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Abstract: This paper derives the statistical properties of a two-step approach to estimating multi-
variate rotated GARCH-BEKK (RBEKK) models. From the definition of RBEKK, the unconditional
covariance matrix is estimated in the first step to rotate the observed variables in order to have the
identity matrix for its sample covariance matrix. In the second step, the remaining parameters are esti-
mated by maximizing the quasi-log-likelihood function. For this two-step quasi-maximum likelihood
(2sQML) estimator, this paper shows consistency and asymptotic normality under weak conditions.
While second-order moments are needed for the consistency of the estimated unconditional covari-
ance matrix, the existence of the finite sixth-order moments is required for the convergence of the
second-order derivatives of the quasi-log-likelihood function. This paper also shows the relationship
between the asymptotic distributions of the 2sQML estimator for the RBEKK model and variance
targeting quasi-maximum likelihood estimator for the VT-BEKK model. Monte Carlo experiments
show that the bias of the 2sQML estimator is negligible and that the appropriateness of the diagonal
specification depends on the closeness to either the diagonal BEKK or the diagonal RBEKK models.
An empirical analysis of the returns of stocks listed on the Dow Jones Industrial Average indicates
that the choice of the diagonal BEKK or diagonal RBEKK models changes over time, but most of the
differences between the two forecasts are negligible.

Keywords: BEKK; rotated BEKK; diagonal BEKK; variance targeting; multivariate GARCH;
consistency; asymptotic normality

1. Introduction

The BEKK model of Baba et al. (1985) and Engle and Kroner (1995) is widely used for
estimating and forecasting time-varying conditional covariance dynamics, especially in the
empirical analysis of the multiple asset returns of financial time series (Bauwens et al. 2006;
Laurent et al. 2012; McAleer 2005; Silvennoinen and Teräsvirta 2009). The BEKK model is
a natural extension of the ARCH/GARCH models of Engle (1082) and Bollerslev (1986).
One of the features of the BEKK model is that it guarantees the positive definiteness of
the covariance matrix. However, as it does not satisfy suitable regularity conditions, the
corresponding estimators do not possess asymptotic properties, except under restrictive

Econometrics 2021, 9, 21. https://doi.org/10.3390/econometrics9020021 https://www.mdpi.com/journal/econometrics

https://www.mdpi.com/journal/econometrics
https://www.mdpi.com
https://orcid.org/0000-0002-6682-4622
https://orcid.org/0000-0001-8835-760X
https://orcid.org/0000-0003-2707-3835
https://doi.org/10.3390/econometrics9020021
https://doi.org/10.3390/econometrics9020021
https://doi.org/10.3390/econometrics9020021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/econometrics9020021
https://www.mdpi.com/journal/econometrics
https://www.mdpi.com/article/10.3390/econometrics9020021?type=check_update&version=3


Econometrics 2021, 9, 21 2 of 21

conditions (Chang and McAleer 2019; Comte and Lieberman 2003; McAleer et al. 2008).
To overcome this problem, Hafner and Preminger (2009) showed the asymptotic properties
of the quasi-maximum likelihood (QML) estimator under moderate regularity conditions.

Similar to other multivariate GARCH models, a drawback of the BEKK model is that
it contains a large number of parameters, even for moderate dimensions. To reduce the
number of parameters, the so-called scalar BEKK and diagonal BEKK specifications are
used in empirical analyses (Chang and McAleer 2019). Recently, Noureldin et al. (2014)
suggested the rotated BEKK (RBEKK) model to handle the high-dimensional BEKK model.
They proposed the estimation of the unconditional covariance matrix of the observed
variables in the first step to rotate the variables in order to have unit sample variance
and zero sample correlation coefficients. In the second step, they considered simplified
BEKK models for the QML estimation. We call this procedure the two-step QML (2sQML)
estimation. One of the major advantages of the RBEKK model is that it can reduce the
number of parameters in the optimization step, while another is that it is more natural to
consider simplified specifications after the rotation than to simplify the structure directly
without the rotation.

2sQML is closely related to the variance targeting (VT) specification analyzed by
Francq et al. (2011) and Pedersen and Rahbek (2014), among others. The VT-QML esti-
mation also uses the estimated unconditional covariance matrix in the first step to reduce
the number of parameters in the QML maximization step. Pedersen and Rahbek (2014)
showed the consistency and asymptotic normality of the VT-QML estimator under finite
sixth-order moments. As Noureldin et al. (2014) discussed the general framework for the
asymptotic distribution of the 2sQML estimator for the RBEKK model, it is thus worth
examining the detailed moment condition, as in Pedersen and Rahbek (2014).

In this study, we show the consistency and asymptotic normality of the 2sQML
estimator for the RBEKK model by extending the approach of Pedersen and Rahbek (2014).
For asymptotic normality, we need to impose sixth-order moment restrictions, as in Hafner
and Preminger (2009) and Pedersen and Rahbek (2014). We also derive the asymptotic
relationship between the VT-QML estimator for the BEKK model and the 2sQML estimator
for the RBEKK model. We conduct Monte Carlo experiments to check the finite sample
properties of the 2sQML estimator and compare the performance of the estimated diagonal
BEKK and diagonal RBEKK models. The proofs of the propositions and corollaries are
given in Appendix A. We present an empirical result based on the returns of stocks listed
on the Dow Jones Industrial Average.

There are several works related to the idea of Noureldin et al. (2014). First, the trans-
formation suggested by Noureldin et al. (2014) is related to the (generalized) orthogonal
GARCH models of Alexander (2001), van der Weide (2002), and Lanne and Saikkonen
(2007). While these authors attempt to find orthogonal or unconditionally uncorrelated
components in the raw returns, which can then be modeled individually through univariate
variance models, Noureldin et al. (2014) suggest fitting flexible multivariate models to
the rotated returns using the VT approach. Second, the symmetric square root rotation
of Noureldin et al. (2014) is not the most general type of rotation one could use—see,
for instance, the hyper-rotation suggested by Asai and McAleer (2020) and the structural
multivariate GARCH approach of Hafner et al. (2020). Both use generalized rotations that
are not necessarily symmetric. From the structure, we can infer that these works are not
based on the VT approach.

We use the following notation throughout the paper. For a matrix A, we define
A⊗2 = (A⊗ A). With ξ1, . . . , ξn, the n eigenvalues of a matrix A, ρ(A) = maxi∈{1,...,n}|ξi|,
is the spectral radius of A. The Frobenius norm of the matrix, or vector A, is defined as
||A|| =

√
tr(A′A). For a positive matrix A, we define the square root, A1/2, by the spectral

decomposition of A. For an m× n matrix A, the mn×mn commutation matrix Cmn has
the property Cmnvec(A) = vec(A′).



Econometrics 2021, 9, 21 3 of 21

2. RBEKK-GARCH Model

As in Hafner and Preminger (2009) and Pedersen and Rahbek (2014), we focus on a
simple specification of the BEKK model defined by:

Xt = H1/2
t Zt, (1)

Ht = C∗ + A∗Xt−1X′t−1 A∗′ + B∗Ht−1B∗′, (2)

where t = 1, . . . , T, A∗, and B∗ are d-dimensional square matrices, C∗ is a d-dimensional
positive definite matrix, and Zt (d× 1) is an i.i.d.(0, Id) sequence of random variables.

We begin with the following assumption.

Assumption 1.

(a) The distribution of Zt is absolutely continuous with respect to the Lebesgue measure of <d

and zero is an interior point of the support of the distribution.
(b) The matrices A∗ and B∗ satisfy ρ((A∗ ⊗ A∗) + (B∗ ⊗ B∗)) < 1.

From Theorem 2.4 of Boussama et al. (2011), Assumption 1 implies the existence
of a unique stationary and ergodic solution to the model in (1) and (2). Furthermore,
the stationary solution has finite second-order moments, E||Xt||2 < ∞, and variance
V(Xt) = E(Ht) = Ω, with positive definite Ω, which is the solution to:

Ω = C∗ + A∗ΩA∗′ + B∗ΩB∗′. (3)

Lemma 2.4 and Proposition 4.3 of Boussama et al. (2011) indicate that the necessary and suf-
ficient conditions for (3) to have a solution of a positive definite matrix is Assumption 1(b).
As in Pedersen and Rahbek (2014), we obtain the VT specification by substituting C∗ in (3)
into the model (2), giving:

Ht = Ω− A∗ΩA∗′ − B∗ΩB∗′ + A∗Xt−1X′t−1 A∗′ + B∗Ht−1B∗′. (4)

Based on this specification, Noureldin et al. (2014) suggested the RBEKK model, which
is obtained by setting A∗ = Ω1/2 AΩ−1/2 and B∗ = Ω1/2BΩ−1/2 in (2), where A and B are
d-dimensional square matrices. The transformation yields:

Ht = Ω1/2HtΩ
1/2, Ht = (Id − AA′ − BB′) + AX̃t−1X̃′t−1 A′ + BHt−1B′, (5)

with the rotated vector X̃t = Ω−1/2Xt, which gives E(X̃tX̃′t) = Id. As discussed by
Noureldin et al. (2014), the specification provides a natural interpretation for considering
the diagonal matrices A and B to reduce the number of parameters. Rather than the special
case with these diagonal matrices, we consider general A and B for asymptotic theory. With
respect to the initial values, we consider the estimation conditional on the initial values
X0 and H0 = h, where h is a positive definite matrix. Under this structure, it is natural to
replace Assumption 1(b) with the following assumption.

Assumption 2. The matrices A and B satisfy ρ((A⊗ A) + (B⊗ B)) < 1.

Lemma A2 in Appendix A.2 shows that Assumption 2 is equivalent to Assumption 1(b).
In the next section, we consider the 2sQML estimation for the RBEKK model (1)

and (5), as in Noureldin et al. (2014) and Pedersen and Rahbek (2014).

3. 2sQML Estimation

Let θ, θ ∈ <3d2
denote the parameter vector of the RBEKK model, which is defined by

θ = (ω′, λ′)′, where ω = vec(Ω) and λ = (α′, β′)′ with α = vec(A) and β = vec(B). We
also define the parameter space Θ = Θω ×Θλ ⊂ <d2 ×<2d2

. As in Hafner and Preminger
(2009) and Pedersen and Rahbek (2014), we emphasize the dependence of Ht and Ht
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on the parameters ω and λ by writing Ht(ω, λ) and Ht(ω, λ), respectively. In addition,
we emphasize the initial value of the covariance matrix, h, by denoting Ht,h(ω, λ) and
Ht,h(ω, λ). Now, we restate the RBEKK model as:

Xt = H1/2
t (ω, λ)Zt, Ht(ω, λ) = Ω1/2Ht(ω, λ)Ω1/2, (6)

Ht(ω, λ) = (Id − AA′ − BB′) + AΩ−1/2Xt−1X′t−1Ω−1/2 A′ + BHt−1(ω, λ)B′, (7)

with the given initial values X0 and H0,h(ω, λ) = h.
As mentioned above, we consider the 2sQML estimation, which comprises two steps.

In the first step, we estimate ω using the sample covariance matrix, while the second step
conducts the QML estimation by optimizing the log-likelihood function for λ conditional
on the estimates of ω. For the RBEKK model, the Gaussian log-likelihood function is
given by:

LT,h(ω, λ) = T−1
T

∑
t=1

lt,h,(ω, λ), (8)

with the tth contribution to the log-likelihood given as:

lt,h(ω, λ) = −1
2

log(det(Ht,h(ω, λ)))− 1
2

tr
(

XtX′tH−1
t,h (ω, λ)

)
, (9)

excluding the constant. In the first step, we estimate the unconditional covariance matrix by:

ω̂ = vec
(
Ω̂
)
= vec

(
T−1

T

∑
t=1

XtX′t

)
, (10)

to rotate Xt and Ht,h(ω, λ) as:

X̃t = Ω̂−1/2Xt, Ht,h(ω̂, λ).

Note that the sample covariance matrix is positive definite, since the structure confirms
the positive semi-definiteness, and since T > d guarantees that the rank of [X1 · · ·XT ] is
d. By definition, we have T−1 ∑T

t=1 X̃tX̃′t = Id. The conditional log-likelihood function is
given by:

− 1
2T

T

∑
t=1

[
log
(
det
(

Ht,h(ω̂, λ)
))

+ tr
(

X̃tX̃′tH−1
t,h (ω̂, λ)

)]
,

which is equivalent to LT,h(ω̂, λ) + 0.5T log(det(Ω̂)). Hence, the second step of the estima-
tor is given by:

λ̂ = arg max
λ∈Θλ

LT,h(ω̂, λ). (11)

We derive the asymptotic theory for the 2sQML estimator, which consists of (10) and (11).
Following Comte and Lieberman (2003), Hafner and Preminger (2009), and Pedersen

and Rahbek (2014), we make the following conventional assumptions.

Assumption 3.

(a) The process {Xt} is strictly stationary and ergodic.
(b) The true parameters θ0 ∈ Θ and Θ are compact.
(c) For λ ∈ Θλ, if λ 6= λ0, then Ht(ω0, λ) 6= Ht(ω0, λ0) almost surely, for all t ≥ 1.

For Assumption 3(a), Assumptions 1(a) and 2 imply the existence of a strictly sta-
tionary ergodic solution {Xt} in the RBEKK model. Regarding Assumption 3(c), one of
the conditions is that the first element in the matrices A and B should be strictly positive,
which is a sufficient condition for the parameter identification, as shown by Engle and
Kroner (1995).
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We now state the following result on the consistency of the 2sQML estimator, θ̂ =

(ω̂′, λ̂
′
)′.

Proposition 1. Under Assumptions 1(a), 2, and 3, as T → ∞, θ̂
a.s.−→ θ0.

Assumptions 1(a) and 2 imply the finite second-order moments of Xt, which are
necessary for estimating Ω with the sample covariance matrix. As shown by Hafner and
Preminger (2009), the consistency of the QML estimator for the BEKK model (1) and (2)
does not require the finite second-order moment of Xt.

We make the following assumption about the asymptotic normality of the
2sQML estimator.

Assumption 4.

(a) E[||Xt||6] < ∞.
(b) θ0 is in the interior of Θ.

As in Pedersen and Rahbek (2014), we need to assume finite sixth-order moments to
show that the second-order derivatives of the log-likelihood function converge uniformly
on the parameter space. This is different than the univariate case, which only requires finite
fourth-order moments (Francq et al. 2011).

Proposition 2. Under Assumptions 1(a) and 2–4, as T → ∞,

√
T
(
θ̂− θ0

) d−→ N
(
0, Q0Γ0Q′0

)
,

where

Q0 =

(
Id2 Od2×2d2

−J−1
0 K0 −J−1

0

)
,

with the matrix K0 and non-singular matrices J0 and Γ0 defined by:

K0 = E

(
∂2lt(θ)
∂λ∂ω′

∣∣∣∣
θ=θ0

)
, J0 = E

(
∂2lt(θ)
∂λ∂λ′

∣∣∣∣
θ=θ0

)
, Γ0 = E

[
γtγ

′
t
]
,

using

γt =

(
vec(XtX′t)−ω0

∂lt(θ)
∂λ

∣∣∣
θ=θ0

)
.

Remark 1. The structure of the asymptotic covariance matrix is similar to that of the VT-QML
estimator for Equations (2) and (4), derived by Pedersen and Rahbek (2014). The major difference
comes from the model structure, as the RBEKK further assumes that A∗ and B∗ depend on the
non-linear function of Ω.

Remark 2. We can estimate Γ0, K0, and J0 using the sample outer product of the gradient and
Hessian matrices as follows:

Γ̂ =
1
T

T

∑
t=1

γ̂tγ̂
′
t, K̂ =

1
T

T

∑
t=1

K̂t, Ĵ =
1
T

T

∑
t=1

Ĵt,

where

γ̂t =

(
vec(XtX′t)− ω̂

∂lt,h(θ)
∂λ

∣∣∣
θ=θ̂

)
, K̂t =

∂2lt,h(θ)
∂λ∂ω′

∣∣∣∣∣
θ=θ̂

, Ĵt =
∂2lt,h(θ)
∂λ∂λ′

∣∣∣∣∣
θ=θ̂

.
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Given the asymptotic distribution of θ̂, we can show the asymptotic distribution of the 2sQML
estimator of (Ω, A∗, B∗) in the VT representation of the BEKK. Define θ = (ω′, λ∗′)′, where
λ∗ = (α∗′, β∗′)′.

Proposition 3. Under the assumptions of Proposition 2, as T → ∞,

√
T(θ̂∗ − θ∗0)

d−→ N
(
0, R0Q0Γ0Q′0R′0

)
,

while the VT-QML estimator has the asymptotic covariance matrix, R∗0Q0Γ0Q′0R∗0 , where R0 and
R∗0 are stated in (A5) and (A17), respectively.

Remark 3. The difference in the asymptotic covariance matrix for the 2sQML and VT-QML
estimators depends on R0 and R∗0 . While R∗0 is a symmetric matrix, R0 is a square matrix in general.
The definiteness of R0Q0Γ0Q′0R′0 − R∗0Q0Γ0Q′0R′∗0 is undetermined.

From Proposition 3 and the delta method, we provide the asymptotic distribution of the 2sQML
estimator for (C∗, A∗, B∗) in the original BEKK model. Define c∗ = vec(C∗), α∗ = vec(A∗),
and β∗ = vec(B∗).

Corollary 1. Under the assumptions of Proposition 2, as T → ∞,

√
T

 ĉ∗ − c∗

α̂∗ − α∗

β̂
∗ − β∗

 d−→ N
(
0, S′0R0Q0Γ0Q′0R′0S0

)
,

where

S0 =

 Id2 − (Ω1/2
0 A0Ω−1/2

0 )⊗2 − (Ω1/2
0 B0Ω−1/2

0 )⊗2 Od2×d2 Od2×d2

−(Ω−1/2
0 ⊗Ω1/2

0 )(Id2 + Cdd)((Ω
1/2
0 A0Ω1/2

0 )⊗ Id) Id2 Od2×d2

−(Ω−1/2
0 ⊗Ω1/2

0 )(Id2 + Cdd)((Ω
1/2
0 B0Ω1/2

0 )⊗ Id) Od2×d2 Id2

.

Remark 4. From Proposition 1, we can estimate S0 and R0 using the 2sQML estimate, θ̂.

4. Monte Carlo Experiments
4.1. Experimental Framework

In this section, we illustrate the theoretical results presented in the previous section
using Monte Carlo experiments for d-dimensional rotated diagonal GARCH models. We
use the diagonal GARCH model for the model comparison because the number of param-
eters to be estimated is the same. It is difficult to estimate the fully parametrized BEKK
model when d takes a higher value such as d = 30, which gives the number of parameters
for A∗ and B∗ as 2d2 = 1800. On the contrary, rotated and unrotated diagonal GARCH
models use 2d = 60 parameters. We consider four experiments to examine the (i) finite
sample property of the 2sQML estimator, (ii) difference between the true and estimated
covariance matrices, (iii) approximation of the fully parametrized BEKK model via the
diagonal models, and (iv) finite sample property of the 2sQML estimator when fourth
moments of Xt do not exist. We generate Zt from N(0, Id) for all the experiments.

4.2. Performance of the 2sQML Estimator

In the first Monte Carlo experiment, we consider the bivariate case (d = 2) for the
data-generating processes (DGPs) with the following structure in (5):

Ω0 =

(
s01 0
0 s02

)(
1 ρ0
ρ0 1

)(
s01 0
0 s02

)
,

A0 =

(
A11,0 0

0 A22,0

)
, B0 =

(
B11,0 0

0 B22,0

)
.

(12)
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We consider two types of parameter sets:

DGP1: (s01, s02) = (1, 0.9), ρ0 = 0.5, (A11,0, A22,0) = (0.6, 0.4),

(B11,0, B22,0) = (0.7, 0.9),

DGP2: (s01, s02) = (0.8, 1.1), ρ0 = −0.3, (A11,0, A22,0) = (0.6,−0.3),

(B11,0, B22,0) = (0.7,−0.9),

which are used to obtain (C∗0 , A∗0 , B∗0 ) for the DGPs from (1) and (2). We use H1 = I2
for the initial value to generate T = 500 observations. We set the number of replica-
tions to 2000. Tables 1 and 2 provide the values of (Ω0, A0, B0) and corresponding values
of (C∗0 , A∗0 , B∗0 ), respectively. While DGP1 describes the positive unconditional correla-
tion, DGP2 uses the negative correlation. Using this specification, we can verify that
ρ((A∗0 ⊗ A∗0) + (B∗0 ⊗ B∗0 )) = 0.9. From this setting, we examine the finite sample property
of the 2sQML estimator for (Ω, A, B).

Table 1. Finite sample properties of the 2sQML estimator for the diagonal RBEKK model.

DGP1 DGP2
Parameters

True Mean Std. Dev. RMSE True Mean Std. Dev. RMSE

Ω11 1.00 1.0150 0.5831 0.5832 0.640 0.6375 0.2031 0.2031
Ω21 0.54 0.5492 0.3654 0.3654 −0.264 −0.2635 0.0552 0.0552
Ω22 0.81 0.8250 0.7143 0.7143 1.210 1.2067 0.1474 0.1474
A11 0.60 0.5853 0.0531 0.0551 0.600 0.5855 0.0567 0.0586
A22 0.40 0.3921 0.0424 0.0431 −0.300 −0.3032 0.0523 0.0524
B11 0.70 0.6939 0.0593 0.0596 0.700 0.6920 0.0710 0.0714
B22 0.90 0.8921 0.0463 0.0470 −0.900 −0.8666 0.1025 0.1078

Table 2. Finite sample properties of the 2sQML estimator for the full BEKK model.

DGP1 DGP2
Parameters

True Mean Std. Dev. RMSE True Mean Std. Dev. RMSE

C∗11 0.1392 0.1469 0.0346 0.0354 0.0950 0.1007 0.0262 0.0268
C∗21 0.0505 0.0559 0.0175 0.0183 −0.0319 −0.0396 0.0174 0.0190
C∗22 0.0351 0.0433 0.0165 0.0184 0.1220 0.1707 0.1185 0.1281
A∗11 0.6249 0.6113 0.0613 0.0628 0.6212 0.6072 0.0582 0.0599
A∗21 0.0706 0.0685 0.0260 0.0261 −0.1644 −0.1656 0.0281 0.0281
A∗12 −0.0794 −0.0817 0.0375 0.0375 0.1187 0.1181 0.0230 0.0230
A∗22 0.3751 0.3661 0.0487 0.0495 −0.3212 −0.3250 0.0542 0.0543
B∗11 0.6751 0.6678 0.0597 0.0601 0.7376 0.7313 0.0613 0.0616
B∗21 −0.0706 −0.0714 0.0266 0.0266 −0.2922 −0.2912 0.0521 0.0521
B∗12 0.0794 0.0824 0.0303 0.0304 0.2110 0.2067 0.0360 0.0363
B∗22 0.9249 0.9195 0.0311 0.0315 −0.9376 −0.9045 0.1073 0.1123

Table 1 shows the sample mean, standard deviations, and root mean squared error
of the 2sQML estimates. The table indicates that the bias of the estimators is negligible,
even for T = 500. The standard deviation for the sample covariance matrix is relatively
large for DGP1, which is expected to decrease as the sample size increases. Figure 1 shows
the histograms and QQ Plots of 2sQML estimates for representative parameters. As the
estimate of Ω11 is obtained from the sample covariance matrix, its distribution is skewed
to the right. By contrast, the distributions of the 2sQML estimates of A11 and B11 are close
to the normal distribution.

We also check the effects of the transformation from (Ω̂, Â, B̂) to (Ĉ∗, Â∗, B̂∗), as shown
in Corollary 1. Table 2 shows the sample mean, standard error, and root mean squared
error of the transformed estimator. As in Table 1, the bias of the estimators is negligible.
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Figure 2 indicates that the transformed estimators for the full BEKK specification can be
approximated using the normal distribution.

Figure 1. Histograms and QQ plots of 2sQML estimates for DGP1.

Figure 2. Histograms and QQ plots of 2sQML estimates for DGP1 with full BEKK parameters.
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4.3. Performance of Conditional Covariance Matrix Estimator

In the second experiment, we consider higher-dimensional cases with d = {5, 10, 30}.
Denoting by U(a, b), we simulate the uniform distribution on [a, b]:

DGP3: Ω0 = Ξ0Ξ′0, Ξ0 =


Ξ11,0 0 · · · 0

Ξ21,0 Ξ22,0
. . . 0

...
...

. . .
...

Ξd1,0 Ξd2,0 · · · Ξdd,0

,

A0 =


A11,0 0 · · · 0

0 A22,0
. . . 0

...
. . . . . .

...
0 0 · · · Add,0

, B0 =


B11,0 0 · · · 0

0 B22,0
. . . 0

...
. . . . . .

...
0 0 · · · Bdd,0

,

where Ξij,0 ∼ U(−0.5, 0.5) (i ≥ j), Aii,0 ∼ U(0.1, 0.4), and Bii,0 ∼ U(0.85, 0.9)
(i, j = 1, 2, . . . , d). We discard the parameters which do not satisfy the stationarity condition.
Based on the simulated parameters, we generate Xt for the sample size T = {500, 1000},
and estimate the diagonal RBEKK and diagonal BEKK models to calculate the average of
the Frobenius norm of the difference in the conditional covariance matrices:

1
T

T

∑
t=1

∥∥Ĥt − Ht,0
∥∥,

where Ĥt is the estimated covariance matrix and Ht,0 is the true covariance matrix. While
Ĥt = Ht,h(θ̂) for the diagonal BEKK model, Ĥt is similarly defined for the diagonal
BEKK model. We use the common random parameters for the two models and repeat the
procedure 100 times with different random parameters.

Table 3 shows the sample means of the average distances. The values of the measure
for d = 10 are expected to take values approximately four times larger than those for d = 5,
as implied by the dimension of Ĥt (d× d). Table 3 supports this result. As the sample size
increases, the average distance decreases. Compared with the diagonal BEKK model, the
diagonal RBEKK model has a smaller distance measure.

Table 3. Average distance between the true and estimated covariance matrices.

Sample Size
Diagonal RBEKK Diagonal BEKK

d = 5 d = 10 d = 30 d = 5 d = 10 d = 30

T = 500 1.1377 3.9358 41.047 1.5176 6.3447 64.909
T = 1000 0.7883 2.7948 24.570 1.3800 5.9794 57.433

4.4. Effects of Diagonal Specification

In the third experiment, we examine the effects of the diagonal specification for the
BEKK and RBEKK models when the true model is full BEKK. For this purpose, we consider
several measures to check the distance from the diagonal BEKK and RBEKK models to the
full BEKK model. The non-diagonal indices are defined as:

γ = ‖A∗ − diag(A∗)‖+ ‖B∗ − diag(B∗)‖ (Diagonal BEKK),

γr =
∥∥∥A∗ −Ω1/2diag(Ω−1/2 A∗Ω1/2)Ω−1/2

∥∥∥+ ∥∥∥B∗ −Ω1/2diag(Ω−1/2B∗Ω1/2)Ω−1/2
∥∥∥

(Diagonal RBEKK),

(13)

where diag(Y) creates a diagonal matrix from the square matrix Y. Using the non-diagonal
indices, we can calculate the theoretical distance of the diagonal BEKK and RBEKK models.
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For the remaining measures, we use the estimated values of the parameters of these models.
The maximized log-likelihood LT,h(θ̂) is used, as is the average of the Frobenius norm of
the difference of the conditional covariance matrices, as explained above.

Using these measures, the following Monte Carlo simulations investigate the effects
of the diagonal specification of the BEKK and RBEKK models when the true model is
bivariate full BEKK. For this purpose, we consider the specification for (4):

A∗0 = wDa1 + (1− w)Ω1/2
0 Da2Ω−1/2

0 , B∗0 = wDb1 + (1− w)Ω1/2
0 Db2Ω−1/2

0 , (14)

for 0 ≤ w ≤ 1, where Da1, Da2, Db1, and Db2 are diagonal matrices. When w = 1, the
specification reduces to the diagonal BEKK model, while it becomes the diagonal RBEKK
model for w = 0. Except for these endpoints, the full BEKK specification provides a
non-diagonal structure for A∗0 and B∗0 in (4) and A0 and B0 in (5). For the specification
in (4), the non-diagonal indices provide the linear functions of w:

γw = ξ(1− w), γr
w = ξrw,

where

ξ =
∥∥∥Ω1/2

0 Da2Ω−1/2
0 − diag(Ω1/2

0 Da2Ω−1/2
0 )

∥∥∥+ ∥∥∥Ω1/2
0 Db2Ω−1/2

0 − diag(Ω1/2
0 Db2Ω−1/2

0 )
∥∥∥,

ξr =
∥∥∥Da1 −Ω1/2

0 diag(Ω−1/2
0 Da1Ω1/2

0 )Ω−1/2
0

∥∥∥+ ∥∥∥Db1 −Ω1/2
0 diag(Ω−1/2

0 Db1Ω1/2
0 )Ω−1/2

0

∥∥∥,

to calculate the theoretical distances. Consider the parameter settings for the DGPs as:

DGP4w : (Ω0, A0, B0) in DGP1, with Da1 = Da2 = A0 and Db1 = Db2 = B0 in (14),

DGP5w : (Ω0, A0, B0) in DGP2, with Da1 = Da2 = A0 and Db1 = Db2 = B0 in (14).

Set w = 0, 0.1, . . . , 1 to examine 11 cases, with T = 500 and the number of replications set
to 100. We estimate the diagonal RBEKK model using the 2sQML method, while VT-QML
is used for the diagonal BEKK model.

Figures 3 and 4 show the sample means of the average bias for the conditional covari-
ance matrices and sample means of the maximized log-likelihood function for DGP3 and
DGP4, respectively. As expected from the structure, the superiority of the diagonal models
depends on the structure of the true BEKK model. If w is closer to zero, the diagonal
RBEKK model is preferred. The non-diagonality indices are

DGP4w : γw = 0.0212(1− w), γr
w = 0.0309w, crossing at w† = 0.407,

DGP5w : γw = 0.0563(1− w), γr
w = 0.0614w, crossing at w† = 0.479,

and these theoretical values of w† correspond to the intersections shown in Figures 3b
and 4b, respectively. The Akaike information criterion and Bayesian information criterion
lead to the same conclusion, as the numbers of parameters in these two models are the same.
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Figure 3. Comparison of the diagonal specifications for the BEKK and RBEKK models: DGP4.

Figure 4. Comparison of the diagonal specifications for the BEKK and RBEKK models: DGP5.
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4.5. Heavy Tails and Moment Conditions

The last experiment uses DGPs 1 and 2 with the multivariate standardized t distribu-
tion and the degree-of-freedom parameter ν (denoted by St(ν)), instead of the multivariate
standard normal distribution. We consider three cases: (i) a heavy-tailed distribution
(ν = 7), which satisfies Assumption 4(a); (ii) DGPs in which the sixth moments are not
finite (ν = 5); and (iii) DGPs in which the fourth moments are not finite (ν = 5). The latter
two cases imply that the 2sQML estimator is consistent, but its asymptotic normality is
not guaranteed. As an alternative approach, we may use the parameter condition derived
from Theorem 3 of Hafner (2003). To save space, we omitted the tables for the sample
mean, standard deviations, and root mean squared error of the 2sQML estimates, which
are available in the Supplementary Materials.

Figure 5 shows the histograms and QQ plots of 2sQML estimates for DGP1 with St(7).
The Monte Carlo results indicate that the bias is negligible, and the standard deviations are
larger than in the case of standard normal distribution. The distributions of the estimates
of Ω11, A11, and B11 are similar to those of Figure 1. This result supports Proposition 2.

Figure 5. Histograms and QQ plots of 2sQML estimates for DGP1 with St(7).

Figure 6 shows the histograms and QQ plots of 2sQML estimates for DGP1 with St(5).
Although the sixth moments are not finite, the distributions of the estimates of Ω11, A11,
and B11 are close to those of Figure 5. This result implies that we can relax Assumption 4 to
guarantee asymptotic normality for the second-step estimator.

For the DGPs with St(3), the Monte Carlo result shown in the Supplementary Materi-
als indicates that the bias of the estimators for Ω and A are relatively small, compared with
those of B11 and B22. Figure 7 shows the histograms and QQ plots of 2sQML estimates for
DGP1 with St(5). The QQ plot of Figure 7a shows the instability of the first-step estimator.
The instability affects the standard deviations of the second-step estimator. Figure 7e
implies that the effects are more serious on the estimates of B11, with a pressure towards
zero. The result indicates that a larger sample size is required in order to improve the
estimates for the parameters of B.
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Figure 6. Histograms and QQ plots of 2sQML estimates for DGP1 with St(5).

Figure 7. Histograms and QQ plots of 2sQML estimates for DGP1 with St(3).

The Monte Carlo experiments show that the finite sample properties of the 2sQML
estimator are satisfactory and that the average distance between the true and estimated
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covariance matrices indicates that the difference between the two diagonal BEKK models
is not negligible. Because it is difficult to estimate the fully parametrized BEKK model for
higher d, it is necessary to examine the model specifications, as in Noureldin et al. (2014),
using parsimonious specifications. The Monte Carlo experiments indicate that we may
relax the assumption for the sixth moments for the second step estimator.

5. Empirical Analysis

In this section, we assess the diagonal specification of the RBEKK model compared
with the diagonal BEKK model. For this purpose, we focus on the out-of-sample forecasts
evaluation, adopting the approach of Engle and Colacito (2006), for the mean-variance port-
folio. We calculate the returns of stocks listed on the Dow Jones Industrial Average, except
for Dow Inc. (d = 29), for the period starting from 18 February 2010 to 23 January 2020,
yielding 2500 observations. We exclude Dow Inc. since it went public on April 1, 2019. Fix-
ing the sample size as T = 2000, we use rolling windows to obtain one-step-ahead forecasts
for the last 500 observations for model i (i = 1, 2), denoted by Ĥ(i)

t (t = 2001, . . . , 2500).
While Model 1 is the diagonal RBEKK model, Model 2 is the diagonal BEKK.

For our portfolio analysis, we consider the minimum variance portfolio, which gives
the weight vector for model i chosen at the end of time t− 1, wit = Ĥ(i)−1

t ι/(ι′Ĥ(i)−1
t ι),

where ι is the d × 1 vector of ones. Engle and Colacito (2006) show that the realized
portfolio volatility is the smallest one when the variance-covariance matrices are correctly
specified. We define the distance based on the difference of the squared returns of the two
portfolios as:

et =
{

w′1tXt
}2 −

{
w′2tXt

}2. (15)

Since the portfolio variances are the same if the forecasts of the covariance matrices are the
same, we examine the null hypothesis H0 : E(et) = 0 using the Diebold and Mariano (1995)
test. In this case, the test can be constructed in the following manner. Consider the linear
regression model given by et = µe + uet with E(uet) = 0, and test H0 : µe = 0 using the
heteroskedasticity- and autocorrelation-consistent standard errors. If the mean of et is
negative (positive), the diagonal RBEKK (the diagonal BEKK) model is preferred.

Table 4 indicates that the Engle and Colacito (2006) test fails to reject the null hypothesis
that the two forecasts are equivalent. Figure 8 shows the difference of squared portfolio
returns, defined by Equation (15), accompanied by the 95% confidence interval. With a few
exceptions, there is no significant difference between the two portfolio weights calculated
by the forecasts of the two different models. For instance, at time t = 2178, the forecast by
the diagonal RBEKK is preferred. As discussed in Section 4.4, the choice of the diagonal
RBEKK or the diagonal BEKK model depends on the true structure of the full BEKK.
Figure 8 supports the result of the Engle and Colacito (2006) test in Table 4. To improve the
forecasting performance, we may consider a more general rotation matrix, as in Asai and
McAleer (2020) and Hafner et al. (2020).

Table 4. Engle and Colacito (2006) test.

Parameter Estimate HAC S.E. t-Value

µe 0.0010 0.0043 0.2192
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Figure 8. Difference of squared portfolio returns. Note: The solid line shows the value of et, defined
by Equation (15), while the dotted lines indicate the confidence interval.

6. Conclusions

For the RBEKK-GARCH model, we show the consistency and asymptotic normality of
the 2sQML estimator under weak conditions. The 2sQML estimation uses the unconditional
covariance matrix for the first step and rotates the observed vector to have the identity
matrix for its sample covariance matrix. The second step conducts the QML estimation
for the remaining parameters. While we require second-order moments for consistency
because of the estimation of the covariance matrix, we need finite sixth-order moments
for asymptotic normality, as in Pedersen and Rahbek (2014). We also show the asymptotic
relation of the 2sQML estimator for the RBEKK model and the VT-QML estimator for the
VT-BEKK model. The Monte Carlo results show that the finite sample properties of the
2sQML estimator are satisfactory, and that the adequacy of the diagonal RBEKK depends
on the structure of the true parameters. The empirical result for the returns of stocks
listed on the DOW30 indicates that the diagonal RBEKK and diagonal BEKK models are
competitive, with the superiority of each model changing over time.

As an extension of the dynamic conditional correlation (DCC) model of Engle (2002),
Noureldin et al. (2014) suggested rotated DCC models (for a caveat about the regularity
conditions underlying DCC, see McAleer (2018)). We can apply the rotation to the different
kinds of correlation models suggested by McAleer et al. (2008) and Tse and Tsui (2002).
Together with such extensions, the derivation of asymptotic theory for the rotated DCC
models is an important direction for future research.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
econometrics9020021/s1.
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Appendix A

Appendix A.1. Derivatives of the Log-Likelihood Function

Although Pedersen and Rahbek (2014) demonstrated the derivatives with respect to
Ω, A∗, and B∗, they are not applicable, as A∗ and B∗ in (2) depend on Ω1/2 and Ω−1/2 in
the RBEKK models (6) and (7), respectively. Related to this issue, we need the following
lemma to show the derivatives of the log-likelihood function.

Lemma A1.

∂vec
(

Ω1/2
)

∂ω′
=
[(

Ω1/2 ⊗ Id

)
+
(

Id ⊗Ω1/2
)]−1

,

∂vec
(

Ω−1/2
)

∂ω′
= −

[(
Ω−1/2 ⊗ Id

)
+
(

Id ⊗Ω−1/2
)]−1(

Ω−1
)⊗2

.

Proof. According to the product rule, it is straightforward to obtain

∂ω

∂ω′
=

∂vec
(

Ω1/2Ω1/2
)

∂ω′
=
[(

Ω1/2 ⊗ Id

)
+
(

Id ⊗Ω1/2
)]∂vec

(
Ω1/2

)
∂ω′

.

Because Ω1/2 is positive definite, we obtain the result. A similar application produces the
following:

∂vec
(
Ω−1)

∂ω′
=

∂vec
(

Ω−1/2Ω−1/2
)

∂ω′
=
[(

Ω−1/2 ⊗ Id

)
+
(

Id ⊗Ω−1/2
)]∂vec

(
Ω−1/2

)
∂ω′

.

From the derivative of the inverse of the symmetric matrix shown by 10.6.1(1) of Lütkepohl
(1996), we obtain the second result. �

The gradient and Hessian matrices of the log-likelihood function are given by

∂LT
∂θ

=
1
T

T

∑
t=1

∂lt
∂θ

,
∂2LT

∂θ∂θ′
=

1
T

T

∑
t=1

∂2lt
∂θ∂θ′

.
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Applying the chain rule and product rule, we obtain

∂lt
∂θ

=
∂vec(Ht)′

∂θ

∂lt
∂vec(Ht)

,

∂2lt
∂θi∂θj

=
∂2vec(Ht)′

∂θi∂θj

∂lt
∂vec(Ht)

+
∂vec(Ht)′

∂θi

∂2lt
∂vec(Ht)∂vec(Ht)

∂vec(Ht)

∂θj
,

(A1)

where θi (i = 1, . . . , 3d2) is the ith element of θ:

∂lt
∂Ht

= −1
2

H−1
t +

1
2

H−1
t XtX′tH−1

t ,

∂2lt
∂vec(Ht)∂vec(Ht)

=
1
2

[
Id2 − {(H−1

t XtXt)⊗ Id} − {Id ⊗ (H−1
t XtXt)}

]
(H−1

t )⊗2.
(A2)

The first equation of (A2) uses 10.3.2(23) and 10.3.3(10) of Lütkepohl (1996), while we
apply 10.6.1(1) for the second equation.

From Lemma A1, the product rule, and the chain rule, we obtain the first derivatives:

∂vec(Ht)

∂ω′
=
[(

Ω1/2Ht ⊗ Id

)
+
(

Id ⊗Ω1/2Ht

)][(
Ω1/2 ⊗ Id

)
+
(

Id ⊗Ω1/2
)]−1

+
(

Ω1/2
)⊗2 ∂vec(Ht)

∂ω′
,

∂vec(Ht)

∂λ′
=
(

Ω1/2
)⊗2 ∂vec(Ht)

∂λ′
,

(A3)

and

∂vec(Ht)

∂ω′
= B⊗2 ∂vec(Ht−1)

∂ω′
− A⊗2

[
(Id ⊗Ω−1/2Xt−1X′t−1) + (Ω−1/2Xt−1X′t−1 ⊗ Id)

]
×
[(

Ω−1/2 ⊗ Id

)
+
(

Id ⊗Ω−1/2
)]−1(

Ω−1
)⊗2

,

∂vec(Ht)

∂α′
= B⊗2 ∂vec(Ht−1)

∂α′
+
(

A
{

Ω−1/2Xt−1X′t−1Ω−1/2 − Id

}
⊗ Id

)
+
(

Id ⊗ A
{

Ω−1/2Xt−1X′t−1Ω−1/2 − Id

})
Cdd,

∂vec(Ht)

∂β′
= B⊗2 ∂vec(Ht−1)

∂β′
+ (B{Ht−1 − Id} ⊗ Id) + (Id ⊗ B{Ht−1 − Id})Cdd,

(A4)

where Cdd is the commutation matrix, which consists of one and zero satisfying vec(A′) =
Cddvec(A).

Similarly, the second derivatives of Ht are given by

∂2vec(Ht)

∂ωi∂ωj
=

[(
Ω1/2 Ht

∂ωi
⊗ Id

)
+

(
Id ⊗Ω1/2 Ht

∂ωi

)][(
Ω1/2 ⊗ Id

)
+
(

Id ⊗Ω1/2
)]−1

e(j)

+
(

Ω1/2
)⊗2 ∂2vec(Ht)

∂ωi∂ωj
(i, j = 1, . . . , d2),

∂vec(Ht)

∂λi∂λj
=
(

Ω1/2
)⊗2 ∂vec(Ht)

∂λi∂λj
(i, j = 1, . . . , 2d2),

∂2vec(Ht)

∂λi∂ωj
=

[(
Ω1/2 Ht

∂λi
⊗ Id

)
+

(
Id ⊗Ω1/2 Ht

∂λi

)][(
Ω1/2 ⊗ Id

)
+
(

Id ⊗Ω1/2
)]−1

e(j),

+
(

Ω1/2
)⊗2 ∂2vec(Ht)

∂λi∂ωj
(i = 1, . . . , 2d2, j = 1, . . . , d2),
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where e(j) is a d2 × 1 vector of zeros except for the jth element, which takes one. We omit
the derivatives of Ht.

Before we proceed, we show the equivalence of Assumptions 1(b) and 2.

Lemma A2. For the RBEKK model defined by (4) and (5), it can be shown that

ρ((A∗ ⊗ A∗) + (B∗ ⊗ B∗)) = ρ((A⊗ A) + (B⊗ B)).

Proof. Noting that

(A∗ ⊗ A∗) + (B∗ ⊗ B∗) = (Ω1/2 ⊗Ω1/2){(A⊗ A) + (B⊗ B)}(Ω−1/2 ⊗Ω−1/2),

5.2.1(8) of Lütkepohl (1996) indicates that the eigenvalues of (A∗ ⊗ A∗) + (B∗ ⊗ B∗) are
the same as those of (A⊗ A) + (B⊗ B), which proves the lemma. �

Appendix A.2. Proofs of Propositions 1–3

For notational convenience, let H0t = Ht(ω0, λ0).

Proof of Propositions 1 and 2. Using the log-likelihood function as well as the gradient
and Hessian matrices in Appendix A.1, we can show strong consistency and asymptotic
normality using similar arguments as in the proofs of Theorems 4.1 and 4.2 of Pedersen
and Rahbek (2014), respectively. See the Supplementary Materials for the details.

Lemma A3. Under the assumptions of Proposition 2, as T → ∞,

√
T(θ̂∗ − θ∗0)

d−→ N
(
0, R0Q0Γ0Q′0R′0

)
,

where

R0 =

 Id2 Od2×d2 Od2×d2

R21,0 (Ω−1/2
0 ⊗Ω1/2

0 ) Od2×d2

R31,0 Od2×d2 (Ω−1/2
0 ⊗Ω1/2

0 )

, (A5)

R21,0 = (A0Ω−1/2
0 ⊗ Id)

[
(Ω1/2

0 ⊗ Id) + (Ω1/2
0 ⊗ Id)

]−1

− (Id ⊗Ω1/2
0 A0)

[
(Ω−1/2

0 ⊗ Id) + (Ω−1/2
0 ⊗ Id)

]−1
(Ω−1

0 )⊗2,

R31,0 = (B0Ω−1/2
0 ⊗ Id)

[
(Ω1/2

0 ⊗ Id) + (Ω1/2
0 ⊗ Id)

]−1

− (Id ⊗Ω1/2
0 B0)

[
(Ω−1/2

0 ⊗ Id) + (Ω−1/2
0 ⊗ Id)

]−1
(Ω−1

0 )⊗2,

with Q0 and Γ0 as stated in Proposition 2.

Proof of Lemma A3. From the definition of A∗ and B∗ and rule of vectorization, α∗ =

(Ω−1/2 ⊗Ω1/2)α and β∗ = (Ω−1/2 ⊗Ω1/2)β. Define R0 = ∂θ∗

∂θ′

∣∣∣
θ=θ0

. From Proposition 2

and the delta method,
√

T(θ̂∗ − θ∗0)
d−→ N(0, R0Q0Γ0Q′0R). Since

R21 =
∂α∗

∂ω′
= (AΩ−1/2 ⊗ Id)

∂vec(Ω1/2)

∂ω′
+ (Id ⊗Ω1/2 A)

∂vec(Ω−1/2)

∂ω′
,

R31 =
∂β∗

∂ω′
= (BΩ−1/2 ⊗ Id)

∂vec(Ω1/2)

∂ω′
+ (Id ⊗Ω1/2B)

∂vec(Ω−1/2)

∂ω′
,

applying Lemma A1 under the true vector yields R21,0 and R31,0 in Lemma A3.
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Lemma A4. Under the assumptions of Proposition 2, the Γ0 stated in Proposition 2 can be written
as

Γ0 = E
[
Υt(ω0, λ0)vec

(
ZtZ′t − Id

)(
vec
(
ZtZ′t − Id

))′Υ′t(ω0, λ0)
]
, (A6)

where

Υt(ω0, λ0)

=

 Υωt(ω0, λ0)
Υαt(ω0, λ0)
Υβt(ω0, λ0)

 =


(

Ω1/2
0

)⊗2(
Id2 − A⊗2

0 − B⊗2
0

)−1(
Id2 − B⊗2

0

)(
Ω−1/2

0 H1/2
0t

)⊗2

1
2

[
∑∞

i=0(B⊗2
0 )i Nt−1−i(ω0, λ0)

]′(
Ω1/2

0 H−1/2
0t

)⊗2

1
2

[
∑∞

i=0(B⊗2
0 )i Ñt−1−i(ω0, λ0)

]′(
Ω1/2

0 H−1/2
0t

)⊗2

 (A7)

with

Nt(ω0, λ0) =
[

A0(Ω−1/2
0 XtX′tΩ

−1/2
0 − Id)⊗ Id

]
+
[

Id ⊗ A0(Ω−1/2
0 XtX′tΩ

−1/2
0 − Id)

]
Cdd,

Ñt(ω0, λ0) = [B0(H0t − Id)⊗ Id] + [Id ⊗ B0(H0t − Id)]Cdd.
(A8)

Proof of Lemma A4. Using an argument similar to the proof of Lemma B.8 in Pedersen
and Rahbek (2014), we can show

√
T
(

ω̂−ω0
∂LT(ω0, λ0)/∂λ

)
=

1√
T

T

∑
t=1

Υt(ω0, λ0)vec
(
ZtZ′t − Id

)
+ op(1), (A9)

which implies the equivalence of the asymptotic covariance matrices on both sides.

Lemma A5. Under the assumptions of Proposition 2, the asymptotic covariance matrix for the
VT-QML estimator of Pedersen and Rahbek (2014) is given by Q∗0Γ∗0Q′∗0 , where

Γ∗0 = E
[
Υ∗t (ω0, λ∗0)vec

(
ZtZ′t − Id

)(
vec
(
ZtZ′t − Id

))′Υ∗′t (ω0, λ∗0)
]
, (A10)

Q∗0 =

(
Id2 Od2×2d2

−J∗−1
0 K∗0 −J∗−1

0

)
, (A11)

K∗0 = E
(

∂2lt
∂λ∗∂ω′

)
, J∗0 = E

(
∂2lt

∂λ∗∂λ∗′

)
, (A12)

with

Υ∗t (ω0, λ∗0)

=

 Υ∗ωt(ω0, λ∗0)
Υ∗αt(ω0, λ∗0)
Υ∗βt(ω0, λ∗0)

 =


(

Id2 − (A∗0)
⊗2 − (B∗0 )

⊗2)−1(Id2 − (B∗0 )
⊗2)(H1/2

0t

)⊗2

1
2
[
∑∞

i=0((B∗0 )
⊗2)i Mt−1−i(ω0, λ∗0)

]′(H−1/2
0t

)⊗2

1
2
[
∑∞

i=0((B∗0 )
⊗2)i M̃t−1−i(ω0, λ∗0)

]′(H−1/2
0t

)⊗2

,
(A13)

and

Mt(ω0, λ∗0) =
[
A∗0(XtX′t −Ω0)⊗ Id

]
+
[
Id ⊗ A∗0(XtX′t −Ω0)

]
Cdd,

M̃t(ω0, λ∗0) = [B∗0 (H0t −Ω0)⊗ Id] + [Id ⊗ B∗0 (H0t −Ω0)]Cdd.
(A14)

Proof of Lemma A5. We can verify the result using Theorem 4.2 of
Pedersen and Rahbek (2014).
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Proof of Proposition 3. Lemma A3 shows the asymptotic distribution of θ̂ and correspond-
ing asymptotic covariance matrix. Lemma A5 provides the asymptotic covariance matrix
of the VT estimator. In the following, we show an alternative representation of the latter
asymptotic covariance matrix.

By definition, we obtain λ∗ = Pλ, where

P =

(
(Ω−1/2 ⊗Ω1/2) Od2×d2

Od2×d2 (Ω−1/2 ⊗Ω1/2)

)
. (A15)

First, consider the second derivatives of the tth contribution to the likelihood function to
obtain

∂2lt
∂λ∗∂ω′

= P−1 ∂2lt
∂λ∂ω′

,
∂2lt

∂λ∗∂λ∗′
= P−1 ∂2lt

∂λ∂λ′
P−1.

Then, we obtain K∗0 = P−1
0 K0 and J∗0 = P−1

0 J0P−1
0 . For Q∗0 defined by Lemma A5,

Q∗0 = R∗0Q0R∗0 , (A16)

where

R∗0 =

(
Id2 Od2×2d2

O2d2×d2 P0

)
, (A17)

with P0, which is evaluated at the true value Ω0.
Second, we show that

Υ∗t (ω0, λ∗0) = R∗−1
0 Υt(ω0, λ0). (A18)

Noting that

Id2 − (A∗0)
⊗2 − (B∗0 )

⊗2 = (Ω1/2
0 )⊗2

[
Id2 − A⊗2

0 − B⊗2
0

]
(Ω−1/2

0 )⊗2,

Id2 − (B∗0 )
⊗2 = (Ω1/2

0 )⊗2[Id2 − B⊗2
0 ](Ω−1/2

0 )⊗2,

we can verify that Υ∗ωt(ω0, λ∗0) = Υωt(ω0, λ0). For Υ∗αt(ω0, λ∗0) and Υ∗βt(ω0, λ∗0), we obtain

[
(B∗0 )

⊗2
]i

=
[
(Ω1/2

0 B0Ω−1/2
0 )⊗2

]i
=
[
(Ω1/2

0 )⊗2
(

B⊗2
0

)
(Ω−1/2

0 )⊗2
]i

= (Ω1/2
0 )⊗2

(
B⊗2

0

)i
(Ω−1/2

0 )⊗2.

From 9.3.2(5)(a) of Lütkepohl (1996), (Ω−1/2
0 ⊗Ω1/2

0 )Cdd = Cdd(Ω
1/2
0 ⊗Ω−1/2

0 ). Hence,

Mt(ω0, λ∗0) = (Ω1/2
0 )⊗2Nt(ω0, λ0)(Ω1/2

0 ⊗Ω−1/2
0 ),

M̃t(ω0, λ∗0) = (Ω1/2
0 )⊗2Ñt(ω0, λ0)(Ω1/2

0 ⊗Ω−1/2
0 ).

Combining these two results, we show that Υ∗αt(ω0, λ∗0) = (Ω1/2
0 ⊗Ω−1/2

0 )Υαt(ω0, λ0) and
Υ∗αt(ω0, λ∗0) = (Ω1/2

0 ⊗Ω−1/2
0 )Υβt(ω0, λ0). Hence, (A18) holds.

Third, we can verify that Q∗0Γ∗0Q∗′0 = R∗0Q0Γ0Q′0R∗0 from (A16), (A18), and Lemma
A4.
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