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Abstract: This paper tests if air pollution serves as a carrier for SARS-CoV-2 by measuring the effect
of daily exposure to air pollution on its spread by panel data models that incorporates a possible
commonality between municipalities. We show that the contemporary exposure to particle matter is
not the main driver behind the increasing number of cases and deaths in the Mexico City Metropolitan
Area. Remarkably, we also find that the cross-dependence between municipalities in the Mexican
region is highly correlated to public mobility, which plays the leading role behind the rhythm of
contagion. Our findings are particularly revealing given that the Mexico City Metropolitan Area did
not experience a decrease in air pollution during COVID-19 induced lockdowns.

Keywords: pandemic; SARS-CoV-2; carrier; mobility

JEL Classification: C23; C51; Q53; I14

1. Introduction

The COVID-19 pandemic is one of the most severe health crises in recent memory. The
official death toll worldwide surpassed 4.5 million as of 15 September 2021. Considering
reporting problems in some countries, the actual death toll may not be known for several
years. In economic terms, Rodríguez-Caballero and Vera-Valdés (2020) recently show
that shocks originated by pandemics in recent times such as COVID-19 seem to have
a permanent effect on growth and unemployment. Even though the pandemic is still
ongoing, much knowledge has been gained in the past few months regarding the effect
of air pollution on morbidity. The most prevalent comorbidities seem to be hypertension,
diabetes, cardiovascular and respiratory diseases; see Chudasama et al. (2020); Farias
Costa et al. (2020); Yang et al. (2020), among others. Furthermore, some evidence has been
obtained regarding the effect that air pollution has on morbidity.

At the local level, the evidence seems to point to a positive correlation between
long-term air pollution exposure, particularly Particulate Matter (PM), and the death toll
due to COVID-19. Refs. (Bianconi et al. 2020; Comunian et al. 2020; Conticini et al.
2020; Frontera et al. 2020; Gupta et al. 2020; López-Feldman et al. 2021; Son et al. 2020;
Travaglio et al. 2021; Yao et al. 2020) find a positive correlation between exposure to
PM 2.5, inhalable particles with diameters of 2.5 micrometers and smaller, and a higher
number of deaths for the United States, Italy, and Asian cities, among other countries. In
contrast, Rodriguez-Villamizar et al. (2020) do not find evidence of an association between
long-term exposure to PM 2.5 and COVID-19 mortality rate at the municipality level in
Colombia, while Vera-Valdés (2021) finds there is no evidence at the macro-level. Moreover,
the evidence of the effect of PM 10, inhalable particles with diameters of 10 micrometers
and smaller, and SO2, sulfur dioxide, on the number of deaths is less established.

Furthermore, some authors have analyzed the short-term correlation between air
pollution and the number of cases and deaths due to the pandemic (Borisova and Komis-
arenko 2020; Setti et al. 2020). Previous studies for other viruses and bacteria inspire the
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hypothesis that air pollution could act as a carrier for the virus (Groulx et al. 2018; Marquès
et al. 2021). That is, the air pollution-to-human transmission channel.

Simultaneous reductions in air pollution and mobility due to lockdowns could lead
to loss of evidence to support the carrier hypothesis. For instance, Coccia (2021) find that
the effect of air pollution on deaths is larger before the lockdowns, while the effect of
interpersonal contacts is maintained. The authors use population density as a proxy for
interpersonal contacts. A shortcoming of their selected interpersonal contacts factor is that
it does not change during the lockdown, making it harder to disentangle the effect of the
human-to-human transmission channel.

In this paper, we disentangle the effect that air pollution and mobility restrictions have
on the spread of SARS-CoV-2 using daily data on the death toll, the number of cases due to
COVID-19, and contaminants (PM10, and PM2.5) for every municipality from the Mexico
City Metropolitan Area (MCMA). The particular characteristics of the MCMA in terms of
its high level of workers in the informal sector and the high population density make it
an interesting test case. In contrast to other regions, air pollution levels in the MCMA did
not significantly decrease during the lockdowns, see Vera-Valdés and Rodríguez-Caballero
(2021). Thus, the region’s specific characteristics allow us to assess the effect that air
pollution levels have on the spread of the virus as an exogenous factor from the economic
restrictions. In this regard, the MCMA serves as an ideal test case for the carrier hypothesis.
To the best of our knowledge, we are the first to test if air pollution serves as a carrier for
SARS-CoV2 by controlling for the effect of mobility restrictions.

The complex interaction of the studied phenomenon makes that pure cross-sectional or
time-series econometric models are not the best choice to provide comprehensive insights.
To achieve our goal, we form a balanced panel data using the variables of the municipalities
from the MCMA explained just above. We make use of the Exponent of Cross-sectional
Dependence test of Bailey et al. (2016) to investigate the degree of inter-linkages between all
variables involved in the study. The literature on cross-sectional dependence distinguishes
between weak (e.g., spatial models) and strong (e.g., factor models) types of dependence.
After ensuring stationarity, we find that the municipalities’ cross-dependence is very strong
encouraging the use of common factor structures to avoid inconsistent estimates commonly
found in panel models that ignore such cross-sectional dependence.

We employ panel data models whose strong cross-sectional dependence is introduced
by unobservable common factors that may have different effects on the number of daily
cases or the number of daily death toll across municipalities. Such factors could include,
to mention a few, public mobility across municipalities, or climate conditions. The het-
erogeneous impact of such factors may be consequence of country/municipality-specific
economic or mobility restrictions due to the current pandemic, or the own population
lifestyle in a region. We estimate the model adopting two different approaches; (i) by the
common correlated effects approach proposed by Pesaran (2006), and by the unobservable
multiple interactive effects approach of Bai (2009), see Westerlund and Urbain (2015) for an
analytical comparison between both approaches.

Our findings indicate that contemporaneous exposure to pollutants is not statistically
significant in explaining the virus’s spread once we account for cross-sectional dependence
between municipalities. Moreover, we show that this unobservable common factor is
highly correlated to public mobility, measured using data from the COVID-19 community
mobility reports collected by Google (2020). Consequently, we argue that contemporaneous
exposure to pollutants is not the main driver behind the number of cases and deaths due
to COVID-19 in the short-term, but the public mobility.

Our results also provide a clear explanation behind the non-significant contemporane-
ous effects find, inter alia, by López-Feldman et al. (2021), who use a microeconometric
approach to show that long-term air pollution exposure (through PM2.5) increases the
probability of death due to COVID-19 in the MCMA, particularly for the elderly.

Overall, joining results from literature focused on the long-term and that of this paper
with emphasis on the short-term, policymakers will find two relevant warnings.
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First, long-term exposure to air pollutants is associated with a higher COVID-19 death
toll. Thus, pollution-reducing policies can lessen health risks in the long term.

Second, this pandemic has shown that the worst scenarios are emerging in areas
commonly associated with high population density and a highly dynamic lifestyle. Hence-
forth, to help control the death toll due to COVID-19, we invite governments to implement
policies to reduce mobility during the pandemic. Since mobility constraints are the main
driver behind the pace of contagion, it can help in reducing the number of deaths due to
COVID-19 in the short term.

The rest of the paper is organized as follows: Section 2 describes the geographic region
where the MCMA is located, the complex dynamic lifestyle of the city, the government
restriction due to COVID 19, and the data used in the study. Section 3 explains the
econometric methodology employed in the paper. In Section 4, stationarity and the type of
dependence of data is investigated, while Section 5 presents the main results of the effect
that air pollution and mobility restrictions have on the spread of SARS-CoV-2. Section 6
discusses some possible extensions and limitations of the study. Finally, Section 7 concludes.

2. The Mexico City Metropolitan Area

Mexico City is the capital and largest city of Mexico. The fastest growth rate in the
city occurred in the middle of the last century due to industrialization that caused large
rural to urban migrations. Furthermore, population migrations impacted the growth of
some satellite towns in the east and the north of the city. Nowadays, these sectors are still
the most crowded zones of the MCMA; see Figure 1.

Figure 1. MCMA’s population (in thousands) in 2019. Source: Compiled by the authors using official data from state,
municipal, and locality boundary files from the Mexican National Institute of Statistics, Geography and Informatics (INEGI).

The metropolitan-wide transport network is mainly composed of a system of 12 sub-
ways lines, six bus-rapid-transit (BRT) corridors, and another peripheral BRT system that
cover some municipalities in the border of the MCMA. Most of the recent transport lines
have connected the areas of higher population density aforementioned with the financial
and business districts of the city, which are mostly located in the center (Benito Juarez,
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Cuauhtemoc, and Miguel Hidalgo municipalities). Figure A1 in Appendix A shows the
daily mobility from the most populous periphery towards the city center in 2019. As
seen, there is a decrease in the intensity of the mobility in these public transports on
weekends, showing that during non-working days, the financial and business districts are
less crowded.

Air quality is one of the MCMA’s biggest problems. Located in a valley surrounded
by mountains and an average altitude of 2200 meters above sea level, the city’s topography
does not help to disperse pollution. Air pollution is generated by a wide range of economic
activities. However, the city’s local government has concentrated its efforts to reduce
contaminants generated by the dense daily traffic of one of the heaviest congested cities
in the world according to the TomTom Traffic Index1. Consequently, air pollution is
frequently trapped above the city, allowing pollutants to accumulate given the basin’s
limited ventilation.

The highest concentration of pollutants is frequently observed in the city’s industrial
northern section; see Figure 2. Even if it is a bit challenging to attribute the sources of pollu-
tants, several authors point out that the high concentrations of some contaminant particles
in the northern MCMA are a consequence of industrial processes and waste incinerators in
the northern part of the city (Moffet et al. 2008; Molina and Molina 2002). Furthermore,
Guerra (2015) finds that municipalities with a higher proportion of households with one or
more cars are located in the south and western sections of the city, which shows that there
is a low correlation between municipalities with the highest proportion of households with
cars and the most polluting regions of the city.

(a) (b)

Figure 2. Plots of annual average of contaminants PM10 (panel a), and PM2.5 (panel b) in ppb in the MCMA in 2019. In each
panel, the darker the region, the more polluted it is. Source: Compiled by authors using data by Mexico City’s Automatic
Air Quality Monitoring Network (RAMA).

2.1. Data

The data for this analysis come from Mexico City’s data repository2.We gathered
data on PM 10 and PM 2.5 levels at all stations, and the number of cases and deaths due
to COVID-19 for every municipality. The data cover the pandemic’s first wave from 12
January 2020, to 31 July 2020.

Furthermore, we collected daily data on mobility from the COVID-19 community
mobility reports collected by Google (2020). The reports were based on anonymous data
from people who opted-in to storing their location history. For context, 74.7% of the
population had access to smartphones, and Android is the operating system in 91% of
smartphones sold in the country; see Instituto Federal de Telecomunicaciones (2020). Thus,
the data are reliable for detecting public mobility variations.
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Each report contains information about mobility in six categories: retail and recreation,
grocery and pharmacy, parks, transit stations, workplaces, and residences. The data
cover several months and reports percentage changes in mobility from a baseline day
representing a typical value for that day of the week. The baseline day is the median value
from the 5-week period 3 January to 6 February 2020. In the analysis, we focus on the first
four mobility indexes described above, given the high level of weekly seasonality for the
index on workplaces and the negative relation of the residences index with the rest.

2.2. Restrictions Due to COVID-19

To slow the spread of contagion in the first wave, the Mexican Government established
“La Jornada Nacional de Sana Distancia” (JNSD) on March 23, 2020; see Secretaría de Salud
(2020). The goal of the plan was to impose social distancing measures and reduce the
spread of the virus by personal hygiene recommendations, guidelines for care of the
elderly, suspension of activities deemed non-essential, and cancelling mass gathering
events. The preventive measures ended on 30 May 2020, and were replaced by regional
restrictions. Given the uniformity of the restrictions and thus the much simpler evaluation
of compliance, we use JNSD in the first wave to evaluate their effects on mobility and
air pollution. Figure 3 shows that JNSD produced a significant decrease in mobility in
the MCMA.

Figure 3. Google mobility indexes in the MCMA. JNSD is shown in the shaded area.

It has been shown that mobility reductions are correlated to a decrease in the number
of COVID-19 cases (Kraemer et al. 2020; Nouvellet et al. 2021). Thus, we would expect
the reduction in mobility in the MCMA to affect the number of cases and deaths due to
COVID-19.

Regarding air pollution, the evidence of the effect that restrictions due to the pandemic
had on them is mixed. Significant reductions in air pollution are encountered in, among
others, Brazil, India, Spain, and USA (Baldasano 2020; Berman and Ebisu 2020; Nakada and
Urban 2020; Shehzad et al. 2020). However, Adams (2020) finds that levels of PM 2.5 did
not change in response to a region-wide state of emergency in Ontario, Canada. Figure 4
displays pollution series (PM2.5 and PM10) in the MCMA from July 2019 to July 2020 and
reveals that the MCMA did not experience a significant reduction in air pollution during
and after the COVID-19 lockdown, see Vera-Valdés and Rodríguez-Caballero (2021) for
formal statistical tests. Thus, in contrast to other countries, the hypothesis of air pollution
serving as a carrier for SARS-CoV-2 can be tested without endogenous decreases in the
level of air pollution due to the restrictions.
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Figure 4. Air pollution indexes in the MCMA. The figure shows the actual levels (solid), and the fitted values to a test for
change in level (dashed). JNSD is shown in the shaded area.

3. Econometric Methodology

Panel data models have been widely used in recent years as an alternative to handle
the large number of time series recently found in modern empirical exercises. The main goal
is to disentangle the complex phenomena due to the facility of exploiting the heterogeneity
presented between cross-section units.

Parallel to the literature on dynamic factor modeling, unobservable common factors
have been also used in the second-generation of panel data models, which assume that a
factor structure drives the (strong) cross-dependence among units. Such models are called
panel data with cross-sectional dependence. We employ such models to unravel the effect
of mobility restrictions and contemporaneous air pollution exposure on the number of
cases and deaths due to COVID-19. The applied literature frequently uses two popular
approaches to estimate these factors.

A first approach is the Common Correlated Effects Mean Group (CCEMG) method
of Pesaran (2006) that uses cross-sectional averages of the observable variables as good
proxies for unobservable common factors. The second approach is the interactive fixed
effects (IFEs) method proposed by Bai (2009). Instead of filtering unobserved common
factors by a cross-sectional average of observed variables as in the CCEMG method, the
IFE method estimates the common component together with the structural parameters
of the panel model using Principal Component Analysis (PCA), which requires a prior
knowledge of the number of factors.

Our interest in using this model is twofold: (i) controlling for time-invariant effects
such as population density, average income level, etc.; and (ii) assessing the effect of control-
ling for the time-variant commonality between municipalities. The common factor allows
us to control for variables like mobility restrictions affecting the entire MCMA, and avoid
the simultaneity problem due to the nature of the factor structure, see Bai and Ng (2008).

To test if contemporaneous exposure to air pollutants is associated with SARS-CoV-2
spread, we consider the following model. Let the subindex (i, t) be the observation on the
i-th municipality at time t for i = 1, . . . , 21; t = 1, . . . , 137; and consider the following linear
panel data model with cross-sectional dependence
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Yit = αi + β1,iPM10i,t−k + β2,iPM25i,t−k + eit,

eit = λ
′
iFt + εit,

(1)

where Yit is the number of cases or deaths as the case may be, PM10 and PM25 are
air pollution measurements, the lag k controls for incubation time of the virus (with
k = 7, 14 days), and αi controls for all time-invariant confounding factors usually called
as fixed effects. Remaining controls include health and economics variables that may
affect the number of cases or deaths but that do not change in the period covered like
population density, age distribution, healthcare expenditure, life expectancy, obesity levels,
etc. Furthermore, eit has a factor structure where λi is a (r× 1) vector of factor loadings;
Ft(r × 1) is a vector of common factors so that λ′iFt = λi1F1t + · · · + λirFrt; and εit are
idiosyncratic errors. Finally, it is assumed that λi, Ft, and εit are all unobserved.

Estimation of the model is performed using three approaches; (i) the Mean Group
(MG) estimator of Pesaran and Smith (1995), (ii) the CCEMG method of Pesaran (2006), and
iii) the Interactive Fixed Effects (IFE) method proposed by Bai (2009). These approaches
allow us to assess the effect that the common factor has on the specification. MGE is based
on the average of individual regressions and assumes that municipalities are independent
of each other; thus, the common factor, Ft, is not considered.

Under Pesaran’s approach, the main interest is to estimate the slope heterogeneous
coefficients β j,i for j = 1, 2 which are computed by β̂i =

(
X′iMXi

)−1X′iMyi, where Xi =

(xi1, . . . , xiT)
′ are the explanatory variables; yi = (yi1, . . . , yiT)

′ the explained variable;

and M = IT −H
(

H′H
)−

H′ the projection matrix, with H = (h1, . . . , hT)
′ a matrix of

cross-sectional averages for the observables, and
(

H′H
)−

denote the generalized inverse

of
(

H′H
)

. The CCEMG estimator for a particular pollutant is obtained by βCCEMG =

1
21 ∑21

i=1 βi.3 See Pesaran (2006) for technical details.
On the other hand, IFE estimation is based on a two-step procedure to capture the

common factor and handle the commonality among municipalities. In the first step, IFE
estimates the slope coefficients, while in the second step, the factor structure is extracted
using Principal Component Analysis on residuals from the previous step.4 Then, the
estimator for β is obtained by solving

β̂PC =

(
N

∑
i=1

X′iMFPC Xi

)−1 N

∑
i=1

X′iMFPC yi, and

1
NT

N

∑
i=1

(
yi − Xi β̂PC

)(
yi − Xi β̂PC

)′
F̂PC = F̂PCV̂

where MFPC = IT − F̂PC

(
F̂′PCF̂PC

)−1
F̂′PC, with a T × r matrix F̂PC consists of the main r

eigenvectors (×
√

T) of the matrix 1
NT ∑N

i=1

(
yi − Xi β̂PC

)(
yi − Xi β̂PC

)′
, while V̂ is the r× r

diagonal matrix that has the r largest eigenvalues.
As mentioned before, the factor structure can absorb classical additive individual and

time effects, nevertheless, as Bai (2009) points out, it is a good idea to model them explicitly
to avoid inefficient estimators. Therefore, we consider a particular IFE model that includes
the joint presence of additive and interactive effects as follows

Yit = µ + αi + ξt + β1,iPM10i,t−k + β2,iPM25i,t−k + λ
′
iFt + εit, (2)

where µ is a constant or grand mean, ξt is the time effect, and the remaining components
are as before. The term interactive effect is used to indicate that the unobserved component,
λ
′
iFt, enters the model multiplicatively, see Bai (2009) for technical details.
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4. Testing for Stationarity and Cross-Sectional Dependence

The first step in our empirical analysis is to establish the statistical properties of our
variables. On the one hand, to motivate the usefulness of our panel data models, we show
that cross-sectional dependence has to be incorporate in the specification by the Exponent
of Cross-Sectional Dependence of Bailey et al. (2016). Since such a test require stationarity,
we run first unit root tests. Additionally, we also need to guarantee stationarity for the
estimation and inferences of the three approaches introduced in the previous section (MG,
CCEMG, and IFE), although non-stationary extensions can be consulted in Kapetanios et al.
(2011), Ergemen and Velasco (2017), and Rodríguez-Caballero (2021).

As natural in time-series analysis, a way to testing the unit root hypothesis is with
standard ADF-family tests 5. Nevertheless, it is well-known that single time-series test
might not reject the null hypothesis of non-stationarity when we have a panel of time
series. Therefore, we also employ two panel unit root tests; (i) the Fisher combination
test (MW) developed by Maddala and Wu (1999), and (ii) the cross-sectionally augmented
IPS (CIPS) test of Pesaran (2007). The first test belongs to the first-generation and ignores
cross-section dependence in the data, whereas the second one allows for the presence of a
single unobserved common factor with heterogeneous factor loadings and belongs to the
called second-generation of panel unit-root tests. Pesaran (2007) exemplifies by simulations
that tests that do not account for cross-sectional dependencies tend to over-reject the null
due to considerable size distortion. Results are summarized in Table 1.

Table 1. Fisher combination (MW) and Cross-sectionally augmented IPS (CIPS) tests for panel unit roots.

MW. Maddala and Wu (1999) CIPS. Pesaran (2007)

Incubation Period
15D 7D 15D 7D 15D 7D 15D 7D

Without Trend With Trend Without Trend With Trend

Death toll 50.778 *** 46.362 *** 41.466 *** 40.858 *** −5.027 *** −5.461 *** −5.597 *** −5.979 ***
Cases 64.173 *** 48.814 *** 130.05 *** 127.100 *** −3.533 *** −3.744 *** −4.511 *** −4.681 ***
PM10 44.345 *** 47.272 *** 57.327 *** 69.405 *** −6.164 *** −6.929 *** −5.173 *** −5.918 ***
PM2.5 41.298 *** 44.364 *** 36.233 *** 41.658 *** −6.295 *** −6.878 *** −5.503 *** −6.100 ***

Notes: This table reports the panel unit root test tests of the variables used in the study for the incubation period of 15 and 7 days. The
null hypothesis in both methods is that panel series is I(1). We set the lag order, p̂ =

[
4(T/100)0.25] = 4 as in Pesaran et al. (2013).

Models without and with trends are indicated in the respective columns. Asterisks (*, **, and ***) indicate significance at the 10%, 5%
and 1% levels, respectively.

As seen in Table 1, the null hypothesis of unit root is strongly rejected in all cases
regardless of whether the cross-sectional dependence is considered in the test or not.
Although we have chosen p̂ =

[
4(T/100)0.25] = 4 lags following Pesaran et al. (2013), we

find same results irrespective of the lag order, p < 4, for all variables under investigation. 6

With stationarity in hand, the next step is to confirm that cross-sectional dependence
should be added in our panel data models. We run the Exponent of Cross-Sectional Depen-
dence of Bailey et al. (2016) to measure the degree of dependence between municipalities
across MCMA. Such a degree, denoted by α, can take any value in the range [0, 1] and
defines the type of dependence as follows: weak for α = 0, semi-weak for 0 < α < 0.5,
semi-strong for 0.5 < α < 1, and strong for α = 1. The last two cases are consistent with
the common factor literature, mainly if α = 1. Table 2 shows results. 7

As reported in Table 2, α̂ is estimated as approximately the unity for all variables,
while the 95% confidence bands lie above 0.5. The findings so far show clearly the presence
of strong cross-sectional dependence, particularly, we highlight that a factor structure can
be assumed to reflect such dependence.
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Table 2. Estimation of cross-sectional exponent and test of Bailey et al. (2016).

α̂ Std. Err. [95% Conf. Interval]

Inc. Period. 15 D

Death toll 0.999 0.067 0.867 1.131
Cases 1.001 0.038 0.925 1.078
PM10 1.001 0.041 0.919 1.083
PM2.5 1.001 0.049 0.904 1.098

Inc. Period. 7 D

Death toll 1.001 0.071 0.860 1.140
Cases 1.001 0.046 0.910 1.093
PM10 1.002 0.047 0.909 1.094
PM2.5 1.002 0.076 0.851 1.151
Notes: This table reports the estimates of the exponent of cross-sectional dependence of variables used in the
study for the incubation period of 15 and 7 days. We use two principle components for the calculation of
(bias-adjusted) α̂.

5. Main Estimation Results

We present the main results on the effects of contemporaneous exposure to air pollu-
tion on the number of cases and deaths due to COVID-19 obtained using the estimators
MG, CCEMG, and IFE, previously introduced. The main goal of this paper is, on the
one hand, detecting whether the exposure to air pollution would increase the rhythm of
contagion or death toll due to the virus SARS-COV2 in the sort-run, and, on the other
hand, identifying whether an unobservable common factor is driving the rhythm of current
pandemic between municipalities in the MCMA. While we focus on the IFE method, we
also present the results obtained using alternative specifications.

Table 3 shows the estimation of the model specified in Equations (1) and (2). As previ-
ously discussed, findings reported in Table 2 indicated the presence of strong cross-sectional
dependence. This is of great relevance because when one estimates a panel model, only
this type of dependence may provoke serious inconsistencies. MG method ignored(semi-)
strong dependence in the model, therefore, MG estimates might be inconsistent due to
an omitted variable bias. In contrast, both the CCEMG and IFE methods added a factor
structure in the specification to account for a strong cross-sectional dependence. In the IFE
method, the number of common factors needs to be specified before estimating the model.
We present results considering only one factor, but results did not differ when assuming
two.8

Results from Table 3 reveal that contemporary air pollution exposure was only statisti-
cally significant for the number of cases and deaths, disregarding the incubation period,
only when the specification neglected a strong cross-sectional dependence (see column
MG). Overall, the use of the CCEMG and IFE methods confirmed the main findings and
provides some further insights. That is, there was no evidence that air pollution served as
a carrier for SARS-CoV-2 in the sort-run once we added a factor structure 9.

Our findings may generate a debate because there is much evidence that argues for a
positive correlation between (long-term) air pollution exposure and the death toll due to
COVID-19, see e.g., Yao et al. (2020), Gupta et al. (2020) and Bianconi et al. (2020). However,
our results are in line with those of Rodriguez-Villamizar et al. (2020) who also find no
evidence of an association between long-term exposure to PM 2.5 and COVID-19 mortality
either rate in Colombia, another Latin American country. A new open question could be
related to unraveling whether the relationship between exposure to air pollution and the
number of deaths from COVID-19 varies according to the economic regions or the social
realities of the countries.
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Table 3. Estimation of specification (1) and (2) considering several incubation periods.

Dep. Variable Daily Death Toll
Incubation 14 Days 7 Days
Model MG CCEMG IFE MG CCEMG IFE

PM10 −0.149 *** 0.017 −0.044 −0.190 *** −0.001 −0.021
(0.031) (0.030) (0.024) (0.045) (0.035) (0.022)

PM2.5 0.240 *** −0.016 0.063 0.0261 *** 0.054 0.031
(0.051) (0.029) (0.039) (0.071) (0.034) (0.024)

constant 4.916 *** −0.090 4.840 *** 5.745 *** 0.152 3.600 ***
(1.316) (0.811) (0.070) (1.493) (0.555) (0.051)

R2 0.547 0.803 0.847 0.538 0.800 0.925
|ρ| 0.239 0.083 0.064 0.636 0.079 −0.061
CIPS −4.802 *** −5.341 *** −5.451 *** −3.503 *** −4.154 *** −4.554 ***
JKSS 55.36 *** 62.29 ***
Dep. Variable Daily number of cases
Incubation 14 days 7 days
Model MG CCEMG IFE MG CCEMG IFE

PM10 −1.139 *** −0.034 −0.019 −1.287 *** 0.027 −0.034
(0.216) (0.198) (0.107) (0.295) (0.101) (0.103)

PM2.5 1.318 *** 0.042 −0.103 1.350 *** 0.082 −0.045
(0.231) (0.242) (0.169) (2.212) (0.216) (0.163)

constant 51.359 *** −0.041 40.100 *** 53.137 *** 1.402 37.300 ***
(11.604) (1.330) (0.309) (11.767) (1.539) (0.291)

R2 0.583 0.931 0.940 0.554 0.933 0.943
|ρ| 0.250 0.066 0.066 0.649 0.061 0.060
CIPS −4.829 *** −5.492 *** −5.674 *** −3.664 *** −3.859 *** −4.149 ***
JKSS 114.11 *** 139.81 ***

Notes: Robust Newey-West standard errors in parentheses (robust against any type of intragroup heteroskedasticity and serial
correlation) for all cases. R2 is the mean of the cross-sectional individual R2 weighted by the overall error variance. |ρ| is the absolute
average correlation coefficient. The null in the CIPS test is not stationarity, see Pesaran (2007). The IFE model assumes joint presence
of additive and interactive effects, bias corrected coefficients are reported in the table, see Bai (2009). The null in the JKSS test is no
factor structure is required in the model. Asterisks (*, **, and ***) indicate significance at the 10%, 5% and 1% levels, respectively.

A further inspection on Table 3 provide some relevant remarks. First, the absolute
average correlation coefficient, |ρ|, indicates that the cross-correlation in the panel decreases
when incorporating a factor structure. Second, the CIPS test of Pesaran (2007) shows that
residuals are always stationary. Third, the specification test proposed by Kneip et al. (2012),
JKSS, shows that a factor structure is always required in the IFE model over classical
additive (individual and time) effects model to describe the data.

To shed light on the nature of the common factor, Table 4 and Figure 5 show that Ft is
highly correlated to the Google mobility indexes in the MCMA reported in Figure 3. There-
fore, the dynamics of COVID-19 spread is mainly due to human-to-human transmission
rather than air pollution-to-human transmission.

Our findings suggest that governments should point to strong and timely restrictions
to mobility measures to prevent and contain the spread of COVID-19 in the short-run
instead of focusing efforts to control air pollution.

To the best of our knowledge, this paper is the first to analyze the joint effect that
reduced mobility and air pollution have on the rhythm of contagion and the death toll
due to the pandemic of COVID 19. Our results showed that mobility restrictions had a
significant effect on reducing the number of cases and deaths due to COVID-19 irrespective
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of the air pollution levels in the short-term. Thus, the carrier hypothesis was not supported
for SARS-CoV2.

Table 4. Common factor correlations with mobility indexes considering additional incubation periods.

Mobility Index Daily Death Toll Daily Number of Cases
Incubation Period 14 Days 7 Days 14 Days 7 Days

Recreation 0.730 0.658 0.447 0.408
Groceries 0.691 0.662 0.488 0.355
Parks 0.751 0.663 0.426 0.296
Transport 0.675 0.588 0.490 0.558

Figure 5. Common factor and Google mobility indexes (scaled) for the specification considering the number of deaths due
to COVID-19 and an incubation period of 14 days. JNSD is shown in the shaded area.

To accompany the analysis of the common component, Figure 6 displays the weights of
factor loadings. Note that the signs are all negative. These loadings show that the municipalities
with the highest number of deaths have the highest (negative) magnitudes. These loadings
indicate the impact of reducing mobility on the death toll during JNSD. Thus, the policy of
mobility restrictions during the JNSD helped to decrease the mortality due to COVID-19. Our
findings indicate that these decrements were considerably more relevant in municipalities
where people’s flux is high, such as in Iztapalapa and Ecatepec; two regions in the MCMA with
the highest rate of population density as detailed in Figure 1.

The analysis of the common factor and loadings revealed what occurred in Mexico in
the first months of the current COVID 19 situation. The federal government declared the
third phase on 21 April 2020, as a consequence of the exponential increase in COVID-19
cases. The contingency plan to fight against the virus at this stage consisted of an unforced
lockdown, contrary to other countries in the world. Although all public events were
officially canceled, and non-essential activities were suspended. As Figure A1 shows,
the daily-life dynamic in the MCMA before the pandemic showed an important flux of
people moving from the periphery of the city (Iztapalapa or Ecatepec) to the business and
financial districts (Benito Juarez or Cuajimalpa), particularly on weekdays. In 2020, thanks
to the aforementioned third phase, the people of the most populated municipalities found
conditions to stop moving to the financial zones. However, when the JNSD officially ended
(on 30 May), some restrictions were relaxed. Consequently, the flux of people increased
again, which is clearly displayed in Figure 5. This analysis of the public mobility in the
MCMA could warn people to try to decrease their activities during the worst time of a
difficult health situation. Of course, if economic conditions allow it. The common factor
also captures this apparent change in the slope immediately after the shaded area.
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Figure 6. Factor loadings.

6. Future Extensions and Limitations
6.1. Future Extensions

A possible future extension may point to analyzing the behavior of factor loadings
over time due to the constant change in social dynamics, which is not assumed in the panel
data model previously considered. Here, we provided some preliminary ideas and results.
We iterate the procedure one more time and estimate the factor model with time-varying
recently proposed by Cataño et al. (2021). The methodology consists of two stages. First,
the common factors are estimated by PCA, and in the second stage, the time-varying
loadings are estimated by an iterative procedure of generalized least squares and wavelet
functions. The advantage of their approach relies on smooth, and progressive variations
(smooth deterministic or seasonal trends) that are assumed to drive the behavior of the
factor loadings. Figure 7 displays results.
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Figure 7. Estimation of the time-varying loadings of model in Equation (2) by Cataño et al. (2021).

At first glance, time-varying loadings indicate a smooth variation with seasonal signals.
Cuajimalpa, Benito Juarez, Ocoyoacac share similar behaviors showing local maximums
and minimums on similar dates, while the remaining share another dynamic with slightly
more seasonal changes along time. Particularly, in Cuajimalpa and Benito Juarez, we can
observe a clear decrease in loadings during the JNSD, which may be related to daily life
in both zones. Then, when the third phase started, these municipalities experienced a
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relevant decrease in people’s flux, helping both zones reduce the rhythm of contagion and,
consequently, the death toll.

6.2. Limitations

There are some limitations in the present study that can be improved in future analyses.
Among others, two of them are:

• Our data only include the first wave of the pandemic in the MCMA. However, a
year after the first wave, as many other countries in the world, Mexico has faced
second and third waves. Unfortunately, the public RAMA database has been moved
to another repository, and it could not be consulted by the time this paper was written.

• Models (1) and (2) do not cover the case where the panel includes a lagged dependent
variable limiting a deeper dynamic analysis. In this respect, possible improvements
can be considering models proposed by Chudik and Pesaran (2015), and Moon and
Weidner (2017).

7. Conclusions

This paper analyzes the relation between air pollution exposure and the number of
cases and deaths due to COVID-19 in the MCMA. We test if air pollution serves as a carrier
for SARS-CoV-2. To the best of our knowledge, this paper is the first to disentangle the
synergistic effect of reduced mobility and air pollution on the virus spread.

Our results show that contemporaneous exposure to air pollutants is only statistically
significant to explain the number of cases and deaths when the commonality between mu-
nicipalities is neglected. Furthermore, the common factor is shown to be highly correlated
to mobility. Consequently, we argue that in the short-term, the dynamics of COVID-19
spread is mainly due to human-to-human rather than air pollution-to-human transmission.
These results are particularly revealing given the fact that the MCMA did not experience a
decrease in air pollutants during the first COVID-19 lockdown.

Our findings’ policy implications are related to the higher death toll scenarios pro-
voked by the current pandemic in areas marked by high population density and a dynamic
lifestyle. Our results suggest that governments should implement policies to reduce mobil-
ity to mitigate health risks due to the pandemic. Since mobility constraints are the main
driver behind the pace of contagion, it can help in reducing the number of deaths due to
COVID-19 in the short-term.

To conclude, we offer a warning to policymakers for the short term. This pandemic
has shown that the worst scenarios are emerging in areas commonly marked by high
population density and with a highly dynamic lifestyle. Then, to help control and not
only mitigate the exceptional rate of contagion and death toll, we highlight the necessity
of implementing policies to reduce mobility, which is the main driver behind the pace of
contagion and it can help in reducing the number of deaths due to COVID-19.
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Appendix A

Figure A1. Plot of the annual average of public transport mobility on weekdays (top) and on
weekend (bottom) in the MCMA in 2019. Subways and BRT lines are indicated in blue and green
colors, respectively. The wider the color lines, the more public mobility. Source: Compiled by authors
using data from INEGI.

Notes
1 The link is tomtom.com/en_gb/traffic-index/ranking/ (accessed on 1 November 2020).
2 Available online at datos.cdmx.gob.mx (accessed on 20 September 2020).

tomtom.com/en_gb/traffic-index/ranking/
https://datos.cdmx.gob.mx/
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3 Mulcollinearity might easily occur in a model in which cross-sectional dependence is approximated by cross-sectional averages
such as in the Pesaran’s approach. Some software codes check automatically for collinearity in data and chose an efficient
algorithm to invert the data matrices. An usual method is by the generalized inverse as in Pesaran (2006).

4 Another difference between both approaches is the assumption regarding slope parameters. The MGE method assumes
heterogeneous parameters, while IFE works with homogeneous slopes, i.e., αi = α, β1,i = β1, β2,i = β2, and β3,i = β3 for all i.

5 The analysis reports that all variables involved are stationary. Results are not reported here for the sake of brevity, but available
upon request.

6 Pesaran’s CIPS test performances well in small-sample in the presence of a single unobserved common factor, however, if the
number of common factors is higher, the test exhibits size distortions. In this respect, Pesaran et al. (2013) propose an extension
to cover a multi-factor error structure. We employ the CIPS and CSB tests proposed for r = 1, 2, 3 number of factors and we find
the same conclusions. Tables are available upon request.

7 We employ the stata routine ‘xtcse2’ provided by Ditzen (2019).
8 The second common factor is correlated to climatological variables such as temperature and wind, which is in line with the

results of Coccia (2021). For reasons of space, the results are not shown here but they are available upon request.
9 The plots for actual and fitted series, as well as that of the residual are available upon request
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