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Abstract

In a default corridor [0, B] that the stock price can never enter, a deep
out-of-the-money American put option replicates a pure credit contract
(Carr and Wu, 2011). Assuming discrete (one-period-ahead predictable)
cash flows, we show that an endogenous credit-risk model generates, along
with the default event, a default corridor at the cash-outflow dates, where
B > 0 is given by these outflows (i.e., debt service and negative earnings
minus dividends). In this endogenous setting, however, the put replicating
the credit contract is not American, but European. Specifically, the crucial
assumption that determines an endogenous default corridor at the cash-
outflow dates is that equityholders’ deep pockets absorb these outflows;

that is, no equityholders’s fresh money, no endogenous corridor.
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1 Introduction

A key result of the Merton (1974) model is that a corporate bond is the sum of a
riskless bond and a short put on the firm’s assets. This insight has been extended
along many avenues, including by Carr and Wu (2011, hereafter CW), who show that
the cash flows associated with credit default swaps (CDS) can be replicated with deep
out-of-the-money (DOOM) equity puts. Specifically, CW assume the existence of a
default corridor, which is essentially a method for simultaneously describing the firm’s
default boundary and the loss given default (LGD). Their default corridor has an upper
barrier B, which the stock price stays above before default, and a lower barrier A, which
the stock price stays below after default. CW show that the price of a CDS contract
on a firm with default corridor [A, B] can be linked to the prices of two American
put options with strike prices within the corridor. The corridor may exist because
stock price dynamics include a jump to default as a result of the underlying firm
value jumping to default, as in Zhou (2001), Huang and Huang (2012), and Cremers,
Driessen, and Maenhout (2008), or because of strategic default, as in Anderson and
Sundaresan (1996). A special case is the default corridor [0, B], where the LGD is 100%
and a single DOOM American put becomes a digital put.! The [0, B] default corridor
can occur if equity prices have the potential to jump to zero, as in Merton (1976), Carr
and Wu (2007, 2010), Carr and Linetsky (2006), and Le (2015).

Numerous researchers have shown that a serious flaw of the Merton (1974) model is
its tendency to underpredict spreads of investment-grade debt.? This has led to a large
literature on structural bond pricing where subsequent researchers have proposed new
models that incorporate features that are assumed away in the Merton (1974) model.

Among these models are a set that incorporate endogenous default (e.g., Geske, 1977;

TThe digital put is an Arrow-Debreu security that pays off one dollar in the event of default. It is
similar to the Credit Event Binary Options that once traded on the Chicago Board Options Exchange
(/www.cboe.com/Institutional/ DOOM.aspx). See CW for more details.

2See Eom, Helwege, and Huang (2004), Jones, Mason and Rosenfeld (1984), Huang and Huang
(2012), Schaefer and Strebulaev (2008), Du, Elkamhi, and Ericsson (2019), Bai, Goldstein, and Yang
(2020).



Leland and Toft, 1996). In an endogenous default model, equityholders have the ability
to absorb the firm’s negative cash flows, which implies that default is not a random
event outside anyone’s control, but a decision by the firm’s shareholders not to put
more money into the firm. Unlike the Merton (1974) setup, cash flow to shareholders
is either positive (an inflow in the form of a cash dividend) or negative (an outflow in
the form of a coupon paid to bondholders from the deep pockets of the equityholders).

In this paper, we study endogenous credit-risk models in the presence of a default
corridor. In our model, the default corridor only exists on coupon dates and at maturity,
as endogenous default does not occur at other times (the same assumption as made in
Geske 1977). In this setting the equity put that can replicate a credit default security
is not DOOM American, but rather European. It expires on bond coupon dates, holds
for any moneyness, and has a strike price lower than the coupon. Therefore, our model
can simultaneously generate a default event and a corridor.

Given our assumptions, equity prices can be arbitrarily small without triggering
default and a deep in-the-money American put is optimally exercised before expiration
(Duffie, 2001). Therefore, only the European put counterpart is able to replicate an
Arrow-Debreu credit security. Moreover, contrary to CW, where in-the-money Amer-
ican/European puts struck within the corridor [0, B] cannot exist (because the equity
price can never enter in the corridor), in our setting, in-the-money puts exist. That
is, the put replicating the credit contract is not necessarily DOOM, but rather a low
strike-price (LSP) European put.

This result means that the price of European (not American) puts that expire at
the coupon date is linear in the strike price falling within the corridor. This linearity
leads to an implied-volatility skew for low strike prices. The volatility soars because,
within the corridor, the put payoff is not the capped difference between the strike and
equity prices as in a benchmark setting, but rather the strike price. It follows that for
riskier firms, such as speculative-grade firms, we can have linear-in- the-strike-price put

prices and a very steep skew at certain maturities. By contrast, for investment-grade



firms, these linear-in-the-strike put prices should correspond to a thinner corridor.
Finally, we provide several extensions of the model to incorporate short-term rollover
of debt, the acquisition of a distressed firm, or the following one. Perhaps in normal
times, that is, when defaulting is not an option for equityholders, the firm can easily
absorb/finance any outflows. However, perhaps in bad times, that is, when defaulting
is an option, debt markets are tapered, and therefore only fresh injections of new cap-
ital can support the outflows and daily operations of the firm, keeping the same firm
alive.® In this scenario, that is, in the bad times, we show a default corridor exists.
Section 2 relates our work to the literature. Section 3 motivates our endogenous-
default corridor in a coupon-bond model. Section 4 prices European puts in a default
corridor. Section 5 provides two extensions of the corridor and Section 6 concludes.
An appendix contains omitted proofs and shows the corridor in a general discrete-time

setting.

2 Related literature

This paper is related to two strands of the literature. First, it is related to the literature
on the link between tail risk, credit risk, and equity derivatives and on the spanning
property of option markets (Cremers et al., 2008; Coval et al., 2009; Carr and Wu,
2009 and 2010; Collin-Dufresne et al., 2012; He et al., 2017). Kelly et al. (2016) study
the US financial-sector tail risk during the 2007-2009 crisis from the price of out-of-the-
money puts. Culp et al. (2018) empirically extend Merton’s put insights. Siriwardane
(2019) uses Carr and Wu'’s default corridor to infer credit-risk spreads. Ibdnez (2020)
develops a measure of default risk based on Leland-type models. This measure is linked
to the default corridor/event of the same endogenous model.

Second, it is related to the literature on the valuation of derivative securities in

3In bad times, retained earnings are exhausted and short-term financing soars. Rolling over the full
face value of debt leads to a maturity rat race (Brunnermeier and Oehmke, 2013). Binding covenants
may limit further indebtness. Directly selling the firm’s assets may be expensive, carrying a discount.



structural models, a problem that until recently (Geske et al., 2016; Bai et al., 2018)
has received limited attention (Toft and Prucik, 1997). Bai et al. (2018) indeed show
Merton’s model explains the price of put options on a risky financial sector better than
a benchmark setting (Kelly et al., 2016). Specifically, all these works emphasize that
even if the asset volatility is constant as in Merton’s model, structural models generate
a leverage effect in a natural way, because equity is a call option on leveraged assets.
In all extant models, however, a default corridor does not exist, which is in contrast to

Carr and Wu (2011) as well as this paper.

3 An endogenous default model

We consider a two-period model N =2, n € {1,2} and respective times 0 < 17 < T5.
We denote by V; the value of the firm’s assets, whose dynamic is left unspecified,
0 <t < T,. The firm issues a two-period coupon bond (Merton, 1974; Geske, 1977),
where 75 is the maturity, D > 0 is the face value, and ¢ x D > 0 is the coupon. In
this structural setting, we denote by r the riskless rate and assume a () risk-neutral
measure exists.

As in any endogenous credit-risk model, the debt service (coupon or face value) is
absorbed by equityholders’ deep pockets (e.g., Leland, 1994; Leland and Toft, 1996’s
rollover model; Manso et al., 2010’s performance-sensitive debt model; Carr and Wu,
2011’s structural model). Otherwise, if the debt service is subtracted from the firm’s

assets or is refinanced, default is delayed until these assets are entirely depleted. Then,
Bi=¢D>0 and Bo=(1+¢)D >0

are the two respective cash outflows at 77 and T5.
We denote by C} the equity continuation value. We assume equityholders’ limited

liability, which implies C; > 0, 0 < t < Ts. It follows that because B,, > 0, defaulting



at T, is optimal if and only if
On S Bn; n = 1727

with indifference between defaulting and paying the cash outflow if C,, = B,. This

default choice maximizes equity value; that is, it is endogenous.

3.1 Endogenous equity pricing

Given the terminal assets value (V5 > 0), the continuation value of equity is defined

recursively as follows (where, in an abuse of notation, C,, = C,, n = 1,2):

Cy = V52>0, (1)
C, = B [em ™ D max{0,Co — (1+¢) x D}] >0, Ty <t < Ty,

C, = B [e ™ D max{0,C1 —cx D} >0, 0<t < Ty

In particular, C is the price of a European call, whereas (Y is the price of a compound
option. The definition of C; and Cs recognizes the debt service (i.e., the coupon c¢D
and (14 ¢) D, respectively) is absorbed by equityholders’ deep pockets and is never
subtracted from the firm’s assets (i.e., from V; and V5).

Importantly, the process C; is always discontinuous at T} (and T3); that is,

1%rijt—>maX{O,Cl—ch}<Cl if c x D > 0. (2)
1

Although the left-hand-side limit is only well defined if C; does not jump at t = T}
(where ¢t T Ty means t — T3, t < 1), the inequality is always correct (if C} > 0).

In addition, we assume the equity continuation value is strictly positive; that is,

C,>0,te(0,Ty. (3)



As shown next, this assumption implies equity prices are also strictly positive between
cash-outflow dates (i.e., conditional on no previous default), and default is never opti-
mal outside the outflow dates.

To define the ex-cash-flow equity price (denoted by F), which is subject to default

risk, we introduce an auxiliary binary process, a € {0,1}. Namely, ap = 1 and

Ay = Qp—1 X 1{Cn>Bn}7 n = 1,2, ...,N, (4)

and hence a,, = 0 indicates the company has defaulted (i.e., a; =0, j =n,n+1,...,N).

Consequently,

Ey = a3 xCy = lyo;>B) X 1{cy>Bsy X Co, (5)
Ey = a1 xCy = ligspy x Gy, Ty <t < T,

Et = QOXCt:Ct,OSt<T1.

The (ex-cash-flow) equity-price function £, (C,) is discontinuous at 7; and T5.

That is,

E1 = 0if01§CXD, (6)

E, = C;>cx D >0 otherwise,

both with positive probability.* Likewise, either

FEy=0 or Ea=Cy>(14+¢)x D >0.

In particular, because equityowners absorb the entire debt service, conditional on non-

“The process E; is also discontinuous at 77 if the firm survives (otherwise, is zero); that is,

tl%rj{1Et—>max{0,Cl—c><D}< lic,sexpy X C1 if Cy > ex D and ¢ x D > 0,

where the limit is only well defined if Cy does not jump at ¢ = 7.



default (ay = 1), the equity value equals the asset value at Tp; that is, Ey = V5.

Moreover, the discontinuity at 7 implies the equity-price function is also close to
discontinuous right after 7} (which may approximate a corridor for puts expiring after
this instant). That is, if a3 = 1 and T} < t < Ty, E;, = C}, where C; > 0 can be
arbitrarily close to zero. However, in the limit ¢ | T}, F; = C; > ¢ x D, which implies
that for ¢ > T} and ¢ not far away from T3, the probability that C; € [0, ¢ x D] should
be relatively small (i.e., a function of a small ¢t — T}).

Importantly, C; > 0 implies F; = C}; > 0 between outflow dates, conditional on no
previous default. Strictly positive equity prices imply default is not optimal between

outflow dates. Hence, we next focus on outflow dates.

3.2 The endogenous default event and the default corridor

Implicit in the definition of the equity value (i.e., equation (5)) are two endogenous-

default events at periods T} and T5, that is,

{C1 <ecx D} and {Cy<(1+4¢)x D}, (7)

respectively. These two events are endogenous because they maximize equity value,
and are default events because they imply equity value becomes zero. These two default

events define two respective optimal default thresholds, Y; and Y5. That is,

Vi = Yi: Ci(Y1)=cxD and {C) (Vi) <exD}={V; <Y},

Vo = Ya: Cy(Ya)=(14¢)x D and {Cy (V) < (1+¢)x D} ={Va <Ya}.

In general, Y7 > 0 and Y3 > 0 are unique because (i.e., we assume if necessary that)
call-type payoffs are increasing functions in V. If V' depends on stochastic parameters,
Y7 and Y, are threshold functions.

Moreover, because the outflows are absorbed by equityholders’ deep pockets, from



equation (6), these two endogenous default events lead to two default corridors,
[0,¢x D] and [0,(1+¢) x D], (8)

respectively, in which the ex-cash-flow equity price cannot enter. That is, E; ¢ (0, cx D]
and Fy ¢ (0, (1 + ¢) x D], at periods T7 and T, respectively. Thus, at 77, the following

four default events are equivalent:
(Vi<V}, {C1 <ex D}, {E;<cx D}, and {E; =0},

which depend, respectively, on the firm’s low asset value, low continuation value, low
equity value, and exhausted equity value.

Remark 1. As in Merton (1974), C; > 0 is the premium of a European call that
expires at T» (with a strike price equal to (1 + ¢) x D). However, if we consider that
Cy = {Vo — D}*, a default corridor exists at Ty, but it is very thin; that is, [0, ¢ x D].

Note that if we define
C,=E7 [e ™) x max{0,Cy —cx D}, Ty <t < T,
the continuation value (C') is the same process as in equation (1), because
(Vo= (1+0)x D} = {{la= D} —cx D},

implying the definition of the equity price, default events, and default corridor are
robust and carry over for t < T5.

Remark 2. We provide an example in which a default corridor is empty. If ¢ x D
is exclusively paid from the firm’s assets, the default event at T} is trivially given in
terms of the asset value, namely, by {V; < ¢ x D}. This specific default event implies

a default corridor does not exist at 7T, because the equity-price function is continuous



(i.e., zero or larger than zero). That is, if limyp Vi = ¢ x D + ¢, with £ > 0 and
t < Ty, V) =& (after the coupon-payment date), and we assume the value of equity F
is arbitrarily close to zero if & — 0.

Moreover, if ¢} < Vi, that is, if equity value is bound by the value of the assets,
endogenous default leads to an earlier default than if the firm’s managers entirely

deplete the firm’s assets or holdings prior to default.

3.3 European puts, digital puts, and pure credit contracts

We denote by K the strike price of puts and calls. At T}, we show a low strike-price
Furopean equity put becomes a digital put, which replicates a pure credit contract.

That is, for a put with maturity 77, the payoff reduces to

maX{0>K — El} = (K — El) X 1{E1§K} (9)
= K X lg—oy + (K — E1) X liexp<pi <K}

= KXl{El:O} ifKSCXD,

which is a digital option in the case of low strike-price (LSP) puts, namely, K < ¢ x D.
The second equality follows from equation (6).
Then, from equation (6), E, = E, x lyg,>p,}, from which follows 1;p _o =

1{E,<exD}, and hence

max {0, K — E1} = K X Iyg,<cxpy f K <cx D, (10)

which replicates a pure credit contract, in which {F; < ¢ x D} is the endogenous-
default event. In particular, in this endogenous setting, a DOOM put (that replicates

a pure credit contract) is rather an LSP put, for all moneyness.



A similar result follows for Ts, in which By = (1 4 ¢) x D; namely,

max {O,K — EQ} =K X ]-{E2§(1+c)><D} if K < (1 + C) x D. (11)

4 The price of European puts in a default corridor

We study the pricing of European puts/calls in a default corridor.
1) Under the @—measure, from equation (10), the price of an LSP put with maturity

T} is given by
Q[ _—rTy __—rT
E; [e le{Elgch}}_e KxQ(WVi<Y)),K<exD. (12)

Like DOOM puts in Carr and Wu (2011), in our setting, LSP European-put prices are
linear in the strike price falling within the corridor (i.e., K < ¢ x D), a straightforward
empirical prediction. The forward price of this European put, scaled by the strike

price, gives the one-period risk-neutral default probability.

2) In terms of the implied volatility o, where PP% (Ey, o) denotes the Black-Scholes-

Merton put-price formula, we have that
e MK x Q (VL <£Y)) = PP (Ey,0). (13)
Then, the implied-volatility curve o (K) holds that (see the Appendix)

a’(K)xﬁ:%<O,K§ch, (14)

where N () is the cumulative Gaussian-distribution function.
A negative skew (i.e., 0’ (K) < 0) implies LSP puts are expensive. First, they are
more expensive in a default corridor than in a setting of no corridor. That is, compared

to a benchmark setting (in which the put payoff is max {0, K — C;}), LSP European

10



puts that expire at T are overpriced by the following amount (which follows from

Er =153 X Ch):
eirTl X Egg [e*rTlCl X 1{01§min{K,Bl}}j| + eirTIK X E(? |:1{K<01§Bl}] > 0.

Conditional on C; € [0, By], the first (second) term covers the in-the-money (out-of-the-
money) part of the put in the benchmark setting. Second, the deeper out of the money
the put is, the more expensive this put is in implied-volatility units. For instance, in

our numerical exercise, o (K) is unbounded when K — 0.

3) The same linear (in the strike price) result happens in the case of the second-
outflow date T, in which By = (1 + ¢) x D. The price of an LSP put with maturity

T, is given by

Eé? [G_TT2K X 1{E2§(1+c)><D}] (15)

= B¢ e K x 1y,

(C1>ex Dy X1{Cy>(14¢)x D} X Va<(1+¢)x D }

= KX QMW V) +Q(Vi> Y1) xQ(Va<Va)), K< (14¢)xD.

Scaled by the discounted strike price e "?» K, the price difference between two LSP
European puts with the same strike but different maturity equals the probability of

default at T3, namely,
QVi>Y)xQ(Va<Ys) >0, K <cxD,

given that ¢ x D < (1+¢) x D.

4) For no LSP European puts at 77 (i.e., K > ¢ x D),

ES [e7 max {0, K — E;}] (16)

= KX QW <Y) + EF [ (K = By X Lexpem<xy] » K > ex D,

11



and no LSP puts are also more expensive than in a benchmark setting.

5) Lastly, for European equity puts and calls (with respective prices p; and ¢;), with

the same strike price (K) and expiring at the first-outflow date (7}),
K—i—max{O,El - K} = E1 +maX{O,K - El},

which follows from put-call parity at 77. Then, from the law of one price (see the

Appendix), put-call parity at Ty becomes
e MK +cy=Ey+e By x Q (Vi > Y1) + po, (17)

where B; = ¢ x D and Q (V; >Y;) = Q (E; > By). Similar to the case of a paying-
dividend stock, put-call parity is also adjusted, in this case, by e "7 By x Q (V; > Y}).

From the last equation, the call price is given by
co=FEy+e™MBxQ(Vi>Y)) +po—e K. (18)
Specifically, for DOOM puts (i.e., K < By), from equation (12),
co=FEy—e ™ (K—-DB)xQ(Vi>Y). (19)

For example, consider a spread between two co-terminal European calls struck within

the corridor, with respective strike prices K; and Ky, K1 < Ko < B;. Then,

7, (K1) — co (K2)
Ky, — K4

=Q (Vi >Y), (20)

e

which is the one-period risk-neutral surviving probability.

12



4.1 Numerical example

For simplicity, we present a one period version of our model that is based on Merton
(1974). That is, we consider a setting in which equity is a European call on a firm
with value V', and has a strike price of B > 0 and a maturity of 7} (which are the
face value and maturity of a zero-coupon bond). We assume a lognormal asset value,
In % ~N ((7“ — %Z)Tl, o1 1>, where 7 is the riskless rate and o is volatility. From the

Black-Scholes-Merton formula, the equity price is equal to

Ey(Vo)) = Vox N(dig) —e ™ B x N (dyp),

In% + (r+02/2) x T
dip = B (Uﬁ/) ! and dop = dip — o/ T1,

However, we assume equityholders absorb the outflow B > 0, which implies a default

corridor [0, B] exists at T;. That is,
El = max {O, ‘/1 — B} + B x 1{V1>B} = ‘/1 X 1{V1>B}'

First, we emphasize that although puts with the same maturity as debt are expen-
sive if a default corridor exists, in which case B; = B, they are more expensive in the
original Merton’s noncorridor model. That is, if V] is the asset value, although the put
payoff in a benchmark setting is max {0, K — Vi }, this payoff, which equals the strike
price K within the corridor [0, B if K’ < B, is increased by (K + B — V1) x1{p<vi<k+B}
in the latter noncorridor model. Namely, if K < B, these three payoffs, where {V; < B}

is the unique default event, hold:

here, a default corridor
noncorridor exists exists (B1=B) this part implies noncorridor exists (B1=0)
7\ 7\

(K — ‘/1> X 1{V1§K} < : K x ]-{V1§B} - < K x 1{V1§B} + (K+B — ‘/1) X 1{B<V1§K+B} .
N J/ N——  — N - -

TV
benchmark setting equityholders absorb debt debt is repaid by selling the firm’s assets (original model)
(V1 is the asset value; ~ ~ -
K is the put strike price) Merton’s structural model (B is the face value of a zero-coupon bond)

Moreover, for put maturities that are shorter than the debt maturity, a corridor does

13



not exist—the two put payoffs in Merton’s model are the same.
Consider a European equity put, with strike price K > 0 and maturity 77 as well.
Given the same maturity of the equity claim (or Merton’s call) and this equity-put

derivative, and given that E; = Vi x 14,5}, the price of this equity put simplifies to

po = EZ [e’rTl max {0, K — E1}] (21)
= ¢ MK x B [Ly<py] + B¢ [e7 (K = Vi) X Ipavi<i]
= e_TTlK X N(—d2B)

+ (e_rTlK X (N (—dgK) — N(—ng)) — Vb X (N (dlK) — N(dlB))) X 1{K>B}7
where d; o are defined akin to d; o5 with K instead of B. In particular,
po=e€ "MK x N(—dyp), K < B.

Conversely, for a reciprocal call with the same maturity and strike price, the payoft

in terms of the asset value is given by

max {0, By — K} = max{0,V; x lyy>p — K}

= max {0,V — K} X 1>y + (Vi — K) X Lixkepany,

where the first (second) term corresponds to strike prices higher (lower) than B. It
follows that, in contrast to a benchmark setting, low strike-price (i.e., K < B) calls
are underpriced, because they pay nothing if V; € (K, BJ.

Following Carr and Wu (2011), we define B as a low strike price, B = 3. We
assume o = 30%, r = 2%, a maturity of 77 = 6 months, and four equity prices Ey =
{2.03,3.03,4.03,6.03}, which are associated with the asset values of Vy = {5,6,7,9},
respectively. Each price implies a risky, healthier, sound, and super sound firm. For

asset values lower than 5, the implied volatility of low strike-price equity puts quickly
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soars above 100%. In Figure 1, we show the four implied-volatility curves, for a range

of strike prices K € [1,20]. Hence, the volatility-smile function, ¢ (K), solves
po(0=03)=e MK x N(—dag,0 (K)) — Vo x N (—dix,0 (K)), (22)
and in particular, for K < B,
e K x N(—dyg,0 =0.3)=e ™K x N(—dag,0(K)) — Vo x N (—dig,0 (K)).

From Figure 1, one can see that for risky firms (i.e., Vj < 6), the default corridor
generates a clear volatility smile, with large implied-volatility levels away from the
money. However, for sound firms (i.e., V5 > 7), the default corridor generates more
of a volatility smirk, where the implied volatility approximates the asset volatility for
strike prices higher than B = 3. We also see that the riskier the firm, namely, the lower
Vb, the larger the implied volatility, which is an example of a leverage effect. These

results are robust to the maturity, 77 € {3,6, 12} months.

*** to include Figure 1 ***

5 Extensions of the Endogenous Default Corridor

We now provide two extensions. In the first we amend the model so that outflows occur
in one of two regimes: a good state of the world and a bad one. In the second extension,
we allow for control of the firm’s assets to pass from equityholders to creditors.
Extension 1: That equityholders absorb cash outflows in bad times is sufficient for
the existence of an endogenous default corridor. Specifically, because we assume a firm
cannot refinance any outflow B; > 0, the default corridor and the defaulting region are
given by the same interval [0, By|. However, if we split the surviving region (B, 00) into
two complementary regions, (Bj,b] and [b, 00), where By < b, but we allow refinancing

in the good-times region [b, 00), the default corridor is given by [0, min (By,b — By)].
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That is, the equity price is now given by

Ei(Cy) = Cy x Licy>Biy — Br X ey,

which 1mphes E1 (Cl l Bl> = B1 and E1 (Cl l b) =b— Bl 2 0.
It follows that if good times start soon (i.e., if b < 2B;), we have a thinner corridor
[0,b — By] at the first-outflow date; otherwise, the corridor is [0, B;]. How equity-

holders’ deep pockets absorb cash outflows explains the size of the default corridor.

Extension 2: As endogenous models assume, substantial evidence shows default
is not entirely random, but rather firms default in poor economic conditions or with
expired debt (Asquith et al., 1994; Campbell et al., 2008; Giesecke et al., 2011; Davy-
denko, 2012). However, because a bankruptcy has severe economic consequences from
layoffs to large distress costs, creditors may have a say in default (Carey and Gordy,
2007).

Therefore, assume the following scenario in which endogenous default is rather
delayed. In hard times, in the interval C; € [0, By|, the equity price is either 0 or
larger than By, (where 0 < By, < Bip) until all uncertainty is resolved—in which
case, either £y = 0 or, if the firm survives, F; > B;. This setting supports Carr-Wu’s
corridor [0, By, after the outflow date and until uncertainty is solved, as well as an
endogenous corridor [0, B;] if the uncertainty has an expiring time. In this setting,
the key assumption is the equity price cannot slip in the corridor, namely, if B, is
meaningful. We illustrate this example with the (tentative) takeover of a distress firm.”

The distressed firm needs fresh capital, and a large shareholder (L1) announces a
capital-injection plan, but only if (in addition to banks extending a new credit line and
bondholders increasing the maturity of expiring loans so all stakeholders contribute) it

gets control of the firm (>50% of shares). L1 offers a price per share of 0.67—an offer

®Specifically, we offer the example of the Spanish retailer DIA, with thousands of employees and
a wide presence in Europe. Like many other retailers facing serious competition, it has suffered a
decline in demand (poor sales) which has led to greater financial pressures as its debt matures. See
for example, https://elpais.com/economia/2019/04/26/actualidad/1556263740 217086.html

16



expiring in six months. In six months, two mutually exclusive scenarios are possible:
Either L1 does not get control and hence (no capital injection but firm default and) the
equity price sinks to zero, or L1 gets control and the price per share is 0.67 or above.

However, because other equityholders want a better deal than 0.67, they not only
put at risk the L1-control plans and solvency of the firm, but also push down the price
per share to a low 0.34 during this six-month period. Associated with this potential
takeover, two default corridors exist for the troubled firm. First is a Carr and Wu’s
(2011) corridor [0,0.34] during the six months. Second is a corridor in six months, at
the offer expiring, in which the price is either zero or above 0.67. The following (DIA

Spanish retailer) stock price in Figure 2 seems consistent with both corridors.
*** to include Figure 2 ***

For this distressed firm, in a perfect world, the quotes of low strike-price Ameri-
can/European puts or credit default swaps expiring in six months can be used to get
the risk-neutral probability of .1 not gaining control, and the firm stock price jumping
to zero. Actually, a price per share of 0.34 represents a 50% risk-neutral probability of

each of the two scenarios (either zero or 0.67).

6 Empirical prediction

The striking insight of Carr and Wu (2011) is that the protection leg of a CDS contract
can be replicated by rolling over American DOOM puts (up to a scale factor that
depends on the expected recovery value of the bond and the strike price of the put).
Moreover, Carr and Wu show empirically that the change in CDS spreads and the
change in American DOOM put prices are cointegrated, a result that supports the
equivalence between both contracts.

We do not conduct a similar test to price contracts in this paper, but we do lay out

a possible approach for analyzing the empirical usefulness of our model. Specifically,
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we suggest examining a set of CDS-spread quotes and a set of prices for short-term
DOOM American puts on the same firms. Assume the recovery value is zero, the strike
price is 1, and the interest rate is also zero (otherwise, we can scale every contract).
Assuming a strategy of rolling over the puts, and collecting data on the initiation of
the next put contract, we can compute four averages: (i) The CDS payment leg, which
is given by the sum of quarterly payments if the firm did not default, and fewer in the
case of default. (ii) The CDS protection leg, which is either zero or 1 (give zero bond
recovery). (iii) The rollover cost of the puts; (iv) The realized payoff (i.e. exercise
value) of the puts, which depends on whether default occurred. We expect the DOOM
puts will finish (near) out of the money for non-defaulting firms, whereas we also expect
their payoff will be (close to) the strike price in the event of default.

Because American-style puts can be early exercised—even suboptimally exercised
(Ibanez and Paraskevopulos, 2009)—we consider European instead of American DOOM
puts. Fortunately, the former is easily synthesized from the latter counterpart. That
is, detaching the early-exercise-premium from the American put price, we obtain the
European put price. For DOOM puts or low riskfree interest rates, this premium is
indeed small (and can be approximated by zero). The payoff of the European put is
given by assuming exercise only at the option maturity. In this latter case, we do not
have to observe when every American put option was exercised.

CDS contracts and DOOM puts are similar if the averages based on (i) and (iii),
as well as the averages based on (ii) and (iv), are similar. Further, we can obtain two
estimates of the credit-risk premium by comparing the averages in (i) and (ii) (in (iii)
and (iv)) for CDS securities (DOOM puts). This credit-risk premium is clearly related

to a negative-jump risk premium extracted from equity and option prices alone.

6See Cheng et al., 2018, for a credit-equity relative value strategy based on these concepts.
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7 Concluding remarks

This paper shows an endogenous credit-risk model generates a default corridor [0, B].
This corridor is linked to the endogenous-default event, { £ < B}, in which F is the ex-
cash-flow equity price and B > 0 is given by the outflows (i.e., debt service and negative
earnings minus cash dividends). In this setting, the default corridor only necessarily
happens at coupon dates, which implies the low strike-price put (that replicates a
pure credit contract) is not DOOM American but rather European style. The corridor
[0, B] is especially relevant for speculative-grade firms, which are more leveraged and
therefore have larger coupons (B > 0). If the early-exercise premium is a small fraction
of the American price, such as in a DOOM case, the exchanged-listed American price
can provide a good approximation to the European counterpart, namely, a pure credit
contract.
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8 Appendix

8.1 The implied volatility of low strike-price European equity

puts

For a put option, from the Black-Scholes-Merton formula,

PBY(Ey)) = e ™K x N(—dy) — Ey x N (—dy),

InZe + (r+0%/2) x T
d1 = nK (r 0/) ! and d2:d1—0' Tl,
U\/Tl

which implies the following two Greeks:

opPbs opPhs :
T e x N (—d,) and e EoN' (dy) /11,

where N () is the cumulative Gaussian-distribution function.
In terms of the implied volatility o, the low strike-price (LSP) put price verifies
that

e MK xQ(V, <£Y) = PP (E), K <cxD.
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Then, the implied-volatility function, o (K), holds that

OPPS (Ey)

e xQ(Vy<Y))=e " x N(—dy) + 5
(o

xo (K), K<e¢xD,

implying
o (K)x T, = ¢ x Q (Vi £Y1) = N (—dy)
1 Ey x N'(dy)

—N (=di)
K x N'(dy)

<0, K <ecxD,

which is equation (14). W

8.2 European put-call parity and call pricing

(23)

(24)

We derive the initial value of the ex-cash-flow equity price at T}, where By = ¢D and

ar = l¢c,>p,}- From equation (5), where £y = a,Ch,

E(? [€_TT1E1} = ESQ [G_TTl(llol]
= E(? [G_TTlal (Cl - Bl)] + €_TTlBl X E(? [al]

= Ey+e™MB xQ(Vy >Y)),

because B; is predictable at T.

For European equity puts and calls (with respective prices p; and ¢;), with the same

strike price (K) and expiring at the first-outflow date (7}), from put-call parity at 77,

K +max{0,F) — K} = Ey + max {0, K — E; }.

=c1 =p1

Then, from the law of one price, put-call parity at ¢ = 0 becomes

B_TTIK +co = EO + e_rTlBl X Q (Vi > le) =+ Do,
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The call price is given by
co=FEy+e™MBxQ(Vi>Y)) +po—e K.

As in the case of a paying-dividend stock, put-call parity is also adjusted, in this case,
by e By x Q (Vi > Y)).

Specifically, for LSP puts (i.e., K < Bj), from equation (12),

o = Ep+e™BxQ(Vi>Y)+e ™MK xQ(Vi<Y))—e ™K (27)
= Ey+te™MBxQ(Vi>Y)—e ™MK xQ(Vy >Y)

= Ey—e ™M (K-B)xQ(Vi>Y).

For example, consider a spread between two co-terminal European calls struck within

the corridor, with respective strike prices K; and Ky, K1 < Ko < B;. Then,
co(Ky) —co(Ko) =e ™ x (Ky — K1) x Q (Vi > Y1), (28)

which implies the following surviving probability, % = xQ(Vy >Y)).

For no LSP puts (i.e., K > Bj), from equation (16),

co = FEy+ €_TTlBl X Q (Vl > Yl) (29)
+e MK x Q(Vi <YV1) + EF [e7 (K — Ey) % Lipep<ry] —e ™K

= EO — €_TT1 (K — Bl> X Q(‘/l > Yl) + EOQ [e_TTl (K — El) X 1{B1<E1<K}] .

8.3 The general model: A default corridor in an endogenous

setting

We show the link between European puts and credit protection is given by endogenous

default.
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1. The endogenous credit-risk model = We study a general discrete-time setting
with stochastic cash flows. Consider a model with N periods, n = 1,2,..., N, and
respective times 0 < 77 < Ty < ... < Tx. We denote by B,, the negative payout rate
of the firm. Thus, B, is an outflow that is paid if B, > 0 (an inflow that is collected
if B,, < 0) by equityholders’ deep pockets, in Leland’s tradition.

The equity continuation value is denoted by C;. We assume equityholders’ limited
liability, implying C; > 0, 0 < ¢. It follows that if B, > 0, defaulting at 7,, is optimal
if and only if

C.<B,,n=12,..N,

with indifference between defaulting and paying the cash outflow if C),, = B,. This
default choice maximizes equity value; that is, it is endogenous.

In addition, we also assume strictly positive values for the process C;; that is,
Ct > 07 te [OaTN]v
which implies default is never optimal between outflow dates.

2. Endogenous equity pricing Given a terminal value Cy > 0, the equity contin-

uation value is defined recursively as follows:
Cy = Ep [e "0 (C, — B,}Y] >0, T, <t < T, (30)
forn=1,2,..., N. The process C; is discontinuous at 7},; that is,
tl%rTnnCta{Cn—Bnﬁ <C, if B,>0,n=1,2,...,N. (31)

Similarly, {C,, — B,}" > C,, > 0if B, < 0.

The ex-cash-flow equity price, as in the previous coupon-bond model, is given by
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EN:CLN X CN and

Ey=a, 1 xCy, T,1 <t <T,, (32)

for n = 1,2,..., N, where ag = 1 and a, is in equation (4). In particular, F; = C,
0 <t < T;. The (ex-cash-flow) equity-price function E, (C,,) is also discontinuous at

T,. That is, either

E,=0 orE,=C,>B,>0 if B, >0,n=1,2,...,N, (33)

both with positive probability. By contrast, in the case of a cash inflow (i.e., B, < 0),
and conditional on no previous default (i.e., a,_; = 1), E,, = C, > 0if B, < 0.

Then, C; > 0 implies E; = C; > 0 between outflow dates, conditional on no previous
default. It follows that default is never optimal between outflow dates. Hence, we focus

on outflow dates. First, we provide an example.

Example In Figure 3, we provide a typical equity path that ends in default at T;.
The firm’s assets mature in four periods. Three deterministic cash flows exist, namely,
By = =5, By = 4, and B3 = 4 (i.e., By < 0 is a cash dividend and By, By > 0
are debt service or outflows). The assets are risky and have an expected value of 7.5
at Ty. The value of the firm is Cy = Ey = 6, which equals the intrinsic value (i.e.,

5—4—4+47.5=4.5) plus some option/upside value (i.e., 6 — 4.5 = 1.5).
*** to include Figure 3 ***

Equity value increases in the first period from Ey = 6 to 7. Namely, right before 77,
the value of equity is 7, that is, C; = E; = 7—5 = 2, which is the (downward-jumping)
ex-dividend equity price. After this large dividend, most of the firm value is option
value (C} = 2). From Tj to Ty, the firm remains stable. Right before T5, the value of
equity is also 2, that is, Cy = Fy = 2+ 4 = 6, and the equity price jumps upwards.

However, after 75 and a high-volatility period, the firm quickly loses value and defaults
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at T3 because C3 = 3 is less than Bs; = 4. Hence, we advance that a default corridor
[0, 4] exists at Ty and T3.

At T3, it is optimal to equityholders to not absorb the debt service but default,
which implies F;, = 0, t > T3. From C3 = 3, and given no additional cash-flows, V3 is
also close to 3 (which is less than the initial expected value of 7.5). In brief, after this
poor path/performance, all stakeholders lose. Equityholders get 5 — 4 = 1, which is
less than the initial equity value of Fy = 6, and debtholders get 4 and 3, instead of the

promised cash flows of 4 and 4, which implies a loss of 1/8 for them.

3. The endogenous default event and the default corridor Implicit in the
definition of the equity value (i.e., equation (32)) are N endogenous-default events;
that is,

{C, <B,},n=12,..N. (34)

These N endogenous-default events lead to the N default corridors, in which the ex-

cash-flow equity price cannot enter. That is, from equation (33),

E,¢(0,B)],n=12,..,N.

In particular, the event {C,, < B, } is equivalent to {E, < B,}, n =1,2,..., N. Natu-
rally, the event/corridor is empty if the cash flow is an inflow, that is, if B,, < 0.

However, because the payout rate B, follows a random process, the N default
corridors are conditional on B,,. Therefore, assuming B,, is one-period predictable, the
only possible default corridor is at time 7 and is given by [0, By] (i.e., £y ¢ (0, By]). In
a general setting with operational leverage, earnings are stochastic; hence, we assume
predictability. In the case of financial leverage, (no floating) coupons and principal are
known since issuance time, and only refinancing costs are random.

Naturally, time advances, and after the first period ends (and conditional on non-

default), the second period becomes a new first period, and we again have a default
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corridor. That is, if C7 > By at T}, we have a new default corridor at T3 if By > 0,

because Es ¢ (0, Bs]. So, without loss of generality, we assume B; > 0.

4. European puts, digital puts, and pure credit contracts At 77, an LSP
Furopean put becomes a digital put, which replicates a pure credit contract. That is,

for a put with maturity 77, the payoff reduces to

max {07K - El} = (K — El) X ]-{Eng} (35)
= K x 1{E1:0} + (K - ETL) X 1{B1<E1§K}

= Kx 1{E1:0} if K < Bl,

which is a binary option in the case of LSP puts, namely, K < B;. The second equality
follows from equation (33). As emphasized above, the latter result only happens for
n = 1, because B, is predictable yet stochastic for n > 1.

Then, from equation (33), E, = E, X 1{g,>B,}, from which follows 1{g —q =

1{g,<B,} and hence
max {0, K — By} = K x Iy, <p,y if K < By, (36)

which replicates a pure credit contract, where {E; < B;} is the endogenous-default
event at 7. In this setting, the DOOM put (that replicates a pure credit contract) is

rather an LSP put.

5. The price of European puts in a default corridor Similar to the coupon-
bond model, in which leverage is only financial (and B; = ¢D), from equation (36),

the price of an LSP European put with maturity 77 is given by

ES? [e””TlK X 1{E1§Bl}] =e "MK x E((;? [1{E1§B1}] , K < By, (37)
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and the same implications follow as in section 3.

That is, LSP European-put prices are linear in the strike price, and the implied-
volatility skew is negative, o’ (K) < 0, K < By. Put options are more expensive in a
default corridor than in a benchmark setting of no corridor. Put-call parity is adjusted
by the cash outflow (for ¢ < T7), and from this parity link, we price call options. All
these results happen for a maturity 77 that is equal to the first-outflow date, in which

the outflow is assumed to be predictable.
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Figure 1: From a default corridor [0, B] at T, we show the implied-volatility curves
generated by European put options. At T}, the value of equity equals Vi X 1y~ py.
We define the corridor by assuming B = 3. The lognormal assets volatility is ¢ =
30%, the interest rate is r = 2%, and the maturity is 77 = 6 months. Equity and
the European equity put have the same maturity. We consider four equity prices,
Ey = {2.03,3.03,4.03,6.03}, corresponding to the four asset values, Vy = {5,6,7,9},
respectively.
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Figure 2: Price per share of Spanish retailer DIA (in Euros) from June 1, 2018, to May
31, 2019. Since October 23, 2018, the company’s stock price looks consistent with a
default corridor.
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Figure 3: In a default corridor, a typical equity path that ends in default. The firm’s
assets mature in four periods. Three deterministic cash outflows exist, By = —5,
By = 4, and Bs = 4, where B; < 0 is a dividend and By, B3 > 0 are debt payments.
The initial value of the firm is Fy = 6. At T}, equityholders receive a dividend of 5,
and equity falls from 7 to 2. T3 to T5 is a calm period, equityholders pay a debt service
of 4, and equity jumps from 2 to 6. After 75 and a high-volatility period, the firm
quickly loses value, and equityholders choose defaulting at T35 because the value of the
assets is 3, which is lower than the debt service of 4. That is, E; =0, t > T5.
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