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Abstract: One of the main challenges posed by the healthcare crisis generated by COVID-19 is
to avoid hospital collapse. The occupation of hospital beds by patients diagnosed by COVID-19
implies the diversion or suspension of their use for other specialities. Therefore, it is useful to have
information that allows efficient management of future hospital occupancy. This article presents a
robust and simple model to show certain characteristics of the evolution of the dynamic process of
bed occupancy by patients with COVID-19 in a hospital by means of an adaptation of Kaplan-Meier
survival curves. To check this model, the evolution of the COVID-19 hospitalization process of two
hospitals between 11 March and 15 June 2020 is analyzed. The information provided by the Kaplan-
Meier curves allows forecasts of hospital occupancy in subsequent periods. The results shows an
average deviation of 2.45 patients between predictions and actual occupancy in the period analyzed.

Keywords: health econometrics; COVID-19; Kaplan-Meier; decision; optimization

1. Introduction

One of the conclusions drawn from the analysis of previous health crises is that pre-
vention strategies are necessary to cushion the impact of a pandemic of the characteristics of
the COVID-19 disease (Lai et al. 2004; Zhao et al. 2020). Currently, prevention strategies are
also key to control the occurrence of new outbreaks of this disease. Goscé et al. (2020) shows
that immediate action in the early stages of the epidemic in the affected London boroughs
would have slowed the spread. Unpredictability in the implementation of measures to
contain an epidemic has the immediate consequence of overloading the healthcare system.
The result is massive and unexpected hospital admissions, creating a national problem of
unforeseeable dimensions.

Public health agencies report epidemic curves periodically, focusing on laboratory
confirmed cases of COVID-19 using the various diagnostic tests. However, epidemic
curves based on laboratory-confirmed cases show disease detection, but do not help to
efficiently forecast hospital bed occupancy or intensive care unit (ICU) bed occupancy
(García-Basteiro et al. 2020). The main challenge facing the governments of countries
affected by the pandemic is to prevent the healthcare system from collapsing or becoming
so stressed that it cannot adequately care for patients with COVID-19 or other pathologies.

Following the outbreak of the COVID-19 pandemic, a remarkable effort has been
made to obtain reliable information on mortality and critical events in patients affected
by the disease. For example, Vaid et al. (2020) show an application of machine learning
techniques to this question, using Extreme Gradient Boosting together with comparable
baseline methods to provide some prospective insight into relevant changes in patient
status. These models are able to identify at-risk patients and underlying correlations
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that were not explicitly observed before by experts. However, relevant to the present
work, this provides valuable information on the status of the pandemic, but also useful
data for the management of a hospital’s resources: knowing how many intensive care
beds could be available a week earlier could save lives. More information on machine
learning techniques for management during the COVID-19 pandemic can be found in, for
example, (Roimi et al. 2021) or (Domínguez-Olmedo et al. 2021) and the references therein.
To improve prospective techniques and adapt current machine learning technology, other
procedures that blend statistical analysis and artificial intelligence have also proved useful.
The reader can find applications of the so-called state-space models for inference in the
paper (Zhou and Ji 2020) and the references cited in it (see Imani and Ghoreishi 2021)
for some applicable current developments of this technique. Other aspects of COVID-19
management that are relevant and affect public health have also been addressed using
machine learning tools.

Reliability Analysis or Survival Analysis is the set of procedures used to analyze data
in which the latent variable is the time that elapses from a well-defined initial instant to the
occurrence of a certain event or final instant. This variable represents the time of life, for
example relapse of a patient with respect to a certain pathology, death, or the occupation of
a bed. From a mathematical point of view, this variable is represented by a non-negative
random variable (Cox and Oakes 1984). One of the most popular models to describe
how to estimate and graph survival curves is the Kaplan-Meier (KM) model (Kaplan and
Meier 1958). We use this model to estimate hospital occupancy for patients who have been
diagnosed with COVID-19.

The Kaplan-Meier curve of bed occupancy by COVID-19 patients (KM curve) rep-
resents the management capacity of hospital institutions, and can be considered as the
“fingerprint” of the system’s response to an increasing number of admissions. It acts as the
transfer function in the control system that mathematically expresses the balance between
inputs to the system (new patients) and outputs (discharged or deceased patients), which
can be represented as a convolution of the inputs with the KM curve (Calabuig et al. 2020).1

The KM curve we refer to is the one that represents the statistical distribution of the proba-
bility that an admitted patient remains in the hospital; in this sense, it can be understood
as the survival function of the virus. Our treatment is independent of the disease process
during the course of the patients’ stay in the hospital, and of the factors that aggravate the
disease, (Vincent and Taccone 2020), focusing attention on the statistical distribution of the
time a patient stays in the hospital.

The aim of this paper is to present the survival analysis performed on the data of
hospital admissions and discharges of COVID-19 patients during the second quarter of 2020
in two hospitals in Spain. The aim is to show how the procedure can be used systematically
to provide simple and easy-to-analyze evidence of the state of the healthcare systems
at each point in time and prospectively in a short interval of one-two weeks. The main
methodological hypothesis that we assume for the application of the model is that, basically,
hospital management will be similar in all the waves of contagion that are being suffered
to the first one that was recorded before the summer of 2020 in Spain. However, the
model can be improved by feeding back data in different periods. The implementation of a
machine learning algorithm would provide more optimal information for future prediction
of hospital occupancy. The unavailability of more recent data has prevented us from
refreshing our model and, therefore, from applying these techniques with updated data. In
any case, from the data available to us, it is possible to extract the relevant KM curves that
allow us to predict the behaviour of hospitals in crisis situations, although the dynamics of
admissions would not be the same (although similar). Moreover, although estimating the
input function is the weak point of any model, the convolution of its extrapolation with
the KM curve can help to dampen the error made in this approximation. This information
provides us with an estimate of hospital occupancy, allowing us to adapt in the following
weeks the future occupancy of other specialties to the estimated needs. Additionally,
according to (O’Hagan and Stevens 2004), it is possible to estimate the average total cost
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per patient and obtain an economic evaluation generated by the occupancy due to this
disease. After the emergence of the COVID-19 crisis, numerous investigations on the
estimation of the risk of severe disease in similar mathematical frameworks have been
developed (see, for example, Liang et al. 2020; Zhao et al. 2020).

In addition to the one we propose in this work, there are different methodologies that al-
low estimating the bed capacity of hospitals during the pandemic. Garcia-Vicuña et al. (2020)
analyze on the one hand, the inflows of patients affected by SARS-CoV-2 where the Gom-
pertz curve is proposed after studying models based on the growth curves of the twenty
most affected countries until 15 June 2020. On the other hand, they analyze the imple-
mentation of the simulation model (DAS) applied in the first outbreak in the Autonomous
Community of Navarra (Spain), based on different procedures according to the information
available on hospitalized patients. Bhandari et al. (2020) analyzed the survival curves
of 987 COVID-19 patients from SMS Medical College, Jaipur (Rajasthan, India) where
censoring is also established, as in our case, by hospital discharge or death. Although the
data reported in the cited article differ significantly from those analyzed in the present
work, they do show some coincidences; it should be taken into account that the health
systems of the two countries on which our analysis is based (Spain and India), are different.

Given the assumptions we make—which we have already explained—, the following
considerations must be taken into account for the application of our model.

1. It should be borne in mind that this is essentially an extrapolation, so the results
should be interpreted with the greatest of reservations.

2. It should also be noted that, since data input was closed on that day, it is assumed
that on August 31 the number of patients admitted for COVID-19 was zero.

3. All patients are considered to complete their hospital stay, i.e., there are no cases that
are not followed up. This has relevance within the classic Kaplan-Meier model (empty
set of censored population).

4. Some statistical aspects related to the reliability of the solution (error bars, expected
deviations, etc.) are only partially presented, since we intend to convey the most
relevant information of the solution of this complex problem. This information can be
found in part in the tables presented at the end of the paper.

2. Materials and Methods
2.1. Method

The Kaplan-Meier survival model consists of estimating the probability that an indi-
vidual who has a given property—which is lost over time—will continue to keep it over
time t (Kaplan and Meier 1958). The time variable takes discrete values and is counted by
days, starting at t = 0. If we write P(t) for this probability, we can estimate it by

P(t) =
n(t)
N

=
N − d(t)

N
, t ∈ N, (1)

where N = n(0) is the total amount of individuals in the population, n(t) is the number of
individuals still having the property at the time t, and d(t) is the number of individuals
leaving the group—deceased, either not having the property or not being under control
anymore—after the time t. The canonical example is given by the so-called survival curves:
for example, the distribution of survival time of patients after heart transplantation.

In our context, we apply these curves for the case in which we consider a given popula-
tion of COVID-19 patients admitted to a hospital, and n(t) the number of these individuals
still in the hospital after t days. This allows us to describe the hospital dynamics, i.e., the
number of hospital beds that have been used by COVID-19 patients, when considering a
flow of new cases. The function P(t) is then an estimate of an ideal distribution function
P(t) that would describe the global behavior of the flow of patients through the hospital.
We can then apply the classical statistical framework to estimate some relevant parameters
of the flow. Let us recall that, in general, if we have a continuous probability distribution
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p(t) and we want to determine the expectation of the value of any random variable X(t) in
an interval [0, t], we can write it as the integral

t

∑
s=0

p(s) X(s) ds = E[X](t)

However, the Kaplan-Meier curve does not give such a distribution function but an
estimate of the probability of the virus to survive in the control group of patients after t
days, and so we have to rewrite this equation to get the desired estimated value of any
random variable in an interval [0, t]. Let [0, T] be a discrete interval measured in days. Let
us consider a real function J : [0, T]→ R that gives any property that can be assumed to
be proportional to the number of patients (for example, the number of beds to be used,
hospital rooms, number of intensive-care ventilators, or the number of patients itself). Our
model is based on the construction of an estimate of the total amount of this quantity by
means of the estimate of the number of new cases entering the hospital, and its convolution
with the “pressure function” J representing the “new needs” of the variable J at the time t.
Let us compute the total amount H of the “need” J after some days t = 0, 1, 2, . . . . At the
day t = 1, if there is a need equal in t = 0 equal to J(0), it produces a real need given by
the rate of the value of J(0) for the estimate of the rate of the patients that are still at the
hospital, P(1). Therefore, we have that at the day t = 1 the estimate of H is given by

H(1) = J(0) P(1)

For t = 2, we have the part of I(0) corresponding to the rate of patients that are still in the
center, P(2)—that is, J(0)P(2)—, plus the part of J(1) corresponding the rate of patients
that have been 2− 1 = 1 days, that is J(1)P(1), what gives a total amount of

H(2) = J(0)P(2) + J(1)P(2)

Following this rule, we can write the general formula of the accumulated need H at the
day t as the convolution equation

H(t) =
t−1

∑
s=0

J(s) · P(t− s), t = 1, 2, 3, . . .

Note that we are starting to compute J at t = 0—to initialize the original need—, but the
model starts to work at t = 1. Using this equation, if we consider J(t) to be the function I(t)
of the number of new cases entering the hospital on the day t, we have that the estimate
of the total number of infected patients D(t) still in the hospital on the day t is given by
the equation

D(t) =
t−1

∑
s=0

I(s) · P(t− s), t = 1, 2, 3, . . .

Of course, we do not know the exact value of the function P, but we can use the
estimate of the probability given by the formula we started from to obtain an estimate of D.
Anyway, we can also give a parameterization of such a function P and calculate an error
band, as will be seen later, although it is not necessary to use this method. This simple
model allows us to calculate, from the information obtained during the first wave of the
epidemic (before August 2020), the number of patients in the hospital at a given time, once
a good estimate of the function of new cases I is known. Also, as has been explained above,
the model can be used for doing a prospective of any particular service of the hospital, for
example the number of occupied beds in rooms of intensive care. It is not our intention to
explain here the construction and main properties of our adaptation of the Kaplan-Meier
model to this special case; the interested reader can find all the explanations and main
equations in (Calabuig et al. 2020) and the references therein. To estimate the occupancy,
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we programmed an algorithm using R software (R Core Team 2020). In addition, we use
several standard R packages for the computations and plots, as survival (Therneau and
Grambsch 2000) or ggplot2 (Wickham 2016).

2.2. Material

Based on the anonymized statistical data provided on admissions and discharges of
COVID-19 patients from the Andalusian Health Service in the hospitals of Granada from
March 2020 to September 2020, the Kaplan-Meier survival curve for the SARS-COV2 in
these hospitals was calculated. The sample consists of 1.176 patients who were admitted
between 11 March and 15 August, the date on which the de-escalation period ended in the
Andalusia region.

Let us provide a basic statistical description of the database of admissions and dis-
charges by group. The database consists of 625 men and 551 women. Figure 1a shows the
box plot that allows us to visualize the differences and the distribution of observations by
gender. Considering the age of the men and women hospitalized for COVID-19, the mean
age of the 625 men is 65.4 years with a standard deviation of 15.7 and the mean age of the
551 women is 66.9 years and a standard deviation of 18.5. There were only two outliers in
both men and women, very young patients. A computing unpaired two-samples Wilcoxon
test provides significant differences between the ages at admission at 5% significance with
a p-value of 0.03069. Figure 1b shows the box plot with respect to the number of days
of hospital stay. An asymmetric distribution is observed with a large number of patients
having prolonged stays. Patients who suffer a worsening of the disease and do not die,
have prolonged stays in intensive care units and later in recovery units of more than
30 days. Table 1 shows the results for stays by gender in the period analyzed.

Table 1. Statistic summary COVID-19 occupation by gender.

Min. 1st Qu. Median Mean 3rd Qu. Max

Man 1.00 6.00 9.00 12.75 15.00 107.00
Woman 1.00 4.00 8.00 10.64 13.00 73.00

(a) (b)

Figure 1. Gender Box plot of the age of patients admitted to hospitals in the Metropolitan Area of Granada by COVID-19.
(a) Age, (b) Length.

3. Results
3.1. Kaplan-Meier Curves Obtained

The Kaplan-Meier curve for the period analyzed in the hospitals of Granada can be
seen in Figure 2, and the results obtained are shown in Table 2. For example, the probability
that a patient is occupying a bed for 8 days is between 0.47 and 0.54 assuming a significance
level of 1%. For a set of observations of 1159 patients, the mean estimate for the survival
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curve gives 11.764 days of average length of stay, with 9 days being the median estimate.
The estimate of the deviation yields a value of 0.333 days.

Table 2. Results of the survival analysis for hospital occupancy by patients with COVID-19 in the
hospitals of the Metropolitan Area of Granada between 11 March and 15 June 2020.

Time N.Risk N.Event Surv Std.Err Lower Upper

1 1159 50 0.96 0.01 0.94 0.97
2 1109 57 0.91 0.01 0.88 0.93
3 1052 57 0.86 0.01 0.83 0.88
4 995 83 0.79 0.02 0.75 0.82
5 912 74 0.72 0.02 0.69 0.76
6 838 79 0.65 0.02 0.62 0.69
7 759 89 0.58 0.03 0.54 0.61
8 670 82 0.51 0.03 0.47 0.54
9 588 63 0.45 0.03 0.41 0.49

10 525 71 0.39 0.04 0.35 0.43
11 454 55 0.34 0.04 0.31 0.38
12 399 40 0.31 0.04 0.28 0.34
13 359 41 0.27 0.05 0.24 0.31
14 318 34 0.25 0.05 0.21 0.28
15 284 37 0.21 0.06 0.18 0.24
16 247 21 0.19 0.06 0.17 0.23
17 226 18 0.18 0.06 0.15 0.21
18 208 21 0.16 0.07 0.13 0.19
19 187 14 0.15 0.07 0.12 0.18
20 173 20 0.13 0.08 0.11 0.16
21 153 14 0.12 0.08 0.10 0.15
22 139 11 0.11 0.08 0.09 0.14
23 128 15 0.10 0.09 0.08 0.12
24 113 10 0.09 0.09 0.07 0.11
25 103 5 0.08 0.10 0.07 0.11
26 98 6 0.08 0.10 0.06 0.10
27 92 9 0.07 0.11 0.05 0.09
28 83 4 0.07 0.11 0.05 0.09
29 79 7 0.06 0.11 0.05 0.08
30 72 3 0.06 0.12 0.04 0.08
31 69 9 0.05 0.13 0.04 0.07
32 60 5 0.05 0.13 0.03 0.07
33 55 1 0.05 0.13 0.03 0.06
34 54 3 0.04 0.14 0.03 0.06
35 51 6 0.04 0.15 0.03 0.06
36 45 3 0.04 0.15 0.02 0.05
37 42 3 0.03 0.16 0.02 0.05
38 39 2 0.03 0.16 0.02 0.05
39 37 1 0.03 0.16 0.02 0.05
40 36 1 0.03 0.17 0.02 0.05
41 35 5 0.03 0.18 0.02 0.04
42 30 2 0.02 0.19 0.01 0.04
45 28 2 0.02 0.19 0.01 0.04
46 26 1 0.02 0.20 0.01 0.03
47 25 2 0.02 0.21 0.01 0.03
51 23 2 0.02 0.22 0.01 0.03
52 21 2 0.02 0.23 0.01 0.03
53 19 1 0.02 0.23 0.01 0.03
54 18 1 0.01 0.24 0.01 0.03
55 17 2 0.01 0.26 0.01 0.02
57 15 1 0.01 0.27 0.01 0.02
60 14 1 0.01 0.28 0.01 0.02
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Table 2. Cont.

Time N.Risk N.Event Surv Std.Err Lower Upper

63 13 1 0.01 0.29 0.00 0.02
64 12 2 0.01 0.31 0.00 0.02
65 10 1 0.01 0.33 0.00 0.02
67 9 1 0.01 0.35 0.00 0.02
68 8 1 0.01 0.38 0.00 0.01
71 7 1 0.01 0.41 0.00 0.01
73 6 2 0.00 0.50 0.00 0.01
75 4 1 0.00 0.58 0.00 0.01
84 3 1 0.00 0.71 0.00 0.01
91 2 1 0.00 1.00 0.00 0.01

Figure 2. Kaplan-Meier curve for hospital occupancy by patients of the COVID-19 in the hospitals of
the Metropolitan Area of Granada between 11March–15 June 2020.

Another issue to take into account is described by the risk function2, that is, the
probability that a patient admitted for COVID-19 will leave the hospital on day t. While the
survival function focuses primarily on the “non-occurrence” of the event (probability that
the patient is occupying a bed on day t), the hazard function focuses on the “occurrence” of
the event, i.e., that the patient leaves the hospital. This function provides useful information
because it provides an occupancy rate. On the other hand, the cumulative risk function
shown in Figure 3, provides the cumulative sum for the considered event (a patient leaves
a free bed) on day t.

The results of the Kaplan-Meier curves and hazard ratios by gender and age groups
are presented in the corresponding figures below. Figure 4 shows the Kaplan-Meier curve
by gender for hospital occupancy by COVID-19 patients in hospitals in Granada between
11 March–15 June 2020. We used the Bonferroni method (see for example Tripathi and
Pandey 2017) to verify that there are significant differences between both curves, being
the probability of staying at least t days higher in men than in women. The computations
show statistical differences between man and woman with a p-value equal to 0.00015. The
risk functions are shown in Figure 5.



Econometrics 2021, 9, 38 8 of 16

Figure 3. Cumulative Risk Curve for hospital occupancy by patients of the COVID-19 in Granada
hospitals between 11 March–15 June 2020.

Figure 4. Kaplan-Meier curve by gender for hospital occupancy by COVID-19 patients in Granada
hospitals between 11 March–15 June 2020.

Figure 6 shows the Kaplan-Meier curves by age ranges for hospital occupancy by
COVID-19 patients in Granada hospitals between 11 March and 15 June 2020. Using the
Bonferroni method, we studied whether there were significant differences between all of
them. The only pair that does not present significant differences is between the curves of
the age ranges 31-49 years and 50–65 years with a p-value of 0.3371. Therefore, these two
age ranges can be analyzed together when estimating hospital occupancy. Additionally,
the cumulative hazard function (Figure 7) shows us that the risk of leaving the hospital
is high for patients aged 0–30 years after 25 days. Patients in the 31–49 age range have a
constant risk of leaving the hospital after 55 days. The cumulative risk rises for patients
over 65 years of age at 75 days and finally, at 90 days, for patients between 50 and 65 years
of age.
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Figure 5. Risk curve by gender for hospital occupancy by COVID-19 patients in Granada hospitals
between 11 March–15 June 2020.

Figure 6. Kaplan-Meier curve for hospital occupancy by patients of the COVID-19 in Granada
hospitals between 11 March–15 June 2020.

Figure 7. Risk curve for hospital occupancy by patients of the COVID-19 in Granada hospitals
between 11 March–15 June 2020.
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3.2. Occupancy in Intensive Care Units

Patient occupancy in intensive care units (ICU) represents the most sensitive problem
in the management of this disease for several reasons. Firstly, because the number of beds
is more limited. Secondly, because the occupancy rate has remained around 75% between
2013 and 2018, a level close to saturation (Eurostat 2020). The third and most worrying
reason lies in the fact that patients in the Intensive Care Units of the COVID-19 have a
much longer average length of stay. Consequently, the analysis of KM curves in these units
becomes more necessary than in the rest.

We analyzed the KM curve of virus survival in the Intensive Care Units (ICU). We test
our model based on the data provided by the Andalusian Health Service for the ICU of the
Virgen de las Nieves Hospital during the months of March to June. The sample consisted
of 75 patients who were admitted between 20 March and 15 August. Figure 8 shows the
KM curve for the analyzed unit. On this case a manifest prolongation of stays is observed,
for example, the probability of being at least 19 days in the ICU is 50% and between 9
and 11 days is 75%. The estimation of the cumulative hazard function estimated by the
maximum likelihood method is shown in Figure 9 and Table 3 shows the events, risk and
confidence interval for the probability that a patient is at least t days occupying an ICU
bed. The mean length of stay in this unit is 20.40 days, with a standard deviation of 2.32
and a median of 14 days.

Table 3. Results of the survival analysis for ICU occupancy by COVID-19 patients at the Virgen de
las Nieves Hospital.

Time N.Risk N.Event Surv Std.Err Lower Upper

1 75.00 6.00 0.92 0.03 0.79 0.97
2 69.00 3.00 0.88 0.04 0.74 0.95
3 66.00 2.00 0.85 0.05 0.71 0.93
4 64.00 4.00 0.80 0.06 0.65 0.89
5 60.00 4.00 0.75 0.07 0.59 0.85
6 56.00 1.00 0.73 0.07 0.58 0.84
7 55.00 2.00 0.71 0.07 0.55 0.82
8 53.00 3.00 0.67 0.08 0.51 0.79
9 50.00 1.00 0.65 0.08 0.49 0.77

11 49.00 4.00 0.60 0.09 0.44 0.73
12 45.00 1.00 0.59 0.10 0.43 0.72
13 44.00 3.00 0.55 0.11 0.39 0.68
14 41.00 5.00 0.48 0.12 0.33 0.62
16 36.00 2.00 0.45 0.13 0.30 0.59
18 34.00 4.00 0.40 0.14 0.26 0.54
19 30.00 3.00 0.36 0.15 0.22 0.50
21 27.00 2.00 0.33 0.16 0.20 0.47
22 25.00 3.00 0.29 0.18 0.17 0.43
23 22.00 1.00 0.28 0.19 0.16 0.42
25 21.00 1.00 0.27 0.19 0.15 0.40
26 20.00 1.00 0.25 0.20 0.14 0.39
27 19.00 1.00 0.24 0.21 0.13 0.37
28 18.00 1.00 0.23 0.21 0.12 0.36
30 17.00 1.00 0.21 0.22 0.11 0.34
32 16.00 1.00 0.20 0.23 0.10 0.33
33 15.00 2.00 0.17 0.25 0.08 0.30
34 13.00 1.00 0.16 0.26 0.07 0.28
35 12.00 1.00 0.15 0.28 0.06 0.27
37 11.00 1.00 0.13 0.29 0.05 0.25
38 10.00 1.00 0.12 0.31 0.05 0.23
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Table 3. Cont.

Time N.Risk N.Event Surv Std.Err Lower Upper

39 9.00 1.00 0.11 0.33 0.04 0.22
43 8.00 1.00 0.09 0.36 0.03 0.20
44 7.00 1.00 0.08 0.39 0.02 0.18
47 6.00 1.00 0.07 0.43 0.02 0.17
49 5.00 1.00 0.05 0.49 0.01 0.15
78 4.00 1.00 0.04 0.57 0.01 0.13
83 3.00 1.00 0.03 0.70 0.00 0.11
84 2.00 1.00 0.01 0.99 0.00 0.09

Analogous to what happened in the occupancy of beds by patients in the COVID-19,
Figures 10 and 11 show a significant difference in occupancy by gender and age interval. As
in the previous case, men have longer stays and, on the other hand, patients over 50 years
of age show the same behaviour.

Figure 8. KM curve for ICU occupancy by COVID-19 patients in the Virgen de las Nieves hospital.

Figure 9. Risk curve for ICU occupancy by COVID-19 patients in the Virgen de las Nieves hospital.
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Figure 10. KM curve for ICU occupancy differentiated by gender in COVID-19 patients in the Virgen
de las Nieves hospital.

Figure 11. Risk curve for ICU occupancy differentiated by age intervals for the COVID-19 patients in
the Virgen de las Nieves hospital.

3.3. Estimated Hospital Occupancy

Based on the data provided on admissions and discharges of patients with COVID-
19 by the Andalusian Health Service during the months of March to June (first wave
of COVID-19 infections), Kaplan-Meier curves were calculated to analyze the incidence
on occupancy in hospitals in Granada. According to (Calabuig et al. 2020), it has been
explained that an estimate of hospital occupancy can be made by convolving the KM curve
with the estimated admissions function.

We will show how we can estimate the prediction error using validation or test sets.
To do this, we use patient admission and discharge data from the COVID-19 between
16 June and 9 September to test the goodness of fit. The survival curve calculated in the
period from 11 March to 15 June provides a COVID-19 patient occupancy model. With this
nonparametric estimation we can approximate the balance of patient occupancy between
16 June and 9 September from the convolution of a (linear) extrapolation of the admissions
during the previous period with the KM curve. This estimate can be compared with
the actual COVID-19 patient occupancy data for the same period. Figure 12 shows the
calculated simulated balance curve (blue line). On the other hand, the red curve represents
the real balance for the analyzed period. It can be seen that, although linear extrapolation
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is a rather poor model for estimating the number of new patients, the result is quite
good, revealing that convolution with the KM curve gives a robust model that provides
reasonable results even with naive estimates of the admission functions. To quantify the
error of the prediction, we use the root mean square error

RMSE =

√
n

∑
i=1

(yi − ŷi)2/n (2)

where yi represents the real balance of occupancy and ŷi denote the simulated occupancy
for each day i ∈ {1, . . . , n}. We obtain a value for the RMSE of 2.4245 patients. The
simulated curve is higher than the real one because in the analyzed period the incidence in
occupancy was much lower. The knowledge of treatments for the fight against the disease
has led a decrease in patient stays, reducing them to 7.88 days. Even so, the deviation
obtained by the RMSE is sufficiently small and does not significantly affect the occupancy
of a hospital floor.

Figure 12. Actual and simulated COVID-19 patient occupancy balance between 16 June and 9 Septem-
ber in the hospitals of Granada.

Some researchers have endeavored to compute good estimates of this function using,
for example, Gompertz-type curves, as done by (García-Basteiro et al. 2020), or SIR-type
models as in (Cooper et al. 2020) or (Varotsos and Krapivin 2020). However, this is, in fact,
the weak point of the models, since, as it has been shown during the whole crisis, it is really
difficult to model the spread of the virus and, therefore, the number of new infections.
Therefore, our model, which provides relatively good estimates with poor estimates of the
admission function, could be useful at least for short-term forecasting.

On the basis of admissions to the ICU units of the Virgen de las Nieves hospital, from
16 August to 15 October 2020, we tested the goodness of fit of the model. In order to do it,
we first estimated the discharges from this unit through convolution with the Kaplan-Meier
curves, that were obtained in the first period using ICU data. Using this estimate, the
balance of admissions and discharges or exitus of this unit can be calculated. Thus, a
simulated bed occupancy curve for the ICU units of the hospital can be obtained. On the
other hand, we have the real data, which correspond to the discharges or exitus in the same
period. Figure 13 shows both balances. We can calculate the root mean square error (RMSE)
between the actual values yi of ICU occupancy and the estimated values ŷi. We obtain a
value for RMSE of 2.1533 patients. As with non-ICU bed occupancy, we obtain an overesti-
mation of the model. This variation could be partly due to a substantial improvement in
survival among SARS-COV2 patients admitted to critical care, (Dennis et al. 2021).
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Figure 13. Real and simulated balances of occupancy in the ICUs by COVID-19 between 16 August
and 15 October at the Virgen de las Nieves hospital.

4. Conclusions

This paper presents a methodology to provide a short-term estimate of hospital bed
occupancy. When contagion in a given region is communal, hospitals suffer high stress, gen-
erating serious occupancy problems. Predicting patient occupancy allows healthcare man-
agers to update hospital activity in the short term in order to optimize available resources.

The Kaplan-Meier curve of the bed occupancy by COVID-19 patients, together with
convolution-type mathematical operators, provide a prediction of the balance of available
beds in the following weeks. Additionally, the hazard function estimates the probability
that a patient will leave a bed free on day t. Based on the data provided by the Andalusian
Health Service on admissions and discharges of patients with COVID-19 in the hospitals of
Granada from March to August, Kaplan-Meier curves and virus survival risk curves are
calculated. The sample consists of 1176 patients who were admitted between March 11 and
August 15. Assuming that no pharmacological solutions and treatments have been found
to significantly reduce the severity of the disease, it can be expected that the temporal
distribution of bed occupancy by COVID-19 patients will not change significantly in the
coming months. In order to test the goodness of fit of the model, we estimate the balances
based on the discharges of new patients with COVID-19 between August 16 and October
15 at the Hospital Virgen de las Nieves in the city of Granada.

The comparison between the estimated occupancy balances and the actual occupancy
balances gives satisfactory results. The experiment was repeated with the occupancy of
patients in the intensive care units, obtaining also satisfactory comparative results. The
comparative study between COVID-19 patients in the ICUs and the rest of the COVID-
19 patients is necessary, since the descriptive statistics show different results. The most
seriously ill patients with this disease require longer hospitalizations and more exhaustive
care, and therefore this group and the management of the corresponding service should be
studied independently. It should be noted that the estimation of ICUs occupancy is crucial
to analyze the activity of a hospital and its elasticity to provide a suitable response in a
crisis. In summary, we can affirm that the models presented here and based on survival
curves can be useful tools for the management of occupancy in the different units of a
hospital, as well as for the management of all human resources and general services.
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Notes
1 By convolution we mean the mathematical operator that transforms the input function Fe and the Kaplan-Meier (KM) function

into a third function, which represents quantitatively how the inputs accumulate in the system and progressively leave it after a
certain period of time.

2 In the case we are dealing with we assume that there is only one risk, the risk that a patient leaves a bed free for any reason.
Thus, the risk is interpreted as (1− P) being P the probability corresponding to the Kaplan-Meier distribution.
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