: NPV of Intervention for the Household Sector

baseline Abs Change for Children of Biological Ageaverage 4 6 8 10 12 14NPV Household 0.00 1057.74 1517.21 1391.98 1212.46 998.63 766.41 459.74

Table 33: NPV of Intervention: Government

baseline Abs Change for Children of Biological Ageaverage 4 6 8 10 12 14NPV Government 0.00 25.55 248.21 179.62 90.20 -23.42 -150.53 -190.75

the intervention are also marginally larger, but by and large the quantitative consequences of the

schooling expansion are robust to starting with shorter school closures than in the benchmark.

9 Conclusion

In this paper we have documented, using Safegraph cell phone data, that the Covid-19 crisis

led to lengthy school closures that are substantially heterogeneous across school types (primary

vs. secondary schools and public vs. private schools). Using a structural life cycle model with

private and public school choice and parental time and resource investment into their children

and empirically informing it with the school closure data we estimate the human capital- and

welfare losses of different characteristics. We then use the model to evaluate the fiscal and

welfare consequences of recent policy proposals that will extend instructional time in the next

two summers by three months total to partially compensate for these losses. Such a policy

reform raises welfare of children and approximately pays for itself by generating higher future

labor income- and consumption taxes.

We fully acknowledge that the results in this paper should not be interpreted as a fully cost-

benefit analysis of school closures. Such an analysis would have to model the potential short-run

health benefits, in the form of reduced Covid-19 transmissions in schools, that motivated school

closures in the first place. Integrating our framework into a standard EPI-Econ model of the

Covid-19 crisis (of the form discussed in the literature section of this paper) is therefore a natural

next step for future research, in our view.
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A Dynamic Programs of the Model

A.1 Children Generation

A.1.1 Retirement Phase

In retirement, households of both generations solve the following completely standard recursive

consumption-saving problem of the form:

V (j, e, si, η; a, h) = max
c,a′≥0

{u (c) + βV (j + 1, e, si, η; a′, h)}

subject to

c(1 + τ c) + a′ = a(1 + r(1− τ k)) + y − T (y)

y = pen(e, si, ηjr−1, h)

η = ηjr−1

where u(.) is a standard period utility function that is strictly increasing, strictly concave and twice

differentiable. Here, pen(e,m, ηjr−1, h) is pension income, whose dependence on educational

attainment e, marital status, the persistent income state in the period prior to retirement ηjr−1

and human capital h serves to proxy for the progressive nature of the social security system.

More precisely, for the children generation we have assumed that all individuals remain single

(and thus pensions are pen(e, si, ηjr−1, h)), and for the parental generation we will normalized

human capital to 1, so that pension benefits are independent of h, so that pen(e,m, ηjr−1),

see below. Apart from these differences in the exact form of the pension benefits formula, the

retirement decision problems of both generations are identical.

A.1.2 Working Phase

During working life, the dynamic programming problem of the children generation reads as

V (j, e, η, ε, a, h) = max
c,a′

{
u(c)− v(`(si)) + β

∑
η′

π(η′ | η)
∑
ε′

ψ(ε′)V (j + 1, e, η′, ε′, a′, h)

}
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subject to the constraints

c(1 + τ c) + a′ = a(1 + r(1− τ k)) + y(1− τ p)− T (y(1− 0.5τ p))

y = wγ(e, h)ε(e, j, si)ηε`(si)

a′ ≥ −a(j, e, ch)

Since labor supply is exogenous in our model, the disutility of work v (·) does not affect optimal

choices of children, but impacts the child value functions which in turn enter the parental transfer

decision problem as spelled out in the main text. Income y depends on permanent labor produc-

tivity γ(e, h) which in turn is a function of human capital acquired during the child’s schooling

years as well as the chosen level of education e.

A.1.3 Education Decision and Phase

The dynamic programs for this phase of the children’s life cycle were explicitly spelled out in the

main text.

A.2 Parental Generation

A.2.1 Retirement Phase

The retirement phase of the parental generation is a standard consumption-saving problem of the

form

V (j, e,m, η; a) = max
c,a′≥0

{
u

(
c

1 + 1m=maζa

)
+ βV (j + 1, e,m, η; a′)

}
subject to

c(1 + τ c) + a′ = a(1 + r(1− τ k)) + y − T (y)

y = pen(e,m, ηjr−1)

η = ηjr−1

A.2.2 Working Phase

After children have left the household, the parent generation solves, at age j ∈ {ja + jf +

1, ..., jr − 1} a standard consumption-savings problem during the rest of working life, similar to

the one by the children generation in Section A.1.2. As with the retirement phase, the main

difference to the children generation is that now both household income as well as effective per
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capita consumption and labor supply depends on whether a household is single or married. The

recursive problem then reads as

V (j, e,m, η, ε, a) = max
c,a′

{
u

(
c

1 + 1m=maζa

)
−v
(

`(m)

1 + 1m=ma

)
+ β

∑
η′

π(η′|η)
∑
ε′

ψ(ε′)V (j + 1, e,m, η′, ε′, a′)

}

subject to

c(1 + τ c) + a′ = a(1 + r(1− τ k)) + y(1− τ p)− T (y(1− τ p))

y = wε(e, j,m)ηε`(m)

a′ ≥ −a(j, e,m, pa).

A.2.3 Inter-Vivos Transfer, Human Capital Investment and Private Schooling Deci-
sions

The dynamic programs for these decisions were given directly in the text since they are the main

focus of the model.
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B Data Appendix

To obtain information about elementary and secondary schools, we use two datasets from the

National Center for Education Statistics (NCES).

The first dataset is the Common Core of Data (CCD), which is comprehensive database of all

public elementary and secondary schools and school districts (including public charter schools).

The CCD consists of different surveys completed annually by state education departments from

their administrative records. We use the 2019-2020 CCD school data files released in March

2021.

The other dataset is the NCES’s Private School Universe Survey (PSS). PSS is a biennial

survey that collects data on private schools and serves as a sampling frame for other NCES surveys

of private schools. The schools surveyed in the PSS come with a survey weight (which we use in

our construction of sample weights presented in the next section). We use the 2017-2018 data

files released in August 2019. This is the most recent version of PSS as of this writing.

We combine the pooled CCD-PSS dataset to the Safegraph dataset of POIs with NAICS

code 611110. We first pre-clean the data by standardizing school names and addresses (i.e. we

convert the capital letters to lower case, remove non-alphanumeric characters and spaces, etc.).

Then, we attempt direct merges on combinations of school names, addresses and zip codes. For

those schools that do not have a direct merge, we apply fuzzy-name matching within the same

zip code and retain those matches with a high-confidence matching scores. For private schools,

we only have school names and GPS coordinates. We match them to the Safegraph data by

using a combination of Levenshtein distance between school name and geographic distance based

on the GPS coordinates.

Table 34 compares the schools of the pooled CCD-PSS dataset to the subset of schools

matched to Safegraph data. As can be seen, all the observable characteristics of schools line up

closely with each other.
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Table 34: Comparison between all schools and schools matched to SG data
Public schools Private schoolsAll Matched All Matched

Sample count 101,688 85,210 22,895 17,482
Student-teacher ratio 15.68 15.55 10.53 10.45
% Male 52.2 52.1 52.5 52.6
% Indian 1.84 1.68 0.72 0.70% Asian 3.87 3.88 6.06 5.75% Pacific 0.40 0.34 0.52 0.52% Hispanic 25.2 24.5 11.7 11.8% White 49.9 51.5 65.0 65.9% Black 14.6 13.7 11.6 11.1% Other 4.29 4.34 4.34 4.32
% Free lunch 44.2 43.8 n.a. n.a.% Reduced-price lunch 5.07 5.14 n.a. n.a.
City 27.6 26.0 34.0 34.9Suburban 31.4 31.9 37.9 36.9Town 13.2 13.7 8.73 9.95Rural 27.8 28.4 19.4 18.3

Notes: % Free lunch and % Reduced-price lunch denote the share of students who are eligible for free andreduced-price lunches, respectively.
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Figure 6: Aggregate time series of visits (week 1 = 1st week of 2020)

B.1 Further Sample Selection and Sample Weights

In an effort to reduce noise further, we implement the following additional sample restrictions:

1. We drop schools where the raw visits count on average during the base period is less than

10, and schools where dj,t is larger than 50 more than once during the based period. The

goal of these first two restrictions is to ensure that the measurement of school visits for

the base period are reliable enough to compare them with school visits in any other period.

Together these restrictions reduce the sample size by 20%.

2. We drop schools where dj,t is larger than 75 more than once, either during the period

from beginning of September 2019 to November 2019 or the period from beginning of

September 2020 to the end of the sample period (currently end of May). This procedure

intends to purge the data from extreme values that affect the average of changes in visits

in any given period. We use a larger threshold (75 instead of 50) to trim the data because

it is to expected that the visits time series for each school are more volatile outside of the

base period. This sample restriction reduces the sample size by an additional 10%.

The resulting “in-scope” dataset contains 69,910 schools or about 70% of all schools that we

manage to match to the CCD + PSS dataset. Recall that the sample of matched schools is itself
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a subsample of the CCD + PSS dataset (see previous section). One concern is that the data

is becoming less representative of the universe of schools. In particular, smaller schools and/or

schools in areas where SG has lower coverage are likely to have more noisy visits data. As a

result, these schools are less likely to be included in our dataset of school visits.

To address the potential concern about the representativeness of the remaining sample, we

construct sampling weights for schools included in the in-scope data set. We estimate a Probit

model where the regressors are school size (as measured by student enrollment) interacted with

school covariates (public/private, Charter/non-Charter, locale area type) and Census divisions,

and the left-hand side variable is an indicator yj that takes the value of 1 if school j is included

in the dataset of school visits and is 0 otherwise. Then, we weight each public school by the

inverse of P̂r {yj = 1}, and each private school by its PSS sampling weight times the inverse

of P̂r {yj = 1}. We check the quality of this adjustment by comparing the weighted counts

of students, teachers, and schools in the data to the counts reported in the NCES digest of

education’s statistics (i.e. those reported in Table 35 below).
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Table 35: Comparison to the NCES digest of education’s statistics
Number of educational institutions

NCES table 105.50 CCD & PSS
Public Schools 98,469 101,688Elementary 67,408 68,953Secondary 23,882 21,434Combined 6,278 6,678Other (a) 901 4,623
Private Schools 32,461 27,641Elementary 20,090 17,378Secondary 2,845 2,301Combined 9,526 7,962
All 130,930 129,329

Number of students (in 1,000s)
NCES table 105.20 CCD & PSS

Public Schools (b) 50,686 50,834Prekindergarten to grade 8 35,496 33,415Grades 9 to 12 15,190 17,419
Private Schools 5,720 4,090Prekindergarten to grade 8 4,252 3,450Grades 9 to 12 1,468 0.639
All 56,406 54,924

Number of teachers (in 1,000s, full-time equivalents)
NCES table 105.40 (c) CCD & PSSPublic Schools 3,170 2,911Private Schools 482 401

All 3,652 3,312

Notes: NCES numbers refer to the year 2017-2018. (a) Includes special education, alternative, and otherschools not classified by grade span. (b) NCES enrollment numbers in public schools include imputations forpublic school prekindergarten enrollment in California and Oregon.

B.2 Details of the Burbio Data

Burbio is a private company that collects data on public schools’ calendars for commercial use

and for research purposes. The Burbio data contains, for 3,124 counties, weekly indicators of

the main learning mode of public schools within a country, categorized as traditional, hybrid, or

virtual. These indicators are created by first auditing school districts’ websites, Facebook pages,

etc. to determine the main learning mode currently in place at the school district level, and then

aggregating up to the county level by taking the average of the indicators weighted by student

enrollment in each school district. This approach is relevant because public education at the local
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level is organized by school districts. For the most highly populated counties, Burbio samples

school districts that represent an average of 90% of students in those counties. For less populated

counties, Burbio adapts its methodology to ensure that its indicators are representative of the

learning mode in place for the majority of students enrolled in public schools in those counties.

See https://about.burbio.com/methodology/ for details about Burbio’s methodology.

Burbio shares with us a county-level weekly panel of its indicators. In addition to indicators

about traditional, hybrid, and virtual learning, the data contains information on the usual start

week of most schools within each county, which we take into account while constructing mea-

surements of the fractions of the schooling year 2020-2021 that a given country spends in a given

learning mode. In about one third of the counties, schools usually open before the last week

of August; another one third usually opens during the last week of August; and the remainder

usually opens some time later in September.
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