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Abstract: Stips et al. (2016) use information flows (Liang (2008, 2014)) to establish causality from
various forcings to global temperature. We show that the formulas being used hinge on a simplifying
assumption that is nearly always rejected by the data. We propose the well-known forecast error
variance decomposition based on a Vector Autoregression as an adequate measure of information
flow, and find that most results in Stips et al. (2016) cannot be corroborated. Then, we discuss which
modeling choices (e.g., the choice of CO2 series and assumptions about simultaneous relationships)
may help in extracting credible estimates of causal flows and the transient climate response simply
by looking at the joint dynamics of two climatic time series.

Keywords: information flows; vector autoregressions; global warming; climate econometrics

1. Introduction

Causality is fundamental to science. While causal statements can reasonably be
made without hardship in controlled environments, things are far less straightforward
when only observational data are available. Answering the question of what happens
to Y if one intervenes on X is compromised by the simple fact that X and Y were not
generated by exogenously modulating X, but (often) by endogenous interactions between
the two variables.

Yet, for many scientific interrogations of capital importance (like the relationship
between greenhouse gases and global temperature), only observational data are available.
To what extent do different forcings cause global mean surface temperature anomalies
(GMTA) Stips et al. (2016)? Stips, Macias, Coughlan, Garcia-Gorriz, and Liang (2016)
(henceforth, SMCGL) set up to answer the question using information flow (IF) from one
variable to another for bivariate stochastic dynamical systems—a methodology developed
in Liang (2008, 2014, 2015, 2016). The authors make grand claims about the technique being
able to extract “true” and “rigorous” causality, which clashes with the usual somber tone
of causal analysis.

We show that the IF methodology will not extract causality for the near-universe
of bivariate stochastic dynamic systems estimated on real data—with those of SMCGL
included. In a nutshell, this occurs because the Liang (2008) formulas that are used
throughout assume that a certain statistical quantity is zero when it is not. This can be tested
and it is rejected almost all the time. More precisely, the Liang (2014) formula assumes that
when conditioning on the past state of the system (Xt−1 and Yt−1), the remaining variation
in Xt and Yt (the innovations driving the system) are uncorrelated. In SMCGL, where the
time unit t is one year, this implies that forcings and GMTA are uncorrelated within the
same year, conditional on the last year’s values of both. That is unlikely to happen, and the
data will testify to that. The assumption is presented as “linearity” (Liang 2014), but it has
little to do with it. Rather, it assumes that the system is identified, meaning that the joint
dynamics of the time series data fall on the knife edge case where causality can indeed
be claimed from the data without any external assumption (Sims 1980). The problem
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is that for discretely-sampled time series, the assumption is almost always rejected by
lower-frequency data.1 In short, SMCGL assume there to be no identification problem
(in the sense of Sims (1980)), and find no identification problem.

In this note, we detail the consequences of this high-standing omission on IF measures
and SMCGL’s results. First, in simulations (using data-generating processes proposed
by Liang (2014)) of which we know the true causality structure, it is shown that IF will
often conclude that Xt is largely causing Yt, when in fact the reverse is true. Second, we
reconsider a key part of SMCGL’s study where the authors investigate the causal structure
between different forcings and GMTA. Using an appropriate methodology that accounts
for the correlated innovations, it is found that, in most instances, the data by themselves
cannot back SMCGL’s claims. That is, unlike what the authors have put forward, it is not
possible (within this framework) to claim that many forcings are causing GMTA’s increase
as a direct implication of the data. In other words, from the data alone, it is impossible
to discriminate between certain forcings mostly causing GMTA or the reverse. External
assumptions based on physical knowledge could remedy that, or different data. We show
that, in the case of CO2, results in accordance with the scientific consensus can be obtained
when using concentration directly rather than its radiative content.

The alternative methodology that we use is structural Vector Autoregressions (SVAR),
which are simultaneous dynamic systems of equations. They can characterize a linear
dynamic system in discrete time. The methodology was introduced to macroeconomics
by Sims (1980) and has since then entered various fields, ranging from neuroscience
(Chen et al. 2011) to climate (Goulet Coulombe and Göbel 2021). To document its reliability
for this application, we report implied transient climate response (TCR) estimates of
our alternative methodology. We find that those (i) largely depend on the necessary
assumptions made about the simultaneous (with one year) impact of CO2 forcing on
GMTA but (ii) are in the range of recent estimates (Montamat and Stock 2020; Otto et al.
2013) if one assumes simultaneous causality running from CO2 forcing to GMTA.

The remainder of this article is structured as follows: Section 2 briefly reviews IFs and
explains where the problematic assumption occurs. It also discusses relevant notions of
Vector Autoregressions (VARs, Sims 1980) as a comprehensive framework to think about
causality in multivariate time series systems. Section 3 displays IFs possibly spurious
behavior using simulated data where the true causality is known. Section 4 revisits
the question of causality between different forcings and GMTA using appropriate tools.
Section 5 concludes the paper.

2. Information Flows, Non-Innocuous Assumptions and VARs

In this section, we review the basics of IFs as applied in empirical work, pin down
the problematic assumption, explain why it is harmful through the lenses of a VAR,
and propose an alternative measure of IF based on the VAR. Liang (2008) initiate the
derivation of IF by considering the following data generating process (DGP):

dX = F(X, t)dt + B(x, t)dW , (1)

where X = (X1, X2) ∈ R2 are the state variables and F = (F1, F2). W = (W1, W2) is a
standard Wiener process, with ∆W = dW

dt and E(∆Wi) = 0 and E(∆Wi)
2 = ∆t. B is

a 2× 2 matrix and its entries bij govern how perturbations instantaneously impact the
system. At this point, the only non-innocuous assumption is that of a bivariate system.
The information flow from X2 to X1, T2→1, is then defined as

T2→1 =
dH1

dt
−

dH1C2
dt

(2)

where dH1
dt is the evolution of the marginal entropy of X1 and

dH
1C2dt denotes dH1

dt where the
spillovers from X2 are excluded. After lengthy derivations and reasonable assumptions,
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such as Euler–Bernstein approximations, Taylor-series expansions or that the components
of W—which are soon to be called structural shocks—are uncorrelated, it is obtained that

Tj→i = −E
[

1
ρi

∂(Fiρi)

∂Xi

]
+

1
2

E

[
1
ρi

∂2(giiρi)

∂X2
i

]
, (3)

where ρ is the joint probability density of variables Xi and Xj, and ρi denotes the marginal
density of series Xi. Given that the model in (1) is not readily identified from the data, this
is not yet operational. After further derivations and assuming B =

[
bii 0
0 bjj

]
, Liang (2014)

transforms (3) into a workable formula made of empirical moments

Tj→i =
σi,i σi,j σj,∆i −

(
σi,j
)2

σi,∆i

(σi,i)
2 σj,j − σi,i

(
σi,j
)2 (4)

where σi,i is the variance of i, σij, the covariance between i and j, and σi,∆i is the covariance
between i and the kth difference of i (we follow Liang (2015) and set k = 1). However,
the validity of this appealing formula rests on the seemingly technical assumption of
a diagonal B. Our point is that this assumption is far from merely technical and very
frequently wrong. Motivating the diagonal B among other assumptions, Liang (2014) states

Since the dynamics are unknown, we first need to choose a model. As always, a linear
model is the natural choice, at least at the initial stage of development.

The problem is that (i) of course, we must choose an empirical model, but we will
try to avoid those that the data blatantly reject, (ii) B being diagonal has nothing to do
with linearity, and (iii) there is no further potential “development” possible without this
assumption, which, in effect, assumes the causal problem away. As a result, whenever the
diagonal B is violated by the data, IFs—as currently used in empirical studies—provide
spurious causality.

We now use a very popular framework from macroeconometrics to think more clearly
about B. Liang (2008)’s flow of simplifications and assumptions make his once sophisticated
(1) collapse to that of a bivariate VAR with one lag[

X1,t
X2,t

]
=

[
c1
c2

]
︸ ︷︷ ︸

c

+

[
a1

11 a1
12

a1
21 a1

22

]
︸ ︷︷ ︸

A

[
X1,t−1
X2,t−1

]
+

[
b11 b12
b21 b22

]
︸ ︷︷ ︸

B

[
ε1t
ε2t

]
. (5)

The seemingly innocuous assumption is much less so within a statistical framework
relating assumptions directly to observable quantities. Indeed, the uncorrelatedness of
W’s, which here translates to that of ε, combined with b21 = b12 = 0, have a very stark
implication. Let the number of endogenous variables be M and the number of lags P.
Provided imposing M = 2 and P = 1 is reasonable, (4) is valid if and only if regression
residuals

[ u1t
u2t

]
=
[

b11 b12
b21 b22

][ ε1t
ε2t

]
are not cross-correlated. This is easily testable: one needs to

estimate Equations (1) and (2) separately by least squares, collect the residuals, and calculate
their correlation ρu. If the latter is different from zero (and this could be formally tested
with a t-test), then Liang (2008)’s simple formula does not apply. While ρu = 0 might be
plausible in continuous time (or anything near it), this is a monumental stretch for data
sampled at the yearly frequency (like in SMCGL). Fortunately, unlike the true structural
causality, the data can directly inform us on whether Liang (2014)’s formula is valid or not
for specific pairs of time series.
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2.1. Acknowledging the Identification Problem: Vector Autoregressions

This exposition closely follows Goulet Coulombe and Göbel (2021). In time series
analysis, the "identification" problem originates from simultaneity in the data. We can
learn whether

Xt−1 → Yt or Yt−1 → Xt

is more plausible. This is predictive causality in the sense of Granger (1969). However,
the data themselves cannot discriminate between

Xt → Yt and Xt ← Yt.

In essence, a correlation between Xt and Yt can be generated by two different causal
structures. Liang (2008)’s solution is to assume such relationships do not exist—yet, they
do. Within a VAR, the problem boils down to the need for identifying C in

Cyt = Ψ0 +
P

∑
p=1

Ψpyt−p + εt, (6)

where yt is an M by one vector—meaning the dynamic system incorporates M variables.
Ψp’s parameterizes how each of these variables is predicted by its own lags and lags of
the M − 1 remaining variables. P is the number of lags being included. The matrix C
characterizes how the M different variables interact contemporaneously—e.g., how total
forcing affects GMTA within the same year (a time unit t in SMCGL). Finally, the structural
disturbances are mutually uncorrelated with mean zero:

εt = [ε1,t, ... , εM,t] ∼ N(0, IM).

Equation (6) is the so-called structural form of the VAR, which cannot be estimated
because C is not identified by the data. SMCGL uses formula (4) that implicitly assumes a
constrained version of (6) with M = 2, P = 1, and, most importantly, C being a diagonal
matrix. The validity of their analysis hinges upon those constraints not being rejected by
the data. In Section 4, we find that the data disagrees with at least two of them.

Equation (6) is a structural model that can be used to answer causal questions directly.
However, the elements of C are not plain regression coefficients and cannot be estimated as
such—they would be biased. It does not mean that they do not exist. The implications of
their existence can best be understood by looking at an estimable “reduced-form” VAR

yt = c +
P

∑
p=1

Φpyt−p + ut, (7)

where c = C−1Ψ0 and Φp = C−1Ψp are both regression coefficients obtained by running
least squares separately on each equation. ut are now regression residuals

ut = [u1,t, ... , uM,t] ∼ N(0, Σu)

which will be cross-correlated if the true C is not diagonal. As mentioned earlier, Liang (2014)’s
simplifying assumptions translate into Σu = C−1′C−1 being diagonal, which is often at
odds with the data. All of the parameters of (7) can be estimated with traditional methods,
but the model is not “structural” and cannot be used for causal inference. Structural
VARs, which aim at uncovering “structural” causality (instead of predictive causality à la
Granger 1969) acknowledge Σu being non-diagonal and provide ways to obtain C. As a
by-product, they can procure valid measures of information flow.

The raw material of causal measures are εt, the structural disturbances entering the
systems. However, those like structural causality are not directly extractable from the data:
we only have ut and translating those back to εt necessitates C. The latter is not directly
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attainable, but can be retrieved using the mapping Σu = C−1′C−1. In words, this means
that the covariance matrix of regression residuals from (7) can be used as raw material
to retrieve the “structural” C. Mechanically, the identification problem emerges because
there are many C’s satisfying Σ̂u = C−1′C−1—numerous causal structures deliver the same
residuals’ cross-correlations.

The strategy we opt for is the traditional Choleski decomposition of Σ̂u. This is one of
many identification strategies for the VAR (Kilian and Lütkepohl 2017). However, among
the catalog of methodologies, the Choleski decomposition is certainly popular (if not the
most popular) in applied work and is simple to implement. Mechanically, it provides a
lower-triangular matrix C, satisfying Σ̂u = B′B where B is the same as from Equation (5),
but with dimensions M × M. Its purpose is to transform cross-correlated regression
residuals ut (Equation (7)) into uncorrelated structural shocks εt (Equation (6)). This is
done by reversing the relationship ut = Cεt.

Uncorrelatedness is essential to study how GMTA responds to a given forcing, keeping
everything else constant. Such a causal claim would be impossible when considering an
impulse from correlated residuals ut as those always co-move. A Choleski decomposition
of Σu is one way to transform the observed ut into the unobserved fundamental shocks εt.
The assumption underlying such an approach to orthogonalization is a causal ordering of
shocks. The ordering restricts how variables interact with each other within the same year,
conditional on the previous state of the system. In our bivariate setup, ordering forcing
j after GMTA implies that forcing cannot impact GMTA within the same year. Ordering
GMTA after a given forcing implies that GMTA cannot impact forcing j within the same
year. SMCGL implicitly assumes both restrictions at the same time, which results in a
rejected over-identified model. In contrast, when the model is just identified (when only
one restriction is imposed), this choice cannot be validated by the data itself as it does not
alter the likelihood.

When revisiting SMCGL’s empirical work, we consider both orderings and document
how sensitive conclusions are to that necessary choice.2 There are cases where the sign
of net IF (a qualitative notion) between j and GMTA depends on the ordering choice,
and cases where it does not. For instance, we will find that whatever is assumed about C
in a proper VAR system, total forcing appears to be causing GMTA much more than the
reverse. In other cases, like CO2-induced radiative forcing, this cannot be simply ruled out
by the data.

2.2. An Adequate Measure of IF Based on the VAR

In a complete multivariate system like a VAR, the errors of the h-steps ahead forecast
yt+h,m can be related back to structural shocks—that is, the anomalies driving the dynamics
of the system. For instance, we can compute the share of the forecast error variance of
GMTA 10 years from now that is attributable to CO2 anomalies. Intuitively, if CO2 is causing
GMTA to increase, its exogenous impulses should be an important driver of GMTA’s
variance rather than GMTA anomalies themselves—a high information flow/transfer
between the two variables. Accordingly, VAR forecast errors are

ut+h = yt+h − ŷt+h =
h−1

∑
h′=0

Θh′εt+h−h′

where Θh is a function of Φp’s and C. See Kilian and Lütkepohl (2017) for further details.
The forecast error variance decomposition (FEVD) of the whole system at horizon h can be
analytically calculated using the entries of matrix Θh′ . Precisely,

MSPEh = E(ut+hut+h
′) =

h−1

∑
h′=0

Θh′Θ
′
h′ .
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An information flow “share” of i for j can be characterized by the share of forecast
error variance of variable j attributable to structural shocks of i.3 While those measures
can be assessed for any horizon h (which can contain useful information), we focus on the
cumulative sum since it is a measure of total flow. For non-stationary VARs (like those
of the empirical section), we use a horizon of h = 15 years. In the case of stationary VAR
process, FEVD measures quickly converge to their long-run value as h increases. Moreover,
in that case, our FEVD-based IF measures can be more directly motivated from the Wold
representation of a VAR process (Kilian and Lütkepohl 2017). Finally, note that whenever
the b12 = b21 = 0 assumption is approximately true, the FEVD approach and IFs give
qualitatively similar answers.

3. Simulations

This section showcases how IF can lead to a pretense of causal knowledge, with conclu-
sions that are sometimes the exact opposite of the truth. We consider four data-generating
processes (DGPs) where the true P is one. The first two correspond to what is proposed
in Liang (2014). The last two are generic VAR positively-autocorrelated processes with
differing degrees of persistence. Following the notation above (Equation (5)):

DGP(1) :=

{
A =

[
0.5 0.5
0 0.6

]
, c =

[
0.1
0.7

]
(8a)

DGP(2) :=

{
A =

[ −0.5 0.9
−0.2 0.5

]
, c =

[
0
0

]
(8b)

DGP(3) :=

{
A =

[
0.5 −0.2
−0.5 0.25

]
, c =

[
0
0

]
(8c)

DGP(4) :=

{
A =

[
0.25 −0.1
−0.2 0.1

]
, c =

[
0
0

]
(8d)

As highlighted in the previous section, IFs are calculated assuming bij = 0. However,
as will be reported and formally tested in Section 4, this is frequently not the case for most
time series, especially those sampled at low frequencies. Using a controlled simulation
environment, we study how IFs behave for values of ρu := corr(uX1

t , uX2
t ) ∈ [−1, 1].4 Note

that IFs are invariant to ρu 6= 0 emerging from b12 = 0 or b21 = 0, which is obviously
problematic given the causal content of bij.5

As our indicator of true underlying information flow, taking into account ρu 6= 0, we
use the FEVD-based measure described earlier. Note that here, unlike the application to
real data in Section 4, we know what are the true bji’s. When ρu 6= 0, the correlation must be
attributed to either b12 or b21, or a combination of both. In a bivariate setup, this amounts
to setting bij = 0 and attributing ρ 6= 0 to bji. Hence, it is possible to tell when standard IFs
conclude falsehoods, because in simulations b12 and b21 are known.

In terms of notation, Υi,j
i→j means the FEVD share at horizon h = 10 with i = 1, 2

and i 6= j. The superscripts in Υi,j
i→j determine the true ordering, hence i ordered before

j. The subscripts indicate that we plot the contribution of variable i to the forecast error
variance of variable j at horizon h = 10. The simulations have shown that h = 10 is
sufficient for convergence.

Figure 1 plots the absolute normalized information flows (NIF), τi→j for DGP(1)
through DGP(4), with varying ρu. A first observation is that τi→j often varies significantly
with ρu, even when the very formula underlying it assumes ρu = 0. The relative strength of
τ1→2 and τ2→1 can easily collapse to 0 or be much higher than what IFs report for ρu = 0.
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(a) DGP(1) (b) DGP(2)

(c) DGP(3) (d) DGP(4)

1

Figure 1. Ranking of NIFs (τi→j) vs. Ranking of FEVDs (Υi,j
i→j); Different Levels of Correlation; Horizon h = 10. Notes: Color

specification: the light blue area shows the region in which FEVDs suggest Υi,j
1→2 > Υi,j

2→1, regardless of the ordering. Similarly,

the light green area shows the region in which FEVDs suggest Υi,j
2→1 > Υi,j

1→2—independent of the ordering. The white/non-

colored areas show those regions for which the ordering of X1 and X2 does matter. An unambiguous determination of Υi,j
1→2

> Υi,j
2→1, respectively, Υi,j

2→1 > Υi,j
1→2, is not possible.

The fact that IFs vary with ρu could give false hopes that they account for simultaneous
relationships. We conduct a simple exercise to show they do not. An interesting empirical
question is whether i is causing j more than j is causing i, which is the appealing promise of
IFs. This moves beyond testing for Granger Causality and aims at quantifying the flow of
information. The shaded green region corresponds to the values of ρu for which either the
true underlying causality is that X2 causes X1 more than the reverse irrespective of whether
it emerges from either b12 = 0 or b12 = 0. For those values of ρu, when the true ordering
is unknown, the qualitative conclusion about the sign of the net causality flow does not
hinge on knowledge of bij. Analogously, the blue shade represents values of ρu for which
X1 causing more X2 is unanimous among bij configurations. White regions are values of
ρu where conclusions about the sign of net causality flow cannot be determined from the
data, i.e., the unknown bij is necessary to settle. In other words, given the data available to
the modeler, X2 causing more X1 and vice versa are both equally likely, and sorting it out
decisively implies making a successful guess on the true value of bij.

If IFs were correctly calibrated, the green dotted line should only be above the blue
in the shaded green regions, and the dotted blue line above the green one in blue regions.
Figure 1 clearly demonstrates this not to be the case. For every DGP, there is a substantial
range of values (white spaces) for which IFs clearly conclude τi→j > τj→i when there is one
pair of (bij, bji) out of two for which the reverse is true. To address concerns about a horizon
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mismatch h between IFs and FEVD, Figure A1 (Appendix B) shows results for h = 2. As it
turns out, things worsen for IFs (the blue and green regions shrink) since the simultaneity
problem is less diluted in dynamics at short horizons.

In sum, those simulations (largely inspired by Liang (2015) DGPs) show two things.
First, the tractable IFs (from formula (4)) are functions of ρu even though they assume it to
be zero. This compromises any statement on the strength of causal links. Second, for any
DGP, there is an underlying pair

(
bij, bji

)
for which the IFs’ conclusion about the net causal

flow is the opposite of reality. This is not only an artifact of large |ρu|, as exemplified by
DGP(4).

4. GMTA and Radiative Forcing Revisited

In this section, we first revisit SMCGL’s application of IFs to GMTA and forcings.
Second, we look at what lies behind opaque FEVD measurements by reporting impulse
response functions and computing the transient climate response implied by simplistic
bivariate VARs.

Global warming generated by man-made forcing is the prevalent generalization of
the notion climate change. Numerous researchers have dedicated their works to this very
relationship between anthropogenic forcing and constituents of global climate (Andrews
et al. 2010; Hansen et al. 2006; Li et al. 2013; Notz and Stroeve 2016) and the socio-economic
consequences thereof (Nordhaus 2014; Shukla et al. 2019). Despite overwhelming evidence
for anthropogenic forcing being the main driver of global climate change (Masson-Delmotte
et al. 2018), scientists have also observed that especially since the turn of the millennium,
global temperature has plateaued despite ever-rising greenhouse gases and contrary to
projections from key climate models.6

IFs hinge exactly on these bivariate relationships, which are attractive in their clarity,
but are certainly a stark oversimplification of a complex system. Nevertheless, to give
empirical content to our critique of the methodology, we study the relationship between
GMTA and seven forcings from SMCGL using both IFs and our FEVD-based remedy.
The sample of annual means ranges from 1850 to 2005.7 We follow SMCGL and take our
data from therein referenced data providers. Table 1 summarizes the results.8

Table 1. Empirical Results for the Bivariate Relationship—Between Various Forcings and GMTA.

Correlation
Normalized IF (IF × 100)

FEVD

Lags
(P)

Correlation of
Residuals (ρu)

Ordering: i, GMTA Ordering: GMTA, i

i → GMTA GMTA → i i → GMTA GMTA → i i → GMTA GMTA → i

Total Forcing 0.73 30.6 20.8 4 0.23 *** 47.4 13.0 28.0 25.4
(15.3) (11.1) 1 0.29 *** 51.4 9.6 27.6 28.7

Anthropogenic 0.86 39.8 −20.0 4 −0.19 ** 6.5 3.7 3.8 13.4
(35.7) (−0.6) 1 −0.19 ** 5.0 5.8 2.2 17.1

CO2-ERF (W/m2) SMCGL 0.86 39.6 −15.2 4 −0.14 * 6.5 8.4 5.6 17.4
(35.1) (−0.4) 1 −0.15 * 2.8 4.7 1.1 12.8

Aerosol −0.82 35.9 −24.5 4 −0.19 ** 2.9 0.6 2.1 1.6
(24.3) (−0.4) 1 −0.10 3.5 4.0 1.8 1.2

Solar 0.49 13.5 6.7 8 0.05 8.5 1.6 6.6 2.5
(3.8) (2.3) 1 0.08 16.6 4.2 12.3 6.8

Volcanic 0.09 0.9 −0.5 4 0.18 ** 10.9 0.8 3.1 3.6
(0.2) (−0.4) 1 0.20 ** 7.1 1.4 0.6 3.7

PDO 0.17 −1.2 −0.6 4 0.35 *** 31.1 0.9 6.3 10.3
(−0.2) (−0.5) 1 0.34 *** 9.1 0.5 0.2 10.7

CO2 (Mt/yr) 0.82 37.1 −4.3 2 −0.10 8.9 2.1 10.7 0.6
(27.0) (−0.0) 1 −0.05 4.2 0.0 4.4 0.4

CO2 (W/m2) 0.86 39.5 −14.0 4 0.23 *** 5.2 16.8 2.9 4.7
(34.5) (−0.3) 1 0.07 1.6 4.1 0.9 1.8

Notes: i corresponds to the type of radiative forcing, listed in the left most column. The second column (“Correlation”) documents the correlation between
GMTA and variable i. FEVD values are taken at horizon h = 15, which translates into the contribution of variable i in the variance of the forecast error of
variable j a decade and a half after the in-sample end date. Numbers in bold underline the highest absolute causal flow among a (i,GMTA) pair for a given
measure. “*”, “**”, and “***’ means that the null of the residuals cross-correlation of residuals is rejected at the 10%, 5%, and 1% level, respectively.

In Table 1, we report the estimated correlation between residuals of the bivariate
VAR(1) implied by IFs. When forcing P = 1, in five cases out of seven, the null that
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ρ̂i,GMTA
u = 0 is rejected at least at the 10% level. When choosing P with Bayesian Infor-

mation Criterion (BIC), only ρ̂Solar,GMTA
u = 0 cannot be rejected. Hence, as repeatedly

mentioned in the text, IFs assume something that can be and is rejected by the data. More-
over, in the light of simulations carried out earlier, the qualitative and quantitative insights
from IFs are often spurious under such conditions.

Naturally, we concentrate on FEVD results, which correctly account for ρu 6= 0.
However, setting ρu = 0 is only one of the empirical shortcomings of the empirical IF
formula—it also sets P, the number of lags of each Xt as one. Clearly, it is empirically
plausible that Xi,t−2 or Xj,t−4 may have an impact on Xi,t beyond what is channeled by
single year lags (Xi,t−1 and Xj,t−1). In other words, P = 1 is extremely restrictive on climatic
dynamics. When choosing P with BIC, results align better with prior scientific knowledge.
Nonetheless, for the sake of completeness, we report both results (P = 1 and P = P∗,
with P∗ being BIC’s choice).

With P = P∗, the fact that total forcing causes GMTA more than the reverse is without
appeal. Nevertheless, the quantitative answer is, again, highly dependent on the ordering
choice. After 15 years, total forcing anomalies are responsible for explaining between
28.0% and 47.4% of that of GMTA—depending on the preferred ordering. The net causal
flow being higher from aerosol and solar to GMTA is also unanimous, but much smaller.
Indecisive results are reported for Anthropogenic, Volcanic, and PDO. Overall, Table 1
suggests that the data themselves do not support the strong qualitative conclusions of
SMCGL for their CO2 measure and Anthropogenic.

When P is forced to one, as in IFs, inconclusive results are reported for total forcing,
aerosol, volcanic, and PDO. P = 1 specifications, irrespective of the ordering9, it can be
concluded that GMTA is causing more CO2 and Anthropogenic than the reverse. Only solar
forcing results are unanimous and in line with what climatic common wisdom suggests.
Note that it also agrees with results from original IFs, which is not surprising given that
ρ̂Solar,GMTA is in the close vicinity of zero. However, choosing a proper P nearly doubles
the share of forecast errors attributable to solar forcing.

4.1. What’s Up with CO2?

Results for CO2 are rather surprising. Irrespective of the ordering, GMTA is reported
to cause more CO2 than the reverse, a finding contradicting SMCGL’s results and common
wisdom.10 However, SMCGL’s CO2 measure exhibits ill dynamic behavior that cannot
possibly be that of a natural quantity. This becomes obvious when plotting their CO2-ERF
measure in first difference: it evolves according to a series of dichotomous jumps.11 This
CO2-ERF series, in which ERF stands for effective radiative forcing, is a concept presented
in Myhre et al. (2013). The series itself is based on Etminan et al. (2016).

Given the strange jumping behavior of the CO2-ERF series, and to make our cal-
culations comparable to other findings in the literature (Bruns et al. 2020; Montamat
and Stock 2020), we derive RF from CO2 concentration as follows: we use the well-
established Meinshausen et al. (2017) data set on annual global means of CO2 concen-
tration, measured in parts per million (ppm). We follow Myhre et al. (2013) and transform
the increase in CO2 concentration in year t measured in ppm relative to the concentra-
tion in a given base year, CO2,base, into radiative forcing, RFCO2

t —measured in W/m2—
as follows: RFCO2

t = 5.35 × ln(CO2,t/CO2,base). We use 1850 as the base year follow-
ing Bruns et al. (2020).

As it turns out, considering this less contentious CO2 series does not resolve the
apparently counterintuitive finding that GMTA explains a larger portion of the forecast
error variance of CO2 than vice versa. Such a finding has also been reported using a
different methodology in Koutsoyiannis and Kundzewicz (2020). We explore a last avenue,
that of using annual CO2 emissions rather than RFCO2

t . This last attempt is successful in
reconciling the FEVD approach with the traditional wisdom that CO2 is causing GMTA
“more” than the reverse. This finding is independent of the ordering choice.
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In sum, based on this particular time series evidence, the causal link between certain
forcings and GMTA remains disputable. What are less disputable are the effects of total
forcing, CO2 emissions, and solar forcing, which all explain an important share of GMTA
anomalies independently of arbitrary ordering preferences. Nonetheless, we see such
analyses as rather primitive and potentially misleading. For instance, X causing ”more” Y
does not mean that the reverse causality is not quantitatively important, or climatologically
relevant. We now turn to a more promising way to extract meaning out of selected
bivariate VARs.

4.2. Impulse Response Functions

To open the black box of those rather abstract measurements, we report in Figure 3
impulse response functions (IRF) for the bivariate models of CO2-GMTA and total forcing-
GMTA. Since Sims (1980), the dominant approach for studying the properties of the VAR
around its deterministic path has been IRFs to structural shocks. Their dynamic effect can be
analyzed as that of a randomly assigned treatment because those have been transformed to
be uncorrelated, which provides the “keeping everything else constant” interpretation.

The IRF of a variable i to a one standard deviation shock of ε j,t is defined as

IRF(j→ i, h) = E(yi,t+h|yt, εt,j = σε j)− E(yi,t+h|yt, εt,j = 0). (9)

Thus, it is the expected difference, h months after “impact”, between a bivariate system
that responded to an unexpected CO2 increase, and the same system where no such
increase occurred. In a linear VAR, the above takes a closed-form solution in terms of
the matrices from (6). Models are now estimated with Bayesian methods, optimizing
the hyperparameters of a standard Minnesota prior, and choosing the number of lags as
reported in the gray-shaded rows of Table 1. The primary motivation is to obtain a valid
inference even in the presence of non-stationarity. Point estimates are nearly identical to
that of OLS. For details on such choices in the context of climate data and a more thorough
(yet introductory) treatment of IRFs, see Goulet Coulombe and Göbel (2021).

In Figure 2, we show the effect of an unexpected increase in annual emissions on
GMTA, while Figure 3 shows the response of GMTA radiative forcing generated by an
unexpected rise in cumulative emissions.

Qualitatively, the impact of annual emissions and cumulative CO2-induced forcing shocks
on global temperature is vastly similar. In accordance with findings in Goulet Coulombe
and Göbel (2021) for the effect of CO2 on Arctic sea ice extent, the impact of total forcing
and CO2 shocks is highly durable. This time, it is on GMTA rather than sea ice extent.
As reflected in Figures 2 and 3, this result is qualitatively independent of the ordering
choice. In both cases (and for both forcing variables), the effect of forcing takes about two
years to completely settle in. However, it is clear that the reported short-run impact strongly
depends on the identification assumptions, which SMCGL completely abstract from.

Whether the slightly negative short-run response of GMTA in the first panel of Figure 2
favors the ordering {GMTA, CO2} over {CO2, GMTA} is debatable: Forster et al. (2020)
find the reduction in global CO2 emissions during the COVID-19 pandemic to have resulted
in a short-run rise of global temperature. The key mechanism is a decline in the cooling-
effect of aerosols as a result of less SO2 emissions. The authors project a rise in global
temperature over the first 24 months following the pandemic-induced reduction in global
nitrogen oxide (NOx) emissions.12
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(a) CO2 (Mt/yr) → GMTA (b) CO2 (Mt/yr) → GMTA (including trend)

(c) Total Forcing → GMTA (d) Total Forcing → GMTA, (including trend)

1

Figure 2. IRFs: Annual Emissions and Global Temperature. Notes: We show impulse response functions from bivariate
Vector Autoregressions of GMTA and annual CO2 emissions. The right column includes a time trend as an additional
exogenous regressor. The solid line is the median of 10,000 draws from the posterior distribution. Hyperparameters were
optimized. The shaded area is the 68% credible region. Lags are those reported in Table 1 under the gray shaded rows.

(a) CO2 → GMTA (b) CO2 → GMTA (including trend)

1

Figure 3. IRFs: Cumulative Emissions and Global Temperature. Notes: We show impulse response functions from
bivariate Vector Autoregressions of GMTA and CO2, and Total Forcing, respectively. The right column includes a time
trend as an additional exogenous regressor. The solid line is the median of 10,000 draws from the posterior distribution.
Hyperparameters were optimized. The shaded area is the 68% credible region. Lags are those reported in Table 1 under the
gray shaded rows.
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Lastly, we conduct a robustness check. Our variables are clearly non-stationary. While
this does not pose a problem for Bayesian inference, it is nevertheless natural to wonder if
the results would be significantly altered by including a time trend. Accordingly, the second
column reports the same IRFs, but for VAR specifications augmented with trends. Those
show that adding such an exogenous explanatory variable does not change the dynamics of
a GMTA response to an unexpected shock to CO2. The addition of a trend to the bivariate
model of GMTA and total forcing allows GMTA to slowly revert to a lower impact—which
is nevertheless highly persistent.

4.3. Are VAR Estimates Quantitatively Reasonable?

The transient climate response (TCR) is a frequently used metric of the impact of
rising atmospheric CO2 concentration on temperature. It is not only an indication of the
trajectory of ongoing climate change, but also serves as a benchmark to evaluate the results
of climate model projections (Phillips et al. 2020). The TCR is defined as the increase in
temperature, between h0 and hT , under the assumption that CO2 increases annually by 1%.
hT is defined as that point in time when—due to the steady annual increase of 1%—CO2
concentration is twice as high as at date h0 (Montamat and Stock 2020; Pretis 2020). Such a
doubling of CO2 would occur approximately after 70 years (Otto et al. 2013). Following
the transformation of ppm to W/m2 as suggested by Myhre et al. (2013) and Montamat and
Stock (2020), a doubling of CO2 under an annual increase in concentration of 1% would
generate a radiative forcing of 5.35× ln(2) ≈ 3.7 W/m2.13

Typical estimates for TCR fall within a range of 1 ◦C–2.5 ◦C with a 66% probability,
as summarized in the IPCC 5th Assessment Report (Bindoff et al. 2013). More recent estimates
are well aligned with this range. Bruns et al. (2020) report a point estimate of TCR ranging
from 1.17 ◦C to 1.85 ◦C, depending on the type of data and model specification. Pretis (2020)
embeds a two-component energy balance model into a cointegrated vector autoregressive
model. His estimates vary across model specification and range from 1.24 ◦C to 1.38 ◦C.
Phillips et al. (2020) report a global transient climate sensitivity of 2.05 ◦C. The IV regression
in Montamat and Stock (2020) allows for a differentiation of TCR measurements across
different horizons, normalized to giving 70-year-horizon estimates. Their point estimates
range in the neighborhood of 1.5 ◦C within a 95% confidence interval of roughly 0.9 ◦C to
2.1 ◦C.

Despite being much more simplistic than the models of the aforementioned works
on TCR, bivariate VARs also allow for the estimation of the impact of a doubling of CO2
on temperature. Here we make use of the concept of IRFs, as presented in Equation (9).
In particular, we estimate the impact on temperature when RFCO2 increases by one standard
deviation of its reduced-form residuals, σε j , where j = RFCO2 , from a bivariate VAR of
RFCO2 and GMTA. Recalling the definition of TCR, a doubling of CO2 concentration, which
is achieved by an annual increase of 1% in atmospheric CO2 concentration, generates
an additional radiative forcing of approximately 5.35× ln(2) ≈ 3.7 W/m2. In our case,
the shock σε j to CO2 is a one-time event at horizon h = 0, but its effects are distributed
over horizons h = 1, 2, 3, ..., H. This allows us to measure the cumulative increase, Ξi,
in i ∈

{
RFCO2 , GMTA

}
generated by σε j , where j = RFCO2 , at any horizon h:

Ξj,h =
h

∑
s=0

IRF(j→ i, s) ,

where IRF(j→ i, s) is defined as in Equation (9). Adapting the formula of Otto et al. (2013),
we estimate TCRh as the increase in GMTA at horizon h as follows:

TCRh = ΞGMTA,h ×
5.35× ln(2)

ΞRFCO2 ,h
, (10)

where ΞGMTA,h is the cumulative increase in global temperature at horizon h, resulting from
the shock σε j , where j = RFCO2 , at horizon h = 0. Likewise, ΞRFCO2 ,h is the cumulative
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increase in radiative forcing of CO2 at horizon h, resulting from the shock σε j , where
j = RFCO2 , at horizon h = 0.

In Table 2, we present median point estimates of TCRh for h = 20 and h = 70 (as in
Montamat and Stock (2020)) from bivariate VARs of RFCO2 and GMTA—with and without
an exogenous time trend. Thus, Table 2 reports the TCR corresponding to the model
specifications in Figure 3a,b. That is, we use Bayesian estimation techniques and deploy a
Minnesota prior on our parameter estimates. Our VAR has four lags and the estimation is
based on annual observations between 1850 and 2005. Results for 1850–2017 are available
in Table A3 (Appendix C).

Table 2. Transient Climate Response.

Ordering Without Trend With Trend

TCR20 TCR70 TCR20 TCR70

CO2, GMTA 1.99 ◦C 2.06 ◦C 2.17 ◦C 2.58 ◦C
GMTA, CO2 0.57 ◦C 1.82 ◦C 0.85 ◦C 2.39 ◦C

The main message of Table 2 is two-fold: first, the ordering of the variables heavily
influences the final results for TCR20, demonstrating the importance of respecting the
possibility of cross-correlated residuals. Mechanically, the discordance brought up by
the ordering choice vanishes at much longer horizons, and, as a result, TCR70 estimates
are largely similar. However, at that horizon, it is the choice of whether or not to include a
trend that can alter results significantly. Second, even though the TCRh point estimates of
the trend models are rather located at the upper bound of the IPCC range of 1 ◦C–2.5 ◦C,
a simplistic bivariate VAR model including a constant and a time trend as additional
exogenous regressors is capable of providing a reasonable approximation of the rise in
global mean temperature, triggered by a doubling of atmospheric CO2 concentration.

TCR estimates can be helpful in choosing which ordering is most plausible. For in-
stance, only by ordering CO2 first do we achieve TCR20 within the IPCC range. IRFs can
also help sort things out. Ordering CO2 second leads to a surprisingly lasting negative
effect of CO2 shocks on GMTA. An increasingly popular approach to VAR identification in
macroeconomics is to use sign restrictions, where implausible IRF draws (based on eco-
nomic theory) are tossed out (Uhlig 2005). This dispenses the researcher from formulating a
likely contentious causal ordering of variables. In a climate application, one could identify
the VAR by rejecting specifications generating implausible IRF(CO2 → GMTA, h) or TCRs.
Applying this sort of reasoning leads us to favor—to nobody’s surprise—the specification
where simultaneous causality runs from CO2 to GMTA. However, it is important to stress
that this choice is obtained from prior knowledge on what is deemed reasonable and what
is not, rather than our two time series.

5. Conclusions

This note is a cautionary tale about how seemingly innocuous simplifying assumptions
can go wrong—especially when they are formulated without consulting the data. IFs,
as proposed by SMCGL, are a concept that hinges on the assumption of zero correlation
between the residuals of a bivariate VAR(1) process. In discrete time, especially with
observations at lower frequencies, such an assumption is most often not justified. Both
stylized simulations and an empirical application in the form of the transient climate
response demonstrate that being negligent about cross-correlated residuals can lead to
markedly different outcomes. Our results show that, already in a bivariate system of CO2

and GMTA, the resulting TCR depends on how one deals with correlated residuals.14

Nevertheless, provided reasonable modeling choices, the practical implications of our
VAR results are in line with previous works (Richardson et al. 2016; Schurer et al. 2018),
though when including an exogenous time-trend, he estimates range at the upper bound
of estimates found in Otto et al. (2013), Montamat and Stock (2020), or Forster et al. (2021).
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That is, for a doubling of atmospheric CO2 concentration our estimates suggest GMTA to
increase by 1.99 ◦C (2.17 ◦C with trend) after 20 years and 2.06 ◦C (2.58 ◦C with trend) after
70 years.

FEVDs provide an alternative to IFs. Although a decisive improvement over IFs,
FEVDs are as good as their underlying statistical model. To avoid departing too much
from the SMCGL’s framework, we only considered bivariate models. Climate systems
obviously comprise of numerous additional variables. Granville Tunnicliffe (2015) considers
four in a VAR setup, but there could be many more. Additionally, the dynamics were
assumed to be linear and time invariant, an approximation that should be eventually
tested. Estrada et al. (2013)’s trend “breaks” model is one way to do it and they report
results pointing in the same direction as ours. However, with use of machine learning
tools becoming increasingly common, more flexible alternatives could be used to yield
further insights—like those developed for macroeconomic time series in Goulet Coulombe
(2020). Finally, we considered simplistic identification schemes that implied a causal
ordering of variables. There is a plethora of more sophisticated schemes available (Kilian
and Lütkepohl 2017) and those could be used in future work, especially when moving
beyond bivariate systems. Another (simpler) avenue is the use of data sampled at higher
frequencies (daily for example) which, by construction, makes the simultaneity problem
much less of a Damocles sword.
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Appendix A. Data Sources

For the empirical part of Section 4, we refer to the variables presented in Table 1 of
SMCGL. Due to the sparse description of the data sources, our data set reduces to the annual
global mean surface temperature anomalies (GMTA) and seven other representatives of
radiative forcing. For five variables we could match the reported correlation coefficients
as well as the IF values of SMCGL, Table 1. For total forcing and solar these measures do
not coincide. For the analysis in Sections 4.2 and 4.3, we use the CO2 series based on
Meinshausen et al. (2017). We transform ppm into W/m2 as described in Section 4.

Table A1. List of Variables.

Abbreviation Description Data Source
Total Forcing annual; 1850–2005 KNMI Climate Explorer
Anthropogenic annual; 1850–2005 KNMI Climate Explorer
CO2-ERF (W/m2) annual; 1850–2005 KNMI Climate Explorer
Aerosol annual; 1850–2005 KNMI Climate Explorer
Solar annual; 1850–2005 KNMI Climate Explorer
Volcanic annual; 1850–2005 KNMI Climate Explorer
PDO annual averages of monthly observations; 1900–2005 KNMI Climate Explorer
GMTA annual; global; 1900–2005 HadCRUT4
CO2 (Million Tonnes/Year) annual; global production-based emissions; 1850–2005 Our World in Data—not in use

CO2 (ppm)
annual; global
1850–2014 (Meinshausen et al. 2017):
2015–2017 (NOAA-ESRL):

IAC ETH Zürich
NOAA-ESRL

https://climexp.knmi.nl/getindices.cgi?WMO=LeedsData/Total_ERF
https://climexp.knmi.nl/getindices.cgi?WMO=LeedsData/Anthropogenic_total_ERF
https://climexp.knmi.nl/getindices.cgi?WMO=LeedsData/CO2_ERF
https://climexp.knmi.nl/getindices.cgi?WMO=LeedsData/total_aerosol_ERF
https://climexp.knmi.nl/getindices.cgi?WMO=LeedsData/Solar_ERF
https://climexp.knmi.nl/getindices.cgi?WMO=LeedsData/Volcanic_ERF
https://climexp.knmi.nl/getindices.cgi?WMO=UWData/pdo&STATION=PDO&TYPE=i
https://crudata.uea.ac.uk/cru/data/temperature/
https://github.com/owid/co2-data
ftp://data.iac.ethz.ch/CMIP6/input4MIPs/UoM/GHGConc/CMIP/yr/atmos/UoM-CMIP-1-1-0/GHGConc/gr3-GMNHSH/v20160701/mole_fraction_of_carbon_dioxide_in_air_input4MIPs_GHGConcentrations_CMIP_UoM-CMIP-1-1-0_gr3-GMNHSH_0000-2014.csv
https://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2/co2_annmean_gl.txt
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Appendix B. Additional Simulation Results

In Figure A1 below, we compare NIF and FEVDh=2. One might be concerned that
results in Figure 1 suffer from a horizon mismatch between NIF and FEVDh=10. Results
suggest that reducing h worsens NIFs’ problems by shrinking the “safe” regions. This is
intuitive; the effect of assumptions on simultaneous relationships becomes milder as we
move further from h = 0.

(a) DGP(1) (b) DGP(2)

(c) DGP(3) (d) DGP(4)

1

Figure A1. Ranking of NIFs (τi→j) vs. Ranking of FEVDs (Υi,j
i→j); Different Levels of Correlation; Horizon h = 2. Notes: Color

specification: the light blue area shows the region, in which FEVDs suggest Υi,j
1→2 > Υi,j

2→1, regardless of the ordering. Similarly,

the light green area shows the region, in which FEVDs suggest Υi,j
2→1 > Υi,j

1→2—independent of the ordering. The white/non-
colored areas shows those regions for which the ordering of X1 and X2 does matter. An unambiguous determination of
Υi,j

1→2 > Υi,j
2→1, respectively, Υi,j

2→1 > Υi,j
1→2, is not possible.
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Appendix C. Additional Empirical Results

In this section, we show results for the sample period to 1850–2017.

Table A2. Empirical Results for the Bivariate Relationship Between Various Forcings and GMTA Sample Period: 1850–2017.

Correlation

Normalized IF
(IF × 100)

FEVD

Lags
(P)

Correlation of
Residuals (ρu)

Ordering: i, GMTA Ordering: GMTA, i

i → GMTA GMTA → i i→ GMTA GMTA→ i i→ GMTA GMTA→ i

Total Forcing 0.82 36.8 29.5 4 0.23 *** 48.0 15.6 28.3 29.3
(17.2) (15.3) 1 0.29 *** 55.7 14.4 30.0 36.6

Anthropogenic 0.91 43.7 −18.9 4 −0.16 ** 6.5 5.0 4.9 13.5
(39.9) (−0.6) 1 −0.15 ** 4.2 5.1 2.4 13.7

CO2—ERF (W/m2)
SMCGL

0.91 43.5 −13.0 4 −0.10 5.75 9.2 5.3 15.4
(39.0) (−0.3) 1 −0.11 2.1 3.1 1.2 8.0

Aerosol −0.84 37.9 −45.7 4 −0.17 ** 3.9 2.9 6.1 0.0
(19.4) (−1.3) 1 −0.00 2.0 33.3 2.0 33.1

Solar 31.4 7.0 2.1 8 0.05 4.6 0.9 3.1 1.4
(1.1) (0.6) 1 0.06 6.7 1.0 4.4 2.0

Volcanic 0.11 1.3 −0.3 4 0.18 ** 10.1 0.5 2.7 2.4
(0.2) (−0.2) 1 0.20 *** 7.1 0.3 0.6 3.7

PDO 0.15 −2.3 −0.4 4 0.4 *** 31.0 0.8 3.9 13.7
(−0.3) (−0.3) 1 0.38 *** 9.5 0.3 0.7 13.5

CO2 (Mt/yr) 0.89 42.0 1.0 2 −0.12 7.9 1.9 8.8 0.3
(31.0) (0.00) 1 −0.10 5.4 0.0 5.4 0.7

CO2 (W/m2) 0.91 43.4 −13.4 2 0.18 ** 5.0 16.1 6.1 6.2
(38.3) (−0.3) 1 0.06 1.5 3.4 1.0 1.6

Notes: i corresponds to the type of radiative forcing, listed in the left most column. The second column ("Correlation") documents the correlation between
GMTA and variable i. FEVD values are taken at horizon h = 15, which translates into the contribution of variable i in the variance of the forecast error of
variable j a decade and a half after the in-sample end date. Numbers in bold underline the highest absolute causal flow among a (i,GMTA) pair for a given
measure. “*”, “**”, and “***” means that the null of the residuals cross-correlation of residuals is rejected at the 10%,5%, and 1% level, respectively. Sample
period: 1850–2017.

Table A3. Transient Climate Response Sample Period: 1850–2017

Ordering Without Trend With Trend

TCR20 TCR70 TCR20 TCR70

CO2, GMTA 1.46 ◦C 1.94 ◦C 1.76 ◦C 2.35 ◦C
GMTA, CO2 0.58 ◦C 1.79 ◦C 0.97 ◦C 2.22 ◦C

Notes
1 In Tawia Hagan et al. (2019), IFs are used on daily data, which can alleviate the problem if there are no intra-day relationships. This

last condition is something that should be verified, not assumed.
2 Of course, there are identification schemes outside of the family of “orderings” obtained by Choleski decomposition, but those

are beyond the scope of this paper and unnecessary to make our main point.
3 For a discussion on how to think about “shocks” in a physical system, see Goulet Coulombe and Göbel (2021).
4 Variances of uX1

t and uX2
t are one.

5 It is important to note that while we consider cases where either b12 = 0 or b21 = 0, there is a continuum of possibilities between
those. We do so for simplicity of exposition (it makes the problem dichotomous). Moreover, setting either b12 = 0 or b21 = 0 to
zero corresponds to a causal ordering that is by far the most common identification scheme used in practice, which happens to
be what we will be using in Section 4.

6 Resolving this puzzle has led to re-evaluating the role of oceans in the interplay of radiative forcing and the climatic response
(Marotzke and Forster 2015; Tollefson 2014).

7 Data on the Pacific Decadal Oscillation (PDO) range from 1900 to 2005.
8 The sample was restricted to 1850–2005 to match that of SMCGL. Table A2 reports results extending the sample to 2017.
9 There are other identification schemes that cannot be cast as “orderings”. That is, there are rotations of ut (even when ρu = 0)

giving different structural shocks. Hence, while the two orderings span a lot of possibilities (and those traditionally considered
first in practice), they do represent the universe of rotations of ut into εt.

10 Hansen et al. (2006) states that global warming did not start to accelerate prior to the 1970s. Only after 1975 did the global
temperature increase by approximately 0.2◦C per decade.
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11 See: Available online: https://drive.google.com/file/d/1yhaJi92dvY_Lax0H5BFIzJeNc517Gn44/view?usp=sharing (accessed on 31
August 2021).

12 Especially NO2 is found to be well-correlated with CO2 emissions (Forster et al. 2020).
13 An annual increase of 1% in atmospheric CO2 concentration results in a doubling of CO2 after approximately 70 years, which is

described more formally as: h× ln
(

1.01
1

)
= ln(2) , for h ≈ 70 (Montamat and Stock 2020).

14 With the proliferation of new methods to extract information flows between time series (e.g., fractal regressions (Kristoufek
and Ferreira 2018) or multiscale transfer entropy (Zhao et al. 2018)), there is much research to be done on dealing with the
simultaneity problem within those heterogeneous frameworks.
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