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Abstract: This paper investigates the incentive of credit rating agencies (CRAs) to bias ratings
using a semiparametric, ordered-response model. The proposed model explicitly takes conflicts
of interest into account and allows the ratings to depend flexibly on risk attributes through a
semiparametric index structure. Asymptotic normality for the estimator is derived after using several
bias correction techniques. Using Moody’s rating data from 2001 to 2016, I found that firms related to
Moody’s shareholders were more likely to receive better ratings. Such favorable treatments were
more pronounced in investment grade bonds compared with high yield bonds, with the 2007–2009
financial crisis being an exception. Parametric models, such as the ordered-probit, failed to identify
this heterogeneity of the rating bias across different bond categories.

Keywords: semiparametric method; credit ratings; bias control; financial crisis

1. Introduction

While the Credit Rating Agencies’ (CRA) profits exploded with the growth of struc-
tured finance, the collapse of highly rated securities in the 2007–2009 financial crisis led to
suspicions that the ratings were perhaps “too optimistic” during the boom years. One pre-
vailing explanation for rating inflation is the perceived conflicts of interest. A long-standing
conflict stems from the “issuer-paid” model, whereby CRAs are paid by the issuers seeking
ratings and, hence, are incentivized to issue inflated ratings.1

In the past two decades, rating agencies have been increasingly owned by large
financial institutions, which induces a conflict of interest that is less obvious: CRAs may
inflate ratings to benefit issuers that are related to their shareholders. While much of the
extant literature has focused on issuer-paid models, this paper examines the empirical
relationship between rating inflation and this often-neglected source of conflicts of interest—
what I call shared-ownership—within a novel econometric framework.

Credit ratings are determined by a plethora of issuer- and issue-level characteristics.
The proposed model has a multiple-index structure, which allows ratings to depend on
different classes of characteristics in a non-separable fashion. Three indices are employed to
represent firm characteristics, bond characteristics, and the Moody-firm-ownership-index
(MFOI), which is a shared-ownership index that I introduce later in this paper. As the
model is estimated semiparametrically, it is not necessary to know how CRAs utilize these
characteristics to assign ratings a priori to ensure consistent estimation.

While there are numerous studies on single-index models in the econometric literature,2

only a handful of studies are available on the estimation of multiple-index regression mod-
els. Identification results of multiple-index models were first established by Ichimura and
Lee (1991) and Horowitz (1998), where the authors used semiparametric least squares (SLS)
to estimate the index parameters. Donkers and Schafgans (2008) proposed a derivate-based
estimation method to avoid the need to pre-specify the number of indices. A recent study,
Ahn et al. (2017), proposed to estimate the index coefficients (up to scale) based on an
eigenvalue approach.

Studies in the statistical literature, such as Xia et al. (2002) and Xia (2008), also employ
different variants of multiple-index models to flexibly reduce the data dimension. All the
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aforementioned studies, with the exception of Ichimura and Lee (1991), required estimat-
ing nonparametric conditional mean functions and/or derivatives in the original space
of regressors. Consequently, such methods may not behave well when the sample size is
small relative to the number of regressors. This paper, in contrast, extends the maximum
likelihood approach of Klein and Sherman (2002) to estimate the index parameters directly
in a low dimension space spanned by the three indices. To the best of my knowledge, this
is also the first study in estimating a multipe-index model where the dependent variable
is ordinal.

Ordered response models are more complicated than ordinary regression setting in
that there is no conditional mean function to analyze: the outcome variable, y, is merely
a “label” for the ordered, nonquantitaive outcomes. In order to interpret the model,
one typically refers to the probabilities themselves. This paper employs a multivariate
kernel density estimator for the semiparametric rating probability function. Bias-reducing
kernels are often used in the literature to ensure the estimators have an appropriately
low order of bias, which is required to establish their asymptotic results conveniently.
However, when the object of interest is a probability, these bias reducing kernels can deliver
an estimated probability outside of [0, 1] and render the estimation results difficult to
interpret. To circumvent this challenge, I obtain alternative bias reduction via a “recursive
differencing” strategy proposed by Shen and Klein (2019) and then establish

√
N normality

for the proposed estimator. 3

Using the Mergent’s Fixed Income Securities Database (FISD) for the years 2001 to 2016,
I estimate Moody’s rating model year-by-year and characterize the average partial ef-
fects (APE) of MFOI, the aforementioned shared-ownership index. In a seminal paper,
Kedia et al. (2017) found that the average rating for a Moody-related firm was 0.213 notch
better than a comparable non-Moody-related firm for the period of 2001–2010.

As the employed model permits the partial effect of MFOI to flexibly depend on
other characteristics in an interactive fashion, the contribution of this application to the
pertaining empirical literature is to explore the heterogeneity of rating bias. The APE of
MFOI is more pronounced in investment grade bonds than in high yield bonds; however,
this pattern reversed during the 2007–2009 financial crisis, implying that high yield bonds
were more likely to receive favorable ratings due to a closer liaison with Moody’s. A
placebo test based on “false owners” revealed that the salient partial effects of MFOI were
indicative of Moody’s bias toward firms related to its own shareholders.

The rest of this paper is organized as follows: In Section 2, I introduce the proposed
measure of shared-ownership and the firm/bond characteristics that are employed in the
model. Section 3 describes the model and the estimation strategy. Section 4 reports the
results from simulation designs and the empirical data. Section 5 concludes this study.
In Appendix A, I state the asymptotic properties for the proposed estimator and the
assumptions required to establish them. The formal proofs and intermediate lemmas are
contained in the Online Supplemental Material.

2. Data and Variable Construction

I formulate a model to investigate Moody’s ratings on corporate bonds at issuance
(e.g., initial ratings) from 2001, when Moody’s went public, to 2016. From Mergent’s Fixed
Income Securities Database (FISD), I obtain initial ratings on corporate bonds issued by pub-
lic firms covered by either the Center for Research in Security Prices (CRSP) or Compustat.
There is a distinction between the issuer rating and issue rating for corporate bonds. The
former addresses the issuer’s overall credit creditworthiness and usually applies to senior
unsecured debt, whereas the latter refers to specific debt obligations and considers the
ranking in the capital structure such as secured or subordinated.

This paper builds a model for issue ratings; therefore, both firm and bond characteris-
tics are considered as explanatory variables.4 Descriptions and summary statistics of these
characteristics are provided in Table 1. Other than the standard firm-level characteristics,
three bond characteristics are included: whether the bond is a senior security, the security
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level (collateralized by an asset or not), and the issue amount. All three characteristics
are relevant to the loss on bond holders should a default event occur. After combining
data from multiple sources, the final sample was composed of 10,557 bonds issued by
1370 firms.

Table 1. Summary Statistics: A number of firm and bond characteristics were selected to predict
credit ratings based on Baghai et al. (2014) and Kedia et al. (2017): (1) the value of the firm’s total
assets (log(asset)), (2) long- and short-term debt divided by total assets (Book_lev). (3) Convertible debt
divided by total assets (ConvDe_assets), (4) rental paymetns divided by total assets (Rent_Assets), (5)
cash and marketable securities divided by total assets (Cash_assets), (6) long- and short-term debt
divided by EBITDA (Debt_EBITDA), (7) EBITDA to interest payments (EBITA_int), (8) profitability,
measured as EBITDA divided by sales (Profit), (9) tangibility, measured as net property, plant, and
equipment divided by total assets (PPE_assets), (10) capital expenditures divided by total assets
(CAPX_assets), (11) the volatility of profitability (Vol_profit), (12) the log of the issuing amount
(log(issuing amount)), (13) a dummy variable indicating whether the bond is senior (seniority), and
(14) a dummy variable indicating whether the bond is secured (security).

Investment Grade High-Yield

Mean Std.Dev. Mean Std.Dev.

Firm Characteristics
log(asset) 10.88 1.92 8.26 1.45
book_lev 0.33 0.18 0.44 0.20

convDe_asset 0.01 0.03 0.03 0.07
rent_asset 0.01 0.01 0.02 0.03
cash_asset 0.11 0.12 0.08 0.09

debt_ebitda 4.95 11.16 4.45 20.76
ebitda_int 14.45 31.30 4.82 5.91

profit 0.31 0.28 0.03 8.38
PPE_asset 0.23 0.26 0.37 0.28

CAPEX_asset 0.03 0.04 0.07 0.10
profit_vol 0.06 1.84 −0.92 41.74

Bond Characteristics
log(issuing amount) 12.69 1.69 12.66 0.73

seniority 0.93 0.26 0.69 0.46
security 0.01 0.06 0.09 0.00

Measuring Conflicts of Interest

One lesson that investors and policy makers learned in the 2007–2009 financial crisis
is that credit ratings are contaminated with conflicts of interest. CRAs with large market
shares, such as Moody’s and Standard & Poor’s, are increasingly owned by large institu-
tional investors, making their role as an unbiased financial market “gatekeeper” ever more
suspicious.5 As noted by Kedia et al. (2017), large shareholders of credit rating agencies
have economic incentives to influence the rating process. Specifically, they find Moody’s
ratings on bonds issued by important investee firms of its two stable large shareholders6

are more favorable relative to ratings from S&P and Fitch.
To construct a measure for the “connectedness” between a bond issuer and Moody’s

through common shareholders, I first obtained the list of Moody’s shareholders from
Thomson Reuters (13F) in each quarter from 2001Q1–2016Q4. From Moody’s perspective,
the economic interest of some shareholders were clearly more important than others. I
approximate each shareholder j’s “influence” on Moody’s by the percentage of Moody’s
stock that it holds, λj. Next, I obtained the portfolio weight of bond issuer i in shareholder
j’s investment portfolio, termed pij. The shareholder’s manager type code (MGRNO) and
the firm’s Committee on Uniform Securities Identification Procedures (CUSIP) number
were used to match the shareholding data with the 1370 bond issuers.
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Based on the information collected above, I construct the following variable, termed
the Moody-Firm-Ownership-Index (MFOI), to summarily characterize a bond issuer i’s
liaison with Moody’s shareholders,

MFOIi =
M

∑
j=1

pijλj, Moody’s has j = 1, 2, · · · , M shareholders (1)

Figure 1 provides an illustration on how this formula works. Assume that Moody’s
has only two shareholders: Berkshire Hathaway, which owns 15% of Moody’s stocks, and
Goldman Sachs, which owns 3% of Moody’s stocks. There are three bond issuers indexed
by i, j, k, and two of which are invested by the two aforementioned shareholders of Moody’s.
Specifically, the value of issuer i’s equity accounts for 20% of Berkshire Hathaway’s portfolio
and each of issuer i’s and j’s accounts for 10% of Goldman Sach’s portfolio. For these
three issuers, MFOIi = 15%× 20% + 3%× 10% = 0.033, MFOIj = 3%× 10% = 0.003,
and MFOIk = 0. As can be seen from Figure 2, bond issuers had increasingly strong
connections with Moody’s prior to the financial crisis, as measured by the average of MFOI.

Berkshire Hathaway

Moody’s

Goldman Sachs

Issuer i: MFOIi = 0.033 Issuer j: MFOIj = 0.003 Issuer k: MFOIk = 0

Holding 15% of Moody’s Holding 3% of Moody’s

20% of Berkshire Hathaway’s portfolio 10% of Goldman Sachs’s portfolio

Figure 1. An illustration.

Figure 2. Time series variation in conflicts of interest from 2001–2016.

Then what empirical relation is expected between the MFOI and credit ratings? By
construction, a bond issuer i has a larger MFOI in two instances. First, when some of
Moody’s shareholders increases their stakes in firm i due to favorable private information,
pij increases for those shareholders and leads to a larger MFOI. One would anticipate the
ratings to go up to reflect such favorable information. Secondly, the MFOI also tends to be
large when the common shareholder has a strong influence over Moody’s (e.g., λj is large).
Moody’s might have a greater incentive to assign favorable ratings. In both cases, a larger
MFOI intuitively leads to a higher credit ratings. Below I present an econometric model to
quantify the impact of MFOI on ratings.
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3. Empirical Model
3.1. Model and Motivation for the Estimator

Credit ratings are discrete, ordered indicators of the credit worthiness of corporate
bonds. Under Moody’s rating scale, the observed bond rating Yi takes a value from 1 to 7,7

and is related to a bond’s latent default risk y∗i as follows

Yi =


1 if T0 < y∗i < T1
2 if T1 ≤ y∗i < T2
...
7 if T6 ≤ y∗i < T7

(2)

with the Tj being parameters such that −∞ = T0 < T1 < T2 < · · · < T6 < T7 = ∞. Thus,
the range of default risk y∗i is partitioned into seven mutually exclusive and exhaustive
intervals, and the numerical rating Yi indicates the interval into which a particular bond’s
credit quality falls. The higher the default risk is, the lower the credit rating is. Consider
the following model for y∗i ,

y∗i = g(Xi, Si) (3)

where Xi = [Fi, Bi, MFOIi].8 For each bond i, assume Fi = (F1i, F2i, · · · ) ∈ RF is a vector
of firm characteristics, Bi = (B1i, B2i, · · · ) ∈ RB is a vector of the bond characteristics,
and MFOIi is the aforementioned measure of conflicts of interest. The model allows for
both continuous as well as discrete characteristics. Si is a scalar error term summarizing
private information, which the rating agency takes into account but is not observed to
the econometrician. Instead of making distributional assumption about S, as with an
ordered-probit model (OPM), I make an index assumption that will be provided below.

With Yik = 1{Yi = k}, a key object of estimation interest is Pik ≡ Pr(Yik = 1|Xi),
which is the probability that a bond will be rated in category k conditional on the vector of
explanatory variables. In order to estimate the above probability with a moderately sized
sample, I define two indices,

Firm Index: WFi ≡ F1iβ
F
10 + F2iβ

F
20 + · · · (4)

Bond Index: WBi ≡ B1iβ
B
10 + B2iβ

B
20 + · · · (5)

and make the following assumption,

Pr(Yik = 1|Xi) = Pr(Yik = 1|WFi, WBi, MFOIi), for k = 1, 2, · · · , 7 (6)

≡ Pk(WFi, WBi, MFOIi)

The employed approach is semiparametric because firm and bond characteristics enter
the rating function as two parametric indices (WFi and WBi, respectively) whereas the main
variable of interest, MFOIi, enters the rating function nonparametrically by itself.

In the empirical literature of bond rating, another prevailing approach to estimate the
rating probability is the ordered-probit model (OPM), which assumes

y∗i = Xiβ0 + Si, Si ∼ N (0, 1) (7)

Given the normality of S, the parametric counterpart of (6) is a known function of Xiβ0
that does not vary across categories.9 Compared to OPM, the link function Pk(·, ·, ·) in the
proposed semiparametric model (SIM) is left unknown and estimated nonparametrically.
Therefore, researchers do not need to take a stand on the fashion that ratings depend
on firm characteristics, bond characteristics, and conflicts of interest. Moreover, Pk(·, ·, ·)
is category-specific and permits the rating agency to employ different rating criteria for
each rating category.
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3.2. Estimation Strategy

In the SIM described by Equations (4)–(6), the slope coefficients in the firm and
bond indices, βF and βB, can only be identified up to location and scale.10 Consequently,
I normalize the coefficient of a firm characteristics F1 and a bond characteristics B1 to one
and define the normalized indices as:

Normalized Firm Index: VFi ≡ WFi/βF
10 = F1i + F′i θF

0 (8)

Normalized Bond Index: VBi ≡ WBi/βB
10 = B1i + B′iθ

B
0

where θF
0 = (βF

20/βF
10, βF

30/βF
10, · · · ) and θB

0 = (βB
20/βB

10, βB
30/βB

10, · · · ). Note that the identi-
fiable parameter θ0 = (θF

0 , θB
0 )
′ captures the relative impact of other firm and bond charac-

teristics to F1 and B1, respectively. Below I develop an
√

N−normal estimator for θ0.
Specifically, I employ an estimator based on an extension of the approach in Klein and

Sherman (2002) that maximizes the following estimated log-likelihood function:

Q̂(θ) =
1
N

N

∑
i=1

τi{
7

∑
k=1

YikLn(P̂k(VFi, VBi, MFOIi))} (9)

where Yik = 1{Yi = k}, P̂k(VFi, VBi, MFOIi) is a semiparametric estimator of the rating
probability defined in (6), and τi is a trimming function, which is introduced to stabilize the
probabilistic estimator. Based on simulation evidence, we select the trimming threshold to
be the 99th percentile.

The rating probability Pk(VFi, VBi, MFOIi) describes the probability that bond i is rated
as category k conditional on the three indices. Intuitively, this probability can be estimated
by a weighted average of Yjk across a group of bonds j that have similar characteristics
to bond i. That is, if most similar bonds are rated as category k, the probability of bond i
receiving a rating of k should be high. In practice, econometricians use kernels, which is a
function Kh(·) that is symmetric and integrated to one, to take the average around a small
neighborhood around bond i. Formally, this probability is estimated as

P̂k(VFi, VBi, MFOIi) =
1

N − 1 ∑
j 6=i

YjkWji, Wji ≡
Kh(Vi −Vj)

1
N−1 ∑j 6=i Kh(Vi −Vj)

(10)

where Yjk is a binary variable indicating whether the similar bond j is rated as category k
or not. The kernel function is

Kh(Vi −Vj) =
1

h1h2h3
K(

VFj −VFi

h1
)K(

VBj −VBi

h2
)K(

MFOIj −MFOIi

h3
) (11)

In this paper I use a second-order Gaussian kernel: K(u) = 1√
2π

exp(−u2/2). h ≡
(h1, h2, h3)

′ is a bandwidth parameter that goes to zero as sample size approaches infinity.
Intuitively h controls the number of similar bonds that are included in the kernel-weighted
average in (10). A smaller bandwidth h will lead to a smaller bias (only the j’s that are very
similar to i are included) but a larger variance (fewer observations are included).

An important problem in practice is to select the bandwidth parameter h. I follow
Silverman (1982) and set the bandwidth hj = 0.97σjN−r, where σj is the standard deviation
of the j’th index. To ensure asymptotic normality of the proposed estimator, r must be
selected in a manner such that (i) the estimated Hessian of the log-likehihood function
defined in (9) converges uniformly to the expected Hessian at the true parameter values
and (ii) the gradient is centered at zero (e.g., no asymptotic bias) and also converges to the
true gradient.

As shown in Appendix B, the uniform convergence of the Hessian matrix will generate
a upper bound (r < 1/7), whereas the bias reduction mechanism will generate a lower
bound (r > 1/12). Based on the simulation evidence presented below, I chose r = 1/7.01,
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which is also closest to the MSE-optimal bandwidth ro = 1/7 in the case of a three-index
model with a Gaussian kernel.

Unlike parametric estimators, the kernel-type estimator defined in (10) has a bias; the
variance of the estimator also goes to zero at a slower (than parametric) rate. To establish
asymptotic results, it is necessary to control the bias in the underlying density estimators
therein. Compared to the single-index ordered model considered by Klein and Sherman (2002),
the estimator developed here has a even slower convergence rate because the underlying
density depends on a three-dimensional index vector (e.g., the curse of dimensionality).

I obtain bias reduction first by employing a “recursive differencing” strategy as pro-
posed by Shen and Klein (2019). As a second source of bias reduction, I exploit a “residual”
property of expected semiparametric probability functions. These bias controls are discussed
in Appendix A in detail, with the required definitions and technical assumptions stated.
The consistency and asymptotic normality of the proposed estimator are formally stated in
Appendix B, with the proofs provided in the Online Supplemental Material.

4. Results
4.1. Simulation Evidence

Before applying the methodology to the bond rating data, Monte Carlo experiments
were employed to investigate the finite sample performance of the proposed estimator.
As noted above, the main advantage of the proposed multi-index semiparametric model is
the ability to flexibly capture the interactive effects among covariates. As such, I consider
the following data-generating process where the latent variable model has the form

y∗ = β0(δ0 + X1 + θ0X2)eX2
3 + u (12)

y∗ is the latent response variable of theoretical interest; X1, X2, X3 are explanatory variables;
δ0, β0, and θ0 are unknown parameters; and U is an error term independent of X =
(X1, X2, X3).11 The observed data consists of (Y, X) where

Y = 0{−∞ < y∗ ≤ c0}+ 1{c0 < y∗ ≤ c1}+ 2{c1 < y∗} (13)

In each simulation, δ0 = β0 = θ0 = 2. The threshold points c0 and c1 are the 33th and
66th percentiles of the y∗ distribution. Of estimation interest is the slope parameter θ0.

The object of the simulations is two fold. First, I compared the proposed multiple-
index semiparametric estimator (SIM-M) with two other estimators in terms of precision.
The two other estimators were the (1) ordered probit model (OPM) and (2) semiparametric
single index model (SIM-1) considered by Klein and Sherman (2002). Second, I evaluated
the performance of SIM-M under different bandwidth h and trimming parameters (defined
in Definition A5 in Appendix A).

Specifically, I compared the bias, variance, and RMSE in six simulation designs, with
the results presented in Table 2. These six simulations were generated by the permutation
of three different trimming thresholds (90th percentile, 95th percentile, and 99th percentile)
and two bandwidth parameters: a “small” bandwidth with r = 1/11.99 and a “large”
bandwidth with r = 1/7.01. The sample size was 2000 with a replication of 1000.

Across different designs, I found that the proposed SIM-M model generated the
smallest RMSE. Apparently, both the single-index model (SIM-1) and ordered probit model
(OPM) suffered from misspecification bias. Therefore, it is not surprising to find that these
two models underperformed in terms of the RMSE. As for the choice of bandwidth and
trimming parameters, I found that a large bandwidth r = 1/7.01 and a high trimming
threshold, 99th percentile, performed the best. As discussed in the previous section,
1/12 < r < 1/7 ensures that the proposed SIM-M estimator has a asymptotic normal
distribution. Within the range of permissible values, r = 1/7.01 would minimize the MSE
of the estimated conditional probability.
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Table 2. Simulation Evidence.

Small Bandwidth r = 1/11.99 Large Bandwidth r = 1/7.01

Trimming TRUE Mean SD RMSE Mean SD RMSE

0.9
SIM-1 2 2.569 0.452 0.776 2.608 0.460 0.830
SIM-M 2 2.026 0.551 0.552 1.987 0.481 0.481

OP 2 2.634 0.593 0.995 2.669 0.621 1.070

0.95
SIM-1 2 2.551 0.434 0.738 2.602 0.445 0.808
SIM-M 2 2.003 0.535 0.535 1.985 0.453 0.453

OP 2 2.620 0.599 0.983 2.622 0.565 0.953

0.99
SIM-1 2 2.539 0.423 0.714 2.591 0.450 0.800
SIM-M 2 1.964 0.476 0.477 1.963 0.431 0.433

OP 2 2.607 0.615 0.983 2.607 0.547 0.916

DGP: Y = 0{−∞ < y∗ ≤ c0}+ 1{c0 < y∗ ≤ c1}+ 2{c1 < y∗} and y∗ = β0(X1 + θ0X2 − α0)eX2
3 + U. The parameter being estimated

was θ, which was set to be 2 in all designs. The two bandwidths were chosen to be the two endpoints of the permissible values
1/12 < r < 1/7. Such a range of r, as shown in Theorem B2 assures asymptotic normality. SIM-1 is the semiparametric single-index
model considered by Klein and Sherman (2002).

4.2. Empirical Illustration: Estimating Moody’s Rating Bias from 2001–2016

In this application, I estimate the heterogeneous impact of MFOI, the aforementioned
shared-ownership index, on credit ratings in the described semiparametric model. Previous
estimates reported in the literature were typically constrained to a single number by the
functional form of the underlying regression model. For example, Kedia et al. (2017) found
that the ratings assigned by Moody’s were, on average, 0.213 notches better than the ratings
by S&P’s for firms related to Moody’s two major shareholders.

This number can be understood as the “average treatment effect” of a 0–1 variable
capturing whether a bond issuer has a relationship with Moody’s shareholders. However,
if the benefit of developing a rapport with Moody’s shareholders is actually heterogeneous,
such an estimate is not informative on the effect that varies across relevant sub-populations
and may not even be consistent for the overall population mean (Abrevaya et al. 2015).
Using a flexible econometric approach, the application explores the heterogeneity of the
shared-ownership effect across sub-populations defined by rating categories and/or possi-
ble values of issuer characteristics.

Specifically, I estimated the following model using Moody’s rating data from 2001–2016,

Pr[Yi = k|Xi] = Pk(VFi, VBi, MFOIi)

VFi = log(asseti) + θFFi

VBi = log(issuing_amounti) + θBBi (14)

Fi ≡ {book_levi, convDe_asseti, rent_asseti, cash_asseti,

debt_ebitai, pro f iti, PPE_asseti, CAPEX_asseti, pro f it_voli}
Bi ≡ {seniorityi, securityi}

The included regressors are described in Section 2. For comparative purposes, a
benchmark ordered-probit model (OPM) was estimated using the same data. Since the
parameters in the proposed semiparametric model (SIM) are subject to scale normalization,
I normalized the OPM-coefficient of asset and issuing_amount in the same way to ease
the comparison.

Point estimates of the parameters from OPM and SIM are reported in Figure 3. The blue
line in each subfigure depicts the semiparametric estimates, with the 95 percent confidence
interval shown in grey-dotted lines.12 The yellow lines depict the comparable ordered-
probit estimates. For characteristics, such as the Book-Leverage-Ratio (Book_lev) and
profitability (profit), the SIM and OPM estimates had similar trends over time. However,
the estimates are still statistically different from year to year. The coefficients of Seniority
and Volatility of Profit were wildly different for most years in the sampling period. The
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huge estimation discrepancy between the point estimates suggests that OPM may subject
to misspecification errors.

Figure 3. Comparison of the Coefficient Estimates from SIM and OPM.

Since MFOI enters the semiparametric model nonparametrically by itself, we need
to estimate its average partial effect (APE) to be able to quantify the impact of shared-
ownership to ratings.13

In Figure 4, I report the APE of a one standard deviation change in the MFOI for the
investment grade and high yield bonds, respectively. In non-crisis periods, the APE for
investment grade bonds was uniformly larger than for high yield bonds, implying that
investment grade bonds benefited more from an issuer’s shared-ownership with Moody’s
than high yield bonds.

This finding is relatively original in the literature. One possible explanation is related
to the “reputation capital” view (Becker and Milbourn 2011; Bolton et al. 2012; White
2002). That is, low quality bonds are more likely to default implying a higher probability of
triggering a reputation loss.14 To protect its reputation, Moody’s might be more conservative
and apply a more stringent rating standard to low quality bonds.

It is intriguing that this pattern reversed during the 2007–2009 crisis. In 2008, as
the MFOI ascends by one standard deviation, high-yield bonds were twice as likely to
receive a better rating compared with investment grade bonds (18.5% vs. 9.4%). As can be
seen from Table 3, from 2004 to 2008, the proportion of investment grade bonds increased
from 57% to 90%. It is in the same period that Moody’s favorable treatment toward high
yield bonds nearly quadrupled (from Figure 4, the APE on high-yield bonds increased from
5.4% to 18.5%). As one might intuitively expect, the ratings on some high-yield bonds were
perhaps inflated as a result of the growing connection between bond issuers and Moody’s
through common shareholders.
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Figure 4. Average partial effects of the MFOI.

Table 3. Distribution of Moody’s Ratings.

Investment Grade (IG) High Yield (HY)

Year Aaa Aa A Baa Ba B C Total % of IG

2001 10 45 162 214 111 94 11 647 66.62%
2002 1 78 142 212 71 105 7 616 70.29%
2003 9 112 149 210 123 168 30 801 59.93%
2004 3 81 91 174 89 155 18 611 57.12%
2005 6 118 106 150 86 88 15 569 66.78%
2006 3 164 161 189 58 65 22 662 78.10%
2007 8 238 326 151 48 69 13 853 84.76%
2008 2 110 151 139 29 11 4 446 90.13%
2009 3 35 124 211 88 91 11 563 66.25%
2010 7 51 101 172 90 110 26 557 59.43%
2011 10 35 140 201 41 82 14 523 73.80%
2012 3 41 153 261 83 116 25 682 67.16%
2013 12 49 173 311 95 105 31 776 70.23%
2014 8 32 139 303 92 92 20 686 70.26%
2015 20 28 198 370 78 55 7 756 81.48%
2016 26 59 219 357 80 65 3 809 81.71%

Total 131 1276 2535 3625 1262 1471 257 10,557

The differences in partial effects across rating categories are often “muted” in a para-
metric setting. In OPM, rating probabilities for all categories are governed by the same Gaus-
sian cumulative distribution function; such a distribution function, moreover, is roughly
linear in the center of its support, making it more challenging to identify the heterogeneous
effect across rating categories. As can be seen from Figure 5, the ratio of APE between
investment grade and high yield bonds from OPM, as depicted by the yellow-dashed line,
remains near unity, implying that the two groups of bonds benefit almost equally from
a strengthening shared-ownership relation.
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Figure 5. Ratio of the APE between investment grade and high yield bonds.

4.3. A Placebo Test for Rating Bias

While a reasonably large set of characteristics were controlled for in the model, and
there can be omitted variables that are correlated with the portfolio selection criteria of
Moody’s shareholders. After all, institutional shareholders, irrespective of their relationship
with Moody’s, tend to invest on firms with higher credit worthiness. As such, the partial
effects of the MFOI may only reflect the impact of unobserved characteristics and not
necessarily any “rating bias” from Moody’s. To make the analysis more meaningful, I
performed a placebo test to check if the bias still existed for bonds related to a portfolio of
“false owners” (institutional investors that do not own Moody’s).

Moody’s ten leading institutional owners are reported in Table 4, most of which are
investment/wealth management companies, such as Vanguard and Fidelity. A placebo
group was constructed using comparable asset managers that do not own Moody’s stocks.
Starting with the fifteen largest asset management companies by AUM, I chose two mangers
that do not own Moody’s—Merrill Lynch and BNY Mellon. A dummy variable Placebo
was created that takes the value of one for firms who are owned by either firm and zero
otherwise. The rating bias, as measured by the rating difference between the two groups,
should be zero as the two “false owners” are used. As can be seen from Figure 6, for every
year in the sample, except 2011 and 2015, the rating bias remained small and was not
statistically different from zero.

Table 4. Moody’s major institutional owners from 2001–2016.

Shareholder T Mean Max Min

HARRIS ASSOCIATES L.P. 21 2.42% 5.02% 0.00%
CHILDREN’S INV MGMT (UK) LLP 20 2.29% 5.31% 0.01%

SANDS CAPITAL MANAGEMENT, INC. 28 3.01% 5.59% 0.40%
T. ROWE PRICE ASSOCIATES, INC. 64 1.47% 5.94% 0.18%

BARCLAYS BANK PLC 55 2.52% 6.32% 0.03%
GOLDMAN SACHS & COMPANY 63 1.94% 7.24% 0.01%
VALUEACT CAPITAL MGMT, L.P. 13 5.19% 7.77% 0.93%

VANGUARD GROUP, INC. 64 3.79% 7.98% 1.64%
MSDW & COMPANY 57 2.20% 8.14% 0.22%

DAVIS SELECTED ADVISERS, L.P. 51 5.56% 8.14% 0.10%
FIDELITY MANAGEMENT & RESEARCH 64 1.99% 9.08% 0.00%

CAPITAL RESEARCH GBL INVESTORS 13 4.80% 11.31% 0.07%
CAPITAL WORLD INVESTORS 35 6.07% 12.60% 0.66%
BERKSHIRE HATHAWAY INC. 64 14.87% 20.43% 11.33%

Note: T = Periods of holding Moody’s stocks (out of 64 quarters).
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Figure 6. Placebo test using Merrill Lynch and BNY Mellon as “False Owners”. Note: The rating
difference in 2008 is not identified because all 446 bonds are issued by firms related with Merrill
Lynch or BNY Mellon.

4.4. Bias in Issuer Ratings

This paper used bond ratings while the literature also studies issuer ratings. To check
whether our empirical results held for issuer ratings, I re-estimated the model for bonds
that were “senior-unsecured”—these bonds receive issuer ratings. Note that the bond
index in the original model would be redundant in this case because all bonds within the
firm receive the same issuer rating. As such, I estimated a double-index model with the
firm characteristics and MFOI. The APEs of the MFOI for each year are reported in a similar
fashion in Figure 7.

The economic magnitude of the APEs are not identical to those from the three-index
model; however, this should not be too surprising because not all firms in the original
sample issued senior unsecured bonds. In fact, the sample size decreases substantially from
10,557 to 7485 after focusing only on senior unsecured bonds. Nevertheless, the general
patterns of APE are in accord with the three-index model reported in Figure 4. That is, our
previous conclusions about the rating bias on bond ratings are likely to extend to issue
ratings as well.

Figure 7. The average partial effects of MFOI (on issuer ratings).

5. Conclusions

During the 2007–2009 financial crisis, credit rating agencies (CRAs) were criticized
for assigning inflated ratings to mortgage-backed securities and other structured products.
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A similar phenomenon was documented on other asset classes, such as corporate bonds
(Kedia et al. 2017; Strobl and Xia 2012) and CDOs (Griffin and Tang 2012). The relaxed
rating standard was largely attributable to conflicts of interest arising out of the CRA’s
business model. In this paper, I propose a semiparametric model to investigate to what
extent Moody’s ratings are affected by the economic interests of its shareholders, which is
pertinent for the regulation of credit rating agencies.

Compared with extant bond rating models, the proposed model has two key features:
(i) I explicitly consider the impact of conflicts of interest on ratings through common
shareholders, (ii) the model imposes few distributional and functional form restrictions
on the underlying rating process. Specifically, explanatory variables enter the model in
the form of multiple indices that can interact with each other freely. Asymptotic results
of the index parameters estimator are established after several bias corrections. While
the focus of this paper is on credit ratings, the estimation and inference framework with
multiple-indices can be applied to other contexts.

By estimating the heterogeneous (partial) effects of MFOI, which is a self-constructed
index for the degree of shared-ownership connection between Moody’s and bond issuers, I
found that high-yield bonds were unlikely to be treated with favoritism. One plausible
explanation for this phenomenon is that overrating a subprime bond would incur a greater
expected reputation loss than overrating a safe bond.
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The following abbreviations are used in this manuscript:

CRA Credit Rating Agency
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OPM Ordered-Probit Model
SIM-M Semiparametric multiple-index model with kernel (this paper)
SIM-1 Semiparametric single-index model (Klein and Sherman 2002)

Appendix A. Definitions and Assumptions

To formally describe the asymptotic results in Appendix B, I require the following
definitions and technical assumptions. As discussed in Section 3, a “recursive differencing”
estimator was employed to obtain bias controls. This estimator is formally defined in Defi-
nition A4, with the underlying index and density estimators defined in Definitions A1–A3.

Definition A1 (Firm and Bond Index). Let F1 denote a continuous firm characteristics and F′

denote the vector of firm characteristics other than F1 such that Fi ≡ [F1i, F′i ] for. B1 and B′ are
defined similarly for the vector of bond characteristics. I define the firm and bond index as

https://www.mdpi.com/article/10.3390/econometrics9020023/s1
https://www.mdpi.com/article/10.3390/econometrics9020023/s1


Econometrics 2021, 9, 23 14 of 20

Firm Index: WFi ≡ F1iβ
F
10 + F′i βF

0 (A1)

Bond Index: WBi ≡ B1iβ
B
10 + B′i β

B
0

Under Assumptions A1–A3 below, I define the normalized indices as:

Normalized Firm Index: VFi ≡ WFi/βF
10 = F1i + F′i θF

0 (A2)

Normalized Bond Index: VBi ≡ WBi/βB
10 = B1i + B′iθ

B
0

where θF
0 ≡ (βF

20/βF
10, βF

30/βF
10, · · · ) and θB

0 ≡ (βB
20/βB

10, βB
30/βB

10, · · · ) are referred to as the
index coefficients.

Definition A2 (Kernels). Let Vj ≡ (VFj, VBj, MFOIj) denotes the value of the normalized index
for observation j, and Vi ≡ (VFi, VBi, MFOIi) denote a fixed point of interest. Define a multivariate
kernel function

Kh(Vj −Vi) =
1

h1h2h3
K(

VFj −VFi

h1
)K(

VBj −VBi

h2
)K(

MFOIj −MFOIi

h3
) (A3)

where K(u) = 1√
2π

exp(−u2/2) and h ≡ (h1, h2, h3)
′ is a bandwidth parameter that goes to zero

as the sample size approaches infinity.

Definition A3 (Density Estimator). Let g(Vi) denotes the joint density of the three-dimensional
index at a fixed point Vi, a (leave-one-out) kernel-weighted density estimator ĝ(Vi) is defined as

ĝ(Vi) =
1

N − 1

N−1

∑
j=1

Kh(Vj −Vi) (A4)

Definition A4 (Estimated Probability). Referring to Definitions A2 and A3, an initial estima-
tor for the probability that a bond with characteristics Vi = (VFi, VBi, MFOIi) will be rated in
category k, denoted Pk(Vi), is defined as

P̂k(Vi) ≡
1

N−1 ∑j Yk
j Kh(Vj −Vi)

ĝ(Vi)
(A5)

Based on this initial estimator at v, a recursive-differencing estimator for Pk(Vi), in the spirit
of Shen and Klein (2019), is defined as

P̂∗k(Vi) ≡
1

N−1 ∑j[Y
k
j − ∆̂k

j (Vi)]Kh(Vj −Vi)

ĝ(Vi)
= f̂ (Vi)/ĝ(Vi) (A6)

where ∆̂k
j (Vi) = P̂k(Vj)− P̂k(Vi) is a bias-correction adjustment.

Definition A5 (Trimming Functions). Let Wd
i denote the d-th column of a D−dimensional

continuous vector Wi. Define τ̂id ≡ 1{âd < Wd
i < b̂d} and τ̂i = ∏D

d=1 τ̂id, where âd b̂d are,
respectively, the lower and upper sample quantiles for Wd. When Wd

i = Xi, I refer to τix as
X-trimming; With V̂i as the estimated index, when Wd

i = V̂i, I refer to τiv as index trimming.

Definition A6 (First- and Second-Stage Estimator). Based on Definitions A1–A5, I define:
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θ̂1 = argmax
θ

Q1(θ), Q1(θ) = N−1
N

∑
i=1

τ̂ix{
7

∑
k=1

YikLn(P̂∗k (Vi))}, (A7)

θ̂2 = argmax
θ

Q2(θ), Q2(θ) = N−1
N

∑
i=1

τ̂iv{
7

∑
k=1

YikLn(P̂∗k (Vi))}, (A8)

where Vi ≡ (VFi, VBi, MFOIi) is defined in Definition A1. The second stage estimator θ2 differs
from the first stage in that the trimming function τiv is based on the estimated index from the first
stage: That is, I define the trimming function based on Wi = (VFi(θ̂1), VBi(θ̂1), MFOIi).

The intuition of the recursive differencing estimator is as follows: from the standard
results, the bias of the initial Nadaraya–Watson estimator in (A5) goes to zero at the rate of
h2 as h→ 0. Such a bias arises because the differences between Pk(Vj) and Pk(Vi) cannot be
“washed away” by kernel averaging over j. However, by removing an estimate of this bias

(e.g., ∆̂k
ji = P̂k(Vj)− P̂k(Vi)) from Yjk, the kernel-weighted average of Yjk − ∆̂k

ji turns out to
be a better estimate of Pk(VFi, VBi, MFOIi). Specifically, Shen and Klein (2019) proved that
the bias of this “recursive differencing” estimator P̂∗k (VFi, VBi, MFOIi) goes to zero at the
rate of h4, whereas the variance stays at the same order at 1/Nh3.

The proofs for asymptotic properties of the recursive differencing estimator also
exploit a residual-like property of the derivative (with respect to the parameters θ) of the
expected semiparametric probability function: Under the index assumption, we have
E[∇θ Pr[Yk

i = 1|V(θ)|θ=θ0 ]] = 0. This residual-like property, which is proven in Lemma 2.9,
has been employed by Klein and Spady (1993) and Klein and Shen (2010) as bias control. To
take advantage of this property, a two-stage estimation procedure described in Definition
A6 is needed: I first estimate the model under X-trimming defined in Definition A5. The
resulting estimates, θ̂1, are employed to obtain the estimated indices. A second-stage
estimator, θ̂2, is then obtained from re-estimating the model with trimming based on
estimated indices.

The trimming function defined in Definition A5 provides protection against small
density denominators and hence “stabilizes” the probability estimator. In addition, the
order of the bias increases near the boundary of the support for the variables on which
we trim. Trimming resolves that as well. The trimming function restricts estimation in all
stages to employ only the middle 99th percentile (âd = 0.005, b̂d = 0.995 for all d) of the data.
Such trimming thresholds are selected based on simulation evidence.15

To obtain convergence properties for the proposed estimator in Definition A4 and
asymptotic normality for the second-stage estimator of the index parameters defined in
Definition A6, I make the following assumptions.

Assumption A1 (Data). The vector (Yi,Xi) is iid over i. The categorical outcome Yi has a discrete
and finite support, taking values from 1 to k. The columns of Xi = [Fi, Bi, MFOIi] are linearly
independent with a probability of one. As stated in Definition A1 above, I require that Fi and Bi
each contain at least one continuous regressor, termed F1 and B1, respectively.

Assumption A2 (The Error Term). The error term Si is conditionally mean-independent of
Xi: E[Si|Xi] = 0 and independent across i.

Assumption A3 (Continuous Firm and Bond Characteristics). Referring to the firm and
bond index defined in Definition A1, I require the index coefficient of F1 and B1 to be nonzero:
βF

10 6= 0, βB
10 6= 0.

Assumption A4 (Index Assumption). Referring to the normalized index defined in Definition
A1, let Vi(θ0) ≡ [VFi, VBi, MFOIi], the following index assumption is assumed to hold for all i
and k:
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E[Yk
i = 1|Xi] = E[Yk

i = 1|Vi(θ0)] (A9)

Assumption A5 (Parameter Space). The vector of the true parameters values θ0 ≡ [θF
0 , θB

0 ] for
the model lies in the interior of a compact parameter space, Θ.

Assumption A6 (Conditional Densities). Let g(v|y, x) denote the density of the index Vi(θ)
defined in Assumption A4 conditioning on Yi = y and Xi = x. Denote ∇dg(t|y, x) as the partial
or cross partial derivatives up to order d. I assume g > 0 and ∇dg(t|y, x) to be uniformly bounded
for d = 0, 1, 2, 3 on the interior of its support.

Assumption A7 (Bandwidth Parameter). Referring to the kernel estimator defined in
Definition A2, the bandwidth parameter h → 0 as N → ∞. Specifically, with h = (h1, h2, h3),
I choose hz = 0.97σzN−r according to Silverman (1982)16 where σz is the standard deviation of the
three indices (z = 1, 2, 3) and r is a parameter that affects the rate that h goes to zero. In this paper,
r = 1/7.01.

Assumptions A1–A5 define the index model that I propose to estimate. An index
formulation of low dimension is important for obtaining reasonable results in finite samples.
In Assumption A3, I assume that the firm and bond indices satisfy the identification
conditions in Ichimura and Lee (1991). Specifically, each index must contain at least one
continuous variable that belongs to the model in the statistical sense. In addition, I require
that the densities for continuous variables and the indices must be sufficiently smooth as
implied by Assumption A6. The smoothness conditions are standard in the literature and
have been discussed in Klein and Spady (1993).

Appendix B. Asymptotic Theorems

In this section, I provide and discuss the asymptotic properties for the two estimators
defined in Definition A6. The online Supplementary Materials contains formal proofs for all
required intermediate lemmas and the main theorems given below. In what follows, I first
establish consistency for the estimators in both stages using standard uniform convergence
arguments. Then, I turn to the sketch of proof for asymptotic normality of θ̂2.

For m = 1, 2, recall that the estimator θ̂m maximizes the estimated log-likelihood
function Q̂m(θ) defined in Definition A6 for both stages. From Lemma 2.3 in the Online

Supplemental Material, supθ |Q̂m(θ)− Q̃(θ)| p→ 0, where Q̃(θ) is obtained from Q̂m(θ) by
replacing all estimated functions with their probability limits. From standard argument,
Q̃(θ) converges uniformly to its expectation E[Q̃(θ)]. It can be shown that E[Q̃(θ)] is
uniquely maximized at θ0, and therefore the estimators in both stages are consistent.

Theorem A1 (Consistency). Under Assumptions A1–A7 and with 1/12 < r < 1/7,

|θ̂1 − θ0| = op(1); |θ̂2 − θ0| = op(1)

Proof. See Online Supplementary Material.

To derive the asymptotic distribution of the second stage estimator θ̂2, recall that θ̂2 is
obtained by maximizing the log-likelihood function Q2 defined in Definition A6 with the
index-trimming. Let G(θ) and H(θ) denote the Gradient and Hessian matrices, which are
the first and second derivatives of the log-likelihood function in (A8):
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Ĝ(θ) = ∇θ′ Q̂2(θ) =
1
N

N

∑
i=1

7

∑
k=1

Yk

P̂∗k
∇θ P̂∗k (A10)

Ĥ(θ) = ∇θ′θQ̂2(θ) =
1
N

N

∑
i=1

7

∑
k=1

(
Yk

P̂∗k
∇θ′θ P̂∗k −

Yk

P̂∗k
2∇θ P̂∗k ) (A11)

To simplify the presentation, I suppress the trimming function τ̂iv and denote the
double summation ∑N

i=1 ∑7
k=1 as ∑i,k. From a Taylor expansion of the estimated Gradient

at θ̂2,

Ĝ(θ̂2) = Ĝ(θ0) + Ĥ(θ+)(θ̂2 − θ0) θ+ ∈ (θ0, θ̂2) (A12)

Since the estimated gradient must be zero at θ0, the above expression simplifies to
√

N(θ̂2 − θ0) = −Ĥ(θ+)−1
√

NĜ(θ0) θ+ ∈ (θ0, θ̂2) (A13)

By Lemma 2.5 in the Online Supplemental Material, the estimated Hessian Ĥ(θ+)
will uniformly converge to H0 ≡ E[H(θ0)] when the bandwidth parameter r < 1/7. The
estimated gradient Ĝ(θ0) has an asymptotic expansion as follows:

√
NĜ(θ0) ≡ N−1/2 ∑

i,k

Yk − P̂∗k
P̂∗k

∇θ P̂∗k |θ=θ0

= N−1/2 ∑
i,k

Yk − Pk

P̂∗k
∇θ P̂∗k |θ=θ0︸ ︷︷ ︸

A

+ N−1/2 ∑
i,k

Pk − P̂∗k
P̂∗k

∇θ P̂∗k |θ=θ0︸ ︷︷ ︸
B

= N−1/2 ∑
i,k

Yk − Pk
Pk

∇θ Pk|θ=θ0︸ ︷︷ ︸
A1

−N−1/2 ∑
i,k
(Yk − Pk)(

∇θ Pk|θ=θ0

Pk
−
∇θ P̂∗k |θ=θ0

P̂∗k
)︸ ︷︷ ︸

A2 : = op(1) from mean square convergence

(A14)

+ N−1/2 ∑
i,k

Pk − P̂∗k
Pk

∇θ Pk|θ=θ0︸ ︷︷ ︸
B1

−N−1/2 ∑
i,k
(Pk − P̂∗k )(

∇θ Pk|θ=θ0

Pk
−
∇θ P̂∗k |θ=θ0

Pk
)︸ ︷︷ ︸

B2 : = op(1) with 1
16<r< 1

9

− N−1/2 ∑
i,k
(Pk − P̂∗k )(

∇θ P̂∗k |θ=θ0

Pk
−
∇θ P̂∗k |θ=θ0

P̂∗k
)︸ ︷︷ ︸

B3 : = op(1) with 1
16<r< 1

8

= A1 + B1 + op(1)

In the Online Supplemental Material, I formally show that each term in the asymptotic
expansion, except A1, is op(1). The aforementioned residual-like property plays a critical
role in showing B1 = op(1). Combining (A13) and (A14),

√
N(θ̂2 − θ) has the following

asymptotic linear representation

√
N(θ̂2 − θ) = −H−1

0 N−1/2 ∑
i,k

Yk − Pk
Pk

∇θ Pk|θ=θ0 + op(1) (A15)

where H0 ≡ E[H(θ0)] is the probability limit of the Hessian matrix evaluated at θ0. After
applying the Lindberg–Levy CLT, the second stage estimator θ̂2 defined in Definition A6 is√

N−normal,
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Theorem A2 (Normality). Assumptions A1–A7 and with the bandwidth parameter 1/12 < r < 1/7,

√
N(θ̂2 − θ0)

d→ N(0, Σ)

where Σ = H−1
0 E[G′(θ0)G(θ0)]H−1

0 with H0 ≡ E[∑7
j=1(

Yj
Pk
∇θ′θ Pk|θ=θ0 −

Yk
P2

k
∇θ Pk|θ=θ0)],

G(θ0) = ∑7
k=1

Yk
Pk
∇θ Pk|θ=θ0 , and Pk = Pr(Yik = 1|Vi(θ0)).

Proof. See Online Supplemental Material.

Notes
1 For theoretical studies on the issuer-paid model and rating shopping, see Bolton et al. (2012); Sangiorgi et al. (2009);

Skreta and Veldkamp (2009) and some empirical evidence (He et al. 2015; Jiang et al. 2012; Mathis et al. 2009).
2 Extensive literature addresses semiparametric models and the estimation of semiparametric single index models,

including Härdle and Stoker (1989); Horowitz and Härdle (1996); Ichimura (1993); Klein and Spady (1993); Manski
(1985); Powell et al. (1989). See Stewart (2005), Lewbel (2000), and Klein and Sherman (2002) for applications of a
single-index model in the context of an ordered-response model.

3 Alternatively, one may also use the sieves method to estimate the rating probability. Such methods are more convenient
when some prior information and constraints, such as monotonicity, additivity, and nonnegativity, needs to be
incorporated in the conditional probabilities (Chen 2007). For instance, Coppejans (2007) estimates an ordered model
with a quadratic-spline under the restriction that the distribution functions across all categories are the same. Such
a constraint, however, is not appropriate in the current application because Moody’s rating standard can vary
with categories.

4 Macro variables are not included because the model will be estimated separately for each year.
5 Moody’s was founded as a private company in 1900, acquired by Dun&Bradstreet (D&B) in 1962, and remained

one of its divisions until 4 October 2000, when it was spun off and listed on the NYSE. The S&P has been a fully
owned division of McGraw-Hill, a publicly traded company, since 1966. Going public makes CRAs more vulnerable
to conflicts of interest. For example, Kedia et al. (2017) found that Moody’s assigned favorable ratings toward issuers
that Moody’s shareholders have invested in.

6 From 2001 to 2010, Moody’s had two shareholders, Berkshire Hathaway and Davis Selected Advisors, which
collectively own about 23.5% of Moody’s.

7 The numerical rating matches the seven ordinal rating categories: Aaa = 7, Aa = 6, A = 5, Baa = 4, Ba = 3, B = 2, and
C = 1 (from the highest credit quality to the lowest).

8 The vector X is assumed to be exogenous throughout. Intuitively, and as one might have expected, some information
contained in S, e.g., the manager’s ability, may also drive institutional investors’ investment decisions, implying that
MFOI is endogenous. The problem of endogeneity can be handled, for example, using the control function approach
proposed by Blundell and Powell (2004) provided with a valid exclusion restriction.

9 Specifically, the rating probability in an ordered-probit model is

Pik ≡ Pr(Yik = 1|Xi) = Φ(Tk − Xiβ0)−Φ(Tk−1 − Xiβ0)

where Φ is the cdf of a standard normal random variable. Note that for the highest and lowest category, Φ(T7−Xiβ0) =

1 and Φ(T0 − Xiβ0) = 0. The slope coefficients β0 and the cutoff points Tk, k = 1, · · · , 6, can be estimated through
maximizing the following log-likelihood function,

Q =
1
N

N

∑
i=1

7

∑
k=1

Yik Ln(Pik)

In the case when y∗ = Xβ0 + c0 + S in (7) and the variance of the homoskedastic error term is σ2, identification is
up to location and scale: one can, at most, identify β∗ ≡ β0/σ, T∗k = (Tk − T1)/σ (the “pseudo cutoff points”), and
c∗ = (c0 − T1)/σ (the “pseudo intercept”). See Amemiya (1981) for a discussion.

10 Since the functional form of Pk(·) in (6) is not specified, conditioning on the original index WFi, WBi, MFOIi and a linear
transformation of them deliver the same amount information on ratings. Therefore, without some normalization,
the limiting log-likelihood function cannot be uniquely maximized at the true parameters, which is necessary
for identification.
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11 More specifically, u is generated from a χ2(1) distribution, standardized to have a mean of zero and unit variance.
X1, X3 ∼ N(0, 1), and X2 is a standardized χ2(1).

12 Confidence Intervals were constructed based on the asymptotic results derived in Appendix B.
13 The partial effects for MFOI in the ordered-response model are,

δk(MFOIi) =
∂Prob(Y = k|Xi)

∂MFOIi
, k = Aaa, Aa, · · · , C

≈ Pk(VFi, VBi, MFOIi + δ)− Pk(VFi, VBi, MFOIi),

The Average Partial Effect, or APE, is computed by evaluating the partial effect for each bond i and averaging the
computed effects,

APEk(MFOIi; δ) =
1
n

n

∑
i=1

Pk(VFi, VBi, MFOIi + δ)− Pk(VFi, VBi, MFOIi)

The above calculation can be performed for any category. That is, even for a C-rated bond, one can compute the
change in the probability of this bond being rated into AAA. To make the presentation concise and practically relevant,
I only report the APE for the category that is one-notch better than the current rating grade. That is, I interpret the
APE as the probabilistic change of obtaining a better rating grade if the issuer’s share-ownership relationship with
Moody’s strengthens by δ.

14 This implies that the CRA will be “punished” once a highly rated investment results in default. See Bolton et al.
(2012) for a discussion.

15 The suggested trimming rule is indeed ad-hoc because the selected threshold may be bad for other DGP. The
asymptotic theorems developed later abstracts away from the trimming issue. It is possible to develop a data-
dependent optimal trimming rule similar to Ma and Wang (2019), which is left for future work.

16 To be specific, let hz = cz N−r, Silverman (1982) shows that the MSE-optimal c = ( 4
d+2 )

1/(4+d)σz. In the case with three
indices, the constant is roughly 0.97.
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