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Abstract: There is no available Prais–Winsten algorithm for regression with AR(2) or higher order
errors, and the one with AR(1) errors is not fully justified or is implemented incorrectly (thus being
inefficient). This paper addresses both issues, providing an accurate, computationally fast, and
inexpensive generic zig-zag algorithm.

Keywords: Prais–Winsten algorithm; fast zig-zag algorithm; linear regression; autoregressive errors;
exact NLS; unconditional ML

1. Introduction

Both simulation and theoretical evidence show that the estimation of a regression
with an autoregressive of order one (AR(1)) errors via exact (conditional) maximum likeli-
hood (ML) is inferior to an exact nonlinear least squares (NLS) estimation (the correctly
implemented Prais and Winsten (1954) (PW) method), at least for trending data. Park and
Mitchell (1980) show via simulation that, for trending regressors, the PW method is more
efficient than the exact/conditional ML (the (Beach and MacKinnon 1978a) (BM) method).
This is theoretically confirmed by (Magge 1985; Magee 1989) who approximates biases of
various two-step and iterative estimators. Correctly implemented, the PW method delivers
exact NLS (equivalent to unconditional ML under normality) estimators. No normality
requirement is needed for the PW method. Gurland (1954) formalises and resolves criticism
against the estimation method of Cochrane and Orcutt (1949) (CO, hereafter) for losing the
first observation,1 which is employed by PW or re-proposed by Kadiyala (1968). Koopmans
(1942) was the first to examine the stationary AR(1) correctly. The PW algorithm is a fast
zig-zag (computationally inexpensive) algorithm, which retains the first observation and
requires no numerical optimiser. However, in order to obtain an (econometrically efficient)
exact NLS estimator, the correct (exact) closed form formula must be employed in the
iterations for the update of the AR parameter. This is not the case for all available imple-
mentations of the PW method (see Magee (1989)). For example, (Judge et al. 1985, chp. 8)
propose using the autocorrelation coefficient formula for the update, but this is not correct.
Exact/conditional ML fast zig-zag algorithms are provided by (Beach and MacKinnon
1978a, 1978b) for AR(1)2 and AR(2)3 errors, respectively. None is available for higher than
two AR orders. The PW algorithm for a regression with AR(1) errors is relatively well
known, although usually incorrectly implemented. This is because an incorrect closed form
estimator is used for the update. Park and Mitchell (1980) implement the PW algorithm
correctly, although they do not give all the details. Furthermore, there is no zig-zag PW
algorithm for a regression with AR(2) or higher order errors, and this literature gap is filled
in this paper. Reliable standard errors are also calculated that are not affected by the
presence of the lagged dependent variable as a regressor. In fact, our proposed method
corrects the inefficient CO method and poor estimation via bad implementation of the
Gauss–Newton algorithm.
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The paper is organised as follows: Section 2 fully discusses the closed form exact NLS
estimation of pure AR(1), AR(2), and AR(p) coefficients, while Section 3 examines the iterative
exact joint estimation of regression and autoregressive coefficients. Finally, Section 4 concludes.

2. Closed Form Exact NLS: AR(1,2,. . . ,p)

The main ingredient for the correct PW algorithm is the correct4 closed form update(s)
for the autoregressive parameter(s), along with exact generalised least squares (GLS)
iterations. Let (observed) yt be generated via the stationary AR(1)

yt = θyt−1 + vt, t = 2, . . . , n, (1)

with
y1 =

v1√
1− θ2

, (2)

vt ∼ iid(0, σ2
v ), t = 1, . . . , n. This assumption can be relaxed, and vt can be a martingale

difference sequence with finite fourth moment (see (Stock 1991), for example). Assuming
normal vt, the exact/conditional ML estimator of (1), conditional on (2), in closed form,
is the solution to their cubic equation that BM provides. PW/exact NLS (eventually in
closed form) requires the exact sum of squares to be minimised, that is,

min
θ
{y2

1(1− θ2) +
n

∑
2
(yt − θyt−1)

2}, (3)

see (Kmenta 1986, p. 319 (full proof in the present paper)). Here, we make use of σy/σv =√
1− θ2. Phillips (1977,1978) and Sawa (1978) (among others) employ an inexact version

of (3), ignoring y2
1(1− θ2). This results in the so-called LS (also incorrectly called the ML)

estimator (θ̂LS), which is more biased and less efficient than the exact NLS estimator of (3)
(also called the (original) PW estimator by Park and Mitchell (1980); PW2 in (Magee 1989,
p. 662)). Minimisation is via

− 2θy2
1 − 2

n

∑
2
(yt − θyt−1)yt−1 = 0, (4)

which results in the closed form of the (genuine) PW estimator5

θ̂PW =
∑n

2 ytyt−1

∑n
3 y2

t−1
, (5)

which is better than the OLS estimator θ̂LS = ∑n
2 ytyt−1/ ∑n

2 y2
t−1.6 An even worse estimator

is the autocorrelation coefficient ∑n
2 ytyt−1/ ∑n

1 y2
t .7

For the stationary AR(2) model

yt = θ1yt−1 + θ2yt−2 + vt, t = 3, . . . , n, (6)

y1 = v1/(
√

1− θ2
2

√
1− ρ2

1), y2 = ρ1y1 + v2/
√

1− θ2
2 , ρ1 = θ1/(1− θ2), (7)

also ρ2 = θ1ρ1 + θ2,8 no closed-form exact NLS/PW estimators of the autoregressive
parameters are available in the literature. To derive them, the exact sum of squares to be
minimised is

min
θ1,θ2
{(1− θ2

2)(1− ρ2
1)y

2
1 + (1− θ2

2)(y2 − ρ1y1)
2 +

n

∑
3
(yt − θ1yt−1 − θ2yt−2)

2}. (8)
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Use has been made of the fact that in this case, σy/σv =
√

1− θ2
2

√
1− ρ2

1. The required
canonical equations (with the help of MATHEMATICA™ and imposing ρ1 = θ1/(1− θ2)) are

(1 + θ2)y1y2 +
n

∑
3

ytyt−1 − θ1

n

∑
3

y2
t−1 − θ2

n

∑
3

yt−1yt−2 = 0

θ1y1y2 + θ2(y2
1 + y2

2) +
n

∑
3

ytyt−2 − θ1

n

∑
3

yt−1yt−2 − θ2

n

∑
3

y2
t−2 = 0

(9)

that become (after manipulations)

(y1y2 +
n

∑
3

ytyt−1)− θ1

n

∑
3

y2
t−1 − θ2(−y1y2 +

n

∑
3

yt−1yt−2) = 0

n

∑
3

ytyt−2 − θ1(−y1y2 +
n

∑
3

yt−1yt−2)− θ2(−y2
1 − y2

2 +
n

∑
3

y2
t−2) = 0.

(10)

Re-arranging (10), the system of equations can be solved for the brand new
(efficient/genuine) PW estimators of the AR(2) parameters. That is,[

θ̂1PW
θ̂2PW

]
=

[
∑n

3 y2
t−1 ∑n

4 yt−1yt−2

∑n
4 yt−1yt−2 ∑n

5 y2
t−2

]−1[
∑n

2 ytyt−1
∑n

3 ytyt−2

]
. (11)

In view of (11), we can guess the brand new closed-form PW autoregressive estimators
vector of any AR(p)

yt = θ1yt−1 + θ2yt−2 + · · ·+ θpyt−p + vt, t = p + 1, . . . , n,

along with the required equations for observations 1,. . . ,p (not stated as they are difficult).
That is, 

θ̂1PW
θ̂2PW

...
θ̂p−1PW

θ̂pPW

 =


∑n

3 y2
t−1 ∑n

4 yt−1yt−2 . . . ∑n
1+p yt−1yt−p+1 ∑n

2+p yt−1yt−p

∑n
4 yt−1yt−2 ∑n

5 y2
t−2 . . . ∑n

2+p yt−2yt−p+1 ∑n
3+p yt−2yt−p

...
...

. . .
...

...
∑n

1+p yt−1yt−p+1 ∑n
2+p yt−2yt−p+1 . . . ∑n

2p−1 y2
t−p+1 ∑n

2p yt−p+1yt−p

∑n
2+p yt−1yt−p ∑n

3+p yt−2yt−p . . . ∑n
2p yt−p+1yt−p ∑n

2p+1 y2
t−p



−1

×


∑n

2 ytyt−1
∑n

3 ytyt−2
...

∑n
p ytyt−p+1

∑n
p+1 ytyt−p

.

This expression is easily programmable in a matrix programming language.

3. Iteration

The closed-form estimators of the previous section are to be used in iterations for
updating. Let observed Yt be generated via

Yt = x′tβ + yt, (12)
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with (unobserved) yt following (1) and (2); xt is a k× 1 vector of regressors (the t-th row
of regressor matrix X), and β is the corresponding coefficient vector. The PW iterative
algorithm has the following steps: (I) Apply OLS to (12) and derive residual ŷt and θ̂PW
from (5), replacing yt with ŷt. (II) Re-estimate β from

Y1

√
1− θ̂2

PW = x′1β
√

1− θ̂2
PW + v1 (13)

Yt − θ̂2
PWYt−1 = (xt − θ̂2

PW xt−1)
′β + vt, t = 2, . . . , n. (14)

For a PW algorithm that delivers exact NLS estimators, the first observation must be
employed (see (13)), and the θ update must be via (5). According to (Magee 1989, p. 663),
(5) guarantees convergence. (III) Use the new estimate of β and obtain new residual ŷt
from (12) and new estimate of θ, and proceed to step (II) if convergence criterion is not met.
In addition, estimates of θ must be forced to be in (−1, 1). P1(θ) is the exact GLS matrix
of first order with the main diagonal

√
1− θ2, 1, . . . , 1, first sub-diagonal −θ, . . . ,−θ, and

zero elsewhere. Let ṽ be the converged innovation residual vector from (13) and (14), corre-
sponding to converged θ̃PW ; we define the innovation variance estimate σ̃2

v = ṽ′ṽ/(n− k),
and covβ̃ = σ̃2

v (X′P1(θ̃PW)′P1(θ̃PW)X)−1 for the converged estimate of β, β̃. For θ̃PW ,
we rely on the fact that exact NLS estimation is identical to unconditional ML under
normality and calculate the quasi-ML covariance covθ̃PW

as the inverse of minus the Hes-
sian of the concentrated unconditional loglikelihood L(θ) = −(n/2) ln(Y∗ − X∗ β̂GLS,θ)

′

(Y∗ − X∗ β̂GLS,θ) evaluated at θ̃PW , with β̂GLS,θ = (X∗′X∗)−1(X∗′Y∗), Y∗ = P1(θ)Y and
X∗ = P1(θ)X, and the MLE innovation variance estimate σ̂2

vMLE,θ = v̂(θ)′v̂(θ)/n, with
“residual” v̂(θ) for a given θ, v̂(θ) = Y−Xβ̂GLS,θ . Alternatively, we may use the asymptotic
covariance for θ̃PW , requiring no normality (see below). A third option could be to calculate
the sandwich covariance. Note that all these covariances are not affected by the presence of
the lagged dependent variable as a regressor.

Similarly, when yt in (12) follows the AR(2) model, the genuine PW iterative algorithm
has the following steps: (I) Apply OLS to (12) and derive residual ŷt and θ̂1PW and θ̂2PW
from (11), replacing yt with ŷt. (II) Re-estimate β from

Y1

√
1− ρ̂2

1

√
1− θ̂2

2PW = x′1β
√

1− ρ̂2
1

√
1− θ̂2

2PW + v1 (15)

(Y2 − ρ̂1Y1)
√

1− θ̂2
2PW = (x2 − ρ̂1x1)

′β
√

1− θ̂2
2PW + v2 (16)

Yt − θ̂1PWYt−1 − θ̂2PWYt−2 =

(xt − θ̂1PW xt−1 − θ̂2PW xt−2)
′β + vt, t = 3, . . . , n.

(17)

Note that ρ̂1 = θ̂1PW/(1− θ̂2PW). (In addition, estimates of θ1 and θ2 must be forced to
be inside the stationarity triangle.) (III) Use the new estimator of β and obtain new residual
ŷt from (12) and new estimators of θ1 and θ2 from (11), and proceed to step (II) if conver-
gence criterion is not met. P2(θ1, θ2) is the exact GLS matrix of second order with the main

diagonal
√

1− θ2
2

√
1− ρ2

1,
√

1− θ2
2 , 1, . . . , 1, first sub-diagonal −ρ1

√
1− θ2

2 ,−θ1, . . . ,−θ1,
second subdiagonal −θ2, . . . ,−θ2, and zero elsewhere. Let ṽ be the converged innova-
tion residual from (15)–(17), and define σ̃2

v = ṽ′ṽ/(n − k). For the converged estimate
of β, β̃, we define covβ̃ = σ̃2

v (X′P2(θ̃1PW , θ̃2PW)′P2(θ̃1PW , θ̃2PW)X)−1, and θ̃1PW and θ̃2PW

are the converged estimates of θ1 and θ2, respectively. For θ = {θ1, θ2}, under normal-
ity, we calculate the quasi-ML covariance covθ̃PW

from the inverse of minus the Hessian
of the concentrated unconditional loglikelihood L(θ1, θ2) = −(n/2) ln(Y∗ − X∗ β̂GLS,θ)

′

(Y∗ − X∗ β̂GLS,θ) evaluated at θ̃1PW and θ̃2PW , with β̂GLS,θ = (X∗′X∗)−1(X∗′Y∗),
Y∗ = P2(θ1, θ2)Y and X∗ = P2(θ1, θ2)X, and the MLE innovation variance estimate
σ̂2

vMLE,θ = v̂(θ)′v̂(θ)/n, with “residual” v̂(θ) for a given vector θ, v̂(θ) = Y − Xβ̂GLS,θ .
Alternatively, we may use the asymptotic covariance for θ̃PW = {θ̃1PW , θ̃2PW}, requiring no
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normality (see below). A third option could be to calculate the sandwich covariance. Note
that all these covariances are not affected by the presence of the lagged dependent variable
as a regressor.

Finally, for the model Y = Xβ + y when y follows AR(p) with θ = {θ1, . . . , θp}′, OLS
provides β̂ and ŷ, and the first step θ̂PW = {θ̂1PW , . . . , θ̂pPW}′, using the generic formula
above. Then the OLS (in fact GLS) regression of P(θ̂PW)Y on P(θ̂PW)X results in a new β̂,
new ŷ = Y− Xβ̂, and new θ̂PW , repeating until convergence and restricting the elements
of θ accordingly. The exact GLS matrix P has the correct Cholesky decomposition9 of
V−1

p in positions 1 : p and 1 : p, P[j, j] = 1 for j = p + 1, . . . , n, P[j + i, j] = −θi for
j = p + 1, . . . , n and i = 1, . . . , p with the restriction j + i ≤ n, and zeros elsewhere. The
fast calculation of P(θ)Y and P(θ)X may rely on the convolution procedure, except for
the first p rows where it has to be implemented manually. The typical element of V−1

p ,
vij, is given in (Hamilton 1994, p. 125) or (Galbraith and Galbraith 1974, p. 70). For
the converged β, β̃, covβ̃ = σ̃2

v (X′P(θ̃PW)′P(θ̃PW)X)−1 is used, where ṽ is the converged
innovation residual and σ̃2

v = ṽ′ṽ/(n − k). Assuming normality, we can calculate the
quasi-ML covariance covθ̃PW

from the inverse of minus the Hessian of the concentrated
unconditional loglikelihood L(θ) = −(n/2) ln(Y∗ − X∗ β̂GLS,θ)

′(Y∗ − X∗ β̂GLS,θ) evaluated
at converged θ̃PW with β̂GLS,θ = (X∗′X∗)−1(X∗′Y∗), Y∗ = P(θ)Y and X∗ = P(θ)X, and
the MLE innovation variance estimate σ̂2

vMLE,θ = v̂(θ)′v̂(θ)/n, with “residual” v̂(θ) for a
given vector θ, v̂(θ) = Y− Xβ̂GLS,θ . An alternative covariance for θ̃PW is the asymptotic
covariance Ṽ−1

p /n (Ṽ−1
p is V−1

p evaluated at θ̃PW = {θ̃1PW , . . . , θ̃pPW}′). A third covariance
option is the sandwich covariance. Again, all these covariances are not affected by the
presence of the lagged dependent variable as a regressor.

GAUSS™/MATLAB™/GNU Octave programmes for the method are available
upon request.

4. Conclusions

We have proposed the correct, fast, and generic PW algorithm for exact NLS esti-
mation of a regression with AR errors of any order (requiring no normality assumption).
However, if the innovations are normal, then our proposed estimators are identical to
the unconditional ML estimators. No numerical optimiser is required either, although
we have checked the results of our algorithm with the results of numerical optimisation.
Quasi-normality may be assumed in constructing a covariance (quasi-ML or sandwich)
for the AR parameters. Alternatively, the asymptotic covariance can also be calculated
(with no normality requirement). The covariance of the regressor parameters is obtained
from the GLS formulae. An information criterion may be employed to select the unknown
AR order in practise, approximating any underlying ARMA process. For a recent paper on
AR lag order selection, see Butler and Paolella (2017). The estimation method is suitable
and efficient for trending data. It is also applicable to dynamic regression with a lagged
dependent variable included as a regressor. It provides reliable standard errors in the
presence of the lagged dependent variable as a regressor. In addition, it can be used to
derive efficient Wald-type unit root tests.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Notes
1 The CO method of Oberhofer and Kmenta (1974) and Magnus (1978) is different. It is an ML estimation method,

imposing zero initial conditions.
2 Magnus (1978) provides an alternative cumbersome algorithm which requires an equation solver.
3 There may be convergence issues with the BM algorithm for regression with AR(2) errors, but they are beyond the

scope of this paper.
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4 The one that obeys the corresponding first order condition for minimisation of the exact NLS sum of squares of
the innovations.

5 θy2
1 + ∑n

2 ytyt−1 − θ ∑n
2 y2

t−1 = 0⇒ ∑n
2 ytyt−1 = θ(−y2

1 + ∑n
2 y2

t−1).
6 Since θ̂PW = θ̂LS(1 + y2

1/ ∑n
3 y2

t−1) > θ̂LS, θ̂PW is less biased than θ̂LS as the bias of the LS estimator is negative.
Magee (1989) gives approximate formulae for biases. We have verified superiority of the PW estimator.

7 Judge et al. (1985) recommend this estimator. However, according to our calculation (based on (Magee 1989)), this is
the worst possible estimator amongst the ones examined.

8 ρ1 and ρ2 are the theoretical autocorrelation coefficients of order 1 and 2, respectively.
9 For this, one must use the command rev(rev(chol()’)’) instead of the build in chol() in matrix language programmes.
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