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Abstract

In a default corridor [0; B] that the stock price can never enter, a deep

out-of-the-money American put option replicates a pure credit contract

(Carr and Wu, 2011). Assuming discrete (one-period-ahead predictable)

cash �ows, we show that an endogenous credit-risk model generates, along

with the default event, a default corridor at the cash-out�ow dates, where

B > 0 is given by these out�ows (i.e., debt service and negative earnings

minus dividends). In this endogenous setting, however, the put replicating

the credit contract is not American, but European. Speci�cally, the crucial

assumption that determines an endogenous default corridor at the cash-

out�ow dates is that equityholders� deep pockets absorb these out�ows;

that is, no equityholders�s fresh money, no endogenous corridor.
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tail risk
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1 Introduction

A key result of the Merton (1974) model is that a corporate bond is the sum of a

riskless bond and a short put on the �rm�s assets. This insight has been extended

along many avenues, including by Carr and Wu (2011, hereafter CW), who show that

the cash �ows associated with credit default swaps (CDS) can be replicated with deep

out-of-the-money (DOOM) equity puts. Speci�cally, CW assume the existence of a

default corridor, which is essentially a method for simultaneously describing the �rm�s

default boundary and the loss given default (LGD). Their default corridor has an upper

barrier B, which the stock price stays above before default, and a lower barrier A, which

the stock price stays below after default. CW show that the price of a CDS contract

on a �rm with default corridor [A;B] can be linked to the prices of two American

put options with strike prices within the corridor. The corridor may exist because

stock price dynamics include a jump to default as a result of the underlying �rm

value jumping to default, as in Zhou (2001), Huang and Huang (2012), and Cremers,

Driessen, and Maenhout (2008), or because of strategic default, as in Anderson and

Sundaresan (1996). A special case is the default corridor [0; B], where the LGD is 100%

and a single DOOM American put becomes a digital put.1 The [0; B] default corridor

can occur if equity prices have the potential to jump to zero, as in Merton (1976), Carr

and Wu (2007, 2010), Carr and Linetsky (2006), and Le (2015).

Numerous researchers have shown that a serious �aw of the Merton (1974) model is

its tendency to underpredict spreads of investment-grade debt.2 This has led to a large

literature on structural bond pricing where subsequent researchers have proposed new

models that incorporate features that are assumed away in the Merton (1974) model.

Among these models are a set that incorporate endogenous default (e.g., Geske, 1977;

1The digital put is an Arrow-Debreu security that pays o¤ one dollar in the event of default. It is
similar to the Credit Event Binary Options that once traded on the Chicago Board Options Exchange
(/www.cboe.com/Institutional/DOOM.aspx). See CW for more details.

2See Eom, Helwege, and Huang (2004), Jones, Mason and Rosenfeld (1984), Huang and Huang
(2012), Schaefer and Strebulaev (2008), Du, Elkamhi, and Ericsson (2019), Bai, Goldstein, and Yang
(2020).
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Leland and Toft, 1996). In an endogenous default model, equityholders have the ability

to absorb the �rm�s negative cash �ows, which implies that default is not a random

event outside anyone�s control, but a decision by the �rm�s shareholders not to put

more money into the �rm. Unlike the Merton (1974) setup, cash �ow to shareholders

is either positive (an in�ow in the form of a cash dividend) or negative (an out�ow in

the form of a coupon paid to bondholders from the deep pockets of the equityholders).

In this paper, we study endogenous credit-risk models in the presence of a default

corridor. In our model, the default corridor only exists on coupon dates and at maturity,

as endogenous default does not occur at other times (the same assumption as made in

Geske 1977). In this setting the equity put that can replicate a credit default security

is not DOOM American, but rather European. It expires on bond coupon dates, holds

for any moneyness, and has a strike price lower than the coupon. Therefore, our model

can simultaneously generate a default event and a corridor.

Given our assumptions, equity prices can be arbitrarily small without triggering

default and a deep in-the-money American put is optimally exercised before expiration

(Du¢ e, 2001). Therefore, only the European put counterpart is able to replicate an

Arrow-Debreu credit security. Moreover, contrary to CW, where in-the-money Amer-

ican/European puts struck within the corridor [0; B] cannot exist (because the equity

price can never enter in the corridor), in our setting, in-the-money puts exist. That

is, the put replicating the credit contract is not necessarily DOOM, but rather a low

strike-price (LSP) European put.

This result means that the price of European (not American) puts that expire at

the coupon date is linear in the strike price falling within the corridor. This linearity

leads to an implied-volatility skew for low strike prices. The volatility soars because,

within the corridor, the put payo¤ is not the capped di¤erence between the strike and

equity prices as in a benchmark setting, but rather the strike price. It follows that for

riskier �rms, such as speculative-grade �rms, we can have linear-in- the-strike-price put

prices and a very steep skew at certain maturities. By contrast, for investment-grade

2
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�rms, these linear-in-the-strike put prices should correspond to a thinner corridor.

Finally, we provide several extensions of the model to incorporate short-term rollover

of debt, the acquisition of a distressed �rm, or the following one. Perhaps in normal

times, that is, when defaulting is not an option for equityholders, the �rm can easily

absorb/�nance any out�ows. However, perhaps in bad times, that is, when defaulting

is an option, debt markets are tapered, and therefore only fresh injections of new cap-

ital can support the out�ows and daily operations of the �rm, keeping the same �rm

alive.3 In this scenario, that is, in the bad times, we show a default corridor exists.

Section 2 relates our work to the literature. Section 3 motivates our endogenous-

default corridor in a coupon-bond model. Section 4 prices European puts in a default

corridor. Section 5 provides two extensions of the corridor and Section 6 concludes.

An appendix contains omitted proofs and shows the corridor in a general discrete-time

setting.

2 Related literature

This paper is related to two strands of the literature. First, it is related to the literature

on the link between tail risk, credit risk, and equity derivatives and on the spanning

property of option markets (Cremers et al., 2008; Coval et al., 2009; Carr and Wu,

2009 and 2010; Collin-Dufresne et al., 2012; He et al., 2017). Kelly et al. (2016) study

the US �nancial-sector tail risk during the 2007-2009 crisis from the price of out-of-the-

money puts. Culp et al. (2018) empirically extend Merton�s put insights. Siriwardane

(2019) uses Carr and Wu�s default corridor to infer credit-risk spreads. Ibáñez (2020)

develops a measure of default risk based on Leland-type models. This measure is linked

to the default corridor/event of the same endogenous model.

Second, it is related to the literature on the valuation of derivative securities in

3In bad times, retained earnings are exhausted and short-term �nancing soars. Rolling over the full
face value of debt leads to a maturity rat race (Brunnermeier and Oehmke, 2013). Binding covenants
may limit further indebtness. Directly selling the �rm�s assets may be expensive, carrying a discount.

3
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structural models, a problem that until recently (Geske et al., 2016; Bai et al., 2018)

has received limited attention (Toft and Prucik, 1997). Bai et al. (2018) indeed show

Merton�s model explains the price of put options on a risky �nancial sector better than

a benchmark setting (Kelly et al., 2016). Speci�cally, all these works emphasize that

even if the asset volatility is constant as in Merton�s model, structural models generate

a leverage e¤ect in a natural way, because equity is a call option on leveraged assets.

In all extant models, however, a default corridor does not exist, which is in contrast to

Carr and Wu (2011) as well as this paper.

3 An endogenous default model

We consider a two-period model N = 2, n 2 f1; 2g and respective times 0 < T1 < T2.

We denote by Vt the value of the �rm�s assets, whose dynamic is left unspeci�ed,

0 � t � T2. The �rm issues a two-period coupon bond (Merton, 1974; Geske, 1977),

where T2 is the maturity, D > 0 is the face value, and c � D > 0 is the coupon. In

this structural setting, we denote by r the riskless rate and assume a Q risk-neutral

measure exists.

As in any endogenous credit-risk model, the debt service (coupon or face value) is

absorbed by equityholders�deep pockets (e.g., Leland, 1994; Leland and Toft, 1996�s

rollover model; Manso et al., 2010�s performance-sensitive debt model; Carr and Wu,

2011�s structural model). Otherwise, if the debt service is subtracted from the �rm�s

assets or is re�nanced, default is delayed until these assets are entirely depleted. Then,

B1 = cD > 0 and B2 = (1 + c)D > 0

are the two respective cash out�ows at T1 and T2.

We denote by Ct the equity continuation value. We assume equityholders�limited

liability, which implies Ct � 0, 0 � t � T2. It follows that because Bn > 0, defaulting

4
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at Tn is optimal if and only if

Cn � Bn, n = 1; 2;

with indi¤erence between defaulting and paying the cash out�ow if Cn = Bn. This

default choice maximizes equity value; that is, it is endogenous.

3.1 Endogenous equity pricing

Given the terminal assets value (V2 � 0), the continuation value of equity is de�ned

recursively as follows (where, in an abuse of notation, Cn = CTn, n = 1; 2):

C2 = V2 � 0; (1)

Ct = EQt
�
e�r(T2�t)max f0; C2 � (1 + c)�Dg

�
� 0; T1 � t < T2,

Ct = EQt
�
e�r(T1�t)max f0; C1 � c�Dg

�
� 0; 0 � t < T1:

In particular, C1 is the price of a European call, whereas C0 is the price of a compound

option. The de�nition of C1 and C2 recognizes the debt service (i.e., the coupon cD

and (1 + c)D, respectively) is absorbed by equityholders�deep pockets and is never

subtracted from the �rm�s assets (i.e., from V1 and V2).

Importantly, the process Ct is always discontinuous at T1 (and T2); that is,

lim
t"T1

Ct ! max f0; C1 � c�Dg < C1 if c�D > 0: (2)

Although the left-hand-side limit is only well de�ned if Ct does not jump at t = T1

(where t " T1 means t! T1, t < T1), the inequality is always correct (if C1 > 0).

In addition, we assume the equity continuation value is strictly positive; that is,

Ct > 0, t 2 [0; T2] : (3)

5
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As shown next, this assumption implies equity prices are also strictly positive between

cash-out�ow dates (i.e., conditional on no previous default), and default is never opti-

mal outside the out�ow dates.

To de�ne the ex-cash-�ow equity price (denoted by E), which is subject to default

risk, we introduce an auxiliary binary process, a 2 f0; 1g. Namely, a0 = 1 and

an = an�1 � 1fCn>Bng, n = 1; 2; :::; N; (4)

and hence an = 0 indicates the company has defaulted (i.e., aj = 0, j = n; n+1; :::; N).

Consequently,

E2 = a2 � C2 = 1fC1>B1g � 1fC2>B2g � C2; (5)

Et = a1 � Ct = 1fC1>B1g � Ct; T1 � t < T2,

Et = a0 � Ct = Ct; 0 � t < T1:

The (ex-cash-�ow) equity-price function En (Cn) is discontinuous at T1 and T2.

That is,

E1 = 0 if C1 � c�D; (6)

E1 = C1 > c�D > 0 otherwise,

both with positive probability.4 Likewise, either

E2 = 0 or E2 = C2 > (1 + c)�D > 0:

In particular, because equityowners absorb the entire debt service, conditional on non-

4The process Et is also discontinuous at T1 if the �rm survives (otherwise, is zero); that is,

lim
t"T1

Et ! max f0; C1 � c�Dg < 1fC1>c�Dg � C1 if C1 > c�D and c�D > 0;

where the limit is only well de�ned if Ct does not jump at t = T1.
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default (a2 = 1), the equity value equals the asset value at T2; that is, E2 = V2.

Moreover, the discontinuity at T1 implies the equity-price function is also close to

discontinuous right after T1 (which may approximate a corridor for puts expiring after

this instant). That is, if a1 = 1 and T1 < t < T2, Et = Ct, where Ct > 0 can be

arbitrarily close to zero. However, in the limit t # T1, E1 = C1 > c�D, which implies

that for t > T1 and t not far away from T1, the probability that Ct 2 [0; c�D] should

be relatively small (i.e., a function of a small t� T1).

Importantly, Ct > 0 implies Et = Ct > 0 between out�ow dates, conditional on no

previous default. Strictly positive equity prices imply default is not optimal between

out�ow dates. Hence, we next focus on out�ow dates.

3.2 The endogenous default event and the default corridor

Implicit in the de�nition of the equity value (i.e., equation (5)) are two endogenous-

default events at periods T1 and T2, that is,

fC1 � c�Dg and fC2 � (1 + c)�Dg , (7)

respectively. These two events are endogenous because they maximize equity value,

and are default events because they imply equity value becomes zero. These two default

events de�ne two respective optimal default thresholds, Y1 and Y2. That is,

V1 = Y1 : C1 (Y1) = c�D and fC1 (V1) � c�Dg � fV1 � Y1g ;

V2 = Y2 : C2 (Y2) = (1 + c)�D and fC2 (V2) � (1 + c)�Dg � fV2 � Y2g :

In general, Y1 > 0 and Y2 > 0 are unique because (i.e., we assume if necessary that)

call-type payo¤s are increasing functions in V . If V depends on stochastic parameters,

Y1 and Y2 are threshold functions.

Moreover, because the out�ows are absorbed by equityholders�deep pockets, from

7
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equation (6), these two endogenous default events lead to two default corridors,

[0; c�D] and [0; (1 + c)�D] ; (8)

respectively, in which the ex-cash-�ow equity price cannot enter. That is, E1 =2 (0; c�D]

and E2 =2 (0; (1 + c)�D], at periods T1 and T2, respectively. Thus, at T1, the following

four default events are equivalent:

fV1 � Y1g ; fC1 � c�Dg ; fE1 � c�Dg ; and fE1 = 0g ;

which depend, respectively, on the �rm�s low asset value, low continuation value, low

equity value, and exhausted equity value.

Remark 1. As in Merton (1974), C1 > 0 is the premium of a European call that

expires at T2 (with a strike price equal to (1 + c) �D). However, if we consider that

C2 = fV2 �Dg+, a default corridor exists at T2, but it is very thin; that is, [0; c�D].

Note that if we de�ne

Ct = E
Q
t

�
e�r(T2�t) �max f0; C2 � c�Dg

�
; T1 � t < T2;

the continuation value (C) is the same process as in equation (1), because

fV2 � (1 + c)�Dg+ =
�
fV2 �Dg+ � c�D

	+
;

implying the de�nition of the equity price, default events, and default corridor are

robust and carry over for t < T2.

Remark 2. We provide an example in which a default corridor is empty. If c �D

is exclusively paid from the �rm�s assets, the default event at T1 is trivially given in

terms of the asset value, namely, by fV1 � c�Dg. This speci�c default event implies

a default corridor does not exist at T1, because the equity-price function is continuous

8
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(i.e., zero or larger than zero). That is, if limt"T1 Vt = c � D + �, with � > 0 and

t < T1, V1 = � (after the coupon-payment date), and we assume the value of equity E

is arbitrarily close to zero if � ! 0.

Moreover, if C1 � V1, that is, if equity value is bound by the value of the assets,

endogenous default leads to an earlier default than if the �rm�s managers entirely

deplete the �rm�s assets or holdings prior to default.

3.3 European puts, digital puts, and pure credit contracts

We denote by K the strike price of puts and calls. At T1, we show a low strike-price

European equity put becomes a digital put, which replicates a pure credit contract.

That is, for a put with maturity T1, the payo¤ reduces to

max f0; K � E1g = (K � E1)� 1fE1�Kg (9)

= K � 1fE1=0g + (K � E1)� 1fc�D<E1�Kg

= K � 1fE1=0g if K � c�D;

which is a digital option in the case of low strike-price (LSP) puts, namely, K � c�D.

The second equality follows from equation (6).

Then, from equation (6), En = En � 1fEn>Bng, from which follows 1fE1=0g =

1fE1�c�Dg, and hence

max f0; K � E1g = K � 1fE1�c�Dg if K � c�D; (10)

which replicates a pure credit contract, in which fE1 � c�Dg is the endogenous-

default event. In particular, in this endogenous setting, a DOOM put (that replicates

a pure credit contract) is rather an LSP put, for all moneyness.

9
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A similar result follows for T2, in which B2 = (1 + c)�D; namely,

max f0; K � E2g = K � 1fE2�(1+c)�Dg if K � (1 + c)�D: (11)

4 The price of European puts in a default corridor

We study the pricing of European puts/calls in a default corridor.

1) Under the Q�measure, from equation (10), the price of an LSP put with maturity

T1 is given by

EQ0
�
e�rT1K � 1fE1�c�Dg

�
= e�rT1K �Q (V1 � Y1) , K � c�D: (12)

Like DOOM puts in Carr and Wu (2011), in our setting, LSP European-put prices are

linear in the strike price falling within the corridor (i.e., K � c�D), a straightforward

empirical prediction. The forward price of this European put, scaled by the strike

price, gives the one-period risk-neutral default probability.

2) In terms of the implied volatility �, where PBS (E0; �) denotes the Black-Scholes-

Merton put-price formula, we have that

e�rT1K �Q (V1 � Y1) = PBS (E0; �) : (13)

Then, the implied-volatility curve � (K) holds that (see the Appendix)

�0 (K)�
p
T1 =

�N (�d1)
K �N 0 (d1)

< 0, K � c�D; (14)

where N () is the cumulative Gaussian-distribution function.

A negative skew (i.e., �0 (K) < 0) implies LSP puts are expensive. First, they are

more expensive in a default corridor than in a setting of no corridor. That is, compared

to a benchmark setting (in which the put payo¤ is max f0; K � C1g), LSP European

10
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puts that expire at T1 are overpriced by the following amount (which follows from

E1 = 1fC1>B1g � C1):

e�rT1 � EQ0
�
e�rT1C1 � 1fC1�minfK;B1gg

�
+ e�rT1K � EQ0

�
1fK<C1�B1g

�
> 0:

Conditional on C1 2 [0; B1], the �rst (second) term covers the in-the-money (out-of-the-

money) part of the put in the benchmark setting. Second, the deeper out of the money

the put is, the more expensive this put is in implied-volatility units. For instance, in

our numerical exercise, � (K) is unbounded when K ! 0.

3) The same linear (in the strike price) result happens in the case of the second-

out�ow date T2, in which B2 = (1 + c) � D. The price of an LSP put with maturity

T2 is given by

EQ0
�
e�rT2K � 1fE2�(1+c)�Dg

�
(15)

= EQ0

h
e�rT2K � 1f1fC1>c�Dg�1fC2>(1+c)�Dg�V2�(1+c)�Dg

i
= e�rT2K � (Q (V1 � Y1) +Q (V1 > Y1)�Q (V2 � Y2)) , K � (1 + c)�D:

Scaled by the discounted strike price e�rTnK, the price di¤erence between two LSP

European puts with the same strike but di¤erent maturity equals the probability of

default at T2, namely,

Q (V1 > Y1)�Q (V2 � Y2) > 0, K � c�D;

given that c�D < (1 + c)�D.

4) For no LSP European puts at T1 (i.e., K > c�D),

EQ0
�
e�rT1 max f0; K � E1g

�
(16)

= e�rT1K �Q (V1 � Y1) + EQ0
�
e�rT1 (K � E1)� 1fc�D<E1<Kg

�
, K > c�D;

11
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and no LSP puts are also more expensive than in a benchmark setting.

5) Lastly, for European equity puts and calls (with respective prices pt and ct), with

the same strike price (K) and expiring at the �rst-out�ow date (T1),

K +max f0; E1 �Kg = E1 +max f0; K � E1g ;

which follows from put-call parity at T1. Then, from the law of one price (see the

Appendix), put-call parity at T0 becomes

e�rT1K + c0 = E0 + e
�rT1B1 �Q (V1 > Y1) + p0; (17)

where B1 = c � D and Q (V1 > Y1) = Q (E1 > B1). Similar to the case of a paying-

dividend stock, put-call parity is also adjusted, in this case, by e�rT1B1 �Q (V1 > Y1).

From the last equation, the call price is given by

c0 = E0 + e
�rT1B1 �Q (V1 > Y1) + p0 � e�rT1K: (18)

Speci�cally, for DOOM puts (i.e., K � B1), from equation (12),

c0 = E0 � e�rT1 (K �B1)�Q (V1 > Y1) : (19)

For example, consider a spread between two co-terminal European calls struck within

the corridor, with respective strike prices K1 and K2, K1 < K2 � B1. Then,

erT1 � c0 (K1)� c0 (K2)

K2 �K1

= Q (V1 > Y1) ; (20)

which is the one-period risk-neutral surviving probability.
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4.1 Numerical example

For simplicity, we present a one period version of our model that is based on Merton

(1974). That is, we consider a setting in which equity is a European call on a �rm

with value V , and has a strike price of B > 0 and a maturity of T1 (which are the

face value and maturity of a zero-coupon bond). We assume a lognormal asset value,

ln V1
V0
� N

�
(r � �2

2
)T1; �

p
T1

�
, where r is the riskless rate and � is volatility. From the

Black-Scholes-Merton formula, the equity price is equal to

E0 (V0) = V0 �N (d1B)� e�rT1B �N (d2B) ;

d1B =
ln V0

B
+ (r + �2=2)� T1

�
p
T1

and d2B = d1B � �
p
T1;

However, we assume equityholders absorb the out�ow B > 0, which implies a default

corridor [0; B] exists at T1. That is,

E1 = max f0; V1 �Bg+B � 1fV1>Bg = V1 � 1fV1>Bg:

First, we emphasize that although puts with the same maturity as debt are expen-

sive if a default corridor exists, in which case B1 = B, they are more expensive in the

original Merton�s noncorridor model. That is, if V1 is the asset value, although the put

payo¤ in a benchmark setting is max f0; K � V1g, this payo¤, which equals the strike

priceK within the corridor [0; B] ifK � B, is increased by (K +B � V1)�1fB<V1�K+Bg

in the latter noncorridor model. Namely, ifK � B, these three payo¤s, where fV1 � Bg

is the unique default event, hold:

noncorridor existsz }| {
(K � V1)� 1fV1�Kg| {z }
benchmark setting
(V1 is the asset value;

K is the put strike price)

<

here, a default corridor
exists (B1=B)z }| {
K � 1fV1�Bg| {z }

equityholders absorb debt

� K � 1fV1�Bg +
this part implies noncorridor exists (B1=0)z }| {
(K +B � V1)� 1fB<V1�K+Bg| {z }

debt is repaid by selling the �rm�s assets (original model)| {z }
Merton�s structural model (B is the face value of a zero-coupon bond)

:

Moreover, for put maturities that are shorter than the debt maturity, a corridor does
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not exist� the two put payo¤s in Merton�s model are the same.

Consider a European equity put, with strike price K > 0 and maturity T1 as well.

Given the same maturity of the equity claim (or Merton�s call) and this equity-put

derivative, and given that E1 = V1 � 1fV1>Bg, the price of this equity put simpli�es to

p0 = EQ0
�
e�rT1 max f0; K � E1g

�
(21)

= e�rT1K � EQ0
�
1fV1�Bg

�
+ EQ0

�
e�rT1 (K � V1)� 1fB<V1�Kg

�
= e�rT1K �N (�d2B)

+
�
e�rT1K � (N (�d2K)�N (�d2B))� V0 � (N (d1K)�N (d1B))

�
� 1fK>Bg;

where d1;2K are de�ned akin to d1;2B with K instead of B. In particular,

p0 = e
�rT1K �N (�d2B) ; K � B:

Conversely, for a reciprocal call with the same maturity and strike price, the payo¤

in terms of the asset value is given by

max f0; E1 �Kg = max
�
0; V1 � 1fV1>Bg �K

	
= max f0; V1 �Kg � 1fK�Bg + (V1 �K)� 1fK<B<V1g;

where the �rst (second) term corresponds to strike prices higher (lower) than B. It

follows that, in contrast to a benchmark setting, low strike-price (i.e., K < B) calls

are underpriced, because they pay nothing if V1 2 (K;B].

Following Carr and Wu (2011), we de�ne B as a low strike price, B = 3. We

assume � = 30%, r = 2%, a maturity of T1 = 6 months, and four equity prices E0 =

f2:03; 3:03; 4:03; 6:03g, which are associated with the asset values of V0 = f5; 6; 7; 9g,

respectively. Each price implies a risky, healthier, sound, and super sound �rm. For

asset values lower than 5, the implied volatility of low strike-price equity puts quickly
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soars above 100%. In Figure 1, we show the four implied-volatility curves, for a range

of strike prices K 2 [1; 20]. Hence, the volatility-smile function, � (K), solves

p0 (� = 0:3) = e
�rT1K �N (�d2K ; � (K))� V0 �N (�d1K ; � (K)) ; (22)

and in particular, for K � B,

e�rT1K �N (�d2B; � = 0:3) = e�rT1K �N (�d2K ; � (K))� V0 �N (�d1K ; � (K)) :

From Figure 1, one can see that for risky �rms (i.e., V0 � 6), the default corridor

generates a clear volatility smile, with large implied-volatility levels away from the

money. However, for sound �rms (i.e., V0 � 7), the default corridor generates more

of a volatility smirk, where the implied volatility approximates the asset volatility for

strike prices higher than B = 3. We also see that the riskier the �rm, namely, the lower

V0, the larger the implied volatility, which is an example of a leverage e¤ect. These

results are robust to the maturity, T1 2 f3; 6; 12g months.

*** to include Figure 1 ***

5 Extensions of the Endogenous Default Corridor

We now provide two extensions. In the �rst we amend the model so that out�ows occur

in one of two regimes: a good state of the world and a bad one. In the second extension,

we allow for control of the �rm�s assets to pass from equityholders to creditors.

Extension 1: That equityholders absorb cash out�ows in bad times is su¢ cient for

the existence of an endogenous default corridor. Speci�cally, because we assume a �rm

cannot re�nance any out�ow B1 > 0, the default corridor and the defaulting region are

given by the same interval [0; B1]. However, if we split the surviving region (B1;1) into

two complementary regions, (B1; b] and [b;1), where B1 � b, but we allow re�nancing

in the good-times region [b;1), the default corridor is given by [0;min (B1; b�B1)].
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That is, the equity price is now given by

E1 (C1) = C1 � 1fC1>B1g �B1 � 1fC1>bg;

which implies E1 (C1 # B1) = B1 and E1 (C1 # b) = b�B1 � 0.

It follows that if good times start soon (i.e., if b � 2B1), we have a thinner corridor

[0; b�B1] at the �rst-out�ow date; otherwise, the corridor is [0; B1]. How equity-

holders�deep pockets absorb cash out�ows explains the size of the default corridor.

Extension 2: As endogenous models assume, substantial evidence shows default

is not entirely random, but rather �rms default in poor economic conditions or with

expired debt (Asquith et al., 1994; Campbell et al., 2008; Giesecke et al., 2011; Davy-

denko, 2012). However, because a bankruptcy has severe economic consequences from

layo¤s to large distress costs, creditors may have a say in default (Carey and Gordy,

2007).

Therefore, assume the following scenario in which endogenous default is rather

delayed. In hard times, in the interval C1 2 [0; B1], the equity price is either 0 or

larger than Bmin (where 0 < Bmin � B1) until all uncertainty is resolved� in which

case, either E1 = 0 or, if the �rm survives, E1 > B1. This setting supports Carr-Wu�s

corridor [0; Bmin] after the out�ow date and until uncertainty is solved, as well as an

endogenous corridor [0; B1] if the uncertainty has an expiring time. In this setting,

the key assumption is the equity price cannot slip in the corridor, namely, if Bmin is

meaningful. We illustrate this example with the (tentative) takeover of a distress �rm.5

The distressed �rm needs fresh capital, and a large shareholder (L1) announces a

capital-injection plan, but only if (in addition to banks extending a new credit line and

bondholders increasing the maturity of expiring loans so all stakeholders contribute) it

gets control of the �rm (>50% of shares). L1 o¤ers a price per share of 0.67� an o¤er

5Speci�cally, we o¤er the example of the Spanish retailer DIA, with thousands of employees and
a wide presence in Europe. Like many other retailers facing serious competition, it has su¤ered a
decline in demand (poor sales) which has led to greater �nancial pressures as its debt matures. See
for example, https://elpais.com/economia/2019/04/26/actualidad/1556263740_217086.html
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expiring in six months. In six months, two mutually exclusive scenarios are possible:

Either L1 does not get control and hence (no capital injection but �rm default and) the

equity price sinks to zero, or L1 gets control and the price per share is 0.67 or above.

However, because other equityholders want a better deal than 0.67, they not only

put at risk the L1-control plans and solvency of the �rm, but also push down the price

per share to a low 0.34 during this six-month period. Associated with this potential

takeover, two default corridors exist for the troubled �rm. First is a Carr and Wu�s

(2011) corridor [0; 0:34] during the six months. Second is a corridor in six months, at

the o¤er expiring, in which the price is either zero or above 0.67. The following (DIA

Spanish retailer) stock price in Figure 2 seems consistent with both corridors.

*** to include Figure 2 ***

For this distressed �rm, in a perfect world, the quotes of low strike-price Ameri-

can/European puts or credit default swaps expiring in six months can be used to get

the risk-neutral probability of L1 not gaining control, and the �rm stock price jumping

to zero. Actually, a price per share of 0.34 represents a 50% risk-neutral probability of

each of the two scenarios (either zero or 0.67).

6 Empirical prediction

The striking insight of Carr and Wu (2011) is that the protection leg of a CDS contract

can be replicated by rolling over American DOOM puts (up to a scale factor that

depends on the expected recovery value of the bond and the strike price of the put).

Moreover, Carr and Wu show empirically that the change in CDS spreads and the

change in American DOOM put prices are cointegrated, a result that supports the

equivalence between both contracts.

We do not conduct a similar test to price contracts in this paper, but we do lay out

a possible approach for analyzing the empirical usefulness of our model. Speci�cally,
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we suggest examining a set of CDS-spread quotes and a set of prices for short-term

DOOM American puts on the same �rms. Assume the recovery value is zero, the strike

price is 1, and the interest rate is also zero (otherwise, we can scale every contract).

Assuming a strategy of rolling over the puts, and collecting data on the initiation of

the next put contract, we can compute four averages: (i) The CDS payment leg, which

is given by the sum of quarterly payments if the �rm did not default, and fewer in the

case of default. (ii) The CDS protection leg, which is either zero or 1 (give zero bond

recovery). (iii) The rollover cost of the puts; (iv) The realized payo¤ (i.e. exercise

value) of the puts, which depends on whether default occurred. We expect the DOOM

puts will �nish (near) out of the money for non-defaulting �rms, whereas we also expect

their payo¤ will be (close to) the strike price in the event of default.

Because American-style puts can be early exercised� even suboptimally exercised

(Ibáñez and Paraskevopulos, 2009)� we consider European instead of American DOOM

puts. Fortunately, the former is easily synthesized from the latter counterpart. That

is, detaching the early-exercise-premium from the American put price, we obtain the

European put price. For DOOM puts or low riskfree interest rates, this premium is

indeed small (and can be approximated by zero). The payo¤ of the European put is

given by assuming exercise only at the option maturity. In this latter case, we do not

have to observe when every American put option was exercised.

CDS contracts and DOOM puts are similar if the averages based on (i) and (iii),

as well as the averages based on (ii) and (iv), are similar.6 Further, we can obtain two

estimates of the credit-risk premium by comparing the averages in (i) and (ii) (in (iii)

and (iv)) for CDS securities (DOOM puts). This credit-risk premium is clearly related

to a negative-jump risk premium extracted from equity and option prices alone.

6See Cheng et al., 2018, for a credit-equity relative value strategy based on these concepts.
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7 Concluding remarks

This paper shows an endogenous credit-risk model generates a default corridor [0; B].

This corridor is linked to the endogenous-default event, fE < Bg, in which E is the ex-

cash-�ow equity price and B > 0 is given by the out�ows (i.e., debt service and negative

earnings minus cash dividends). In this setting, the default corridor only necessarily

happens at coupon dates, which implies the low strike-price put (that replicates a

pure credit contract) is not DOOM American but rather European style. The corridor

[0; B] is especially relevant for speculative-grade �rms, which are more leveraged and

therefore have larger coupons (B > 0). If the early-exercise premium is a small fraction

of the American price, such as in a DOOM case, the exchanged-listed American price

can provide a good approximation to the European counterpart, namely, a pure credit

contract.
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8 Appendix

8.1 The implied volatility of low strike-price European equity

puts

For a put option, from the Black-Scholes-Merton formula,

PBS (E0) = e�rT1K �N (�d2)� E0 �N (�d1) ;

d1 =
ln E0

K
+ (r + �2=2)� T1
�
p
T1

and d2 = d1 � �
p
T1;

which implies the following two Greeks:

@PBS

@K
= e�rT1 �N (�d2) and

@PBS

@�
= E0N

0 (d1)
p
T1;

where N () is the cumulative Gaussian-distribution function.

In terms of the implied volatility �, the low strike-price (LSP) put price veri�es

that

e�rT1K �Q (V1 � Y1) = PBS (E0) , K � c�D:
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Then, the implied-volatility function, � (K), holds that

e�rT1 �Q (V1 � Y1) = e�rT1 �N (�d2) +
@PBS (E0)

@�
� �0 (K) , K � c�D; (23)

implying

�0 (K)�
p
T1 = e�rT1 � Q (V1 � Y1)�N (�d2)

E0 �N 0 (d1)
(24)

=
�N (�d1)
K �N 0 (d1)

< 0, K � c�D;

which is equation (14). �

8.2 European put-call parity and call pricing

We derive the initial value of the ex-cash-�ow equity price at T1, where B1 = cD and

a1 = 1fC1>B1g. From equation (5), where E1 = a1C1,

EQ0
�
e�rT1E1

�
= EQ0

�
e�rT1a1C1

�
(25)

= EQ0
�
e�rT1a1 (C1 �B1)

�
+ e�rT1B1 � EQ0 [a1]

= E0 + e
�rT1B1 �Q (V1 > Y1) ;

because B1 is predictable at T0.

For European equity puts and calls (with respective prices pt and ct), with the same

strike price (K) and expiring at the �rst-out�ow date (T1), from put-call parity at T1,

K +max f0; E1 �Kg| {z }
=c1

= E1 +max f0; K � E1g| {z }
=p1

:

Then, from the law of one price, put-call parity at t = 0 becomes

e�rT1K + c0 = E0 + e
�rT1B1 �Q (V1 > Y1) + p0; (26)
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The call price is given by

c0 = E0 + e
�rT1B1 �Q (V1 > Y1) + p0 � e�rT1K:

As in the case of a paying-dividend stock, put-call parity is also adjusted, in this case,

by e�rT1B1 �Q (V1 > Y1).

Speci�cally, for LSP puts (i.e., K � B1), from equation (12),

c0 = E0 + e
�rT1B1 �Q (V1 > Y1) + e�rT1K �Q (V1 � Y1)� e�rT1K (27)

= E0 + e
�rT1B1 �Q (V1 > Y1)� e�rT1K �Q (V1 > Y1)

= E0 � e�rT1 (K �B1)�Q (V1 > Y1) :

For example, consider a spread between two co-terminal European calls struck within

the corridor, with respective strike prices K1 and K2, K1 < K2 � B1. Then,

c0 (K1)� c0 (K2) = e
�rT1 � (K2 �K1)�Q (V1 > Y1) ; (28)

which implies the following surviving probability, c0(K1)�c0(K2)
K2�K1

= e�rT1 �Q (V1 > Y1) :

For no LSP puts (i.e., K > B1), from equation (16),

c0 = E0 + e
�rT1B1 �Q (V1 > Y1) (29)

+e�rT1K �Q (V1 � Y1) + EQ0
�
e�rT1 (K � E1)� 1fB1<E1<Kg

�
� e�rT1K

= E0 � e�rT1 (K �B1)�Q (V1 > Y1) + EQ0
�
e�rT1 (K � E1)� 1fB1<E1<Kg

�
: �

8.3 The general model: A default corridor in an endogenous

setting

We show the link between European puts and credit protection is given by endogenous

default.
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1. The endogenous credit-risk model We study a general discrete-time setting

with stochastic cash �ows. Consider a model with N periods, n = 1; 2; :::; N , and

respective times 0 < T1 < T2 < ::: < TN . We denote by Bn the negative payout rate

of the �rm. Thus, Bn is an out�ow that is paid if Bn > 0 (an in�ow that is collected

if Bn < 0) by equityholders�deep pockets, in Leland�s tradition.

The equity continuation value is denoted by Ct. We assume equityholders�limited

liability, implying Ct � 0, 0 � t. It follows that if Bn > 0, defaulting at Tn is optimal

if and only if

Cn � Bn, n = 1; 2; :::; N;

with indi¤erence between defaulting and paying the cash out�ow if Cn = Bn. This

default choice maximizes equity value; that is, it is endogenous.

In addition, we also assume strictly positive values for the process Ct; that is,

Ct > 0, t 2 [0; TN ] ;

which implies default is never optimal between out�ow dates.

2. Endogenous equity pricing Given a terminal value CN � 0, the equity contin-

uation value is de�ned recursively as follows:

Ct = E
Q
t

�
e�r(Tn�Tn�1) fCn �Bng+

�
� 0; Tn�1 � t < Tn, (30)

for n = 1; 2; :::; N . The process Ct is discontinuous at Tn; that is,

lim
t"Tn

Ct ! fCn �Bng+ < Cn if Bn > 0, n = 1; 2; :::; N: (31)

Similarly, fCn �Bng+ > Cn > 0 if Bn < 0.

The ex-cash-�ow equity price, as in the previous coupon-bond model, is given by
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EN = aN � CN and

Et = an�1 � Ct; Tn�1 � t < Tn, (32)

for n = 1; 2; :::; N , where a0 = 1 and an is in equation (4). In particular, Et = Ct;

0 � t < T1. The (ex-cash-�ow) equity-price function En (Cn) is also discontinuous at

Tn. That is, either

En = 0 or En = Cn > Bn > 0 if Bn > 0, n = 1; 2; :::; N , (33)

both with positive probability. By contrast, in the case of a cash in�ow (i.e., Bn < 0),

and conditional on no previous default (i.e., an�1 = 1), En = Cn > 0 if Bn < 0.

Then, Ct > 0 implies Et = Ct > 0 between out�ow dates, conditional on no previous

default. It follows that default is never optimal between out�ow dates. Hence, we focus

on out�ow dates. First, we provide an example.

Example In Figure 3, we provide a typical equity path that ends in default at T3.

The �rm�s assets mature in four periods. Three deterministic cash �ows exist, namely,

B1 = �5, B2 = 4, and B3 = 4 (i.e., B1 < 0 is a cash dividend and B2, B3 > 0

are debt service or out�ows). The assets are risky and have an expected value of 7:5

at T4. The value of the �rm is C0 = E0 = 6, which equals the intrinsic value (i.e.,

5� 4� 4 + 7:5 = 4:5) plus some option/upside value (i.e., 6� 4:5 = 1:5).

*** to include Figure 3 ***

Equity value increases in the �rst period from E0 = 6 to 7. Namely, right before T1,

the value of equity is 7, that is, C1 = E1 = 7�5 = 2, which is the (downward-jumping)

ex-dividend equity price. After this large dividend, most of the �rm value is option

value (C1 = 2). From T1 to T2, the �rm remains stable. Right before T2, the value of

equity is also 2, that is, C2 = E2 = 2 + 4 = 6, and the equity price jumps upwards.

However, after T2 and a high-volatility period, the �rm quickly loses value and defaults
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at T3 because C3 = 3 is less than B3 = 4. Hence, we advance that a default corridor

[0; 4] exists at T2 and T3.

At T3, it is optimal to equityholders to not absorb the debt service but default,

which implies Et = 0, t � T3. From C3 = 3, and given no additional cash-�ows, V3 is

also close to 3 (which is less than the initial expected value of 7.5). In brief, after this

poor path/performance, all stakeholders lose. Equityholders get 5 � 4 = 1, which is

less than the initial equity value of E0 = 6, and debtholders get 4 and 3, instead of the

promised cash �ows of 4 and 4, which implies a loss of 1=8 for them.

3. The endogenous default event and the default corridor Implicit in the

de�nition of the equity value (i.e., equation (32)) are N endogenous-default events;

that is,

fCn � Bng , n = 1; 2; :::; N: (34)

These N endogenous-default events lead to the N default corridors, in which the ex-

cash-�ow equity price cannot enter. That is, from equation (33),

En =2 (0; Bn] , n = 1; 2; :::; N:

In particular, the event fCn � Bng is equivalent to fEn � Bng, n = 1; 2; :::; N . Natu-

rally, the event/corridor is empty if the cash �ow is an in�ow, that is, if Bn < 0.

However, because the payout rate Bn follows a random process, the N default

corridors are conditional on Bn. Therefore, assuming Bn is one-period predictable, the

only possible default corridor is at time T1 and is given by [0; B1] (i.e., E1 =2 (0; B1]). In

a general setting with operational leverage, earnings are stochastic; hence, we assume

predictability. In the case of �nancial leverage, (no �oating) coupons and principal are

known since issuance time, and only re�nancing costs are random.

Naturally, time advances, and after the �rst period ends (and conditional on non-

default), the second period becomes a new �rst period, and we again have a default
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corridor. That is, if C1 > B1 at T1, we have a new default corridor at T2 if B2 > 0,

because E2 =2 (0; B2]. So, without loss of generality, we assume B1 > 0.

4. European puts, digital puts, and pure credit contracts At T1, an LSP

European put becomes a digital put, which replicates a pure credit contract. That is,

for a put with maturity T1, the payo¤ reduces to

max f0; K � E1g = (K � E1)� 1fE1�Kg (35)

= K � 1fE1=0g + (K � En)� 1fB1<E1�Kg

= K � 1fE1=0g if K � B1;

which is a binary option in the case of LSP puts, namely, K � B1. The second equality

follows from equation (33). As emphasized above, the latter result only happens for

n = 1, because Bn is predictable yet stochastic for n > 1.

Then, from equation (33), En = En � 1fEn>Bng, from which follows 1fE1=0g =

1fE1�B1g and hence

max f0; K � E1g = K � 1fE1�B1g if K � B1; (36)

which replicates a pure credit contract, where fE1 � B1g is the endogenous-default

event at T1. In this setting, the DOOM put (that replicates a pure credit contract) is

rather an LSP put.

5. The price of European puts in a default corridor Similar to the coupon-

bond model, in which leverage is only �nancial (and B1 = cD), from equation (36),

the price of an LSP European put with maturity T1 is given by

EQ0
�
e�rT1K � 1fE1�B1g

�
= e�rT1K � EQ0

�
1fE1�B1g

�
, K � B1; (37)
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and the same implications follow as in section 3.

That is, LSP European-put prices are linear in the strike price, and the implied-

volatility skew is negative, �0 (K) < 0, K � B1. Put options are more expensive in a

default corridor than in a benchmark setting of no corridor. Put-call parity is adjusted

by the cash out�ow (for t < T1), and from this parity link, we price call options. All

these results happen for a maturity T1 that is equal to the �rst-out�ow date, in which

the out�ow is assumed to be predictable.
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Figure 1: From a default corridor [0; B] at T1, we show the implied-volatility curves
generated by European put options. At T1, the value of equity equals V1 � 1fV1>Bg.
We de�ne the corridor by assuming B = 3. The lognormal assets volatility is � =
30%, the interest rate is r = 2%, and the maturity is T1 = 6 months. Equity and
the European equity put have the same maturity. We consider four equity prices,
E0 = f2:03; 3:03; 4:03; 6:03g, corresponding to the four asset values, V0 = f5; 6; 7; 9g,
respectively.
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Figure 2: Price per share of Spanish retailer DIA (in Euros) from June 1, 2018, to May
31, 2019. Since October 23, 2018, the company�s stock price looks consistent with a
default corridor.
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Figure 3: In a default corridor, a typical equity path that ends in default. The �rm�s
assets mature in four periods. Three deterministic cash out�ows exist, B1 = �5,
B2 = 4, and B3 = 4, where B1 < 0 is a dividend and B2, B3 > 0 are debt payments.
The initial value of the �rm is E0 = 6. At T1, equityholders receive a dividend of 5,
and equity falls from 7 to 2. T1 to T2 is a calm period, equityholders pay a debt service
of 4, and equity jumps from 2 to 6. After T2 and a high-volatility period, the �rm
quickly loses value, and equityholders choose defaulting at T3 because the value of the
assets is 3, which is lower than the debt service of 4. That is, Et = 0, t � T3.
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