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Abstract: Outliers can be particularly hard to detect, creating bias and inconsistency in the semi-
parametric estimates. In this paper, we use Monte Carlo simulations to demonstrate that semi-
parametric methods, such as matching, are biased in the presence of outliers. Bad and good leverage
point outliers are considered. Bias arises in the case of bad leverage points because they completely
change the distribution of the metrics used to define counterfactuals; good leverage points, on the
other hand, increase the chance of breaking the common support condition and distort the balance
of the covariates, which may push practitioners to misspecify the propensity score or the distance
measures. We provide some clues to identify and correct for the effects of outliers following a
reweighting strategy in the spirit of the Stahel-Donoho (SD) multivariate estimator of scale and
location, and the S-estimator of multivariate location (Smultiv). An application of this strategy to
experimental data is also implemented.

Keywords: treatment effects; outliers; propensity score; mahalanobis distance

JEL Classification: C21; C14; C52; C13

1. Introduction

Treatment effect techniques are the workhorse tool when examining the causal effects
of interventions, i.e., whether the outcome for an observation is affected by the participa-
tion in a program or policy (treatment). As Bassi (1983, 1984); Hausman and Wise (1985)
argue, counterfactual estimates are precise when using randomized experiments; yet,
when looking at non-randomized experiments, there are a number of assumptions, such
as unconfoundedness, exogeneity, ignorability, or selection on observables, that should
be considered before estimating the true effect, or to get close to that of a randomized
experiment Imbens (2004)1.

While the above assumptions are usually considered when identifying treatment
effects (see King et al. (2017)), one that has been overlooked in the existing literature is
the existence of outliers (on both the outcome and the covariates).2 A number of issues
arise from the existence of outliers, for example these may bias or modify estimates of
priority interest, and in our case, the treatment effect (see some discussion in Rasmussen
(1988); Schwager and Margolin (1982); and Zimmerman (1994)); they may also increase
the variance and reduce the power of methods, especially those within the non-parametric
family. If non-randomly distributed, they may reduce normality, violating in the multivari-
ate analyses the assumption of sphericity and multivariate normality, as noted by Osborne
and Overbay (2004).

To the best of our knowledge, the effects of outliers on the estimation of semi-
parametric treatment effects have not yet been analyzed in the literature. The only reference
is Imbens (2004), who directly associates outlying values in the covariates to a lack of over-
lap. Imbens (2004) argues that outlier observations will present estimates of the probability

Econometrics 2021, 9, 19. https://doi.org/10.3390/econometrics9020019 https://www.mdpi.com/journal/econometrics

https://www.mdpi.com/journal/econometrics
https://www.mdpi.com
https://orcid.org/0000-0002-7801-1688
https://orcid.org/0000-0001-8434-3139
https://doi.org/10.3390/econometrics9020019
https://doi.org/10.3390/econometrics9020019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/econometrics9020019
https://www.mdpi.com/journal/econometrics
https://www.mdpi.com/article/10.3390/econometrics9020019?type=check_update&version=1


Econometrics 2021, 9, 19 2 of 32

of receiving treatment close to 0 or 1, and therefore methods dealing with limited overlap
can produce estimates approximately unchanged in bias and precision. As shown in this
paper, this intuition is valid only for outliers that are considered good leverage points.
Moreover, Imbens (2004) argues that treated observations with outlying values may lead
to biased covariate matching estimates, because these observations would be matched
to inappropriate controls. Control observations with outlying covariate values, on the
other hand, will likely have little effect on the estimates of average treatment effect for the
treated, since such observations are unlikely to be used as matches. We provide evidence
for this intuition.

Thus, in this paper, we examine the relative performance of semi-parametric estima-
tors of average treatment effects in the presence of outliers. Three types of outliers are
considered: bad leverage points, good leverage points, and vertical outliers. The analysis
considers outliers located in the treatment group, the control group, and in both groups.
We focus on (i) the effect of these outliers in the estimates of the metric, propensity score,
and Mahalanobis distance; (ii) the effect of those metrics contaminated by outliers in the
matching procedure when finding counterfactuals; and (iii) the effect of these matches on
the estimates of the average treatment effect on the treated (TOT).

Using Monte Carlo simulations, we show that the semi-parametric estimators of
average treatment effects produce biased estimates in the presence of outliers. Our findings
show that, first the presence of bad leverage points (BLP) yield a bias of the estimators
of average treatment effects. The bias emerges because this type of outlier completely
changes the distribution of the metrics used to define good counterfactuals, and therefore
changes the matches that had initially been undertaken, assigning as matches observations
with very different characteristics. This effect is independent of the location of the outlier
observation. Second, good leverage points (GLP) in the treatment sample slightly bias
estimates of average treatment effects, because they increase the chance of violating the
overlap condition. Third, good leverage points in the control sample do not affect the
estimates of treatment effects, because they are unlikely to be used as matches. Fourth, these
outliers distort the balance of the covariates criterion used to specify the propensity score.
Fifth, vertical outliers in the outcome variable greatly bias estimates of average treatment
effects. Sixth, good leverage points can be identified visually by looking at the overlap
plot. Bad leverage points, however, are masked in the estimation of the metric and are,
as a consequence, practically impossible to identify unless a formal outlier identification
method is implemented.

To identify outliers we suggest two strategies that are robust, one based on the Stahel
(1981) and Donoho (1982) estimator of scale and location, proposed in the literature by
Verardi et al. (2012) and the other proposed by Verardi and McCathie (2012). What we
suggest is thus identifying all types of outliers in the data by this method and estimating
treatment effects again, down-weighting the importance of outliers; this is a one-step
re-weighted treatment effect estimator. Monte Carlo simulations support the utility of
these tools for overcoming the effects of outliers in the semi-parametric estimation of
treatment effects.

An application of these estimators to the data of LaLonde (1986) allows us to under-
stand the failure of the matching estimators of Dehejia and Wahba (1999, 2002) to overcome
LaLonde’s critique of non-experimental estimators. We show that the large bias, when
considering LaLonde’s full sample, of Dehejia and Wahba (1999, 2002), which was criticized
by Smith and Todd (2005) can be explained by the presence of outliers in the data. When
the effect of these outliers is down-weighted, the matching estimates of Dehejia and Wahba
(1999, 2002) approximate the experimental treatment effect of LaLonde’s sample.

This paper is structured as follows: Section 2 briefly reviews the literature. Section 3
defines the balancing hypothesis, the semi-parametric estimators, and the types of outliers
considered, as well as the S-estimator and the Stahel-Donoho estimator of location and
scatter tool to detect outliers. In Section 4, the data generating process (DGP) is charac-
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terized. The analysis of the effects of outliers is presented in Section 5. An application to
LaLonde’s data is presented in Section 6, and in Section 7, we conclude.

2. A Brief Review of the Literature

Different methodologies for identifying outliers have been proposed in the literature;
using statistical reasoning (Hadi et al. (2009)); distances (Angiulli and Pizzuti (2002); Knorr
et al. (2000); Orair et al. (2010)), and densities (Breunig et al. (2000)); (De Vries et al. (2010);
Keller et al. (2012)). However, the issue has not been completely resolved and this issue
may become especially troublesome, because the problem increases as outliers often do
not show up by simple visual inspection or by univariate analysis, and in the case several
outliers are grouped close together in a region of the sample space, far away from the bulk
of the data, they may mask one another (see Rousseeuw and Van Zomeren (1990)).

To illustrate the outliers problem, in a labor market setting such as that employed by
Ashenfelter (1978) and Ashenfelter and Card (1985), consider a case in which the path of the
data clearly shows that highly educated people attend a training program and uneducated
individuals do not. Now assume a small number of individuals without schooling are
participating in the program and a small number of educated individuals are not, while
having similar remaining characteristics. Enrolled individuals with an outstanding level of
education may represent good leverage points. However, both small groups mentioned
above, on the other hand, may constitute bad leverage points in the treatment and control
sample, respectively. Regardless of whether this small number of individuals genuinely
belong to the sample or are errors from the data encoding process, they may have a large
influence on the treatment effect estimates and drive the conclusion about the impact of the
training program for the entire sample, as pointed out by Khandker et al. (2009) and Heck-
man and Vytlacil (2005). The problem considered in this paper is that as semi-parametric
techniques, matching methods rely on a parametric estimation of the metrics (propensity
score and Mahalanobis distance) used to define and compare observations with similar
characteristics in terms of covariates, while the relationship between the outcome variables
and the metric is nonparametric. Therefore, the presence of multivariate outliers in the
data set can yield a strong bias of the estimators of the metrics and lead to unreliable treat-
ment effect estimates. According to the findings of Rousseeuw and Van Zomeren (1990),
vertical outliers can also bias the nonparametric relationship between the metric and the
outcome by distorting the average outcome in either the observed or counterfactual group.
Moreover, these distortions, caused by the presence of multivariate outliers in the data set,
can distort the balance of the covariates when specifying the propensity score, as in Dehejia
(2005). These issues have practical implications: when choosing the variables to specify
the propensity score, it may not be necessary to discard troublesome but relevant variables
from a theoretical point of view or generate senseless interactions or nonlinearities. It
might be sufficient to discard troublesome observations (outliers). That is, outliers can
push practitioners to unnecessarily misspecify the propensity score.

3. Framework

To examine the effects of outliers on the average treatment effect we identify ouliers
and implement a correction in the spirit of Verardi et al. (2012); Stahel (1981) and Donoho
(1982), and the other one in the spirit of Verardi and McCathie (2012). Next, we briefly
describe the outlier classification criteria, the re-weighting methods and a description of
the matching methods used.

(i) Classification of outliers: Semi-parametric estimators of treatment effects may be
sensitive to outliers. To understand the sources of bias caused by outliers, we employ the
simple cross-section regression analysis. Rousseeuw and Leroy (2005) argue that bias may
be of three kinds, the error term (vertical outliers) and the explanatory variables (good and
bad leverage points) (see Figure 1). Vertical outliers (VO) are those observations that are far
away from the bulk of the data in the y-dimension, but that present a behavior similar to
the group in the x-dimension. In the treatment effects framework, these would be outliers
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on the outcomes of study. Good leverage points (GLP), on the other side, are observations
that are far from the bulk of the data in the x-dimension (i.e., outlying in the covariates), but
are aligned with the treatment effect. These outliers go in the same direction of the cloud of
data and the treatment; thus, they do not affect the estimates, but can affect the inference
and induce a type I or type II error when testing the estimates. Finally, bad leverage points
(BLP) are observations that are far from the bulk of the data in the x-dimension and are
located away from the treatment; these covariates may affect the estimates.3
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Figure 1. Classification of outliers. Source: Verardi and Croux (2009).

(ii) A reweighted estimator: What we suggest for coping with the effect of these outliers
is to identify all types of outliers in the data and down-weight their importance (a one-step
reweighted treatment effect estimator). Here, we suggest two measures of multivariate lo-
cation and scatter to identify outliers, one is the S-estimator of Verardi and McCathie (2012)
(Smultiv), the other follows Verardi et al. (2012) and apply, as an outlier identification tool,
the projection-based method of Stahel (1981) and Donoho (1982), hereafter called SD. Once
outliers have been identified, we propose a reweighting scheme where any outlier is given
a weight of zero. The optimization problem of the S-estimator is to minimize the sum of the
squared distance between each point and the center of the distribution. In a multivariate
setting, to obtain a multivariate estimator of location, Verardi and McCathie (2012) depart
from the squared distance used in the Mahalanobis distance and replace the square function
with an alternative function called ρ to obtain robust distances.4

The Stahel (1981) and Donoho (1982) estimation of location and scatter (SD) consists
of calculating the outlyingness of each point by projecting the data cloud unidimensionally
in all possible directions and estimating the distance from each observation to the center
of each projection. The degree of outlyingness is defined as the maximal distance that is
obtained when considering all possible projections. Since this outlyingness distance (δ) is

distributed as
√

χ2
p, we can choose a quantile above which we consider an observation to

be outlying (we consider here the 95th percentile).5

An interesting feature of these methodologies is that unlike with other multivariate
tools for identifying outliers, like the minimum covariance determinant estimator (MCD),
dummies are not a problem.6 This feature is important, because we are considering
treatment effects and the main variable of interest is a dummy (Ti). Moreover, the presence
of categorical explanatory variables in treatment effects empirical research is extremely
frequent. The advantage of the SD tool is its geometric approach: in regression analysis,
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even if one variable is always seen as dependent on others, geometrically there is no
difference between explanatory and dependent variables and the data thus form a set of
points (Yi, Ti, Xi) in a (p + 2) dimensional space. Thus, an outlier can be seen as a point
that lies far away from the bulk of the data in any direction. Note that the utility of these
tools is not restricted to treatment effect models; it can be implemented to detect outliers in
a broad range of models (see Verardi et al. (2012) for some applications).

Once the outliers have been identified by either the S-estimator or the SD, we propose
to re-weight outlier observations to estimate the treatment effect. In this paper, we use the
most drastic weighting scheme, which consists of awarding a weight of 0 to any outlying
observation. Once the importance awarded to outliers is down-weighted, the bias coming
from outliers will disappear.7

(iii) Matching methods: In the setup, we rely on the traditional potential outcome
approach developed by Rubin (1974), which views causal effects as comparisons of potential
outcomes defined for the same unit.8

We examine the effect of outliers on the following matching estimators: propensity-
score pair matching, propensity-score ridge matching, reweighting based on propensity
score, and bias-corrected pair matching. Large sample properties for these estimators have
been advanced by Heckman et al. (1997a); Hirano et al. (2003); Abadie and Imbens (2006).
Pair matching proceeds by finding for each treated observation (Xi) a control observa-
tion (Xj) with a very similar value of the metric m(X) (propensity score or Mahalanobis
distance). Ridge matching (Seifert and Gasser (2000)) is a variation of kernel matching
based on a local linear regression estimator that adds a ridge term to the denominator of
the weight Wi,j given to matched control observations in order to stabilize the local linear
estimator. To estimate it, we consider the Epanechnikov kernel. The bias-corrected pair
matching estimator attempts to remove the bias in the nearest-neighbor covariate matching
estimator coming from inexact matching in finite samples. It adjusts the difference within
the matches for the differences in their covariate values. This adjustment is based on
regression functions (see Abadie and Imbens (2011) for details).

4. Monte Carlo Setup

We examine the effects of outliers through Monte Carlo simulations and implementing
both methods to identify outliers, the S-estimator (Smultiv) and the SD. The Monte Carlo
data generation process we employ is as follows:

Ti = 1(T∗i > 0)

T∗i = f (Xi) + µi

Yi = τTi + γXi + εi

where µi ∼ N(0, 1) and εi ∼ N(0, 1) are independent of Xi ∼ N(0, 1) and of each other. The
sample size used is 1000, the number of covariates is p ∈ {2, 10}, and 2000 replications are
performed. The experiment is designed to detect the effect of outliers on the performance of
various matching estimators and a benchmark scenario is considered that sidesteps possible
sources of bias in the estimation, like poor overlap in the metrics between treatment and
control units, misspecification of the metric, etc. The idea is to see how outliers can move us
away from this benchmark case. The design of the Monte Carlo study consists of two parts,
(i) the functional form and distribution of the metric in the treated and control groups and
(ii) the kind of outlier contaminating the data.

Following Frölich (2004), the propensity score is linked, through T∗, to the linear
function f (Xi) = α + βXi, and through the choice of different values for α different ratios
of control to treated observations are generated.9 The parameter α manages the average
value of the propensity score and the number of treated relative to the number of controls
in the sample. Four designs are considered; in the first (for p = 2), f (Xi) = 0.5X1 + 0.5X2,
the population mean of the propensity score is 0.5.10 That is, the expected ratio of control
to treated observations is 1:1. In the second, f (Xi) = 0.7 + 0.5X1 + 0.5X2, the ratio is 3:7
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(the pool of treated observations is large), and in the third, f (Xi) = −0.7 + 0.5X1 + 0.5X2,
the ratio is 7:3 (the controls greatly exceed the treated). We include these first three
designs because during the estimation of the counterfactual mean, more precisely during
the matching step, the effects of outliers in the treated or control groups could be offset
by the number of observations in this group. The fourth design considers treatment
and control groups of equal size, but with a nonlinear specification of the propensity
score on the covariate of interest, f (Xi) = 0.5X1 + 0.15X2

1 + 0.5X2. In addition, Yi =
0.15 + Ti + 0.5X1 + 0.5X2, that is, the true treatment effect is 1. In the DGP we do not
consider different functional forms for the conditional expectation function of Yi, given Ti.
Results from Frölich (2004) suggest that when the matching estimator uses the average, the
effects of these nonlinearities may disappear.

The probability of assignment is bounded away from 0 and 1, ς < P(Xi) ≡ P(Ti =
1|Xi) < 1− ς, for some ς > 0, also known as strict overlap assumption, is always satisfied
in these designs. Following Khan and Tamer (2010), this is a sufficient assumption for√

n-consistency of semi-parametric treatment effect estimators. Busso et al. (2009) shows
this when Xi and µi are standard normal distributed for the linear specification of f (Xi).
This assumption is achieved when |β| ≤ 1. The intuition behind this result is that when
β approaches 1, an increasing mass of observations have propensity scores near either 0
and 1. This leads to fewer and fewer comparable observations and an effective sample
size smaller than n. Significantly, this implies potentially poor finite sample properties of
semi-parametric estimators in contexts where β is near 1. In our designs, we set β = 0.5 for
the linear and nonlinear functions of f (Xi). The overlap plots support the achievement of
the strict overlap assumption for these cases, because they do not display mass near the
corners. This can be observed in Figure 2, where the conditional density of the propensity
score given treatment status (overlap plot) for the four designs considered in the Monte
Carlo simulations are displayed.11

The second part of the design concerns the type of contamination in the sample. To
grasp the influence of the outliers, we consider three contamination setups inspired by
Croux and Haesbroeck (2003). The first is clean with no contamination. In the second,
mild contamination, 5% of X1 are awarded a value 1.5

√
p units larger than what the DGP

would suggest. In the third, severe contamination, 5% of X1 are awarded a value 5
√

p
units larger than the DGP would suggest. As mentioned above, three types of outliers
are recognized in the literature: bad leverage points, good leverage points, and vertical
outliers. Nine additional scenarios can thus be considered in the analysis, depending on
the localization of these outliers in the sample. That is, the three types can be located in the
treatment sample (T), in the control sample (C), and in both groups (T and C). Therefore,
we assess the relative performance of the estimators described in the last section in a total
of 72 different contexts. These different contexts are characterized by combinations of four
designs for f (Xi), two types of contamination (mild and severe), and three types of outliers
located in treatment, control, and in both groups, respectively.
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Figure 2. Overlap plots for the designs. Source: Authors’ calculations.

5. The Effect of Outliers in the Estimation of Treatment Effects
5.1. The Effect of Outliers in the Metrics

Based on the artificial data set, this section presents the results by means of two simple
cases, the effect of outliers in the estimation of the metrics used to define similarity and the ef-
fect of these (spurious) metrics in the assignment of matches when finding counterfactuals.

(a) The distribution of the propensity score in presence of outliers

Using the artificial data set, we graphically show some stylized facts of the distribu-
tion of the propensity score with and without outliers. The original distribution of the
propensity score by treatment status (overlap plot) corresponds to the thin lines in the
left graph of Figure 3, while the thick solid lines in the left graph represent the overlap
plots for the same sample, but with 5% of the data contaminated by bad leverage points in
the treatment sample. As can be seen, the propensity scores are now clearly less spread
out than those obtained with the original data in both the treatment and control groups.
In the right graph of Figure 3, the straight line corresponds to the values of the original
propensity score, whereas the cloud of points corresponds to the values of the propensity
score in the presence of bad leverage points in the treatment sample; large differences in
the values of the propensity score between the original and the contaminated sample are
clear. Note that these effects are identical if we consider bad leverage points either in the
control sample or in both the treatment and control groups.
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Figure 3. Effect of bad leverage points on the propensity score. Source: Authors’ calculations.

The distribution of the propensity score by treatment status in the presence of good
leverage points in the treatment sample, in the control, and in both samples can be see in
the top three graphs of Figure 4. In the bottom graphs, the straight line corresponds to
the values of the original propensity score, whereas the cloud of points corresponds to the
values of the propensity score in the presence of good leverage points. As can be observed,
in contrast to bad leverage points, the good leverage points do not completely change the
distribution of the propensity score.

A theoretical explanation for these results can be found in Croux et al. (2002), who
showed that the non-robustness against outliers of the maximum likelihood estimator in
binary models is demonstrated because it does not explode to infinity as in ordinary linear
regressions, but rather implodes to zero when bad leverage outliers are present in the data set. That
is, given the maximum likelihood estimator of a binary dependent variable,

β̂ML = arg max
β

Log L(β; Xn)

where Log L(β; Xn) is the log-likelihood function calculated in β. Croux et al. (2002)
presented two important facts: (i) good leverage points (GLP) do not perturb the fit
obtained by the ML procedure, that is βGLP

ML → βML. However, as displayed in Figure 4, the
fitted probabilities of these outlying observations will be close to 0 or 1. Here, it can lead
to unstable estimates of the treatment effects, because the support (or overlap) condition
is not met; and (ii) in the presence of bad leverage points (BLP), the ML estimator never
explodes, instead asymptotically tending to 0. That is, βBLP

ML → 0. In addition, following
Frölich (2004) and Khan and Tamer (2010), coefficients close to zero in the estimation of the
propensity score will then reduce the variability of the propensity score, as these coefficients
(β) determine the spread of the propensity score. Therefore, the presence of bad leverage
points in the data will always narrow the distribution of the propensity score, as shown in
Figure 3. As is shown below, this tightness in the distribution of the propensity score may
increase the chance of matching observations with very different characteristics.
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Figure 4. Effect of good leverage points on the propensity score. Source: Authors’ calculations.

To validate these stylized facts, we applied 2000 simulations for the different scenarios
of our Monte Carlo setup. Table 1 provides the results in four panels, each corresponding
to a scheme with different outlier contamination levels (mild and severe) and different
number of covariates (p = 2 and p = 10). The sample size is 1000 observations and the
specification of the propensity score corresponds to the first design, that is, as a linear
function with equal number of observations in both treatment and control groups.12 This
implies that we first obtain the propensity score. Once the propensity score is calculated,
it is possible to characterize it through its mean, variance, kurtosis, skewness. It is also
possible to calculate the correlation between the propensity score in the clean scenario and
the propensity score of any of the contaminated scenarios.13 Thus, the growth in variance
is the percentage change of the variance of the propensity score in a specific scenario vs. the
variance in the clean scenario; for example, for the BLP in the treatment group, this would
mean that the variance of the propensity score of the contaminated data is 11.0% lower than
in the clean data. The same reasoning applies to the growth in kurtosis. This reinforces
what was observed in the left panel of Figure 3 where we can see that the variance of the
contaminated data is lower and it is more leptokurtic.

The loss in correlation corresponds to the change in correlation between the propensity
score of a given scenario vs. clean data. That is, for the BLP in the treatment scenario, the
correlation of the propensity score between the contaminated data and clean data is 7.9%
lower with respect to the clean data. That is, the correlation of the clean propensity score
with itself is 100%, while the correlation between the contaminated propensity score and
the clean propensity score is 92.1%, representing a loss in correlation of 7.9%.

The results are summarized in two sections of Table 1. The first presents estimates
of the average absolute value of the coefficient of interest (β) and its mean squared error
(MSE) multiplied by a factor of 1000, and the second presents the characteristics of the
propensity score: its average value, variance growth, kurtosis, and loss of the correlation,
all four of them compared to their baseline scenario values. The columns represent different
degrees of outlier contamination.
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Table 1. Effect of outliers on propensity score.

Panel A: Severe contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point

Estimator Clean in T in C in T and C in T in C in T and C

Coefficient (beta) 0.51 −0.05 −0.04 −0.04 0.51 0.51 0.51
MSE (×1000) 3.57 297.54 296.84 295.30 3.74 3.72 3.72
Propensity Score
Mean 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Growth in Variance −11.0% −11.0% −11.1% 5.0% 5.0% 4.8%
Growth in Kurtosis 5.7% 5.7% 5.8% −1.9% −1.8% −1.8%
Loss in Correlation −7.9% −7.8% −7.8% −2.4% −2.4% −2.3%

Panel B: Severe contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point

Estimator Clean in T in C in T and C in T in C in T and C

Coefficient (beta) 0.50 0.00 0.00 0.00 0.51 0.51 0.51
MSE (×1000) 2.28 246.01 245.58 245.82 2.29 2.33 2.36
Propensity Score
Mean 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Growth in Variance −50.9% −50.9% −50.9% 19.3% 19.3% 18.4%
Growth in Kurtosis 18.0% 18.0% 18.0% 4.4% 4.3% 4.9%
Loss in Correlation −29.7% −29.6% −29.6% −8.3% −8.3% −8.0%

Panel C: Mild contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point

Estimator Clean in T in C in T and C in T in C in T and C

Coefficient (beta) 0.51 0.09 0.09 0.09 0.53 0.53 0.52
MSE (×1000) 3.57 170.62 169.52 172.47 3.68 3.67 3.63
Propensity Score
Mean 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Growth in Variance −11.3% −11.3% −11.3% 5.0% 5.0% 4.8%
Growth in Kurtosis 6.1% 6.1% 6.1% −2.1% −2.1% −2.0%
Loss in Correlation −29.7% −29.6% −29.6% −8.3% −8.3% −8.0%

Panel D: Mild contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point

Estimator Clean in T in C in T and C in T in C in T and C

Coefficient (beta) 0.50 0.29 0.29 0.28 0.55 0.55 0.55
MSE (×1000) 2.28 46.35 46.33 47.86 4.32 4.40 4.19
Propensity Score
Mean 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Growth in Variance −29.3% −29.3% −29.6% 17.1% 17.1% 16.7%
Growth in Kurtosis 9.3% 9.4% 9.4% −3.0% −3.0% −2.6%
Loss in Correlation −6.3% −6.2% −6.5% −3.8% −3.8% −3.9%

Note: The results correspond to the propensity score metric and 2000 replications. The estimator section depicts the mean and MSE of the
probit coefficients. The propensity score section shows characteristics of the propensity score. Each column represents a contamination
type and placement: Clean; BLP; GLP, in treatment group (T), in control group (C) and both. Panels A through D represent different
combinations of contamination levels and number of covariates.

Regarding the parameter β in the specification of the propensity score, the true value
is 0.5; the Clean column confirms that the simulation results for the baseline scenario are
extremely close to the true parameter. The remaining columns show that in presence of
bad leverage points, the coefficient diverges from the true value, tending towards 0. By
contrast, if the variable contains good leverage points, the regression coefficient remains
unbiased. The behavior in each case is independent of the location of the leverage points.
When focusing on the characteristics of the propensity score, several features stand out.
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First, outliers do not change the center of the propensity score distribution, since the mean
is identical across different contamination scenarios. Second, the form of the distribution
is affected, because bad leverage points shrink the density of the propensity score. This
is evidenced by the reduction in the variance and the rise in the kurtosis when this type
of outlier is present in the data. As can be seen in Table 1, this effect is larger when the
outlyingness level is greater and when lesser covariates are present in the estimation of
the propensity score. Theoretically, this result is in line with Frölich (2004) and Khan and
Tamer (2010), who suggest that coefficients close to 0 in the estimation of the propensity
score, βBLP

ML → 0, reduce the variability of this metric, as these coefficients (β) determine
the spread of the propensity score.

Third, good leverage points have the opposite effect on the shape of the propensity
score—that is, the dispersion increases and the kurtosis is reduced. These variations are
however lower compared to those of bad leverage points. This happens because good
leverage points nearly attain the extreme values of the propensity score (0 or 1), without
significantly changing the complete distribution of this metric. Fourth, the propensity
score contaminated by both type of outliers is less related to the score corresponding to
the baseline scenario. This is revealed by the reduction of the linear correlation between
the baseline propensity score and the score with outliers. This reduction in the linear
association is strong with bad leverage points and weak with good leverage points in the
data. All these effects remain independent of the outlier location.

The effect of these distortions in the density of the propensity score in the matching
process and in the treatment effect estimation is discussed in following sections.

(b) The distribution of the Mahalanobis distance in presence of outliers

As in the case of the propensity score matching, the left side of Figure 5 shows the
the distributions of the Mahalanobis distance without outliers and in the presence of
bad leverage points. In the right graph, the straight line corresponds to the values of
the Mahalanobis distance computed with the clean data, whereas the cloud of points
corresponds to the values of this metric in the presence of bad leverage points in the
treatment group; the blue observations correspond to non-outlier observations while the
red ones are the outliers.

Figure 5. Effect of bad leverage points on the Mahalanobis distance. Source: Authors’ calculations.

Three remarks can be made on the basis of these graphs. First, good and bad leverage
points present atypical behavior in the sense that they display larger distances. Since
Mahalanobis distances are computed individually for each observation, bad and good
leverage points present bigger values, whereas the remaining observations stay relatively
stable. This behavior is independent of the location of the outlier. Second, while bad and
good leverage points slightly change the distribution of the distances, the stability of the not
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contaminated observations is relative, in the sense that all distances are standardized by the
sample covariance matrix of the covariates (S−1), which is in turn based on biased measures
(due to the outliers) of the averages and variances in the sample. Third, concluding that
observations with large distances can directly be called outliers may be fallacious, just in
the sense that to be called outliers these distances need to be estimated by a procedure
that is robust against outliers in order to provide reliable measures for the recognition of
outliers. This is the masking effect Rousseeuw and Van Zomeren (1990). Single extreme
observations or groups of observations, departing from the main data structure, can have a
heightened influence on this distance measure, because the covariance (S−1) is estimated
in a non-robust manner, that is, it is biased.

Table 2 reports the simulations for the behavior of the Mahalanobis distance under
the different contaminated-data scenarios. The outlier intensity is displayed in panels A to
D and the outlier location is displayed in the columns. In each panel, the average of the
distances, the growth of the Mahalanobis distance variance, asymmetry, kurtosis, and linear
correlation with respect to the clean data scheme are displayed. The results correspond to
2000 simulations for the first design of our Monte Carlo setup.14 We turn first to the results
in the center of the distribution: as can be seen, no leverage point changes the mean of the
Mahalanobis distances, whereas outliers distort the shape of this metric distribution.

Table 2. Effect of outliers on the Mahalanobis distance.

Panel A: Severe contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point

Mahalanobis Distance Clean in T in C in T and C in T in C in T and C

Mean 2.00 2.04 2.04 2.00 2.04 2.04 2.00
Growth in Variance 395.0% 394.5% 361.0% 398.8% 398.6% 364.2%

Growth in Asymmetry 89.6% 89.5% 87.7% 89.6% 89.6% 87.7%
Growth in Kurtosis 95.9% 95.6% 93.1% 95.7% 95.4% 92.7%
Loss in Correlation −76.3% −76.3% −75.6% −75.4% −75.4% −74.7%

Panel B: Severe contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point

Mahalanobis Distance Clean in T in C in T and C in T in C in T and C

Mean 2.00 2.02 2.02 2.00 2.03 2.03 2.00
Growth in Variance 206.6% 207.5% 199.2% 234.6% 234.9% 222.7%

Growth in Asymmetry 86.7% 87.0% 85.6% 88.3% 88.4% 87.0%
Growth in Kurtosis 112.4% 112.9% 110.1% 111.1% 111.4% 108.9%
Loss in Correlation −64.3% −64.0% −64.0% −63.8% −63.5% −63.3%

Panel C: Mild contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point

Mahalanobis Distance Clean in T in C in T and C in T in C in T and C

Mean 2.00 2.01 2.01 2.00 2.02 2.02 2.00
Growth in Variance 106.6% 106.2% 106.3% 129.7% 129.6% 127.1%

Growth in Asymmetry 76.5% 75.8% 76.3% 81.5% 81.0% 80.3%
Growth in Kurtosis 118.8% 116.5% 117.1% 121.8% 120.5% 118.3%
Loss in Correlation −49.2% −49.1% −49.6% −50.4% −50.3% −50.7%

Panel D: Mild contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point

Mahalanobis Distance Clean in T in C in T and C in T in C in T and C

Mean 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Growth in Variance 1.7% 2.0% 2.3% 19.2% 19.2% 19.8%

Growth in Asymmetry 3.4% 3.5% 4.4% 21.6% 21.3% 22.2%
Growth in Kurtosis 7.0% 6.9% 9.0% 37.6% 36.9% 38.1%
Loss in Correlation −7.8% −7.8% −8.3% −17.7% −17.6% −18.2%

Note: The results correspond to the Mahalanobis distance metric and 2000 replications. The statistics presented are comparable to the ones
in Table 1. Each column represents a contamination type and placement: Clean; BLP; GLP, in treatment group (T), in control group (C) and
both. Panels A through D represent different combinations of contamination levels and number of covariates.
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Managed by the extreme values of the distances corresponding to the outlier obser-
vations, the variance increases abruptly and the distribution skews positively and turns
more leptokurtic, as shown in Figure 5. These characteristics are independent of the
location of outliers. In addition, as displayed in the last row of each panel in Table 2,
the distances in presence of outliers are significantly less linearly related to the original
Mahalanobis distances.

Overall, the results of this section suggest the distribution of the Mahalanobis distance
becomes narrower and with long tails in the presence of bad and good leverage points in
the data. This effect is a combination of two factors: outlier observations are associated
with the largest values of the distances and all distances change as they are standardized
with a covariance matrix distorted by outliers. This behavior of the Mahalanobis distance
suggests a way to detect the presence of outliers in the sample.

5.2. The Matching Process in the Presence of Outliers, a Toy Example

To illustrate the effect of outliers on the assignment of matches when finding counter-
factuals we use a small data set consisting on fifteen normally distributed observations for
the first design of our DGP are generated. These variables are presented in columns 1–4
of Table 3. The exercises consist on artificially substituting the value of one observation in
one covariate and observing in detail its effect on the matches assigned. One bad and one
good leverage point is generated by moving the value of the first treated observation of X1
by −5

√
2 and by +5

√
2, respectively (severe contamination). Columns 5 to 7, and 11 to 13

of Table 3 present the propensity score and the Mahalanobis distance estimated with the
original and contaminated data. As can be seen, the distribution of the propensity score
and the Mahalanobis distance with bad leverage points completely changes. Observations
2 and 3, for example, change their probability of participating in the program from 0.78 to
0.47 and from 0.99 to 0.55 when looking at the propensity score matching and from 0.51 to
0.02 and from 4.40 to 0.90 when examining the Mahalanobis distance.

Table 3. Effect of a bad and a good leverage point on matching assignment.

Col: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Propensity Score Covariate Matches
Original Data Propensity Score Matches (ID) Mahalanobis Distance (ID)

ID y x1 x2 T P(T)o P(T)blp P(T)glp mo mblp mglp MDo MDblp MDglp mo mblp mglp

1 0.94 0.35 −1.14 T 0.27 0.30 0.28 14 11 14 0.62 0.62 0.61 12 11 11
2 2.58 0.58 −0.06 T 0.78 0.47 0.75 12 15 12 0.51 0.02 0.26 12 12 12
3 2.29 1.41 0.67 T 0.99 0.55 0.99 12 9 12 4.40 0.90 1.78 15 13 8
4 1.45 −0.79 0.68 T 0.52 0.65 0.56 8 8 8 0.66 1.19 0.55 12 14 11
5 1.27 −0.83 0.04 T 0.25 0.55 0.30 14 9 14 0.63 0.78 0.04 12 11 9
6 1.08 0.87 0.36 T 0.93 0.52 0.92 12 9 12 1.73 0.28 0.82 13 9 11
7 2.21 0.35 1.15 T 0.96 0.68 0.95 12 8 12 2.37 1.21 1.98 8 14 8
8 −0.72 −1.58 1.50 C 0.51 0.79 0.59 2.60 3.74 1.94
9 1.26 −0.17 −0.08 C 0.47 0.50 0.49 0.02 0.18 0.04

10 −1.47 1.74 −3.12 C 0.13 0.06 0.10 5.98 6.52 5.88
11 0.52 −0.25 −1.00 C 0.13 0.35 0.16 0.91 0.69 0.50
12 0.04 0.75 −0.51 C 0.68 0.38 0.66 0.50 0.11 0.23
13 −0.10 −0.61 −0.90 C 0.08 0.38 0.11 1.39 0.88 0.46
14 −0.08 0.30 −1.48 C 0.16 0.26 0.16 1.24 1.14 1.16
15 −1.53 −2.30 1.16 C 0.14 0.49 0.00 4.42 9.75 11.74

The distribution of the propensity score with good leverage points keeps to the same
path. Columns 8 to 10 show the consequent effect of the variation in this metric on the
matches assigned to generate the counterfactuals (by using the nearest neighbor criteria).15

Consider observations 5 and 6, for example. Initially, observations 14 and 12 are presented
as counterfactual observations, but due to the presence of the bad leverage point, the
nearest observation now corresponds to observation 9 in both cases. The matches assigned
in the presence of good leverage points are the same as the original data. Columns 11 to 13
show the behavior of the Mahalanobis distance. Unlike the propensity score matching, the
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toy example shows that there are also significant changes when examining good leverage
points in the Mahalanobis distance. Thus, the presence of outliers may distort even more
the treatment effects when using this estimand.

For a proper estimation of the unobserved potential outcomes, we want to compare
treated and control groups that are as similar as possible. These simple illustrations explain
that extreme values can easily distort the metrics used to define similarity and thus may
bias the estimates of treatment effects by making the groups very different. That is, the
prediction of Ŷ0

i for the treated group is made using information from observations that
are different from themselves. In the next section, we present evidence about the effects on
the treatment effect estimation.

5.3. The Effect of Outliers on the Different Matching Estimators

In this section we examine the effect of outliers on the estimation of treatment effects
under different scenarios and through a set of matching estimators. Table 4 shows the
performance in the estimation of the average treatment effect on the treated of the four
selected estimators for the first design of our DGP. It presents the bias and the mean squared
error, from 2000 replications. The sample size (n) is 1000 and the number of covariates is
p ∈ {2, 10}. The four panels resemble the panels presented in Table 1. However, in this
case, columns correspond to the type of outlier and rows to the estimators. Column 1,
called clean, involves the no-contamination scenario. Columns 2–4 contain bad leverage
points in the treatment, control, and both groups simultaneously, respectively. Similarly,
columns 5–7 consider good leverage points, whereas columns 8–10 correspond to vertical
outliers in the treatment, control, and in both samples, respectively. To compute the bias,
we first, calculated the bias of the estimate, for example pair matching, by subtracting the
true effect off the treatment estimator; that is: bias = (β

pairmatching
TOT − 1), the same was done

for each of the scenarios and the result (scaled by 1000) can be found in Table 4.16

Table 4. Simulated bias and MSE of Average Treatment Effect on the Treated (TOT) estimates in the presence of outliers
using propensity score.

Panel A: Severe contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 155.72 536.54 568.73 547.42 43.91 162.42 100.70 1738.27 −1425.95 160.84
Ridge M. Epan 143.49 501.50 525.45 511.43 48.85 151.99 105.46 1725.28 −1428.19 153.34
IPW 299.37 634.05 636.05 632.63 299.32 300.98 297.69 1881.92 −1264.44 309.81
Pair Matching
(bias corrected) −1.48 785.56 433.26 461.78 −797.19 −4.43 −398.52 1581.07 −1570.68 9.77

MSE (×1000)
Pair Matching 112.73 353.53 384.21 361.60 134.13 121.73 122.59 3113.71 3808.92 1005.98
Ridge M. Epan 93.06 301.00 320.69 308.11 106.14 100.44 100.95 3053.33 3406.23 760.11
IPW 164.17 459.52 464.34 458.64 164.85 172.71 167.73 3619.12 2173.43 421.42
Pair Matching
(bias corrected) 61.73 669.61 234.13 258.86 857.37 65.18 283.12 2564.56 3774.03 735.33
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Table 4. Cont.

Panel B: Severe contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 9.13 367.76 367.39 364.36 −112.22 10.93 −50.59 717.27 −705.47 12.48
Ridge M. Epan 0.29 362.47 362.71 361.51 −74.07 1.11 1.80 709.29 −710.40 2.20
IPW 16.56 366.56 366.76 366.70 13.15 14.52 14.14 724.71 −694.33 18.71
Pair Matching
(bias corrected) −0.05 354.12 363.51 359.18 −353.72 1.14 −176.80 708.10 −714.09 3.67

MSE (×1000)
Pair Matching 13.17 145.73 145.98 143.36 42.97 14.28 22.53 528.13 557.91 36.83
Ridge M. Epan 8.70 138.96 139.35 138.48 26.19 9.39 9.22 512.84 535.14 19.80
IPW 11.37 140.60 140.75 140.72 11.44 12.32 11.91 536.91 512.48 20.91
Pair Matching
(bias corrected) 13.17 134.87 143.09 139.57 184.52 14.30 59.37 515.14 571.01 37.00

Panel C: Mild contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 155.72 446.02 478.72 465.70 49.10 163.02 104.01 630.48 −318.78 157.26
Ridge M. Epan 143.49 407.01 434.69 422.19 52.56 150.44 104.68 618.03 −328.02 146.44
IPW 299.37 553.26 555.45 557.44 288.31 289.99 287.53 774.14 −169.77 302.51
Pair Matching
(bias corrected) −1.48 236.68 376.49 350.68 −240.05 −2.05 −118.73 473.28 −472.24 1.89

MSE (×1000)
Pair Matching 112.73 262.10 289.80 278.70 130.69 120.45 119.56 486.58 342.40 193.33
Ridge M. Epan 93.06 212.60 234.28 223.57 104.30 100.14 99.52 455.07 297.76 153.73
IPW 164.17 361.29 367.50 367.74 160.30 168.08 163.66 674.21 147.06 188.24
Pair Matching
(bias corrected) 61.73 100.48 187.36 170.06 151.11 66.23 90.72 286.13 398.70 121.23

Panel D: Mild contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 9.13 127.38 204.31 175.95 −79.71 −3.21 −40.49 221.57 −205.25 10.13
Ridge M. Epan 0.29 125.16 183.86 160.66 −67.73 −14.64 −38.13 212.99 −212.92 0.86
IPW 16.56 166.69 166.07 168.93 −16.22 −14.88 −13.95 229.01 −196.71 17.21
Pair Matching
(bias corrected) −0.05 105.04 199.85 172.82 −106.54 −13.39 −58.22 212.40 −214.26 1.07

MSE (×1000)
Pair Matching 13.17 27.84 52.39 43.02 25.87 13.98 17.67 62.24 59.63 15.40
Ridge M. Epan 8.70 23.30 41.90 33.80 15.14 9.56 11.09 54.14 56.18 9.77
IPW 11.37 35.14 36.07 36.43 12.83 13.38 13.05 63.62 51.76 12.18
Pair Matching
(bias corrected) 13.17 22.53 50.49 41.89 31.93 14.24 19.74 58.35 63.53 15.40

Note: The results use the propensity score metric and 2000 replications. The statistics presented are the bias and MSE of each estimator
(Pair matching, Ridge, IPW and bias corrected Pair matching) scaled by 1000. The bias is calculated by subtracting the true effect of the
treatment (1) from the estimate of TOT. Each column represents a contamination type and placement: Clean; BLP; GLP; and vertical outliers,
in treatment group (T), in control group (C) and both. Panels A through D represent different combinations of contamination levels and
number of covariates.

The results suggest several important conclusions. First, in the absence of outliers
all the estimators we considered perform well, which is in accordance with the evidence
provided by Busso et al. (2009) and Busso et al. (2014); however, there is a larger bias in
the estimate when more covariates are present, regardless of the level of contamination.
The bias-corrected covariate matching of Abadie and Imbens (2011) has the smallest bias,
followed by the local linear ridge propensity score matching, the pair matching estimator,
and the reweighting estimator based on the propensity score. Second, in the presence of
bad leverage points, all the estimates present a considerable bias. For the propensity score
matching methods, the size of the bias is generally the same, independent of the location



Econometrics 2021, 9, 19 16 of 32

of the outlier. This is expected because, as explained in the last section, the complete
distribution of the metrics changes when bad leverage points exist in the data. The spread
of the metrics decreases and observations that initially presented larger (lower) values
of the metric may now match with observations that initially had lower (larger) values.
Therefore, for pair matching the spurious metric will match inappropriate controls. For
local linear ridge matching, the weights Wi,j, which are a function (kernel) of the differences
in the propensity score, will decrease notably. In the case of the reweighted estimator, some
control observations will receive higher weights, because their propensity score values are
higher than those values from the original data, and some will receive lower weights (as
the weights are normalized to sum up to 1). Finally, for the bias corrected pair matching,
there is a clear difference for the clean data, since the correction reduces the bias of the
clean data, however, the bias correction does not reduce the bias in contaminated groups.

For the multivariate distance matching estimators using Mahalanobis distance, results
are very similar and can be found in Table A1 in Appendix A. Treatment observations with
bad leverage points bias the treatment effect estimates as the distribution of the distances
changes completely. Moreover, outlier observations present larger values for the metric and
are matched to inappropriate controls. Bad leverage points in the control sample have little
effect on the estimates of average treatment effect for the treated, because the distribution
of the distances changes completely, but outlier observations are less likely to be considered
as counterfactuals.

Third, good leverage points in the treatment sample also bias the treatment effect esti-
mates of the propensity score matching estimators. Good leverage points in the treatment
sample have estimates of the probability of receiving treatment close to 1. These treated
observations with outlying values lack suitable controls against which to compare them.
This violates the overlap assumption and therefore increases the likelihood of biasing the
matching estimates. In the case of the reweighted estimator, the unbiasedness is explained
as just the outliers receiving higher weights, while remaining observations present almost
the same weight (slightly modified by a normalization procedure). Moreover, good lever-
age points in the treatment group yield a great bias of the covariate matching estimator.
This effect, which is similar to those coming from bad leverage points, is explained by these
outlying observations having larger values for the metric and therefore being matched to
inappropriate controls.

Fourth, good leverage points in the control sample do not affect matching methods.
For the propensity score matching estimates, the values of the propensity score for the
outliers are close to 0; these observations would cause little difficulty, because they are
unlikely to be used as matches. For the reweighted estimator, these outlying observations
would get close to zero weighting. For the covariate matching estimators, good leverage
points in the control sample have little effect on the estimates, because such observations
are less likely to be considered as counterfactuals. Fifth, when good leverage points are
presented in both samples, treatment effect estimates are biased. This bias probably comes
from the outliers in the treatment group. Sixth, vertical outliers bias the treatment effect
estimates. This bias is easy to understand, because extreme values in the outcomes, Y1

i or
Y0

i , will move the average values toward them in their respective groups, independent of
the estimator used to match the observations. Seventh, the immediate effect of outliers is
to reject the balancing hypothesis. It is noteworthy that very similar results are obtained
when estimating the Average Treatment Effect (ATE). Results can be found Table A2 in
Appendix A.17

5.4. Outliers and Balance Checking

Achieving covariate balance is very important, because it is what justifies ignorability
of the observed covariates, allowing for a valid causal inference after the treatment effect
estimation (Imbens (2004)). Thus, once the observations are matched, it is important to
assess the quality of the matches in order to ensure the control group has a distribution of
the metric similar to the treatment group. Among the approaches to analyzing the balanc-
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ing hypothesis are those presented by Dehejia and Wahba (2002) and Stuart et al. (2013);
however, it is a common practice to report as statistical measures the standardized mean
difference and the variance ratio. To calculate these measures for the contaminated variable,
as well as for the remaining variables, we obtained the estimate of TOT for nearest neighbor
with 1 neighbor and bias adjusted. Then, for each covariate, the standardized differences
(bias) and variance ratio are calculated between treated and control groups; a perfectly
balanced covariate would have a difference in means of zero and a variance ratio of one.
For both bad leverage points and good leverage points, the standardized differences for
the contaminated variable is very similar with the clean scenario; however, the variance
ratio increases in most contaminated scenarios with the exception of outliers in the control
group, since they would simply not be used in the matching process. For the remaining
uncontaminated covariates, the bias and the variance ratio are close to the clean scenario.
Moreover, the bias and variance ratio are consistently larger when there is a large number
of covariates, regardless of the severity of the contamination.

Table 5, shows the percentage bias and the variance ratio calculated for the baseline
(clean) data and for different contaminated scenarios, which are displayed in columns.
These results correspond to the first design of our Monte Carlo setup.

5.5. Solving the Puzzle, Re-Weighting Treatment Effects to Correct for Outliers

Finally, Table 6 analyzes the effectiveness of the re-weighted treatment effect estimator
based on the Verardi and McCathie (2012) Smultiv tool for the identification of outliers.18

The structure of the table is similar to that of Table 4. The results suggest that first, the
re-weighting algorithms perform well in an scenario without outliers, that is, applying the
algorithms does not influence the estimates of treatment effects if no outliers are present
in the data.19 Second, as expected, the re-weighted estimators we propose are unaffected
by the presence of outliers and lead to estimates that are similar to those obtained with
the clean sample in all contamination scenarios. Third, and perhaps the most important
conclusion, while both algorithms perform well reducing the bias that outliers impose, both
in the case of the propensity score and the Mahalanobis distance, the Smultiv outperforms
the SD. This holds for most of the different matching estimators implemented in this paper.

Similar to the conclusions of Table 4, there is a clear difference in the performance
of the estimators when comparing two covariates vs. ten covariates; regardless of the
level of contamination, there is a larger bias and MSE with ten covariates due to the
noise introduced by the number of covariates.20 It is worth mentioning that the general
conclusions obtained with designs two to four are very similar, although the effect of
outliers is slightly smaller with design four. These results are available upon request.

Additionally, we compare the results from the re-weighting algorithms to a “naive
approach”, where outliers are observations that lie outside 3 standard deviations from
the mean to extend this strategy to a multivariate setting. We find that both algorithms
outperform the naive approach in almost all scenarios. The only scenario when there is
equal performance of the naive approach with the SD algorithm is when there is severe
contamination and ten covariates. We believe this is the case due to the large number
of covariates and the noise they introduce to the data; in all other cases, the algorithms
outperform the naive approach. Results for this naive approach can be found in Table A5
in Appendix A.
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Table 5. Effect of outliers on the balance checking measures.

Panel A: Severe contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point

Clean in T in C in T and C in T in C in T and C

Contaminated
variable
Percentage Bias 0.20 0.19 0.25 0.07 0.46 0.21 0.31
Variance ratio 1.21 28.45 0.14 3.87 31.94 1.22 16.86
Remaining
variables
Percentage Bias 0.21 0.17 0.16 0.16 0.26 0.21 0.23
Variance ratio 1.21 1.15 1.14 1.14 1.29 1.22 1.25

Panel B: Severe contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point

Clean in T in C in T and C in T in C in T and C

Contaminated
variable
Percentage Bias 0.05 0.04 0.07 0.05 0.33 0.06 0.21
Variance ratio 1.05 6.25 0.17 1.02 6.00 1.06 3.73
Remaining
variables
Percentage Bias 0.05 0.01 0.01 0.01 0.13 0.06 0.08
Variance ratio 1.06 1.02 1.03 1.03 1.00 1.07 1.02

Panel C: Mild contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point

Clean in T in C in T and C in T in C in T and C

Contaminated
variable
Percentage Bias 0.20 0.18 0.23 0.19 0.35 0.20 0.24
Variance ratio 1.22 3.63 0.25 0.87 4.02 1.19 2.62
Remaining
variables
Percentage Bias 0.20 0.17 0.16 0.16 0.25 0.21 0.23
Variance ratio 1.20 1.15 1.14 1.14 1.28 1.22 1.24

Panel D: Mild contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point

Clean in T in C in T and C in T in C in T and C

Contaminated
variable
Percentage Bias 0.05 0.09 0.09 0.06 0.10 0.05 0.07
Variance ratio 1.06 1.48 0.60 0.87 1.47 1.01 1.25
Remaining
variables
Percentage Bias 0.05 0.05 0.07 0.04 0.08 0.06 0.06
Variance ratio 1.06 0.95 1.15 1.07 1.02 1.08 1.04

Note: The results correspond to the propensity score metric for pair matching and 2000 replications. Rows depict
the standardized difference (bias) and variance ratio between treated and control groups, for the contaminated
variable and also for the remaining variables in the model. Each column represents a contamination type and
placement: Clean; BLP; GLP, in treatment group (T), in control group (C) and both. Panels A through D represent
different combinations of contamination levels and number of covariates.
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Table 6. Simulated bias and MSE of the treatment effect estimates (TOT) using propensity score and reweighted after the
Smultiv method.

Panel A: Severe contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 158.08 157.10 162.57 160.13 157.10 162.57 160.13 157.10 162.57 160.13
Ridge M. Epan 155.01 153.21 163.61 157.12 153.21 163.61 157.12 153.21 163.61 157.12
IPW 326.35 322.38 327.74 325.20 322.38 327.74 325.20 322.38 327.74 325.20
Pair Matching (bias
corrected) −4.61 −1.71 −1.50 −2.46 −1.71 −1.50 −2.46 −1.71 −1.50 −2.46

MSE (×1000)
Pair Matching 103.35 103.17 109.20 106.19 103.17 109.20 106.19 103.17 109.20 106.19
Ridge M. Epan 89.68 89.20 96.04 92.18 89.20 96.04 92.18 89.20 96.04 92.18
IPW 168.24 165.36 173.85 170.05 165.36 173.85 170.05 165.36 173.85 170.05
Pair Matching (bias
corrected) 57.22 59.24 59.53 60.21 59.24 59.53 60.21 59.24 59.53 60.21

Panel B: Severe contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 13.98 14.40 17.01 18.32 14.40 17.01 18.32 14.40 17.03 18.31
Ridge M. Epan 0.06 1.22 1.74 2.33 1.22 1.74 2.33 1.22 1.73 2.33
IPW 50.56 44.67 50.43 47.75 44.67 50.43 47.75 44.67 50.43 47.75
Pair Matching (bias
corrected) −1.37 0.50 1.29 3.65 0.50 1.29 3.65 0.50 1.30 3.65

MSE (×1000)
Pair Matching 12.89 13.15 13.87 13.39 13.15 13.87 13.39 13.15 13.88 13.38
Ridge M. Epan 8.51 8.94 9.03 8.95 8.94 9.03 8.95 8.94 9.02 8.95
IPW 10.94 10.81 11.39 11.13 10.81 11.39 11.13 10.81 11.39 11.13
Pair Matching (bias
corrected) 13.08 13.19 14.03 13.35 13.19 14.03 13.35 13.19 14.03 13.35

Panel C: Mild contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 158.08 159.37 184.47 170.38 155.57 162.66 159.47 187.90 143.09 165.59
Ridge M. Epan 155.01 156.83 182.20 169.61 151.49 163.50 156.27 186.61 142.49 163.68
IPW 326.35 327.93 340.40 334.92 321.77 327.41 324.76 354.28 305.75 330.53
Pair Matching (bias
corrected) −4.61 1.95 22.80 8.90 −5.46 −1.03 −3.61 30.80 −20.01 3.87

MSE (×1000)
Pair Matching 103.35 102.88 119.55 109.51 103.60 109.63 106.28 114.93 106.79 110.93
Ridge M. Epan 89.68 89.81 103.87 96.26 89.18 96.02 92.12 101.21 92.07 95.36
IPW 168.24 168.47 181.48 176.14 165.14 173.69 169.86 187.75 160.26 173.85
Pair Matching (bias
corrected) 57.22 58.22 62.05 60.18 59.71 59.57 60.54 60.01 63.42 61.48

Panel D: Mild contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 13.98 66.06 112.49 87.75 −21.00 9.60 −3.57 143.83 −99.29 22.02
Ridge M. Epan 0.06 55.77 94.40 75.45 −29.71 −6.86 −17.36 129.81 −118.99 5.99
IPW 50.56 105.41 126.67 114.80 29.92 37.12 34.51 172.36 −64.94 54.20
Pair Matching (bias
corrected) −1.37 50.92 101.49 76.23 −40.72 −6.36 −21.52 129.50 −115.00 6.88

MSE (×1000)
Pair Matching 12.89 17.33 24.93 20.25 15.36 13.29 13.76 34.25 23.69 14.21
Ridge M. Epan 8.51 12.25 17.88 14.90 10.49 9.21 9.49 26.14 24.02 9.65
IPW 10.94 19.35 24.18 21.40 9.86 10.25 10.20 38.89 13.44 12.07
Pair Matching (bias
corrected) 13.08 15.82 22.72 18.61 17.18 13.73 14.75 30.58 27.48 14.18

Note: The results use the propensity score metric and 2000 replications. The statistics presented are the bias and MSE of each estimator
(Pair matching, Ridge, IPW and bias corrected Pair matching) scaled by 1000 after reweighting using the SMULTIV method. The bias is
calculated by subtracting the true effect of the treatment (1) from the estimate of TOT. Each column represents a contamination type and
placement: Clean; BLP; GLP; and vertical outliers, in treatment group (T), in control group (C) and both. Panels A through D represent
different combinations of contamination levels and number of covariates.
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6. An Analysis of the Dehejia-Wahba (2002) and Smith-Todd (2005) Debate with
Regard to Outliers

A debate has arisen, starting with LaLonde (1986), concerning the evaluation of the
performance of non-experimental estimators using experimental data as a benchmark.
The findings of Dehejia and Wahba (1999, 2002) of low bias from applying propensity
score matching to the data of LaLonde (1986), which suggested it was a good way to deal
with the selection problem, contributed strongly to the popularity of this method in the
empirical literature. However, Smith and Todd (2005) (hereafter called ST), using the same
data and model specification as Dehejia and Wahba (hereafter called DW), suggest that the
low bias estimates presented in DW are quite sensitive to the sample and the propensity
score specification, and thus claimed that matching methods do not solve the evaluation
problem when applied to LaLonde’s data.21

In this section, we suggest that the DW propensity score model’s inability to approxi-
mate the experimental treatment effect when applied to LaLonde’s full sample is managed
by the existence of outliers in the data. When the effect of these outliers is down-weighted,
the DW propensity score model presents low bias. Note that we do not interpret these
results as proof that propensity score matching solves the selection problem, because the
third subsample (ST sample) continues to report biased matching estimates after down-
weighting the effect of outliers. Moreover, these data allow us to highlight the role of
outliers when performing the balance of the covariate checking in the specification of
the propensity score. Dehejia (2005), in a reply to ST, argues that a different specification
should be selected for each treatment group/comparison group combination, and that ST
misapplied the specifications that DW selected for their samples to samples for which the
specifications were not necessarily appropriate “as covariates are not balanced”. Dehejia
(2005) states that with suitable specifications selected for these alternative samples and
with well-balanced covariates, accurate estimates can be obtained. Remember that in
estimating the propensity score the specification is determined by the need to condition
fully on the observable characteristics that make up the assignment mechanism. That is,
the distribution of the covariates should be approximately the same across the treated and
comparison groups, once the propensity score is controlled for. The covariates can be de-
fined as well-balanced when the differences in propensity score for treated and comparison
observations are insignificant (see the appendix in Dehejia and Wahba (2002)).

ST suggests that matching fails to mitigate LaLonde’s critique of non-experimental
estimators, because matching produces a large bias when applied to LaLonde’s full sample.
Dehejia (2005), on the other hand, states that this failing comes from the use of an incorrect
specification of the propensity score for that sample (as the covariates are not balanced). In
this section, we suggest that matching has low bias when applied to LaLonde’s full sample
and that the specification of the propensity score employed was not wrong—rather, the
issue is that the sample was contaminated with outliers. These outliers initially distorted
the balance of the covariates, leading Dehejia (2005) to conclude that the specification was
not right, and also biased the estimates of the treatment effect, causing ST to conclude
that matching does not approximate the experimental treatment effect when applied to
LaLonde’s full sample. These conclusions can be found in Table 7, which shows the
propensity score nearest neighbor treatment effect estimations (TOT) for DW’s subsample
and LaLonde’s full sample.22 The dependent variable is real income in 1978. Columns
1 and 2 describe the sample, that is, the comparison and treatment groups, respectively.
Column 3 reports the experimental treatment effect for each sample.23 Column 4 presents
the treatment effect estimates for each sample. The specification of the propensity score
corresponds to that used by Dehejia and Wahba (1999, 2002), and Smith and Todd (2005).24

Column 5 and 6 report the treatment effect estimates for each sample by using the same
specification as in column 4 and down-weighting the effect of outliers identified by the
Stahel-Donoho and the Smultiv methods described in Section 3. Three remarks can be
made on the basis of the results presented in Table 7. First, the treatment effect estimates
for LaLonde’s sample (in column 4) are highly biased, compared to the true effects (column
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3), as shown by DW. Second, once the outliers are identified and their importance down-
weighted, the treatment effect estimates improve meaningfully in terms of bias, and
the matching estimates approximate the experimental treatment effect when LaLonde’s
full sample is considered. And third, once the effect of outliers is down-weighted, the
propensity score specifications now balance the covariates successfully. This has practical
implications: when choosing the variables to specify the propensity score, it may not be
necessary to discard troublesome variables that may be relevant from a theoretical point of
view or to generate senseless interactions or nonlinearities. It might be sufficient to discard
troublesome observations (outliers). That is, outliers can push practitioners to misspecify
the propensity score unnecessarily.

Table 7. Treatment effect estimates of the LaLonde and DW samples.

Comparison
Group Treatment Group Experimental

TOT
Estimated

TOT
Estimated
SD-TOT

Estimated
Smultiv-TOT

PSID [2490 obs] LaLonde [297 obs] 886 −1390 (966) −870 (1012) −514 (1116)
PSID [2490 obs] Dehejia-Wahba [185 obs] 1794 990 (1255) 1306 (1662) 2135 (1325)
CPS [15992 obs] LaLonde [297 obs] 886 −4001 (563) −2884 (713) −3130 (1070)
CPS [15992 obs] Dehejia-Wahba [185 obs] 1794 1566 (770) 1824 (890) 1849 (819)

7. Conclusions

Assessing the impact of any intervention requires making inferences about the out-
comes that would have been observed for program participants, had they not participated.
Matching estimators impute the missing outcome by finding other observations in the
data with similar covariates, but that were exposed to the other treatment. The criteria
used to define similar observations, the metrics, are parametrically estimated by using the
predicted probability of treatment (propensity score) or the standardized distance of the
covariates (Mahalanobis distance).

Moreover, it is known that in statistical analysis the values of a few observations
(outliers) often behave atypically from the bulk of the data. These atypical few observations
can easily drive the estimates in empirical research.

In this paper, we examine the relative performance of leading semi-parametric es-
timators of average treatment effects in the presence of outliers. First, we find that bad
leverage points bias estimates of average treatment effects. This type of outlier completely
changes the distribution of the metrics used to define good counterfactuals and therefore
changes the matches that had initially been undertaken, assigning as matches observations
with very different characteristics. Second, good leverage points in the treatment sample
slightly bias estimates of average treatment effects and increase the chance of infringing
on the overlap condition. Three, good leverage points in the control sample do not affect
the estimates of treatment effects, because they are unlikely to be used as matches. Four,
these outliers violate the balancing criterion used to specify the propensity score. Five,
vertical outliers in the outcome variable greatly bias estimates of average treatment effects.
Six, good leverage points can be identified visually by looking at the overlap plot. Bad
leverage points, however, are masked in the estimation of the metric and are difficult to
identify. Seven, the Stahel (1981) and Donoho (1982) estimator of scale and location, pro-
posed by Verardi et al. (2012) (SD) and Verardi and McCathie (2012) (Smultiv) as tools to
identify outliers, are effective for this purpose; however, we find evidence that the Smultiv
outperform the SD. Finally, an application of this estimator to the data of LaLonde (1986)
allows us to understand the effects of outliers in an quasi-experimental setting.
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Appendix A

Table A1. Simulated bias and MSE of Average Treatment Effect on the Treated (TOT) estimates in the presence of outliers
using Mahalanobis distance.

Panel A: Severe contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 1086.22 1223.63 1119.44 1172.59 1157.35 1178.44 1168.45 2668.76 −489.12 1088.07
Ridge M. Epan 842.51 720.66 919.31 843.54 693.92 996.84 895.42 2425.10 −740.40 839.84
IPW 299.37 634.05 636.05 632.63 299.32 300.98 297.69 1881.92 −1264.44 309.81
Pair Matching
(bias corrected) −0.30 784.72 −4.07 390.26 −794.54 −2.97 −398.78 1582.25 −1561.61 5.80

MSE (×1000)
Pair Matching 1195.58 1512.29 1269.62 1390.48 1354.94 1405.09 1380.86 7140.02 389.79 1270.85
Ridge M. Epan 728.11 545.59 864.04 731.77 510.25 1012.31 821.86 5901.36 736.89 810.76
IPW 164.17 459.52 464.34 458.64 164.85 172.71 167.73 3619.12 2173.43 421.42
Pair Matching
(bias corrected) 33.63 647.77 34.49 179.25 705.14 34.03 206.16 2539.83 3115.53 385.02

Panel B: Severe contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 30.91 208.75 36.59 122.37 −44.75 38.48 −2.37 739.06 −677.65 32.78
Ridge M. Epan 10.32 18.98 13.36 11.95 −29.65 15.18 13.39 718.08 −698.28 11.13
IPW 16.56 366.56 366.76 366.70 13.15 14.52 14.14 724.71 −694.33 18.71
Pair Matching
(bias corrected) −0.45 352.34 3.28 176.75 −351.72 0.43 −175.19 707.70 −709.09 1.41

MSE (×1000)
Pair Matching 11.98 58.24 12.97 26.70 18.82 12.97 12.71 557.67 501.67 28.60
Ridge M. Epan 8.29 9.41 8.89 8.62 9.03 8.87 8.62 524.74 513.96 17.84
IPW 11.37 140.60 140.75 140.72 11.44 12.32 11.91 536.91 512.48 20.91
Pair Matching
(bias corrected) 11.53 144.05 12.26 43.13 162.99 12.16 49.71 512.82 549.09 29.90
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Table A1. Cont.

Panel C: Mild contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 1086.22 1159.95 1082.64 1121.85 1095.43 1130.02 1112.92 1560.98 613.62 1086.77
Ridge M. Epan 842.51 834.56 841.42 837.11 756.97 924.32 844.29 1317.29 367.63 841.70
IPW 299.37 553.26 555.45 557.44 288.31 289.99 287.53 774.14 −169.77 302.51
Pair Matching
(bias corrected) −0.30 233.96 115.19 163.37 −242.97 4.65 −118.03 474.47 −468.69 1.53

MSE (×1000)
Pair Matching 1195.58 1360.56 1188.79 1274.27 1215.94 1293.03 1254.26 2452.46 403.96 1202.47
Ridge M. Epan 728.11 715.45 727.87 720.04 593.99 873.91 732.86 1753.60 167.95 733.91
IPW 164.17 361.29 367.50 367.74 160.30 168.08 163.66 674.21 147.06 188.24
Pair Matching
(bias corrected) 33.63 81.71 49.12 56.58 102.09 35.63 51.16 259.04 311.60 64.86

Panel D: Mild contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 30.91 130.59 170.19 164.75 −38.46 20.82 −8.39 243.35 −181.66 31.47
Ridge M. Epan 10.32 107.76 151.50 141.35 −50.88 −1.65 −21.12 222.65 −202.26 10.57
IPW 16.56 166.69 166.07 168.93 −16.22 −14.88 −13.95 229.01 −196.71 17.21
Pair Matching
(bias corrected) −0.45 105.94 156.04 148.67 −104.89 −12.24 −58.01 212.00 −213.04 0.11

MSE (×1000)
Pair Matching 11.98 27.17 39.59 37.51 15.41 12.14 12.50 70.27 46.86 13.48
Ridge M. Epan 8.29 19.21 31.03 27.80 11.83 8.77 9.22 57.82 50.73 9.11
IPW 11.37 35.14 36.07 36.43 12.83 13.38 13.05 63.62 51.76 12.18
Pair Matching
(bias corrected) 11.53 21.63 35.20 32.71 26.99 12.51 16.96 56.51 60.10 13.21

Note: The results use the Mahalanobis distance metric and 2000 replications. The statistics presented are the bias and MSE of each estimator
(Pair matching, Ridge, IPW and bias corrected Pair matching) scaled by 1000. The bias is calculated by subtracting the true effect of the
treatment (1) from the estimate of TOT. Each column represents a contamination type and placement: Clean; BLP; GLP; and vertical outliers,
in treatment group (T), in control group (C) and both. Panels A through D represent different combinations of contamination levels and
number of covariates.

Table A2. Simulated bias and MSE of Average Treatment Effect (ATE) estimates in the presence of outliers using
propensity score.

Panel A: Severe contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 157.33 555.59 554.08 549.96 104.26 106.62 102.91 1766.01 −1425.13 178.94
Ridge M. Epan 147.88 515.87 513.57 513.06 104.64 104.81 109.83 1755.33 −1429.67 173.25
IPW 302.65 638.80 638.05 637.00 305.49 303.68 303.62 1900.85 −1270.70 320.41
Pair Matching
(bias corrected) −1.46 610.43 613.04 463.74 −400.41 −397.05 −397.35 1599.17 −1577.66 15.82

MSE (×1000)
Pair Matching 71.59 343.59 342.04 337.37 70.16 72.50 69.81 3603.22 2511.61 556.46
Ridge M. Epan 61.16 293.04 291.05 290.18 59.08 59.91 60.06 3463.70 2415.09 436.35
IPW 127.18 438.55 437.76 436.00 129.61 129.60 128.99 3804.20 1777.43 290.78
Pair Matching
(bias corrected) 33.22 400.58 402.54 240.62 236.94 233.46 224.63 2918.21 2843.96 389.60
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Table A2. Cont.

Panel B: Severe contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 6.77 365.94 367.44 363.69 −52.71 −53.61 −52.90 715.82 −704.41 9.01
Ridge M. Epan −1.26 361.99 362.35 361.20 −39.69 −38.78 −1.32 707.99 −710.25 0.59
IPW 15.14 366.01 365.67 365.88 11.74 12.45 12.60 724.58 −694.08 16.83
Pair Matching
(bias corrected) −2.53 357.08 359.43 358.67 −178.27 −180.27 −179.55 706.65 −713.44 −0.06

MSE (×1000)
Pair Matching 8.93 141.38 142.58 139.63 16.61 16.57 15.16 532.34 517.66 21.31
Ridge M. Epan 6.56 137.26 137.50 136.73 11.45 11.32 6.99 513.77 517.40 12.91
IPW 7.49 139.29 139.04 139.22 7.77 7.71 7.69 537.06 494.29 12.61
Pair Matching
(bias corrected) 8.98 134.52 136.12 135.97 53.05 53.97 48.70 519.86 530.76 21.61

Panel C: Mild contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 157.33 463.05 462.51 465.78 106.34 109.70 105.85 639.93 −317.41 163.81
Ridge M. Epan 147.88 421.79 420.59 423.28 105.66 106.37 109.36 630.12 −325.38 155.49
IPW 302.65 557.12 555.97 558.83 294.72 293.01 293.63 782.11 −169.35 307.98
Pair Matching
(bias corrected) −1.46 308.67 305.55 352.88 −120.19 −119.79 −118.44 478.73 −474.32 3.72

MSE (×1000)
Pair Matching 71.59 247.91 247.32 249.98 70.09 72.02 68.68 492.73 188.26 116.46
Ridge M. Epan 61.16 203.29 202.74 204.07 58.90 59.87 59.55 465.08 175.98 96.51
IPW 127.18 339.96 338.72 342.15 123.97 124.03 123.85 659.32 75.26 143.62
Pair Matching
(bias corrected) 33.22 119.82 118.23 149.90 58.48 58.29 56.14 289.87 288.91 64.86

Panel D: Mild contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 6.77 166.49 165.31 176.44 −43.12 −43.16 −42.81 219.49 −206.58 7.44
Ridge M. Epan −1.26 155.43 153.36 160.93 −42.85 −42.41 −39.68 211.52 −213.96 −0.70
IPW 15.14 166.26 164.94 167.79 −17.68 −16.96 −15.55 227.97 −197.63 15.64
Pair Matching
(bias corrected) −2.53 153.08 151.58 173.31 −61.94 −62.04 −60.94 210.22 −215.81 −1.79

MSE (×1000)
Pair Matching 8.93 35.45 35.23 39.21 12.64 12.98 12.27 58.07 52.79 10.18
Ridge M. Epan 6.56 30.34 29.67 32.10 9.13 9.16 8.72 51.85 52.98 7.20
IPW 7.49 33.43 33.06 34.04 8.57 8.42 8.35 59.68 46.86 7.94
Pair Matching
(bias corrected) 8.98 31.11 30.81 38.08 14.93 15.24 14.31 54.25 56.78 10.23

Note: The results use the propensity score metric and 2000 replications. The statistics presented are the bias and MSE of each estimator
(Pair matching, Ridge, IPW and bias corrected Pair matching) scaled by 1000. The bias is calculated by subtracting the true effect of the
treatment (1) from the estimate of TOT. Each column represents a contamination type and placement: Clean; BLP; GLP; and vertical outliers,
in treatment group (T), in control group (C) and both. Panels A through D represent different combinations of contamination levels and
number of covariates.
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Table A3. Simulated bias and MSE of Average Treatment Effect on the Treated (TOT) estimates in the presence of outliers
with different number of matching neighbors.

Panel A: Severe contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Nearest-Neighbor
matching (M = 1) 155.72 536.54 568.73 547.42 43.91 162.42 100.70 1738.27 −1425.95 160.84

Nearest-Neighbor
matching (M = 5) 241.55 595.71 623.69 607.70 156.59 252.63 203.82 1824.10 −1333.56 245.78

Nearest-Neighbor
matching (bias
corrected, M = 1)

−1.48 785.56 433.26 461.78 −797.19 −4.43 −398.52 1581.07 −1570.68 9.77

Nearest-Neighbor
matching (bias
corrected, M = 5)

−3.95 787.35 433.81 465.12 −807.07 −3.41 −406.21 1578.59 −1557.95 8.98

MSE (×1000)
Nearest-Neighbor
matching (M = 1) 112.73 353.53 384.21 361.60 134.13 121.73 122.59 3113.71 3808.92 1005.98

Nearest-Neighbor
matching (M = 5) 98.98 390.64 421.90 403.38 76.79 106.41 88.37 3370.40 2524.73 469.56

Nearest-Neighbor
matching (bias
corrected, M = 1)

61.73 669.61 234.13 258.86 857.37 65.18 283.12 2564.56 3774.03 735.33

Nearest-Neighbor
matching (bias
corrected, M = 5)

49.99 663.59 224.75 253.07 848.14 53.36 270.56 2544.56 3446.37 557.36

Panel B: Severe contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Nearest-Neighbor
matching (M = 1) 9.13 367.76 367.39 364.36 −112.22 10.93 −50.59 717.27 −705.47 12.48

Nearest-Neighbor
matching (M = 5) 21.41 370.20 370.50 370.52 −77.89 23.46 −25.64 729.56 −687.38 24.62

Nearest-Neighbor
matching (bias
corrected, M = 1)

−0.05 354.12 363.51 359.18 −353.72 1.14 −176.80 708.10 −714.09 3.67

Nearest-Neighbor
matching (bias
corrected, M = 5)

0.50 354.69 364.89 363.61 −355.22 1.02 −175.60 708.65 −707.78 4.04

MSE (×1000)
Nearest-Neighbor
matching (M = 1) 13.17 145.73 145.98 143.36 42.97 14.28 22.53 528.13 557.91 36.83

Nearest-Neighbor
matching (M = 5) 9.42 143.94 144.39 144.41 20.01 10.32 12.02 541.71 504.42 21.16

Nearest-Neighbor
matching (bias
corrected, M = 1)

13.17 134.87 143.09 139.57 184.52 14.30 59.37 515.14 571.01 37.00

Nearest-Neighbor
matching (bias
corrected, M = 5)

9.24 132.05 140.45 139.38 154.80 10.11 47.13 511.91 535.13 21.87
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Table A3. Cont.

Panel C: Mild contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Nearest-Neighbor
matching (M = 1) 155.72 446.02 478.72 465.70 49.10 163.02 104.01 630.48 −318.78 157.26

Nearest-Neighbor
matching (M = 5) 241.55 501.66 529.56 519.54 158.63 249.52 203.33 716.31 −230.98 242.82

Nearest-Neighbor
matching (bias
corrected, M = 1)

−1.48 236.68 376.49 350.68 −240.05 −2.05 −118.73 473.28 −472.24 1.89

Nearest-Neighbor
matching (bias
corrected, M = 5)

−3.95 232.97 374.53 348.82 −246.06 −4.13 −124.34 470.81 −470.15 −0.07

MSE (×1000)
Nearest-Neighbor
matching (M = 1) 112.73 262.10 289.80 278.70 130.69 120.45 119.56 486.58 342.40 193.33

Nearest-Neighbor
matching (M = 5) 98.98 283.71 312.46 302.20 76.94 104.75 87.36 553.96 158.56 132.95

Nearest-Neighbor
matching (bias
corrected, M = 1)

61.73 100.48 187.36 170.06 151.11 66.23 90.72 286.13 398.70 121.23

Nearest-Neighbor
matching (bias
corrected, M = 5)

49.99 89.78 176.80 159.20 141.52 53.69 79.69 271.91 361.58 95.43

Panel D: Mild contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Nearest-Neighbor
matching (M = 1) 9.13 127.38 204.31 175.95 −79.71 −3.21 −40.49 221.57 −205.25 10.13

Nearest-Neighbor
matching (M = 5) 21.41 138.25 206.59 180.88 −57.49 7.10 −24.41 233.86 −191.22 22.38

Nearest-Neighbor
matching (bias
corrected, M = 1)

−0.05 105.04 199.85 172.82 −106.54 −13.39 −58.22 212.40 −214.26 1.07

Nearest-Neighbor
matching (bias
corrected, M = 5)

0.50 105.91 198.37 172.22 −106.76 −15.38 −59.53 212.95 −211.98 1.57

MSE (×1000)
Nearest-Neighbor
matching (M = 1) 13.17 27.84 52.39 43.02 25.87 13.98 17.67 62.24 59.63 15.40

Nearest-Neighbor
matching (M = 5) 9.42 26.96 49.90 40.25 15.54 9.87 11.38 63.69 47.69 10.51

Nearest-Neighbor
matching (bias
corrected, M = 1)

13.17 22.53 50.49 41.89 31.93 14.24 19.74 58.35 63.53 15.40

Nearest-Neighbor
matching (bias
corrected, M = 5)

9.24 19.18 46.53 37.23 24.93 10.41 15.00 54.63 56.53 10.39

Note: The results use the propensity score metric and 2000 replications. The statistics presented are the bias and MSE of nearest neighbor
and bias corrected nearest neighbor matching using 1 and 5 neighbors, scaled by 1000. The bias is calculated by subtracting the true effect
of the treatment (1) from the estimate of TOT. Each column represents a contamination type and placement: Clean; BLP; GLP; and vertical
outliers, in treatment group (T), in control group (C) and both. Panels A through D represent different combinations of contamination
levels and number of covariates.
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Table A4. Simulated bias and MSE of the treatment effect estimates (TOT) using propensity score and reweighted after the
SD method.

Panel A: Severe contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 153.23 161.46 166.61 164.65 159.53 166.83 164.22 161.13 166.63 165.69
Ridge M. Epan 143.85 151.25 161.14 155.85 150.92 160.83 155.94 151.11 161.07 155.66
IPW 299.39 310.16 310.98 310.18 310.06 311.04 310.27 310.22 311.04 310.06
Pair Matching
(bias corrected) −3.42 −1.91 −0.18 2.80 −3.54 0.80 2.34 −2.49 −0.39 3.92

MSE (×1000)
Pair Matching 110.00 114.79 122.35 120.16 114.20 122.54 119.51 114.38 123.05 120.32
Ridge M. Epan 93.27 97.21 106.22 101.66 97.08 106.01 101.65 97.18 106.12 101.62
IPW 176.78 183.69 192.95 188.56 183.54 192.92 188.52 183.68 192.88 188.53
Pair Matching
(bias corrected) 59.26 61.07 66.69 63.52 61.14 66.75 63.75 60.61 67.25 63.39

Panel B: Severe contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 0.64 13.14 12.80 13.64 12.67 13.41 14.03 14.01 −4.53 6.56
Ridge M. Epan −5.81 5.85 3.79 4.62 5.80 3.53 4.50 6.97 −14.32 −2.43
IPW 5.00 17.44 17.15 17.44 17.46 17.20 17.25 18.55 0.04 9.96
Pair Matching
(bias corrected) −8.05 4.19 2.93 4.24 3.76 3.28 4.43 5.10 −14.81 −3.20

MSE (×1000)
Pair Matching 13.48 14.59 14.33 14.32 14.53 14.23 14.27 14.56 15.21 14.62
Ridge M. Epan 8.69 9.16 9.68 9.32 9.15 9.66 9.30 9.26 10.26 9.41
IPW 10.51 11.13 12.02 11.56 11.14 11.99 11.54 11.24 11.93 11.38
Pair Matching
(bias corrected) 13.50 14.43 14.21 14.13 14.41 14.05 14.06 14.40 15.47 14.56

Panel C: Mild contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 153.35 372.82 448.04 404.06 81.00 160.58 119.21 572.72 −279.06 125.27
Ridge M. Epan 142.75 341.86 407.26 368.73 86.30 155.08 125.86 560.98 −288.90 115.28
IPW 298.74 512.04 505.90 497.75 296.01 300.50 300.04 716.64 −132.98 273.76
Pair Matching
(bias corrected) −6.88 159.64 332.41 286.55 −161.82 −2.89 −74.90 412.20 −443.64 −33.62

MSE (×1000)
Pair Matching 112.55 214.29 267.55 234.91 125.43 120.77 117.19 421.68 296.76 184.73
Ridge M. Epan 93.86 174.62 216.32 191.14 102.58 103.93 103.34 392.40 258.90 146.59
IPW 178.51 328.55 327.55 319.77 177.27 185.24 181.27 604.96 157.50 198.96
Pair Matching
(bias corrected) 59.45 76.73 160.90 132.77 109.02 65.43 75.90 234.83 354.43 117.85
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Table A4. Cont.

Panel D: Mild contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching −0.21 105.36 173.82 145.27 −73.17 −9.80 −39.24 198.55 −202.15 −6.85
Ridge M. Epan −7.54 103.37 159.17 135.36 −66.00 −19.15 −39.54 192.80 −211.98 −13.43
IPW 5.90 141.82 137.88 138.21 −20.45 −20.49 −18.14 205.01 −199.09 −0.81
Pair Matching
(bias corrected) −8.79 86.96 170.39 142.58 −94.95 −19.95 −54.20 189.74 −210.86 −15.76

MSE (×1000)
Pair Matching 13.79 22.60 41.57 32.63 23.57 14.18 16.99 53.79 57.78 16.10
Ridge M. Epan 8.82 18.63 33.51 26.57 14.72 9.66 11.09 46.28 55.22 9.81
IPW 10.74 28.30 27.67 27.78 12.16 13.04 12.47 53.14 51.33 11.32
Pair Matching
(bias corrected) 13.96 19.01 40.39 31.84 27.59 14.58 18.39 50.41 61.52 16.34

Note: The results use the propensity score metric and 2000 replications. The statistics presented are the bias and MSE of each estimator
(Pair matching, Ridge, IPW and bias corrected Pair matching) scaled by 1000 after reweighting using the SD method. The bias is calculated
by subtracting the true effect of the treatment (1) from the estimate of TOT. Each column represents a contamination type and placement:
Clean; BLP; GLP; and vertical outliers, in treatment group (T), in control group (C) and both. Panels A through D represent different
combinations of contamination levels and number of covariates.

Table A5. Simulated bias and MSE of the reweighted treatment effect estimates based on a naive approach.

Panel A: Severe contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 152.34 149.75 156.83 151.28 149.75 156.19 151.28 163.71 153.86 142.29
Ridge M. Epan 138.48 137.02 147.56 142.11 137.02 146.91 142.11 150.40 143.65 132.93
IPW 287.92 288.30 291.06 287.58 288.29 290.29 287.58 304.14 285.32 276.17
Pair Matching
(bias corrected) 0.72 −0.55 −2.12 −2.97 −0.56 −2.40 −2.97 13.34 −1.44 −0.13

MSE (×1000)
Pair Matching 110.27 109.94 119.95 114.58 109.94 118.23 114.58 114.02 116.67 113.05
Ridge M. Epan 90.46 89.46 99.95 94.09 89.46 98.28 94.09 93.36 96.94 91.24
IPW 158.59 160.06 170.16 163.64 160.06 167.97 163.64 168.70 164.99 156.69
Pair Matching
(bias corrected) 60.60 60.63 65.44 62.81 60.64 65.28 62.81 60.95 64.68 63.21

Panel B: Severe contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 5.84 60.79 115.17 75.98 −7.27 9.59 5.22 168.07 −182.60 −85.43
Ridge M. Epan −0.35 38.97 72.88 37.08 0.82 1.23 1.17 168.72 −200.15 −97.69
IPW 15.25 113.44 380.97 214.43 8.32 16.07 13.91 175.00 −175.32 −77.65
Pair Matching
(bias corrected) −2.05 48.24 104.91 68.79 −28.77 0.39 −7.03 160.14 −189.36 −92.39

MSE (×1000)
Pair Matching 12.82 17.45 30.02 21.03 14.12 13.93 13.94 42.33 52.56 26.01
Ridge M. Epan 8.62 10.68 16.89 11.03 8.84 9.20 9.06 38.30 52.19 21.24
IPW 10.71 22.08 189.59 84.18 11.10 12.07 11.63 41.91 43.09 18.24
Pair Matching
(bias corrected) 12.92 15.87 26.01 19.06 15.54 13.95 14.21 39.89 55.21 27.41
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Table A5. Cont.

Panel C: Mild contamination, ten covariates (p = 10)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 152.34 307.84 546.35 447.56 94.94 155.58 130.00 545.29 −286.20 98.49
Ridge M. Epan 138.48 278.68 502.11 411.40 96.21 144.93 125.60 533.17 −293.85 88.63
IPW 287.92 473.48 518.67 491.40 271.91 284.70 278.17 671.22 −142.53 233.00
Pair Matching
(bias corrected) 0.72 113.34 351.41 289.74 −96.44 −0.35 −39.81 401.63 −430.23 −44.21

MSE (×1000)
Pair Matching 110.27 168.85 367.38 281.25 110.64 117.79 113.33 381.69 293.79 160.86
Ridge M. Epan 90.46 133.96 305.60 231.58 90.70 97.72 93.70 352.70 250.72 128.20
IPW 158.59 281.51 361.13 324.48 151.63 165.62 158.94 527.29 120.48 147.94
Pair Matching
(bias corrected) 60.60 63.81 171.62 138.51 78.57 64.94 67.13 220.79 343.86 115.39

Panel D: Mild contamination, two covariates (p = 2)

Bad Leverage Point Good Leverage Point Vertical Outliers in Y

Estimator Clean in T in C in T and C in T in C in T and C in T in C in T and C

BIAS (×1000)
Pair Matching 5.84 119.67 202.83 169.20 −73.65 −6.12 −37.15 196.41 −204.66 −7.11
Ridge M. Epan −0.35 116.59 181.51 153.11 −63.08 −15.09 −36.10 195.20 −210.36 −10.70
IPW 15.25 156.44 170.36 165.59 −24.20 −13.84 −17.50 204.99 −194.20 1.85
Pair Matching
(bias corrected) −2.05 100.85 197.21 165.58 −92.41 −15.47 −50.13 188.88 −212.26 −14.77

MSE (×1000)
Pair Matching 12.82 26.27 51.74 39.84 23.27 14.22 16.69 51.73 58.05 14.26
Ridge M. Epan 8.62 21.25 41.09 31.18 14.10 9.54 10.76 46.90 54.63 9.57
IPW 10.71 31.83 37.04 35.31 12.93 12.75 12.86 52.66 49.25 11.09
Pair Matching
(bias corrected) 12.92 22.08 49.40 38.58 26.81 14.38 17.98 48.93 61.36 14.60

Note: The results use the propensity score metric and 2000 replications. The statistics presented are the bias and MSE of each estimator
(Pair matching, Ridge, IPW and bias corrected Pair matching) scaled by 1000 after reweighting using the naive approach. The bias is
calculated by subtracting the true effect of the treatment (1) from the estimate of TOT. Each column represents a contamination type and
placement: Clean; BLP; GLP; and vertical outliers, in treatment group (T), in control group (C) and both. Panels A through D represent
different combinations of contamination levels and number of covariates.

Notes
1 For a complete discussion and examples of the relationship between randomized and non-randomized experiments

and their bias, see LaLonde (1986); Heckman et al. (1997a); Heckman et al. (1997b).
2 We follow Jarrell (1994); Rasmussen (1988); Stevens (1984) in defining outliers as those few observations that behave

atypically from the bulk of the data and are therefore much larger or smaller values than those of the remaining
observations in the sample.

3 In the regression analysis framework these type of outliers affects the coefficients of the regression.
4 Recall that the Mahalanobis distance MDi =

√
(Xi − θ)Σ−1(Xi − θ)′ is calculated using the squared distances to the

centroid; that is:

(θ̂, Σ̂) = arg min
θ,Σ

det(Σ), such that p =
1
n

n

∑
i=1

{√
(Xi − θ)Σ−1(Xi − θ)′

}2

In the S-estimator this is replaced with

(θ̂, Σ̂) = arg min
θ,Σ

det(Σ), such that b =
1
n

n

∑
i=1

ρ

{√
(Xi − θ)Σ−1(Xi − θ)′

}

The estimated parameters of location (θ̂) and dispersion (Σ̂) are then estimated simultaneously using the Tukey
biweight function as the ρ function. See Verardi and McCathie (2012) for more details.

5 For specific details about this method, see Verardi et al. (2012) and Maronna et al. (2006). A Stata code to implement
this tool is available upon request.

6 Since dummies are partialled out in these strategies, they do not represent an issue for the estimators.
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7 Verardi et al. (2012) also propose a weighted regression using the weighting function in order to preserve the original
sample: w(δ) = min

{
1, e
√

χ2
q−δ
}

where q = p + 2.
8 For a brief explanation of matching techniques see Canavire-Bacarreza and Hanauer (2013).
9 When there is more than one covariate, β is a vector of coefficients equal to 0.5 for each covariate.

10 Since α = 0 and Xi ∼ N(0, 1), then T∗ is also normally distributed with mean 0, thus, on average half the population
will receive the treatment.

11 All the overlap plots are based on density estimation.
12 Results for the remaining designs are available from the corresponding author upon request.
13 In this case the correlation for the clean data should be equal to 1.
14 Results for the remaining designs are available from the corresponding author upon request.
15 Note that although we searched for the single closest match, as will be shown below, the illustration discussed above

holds for different matching methods.
16 Recall that the true effect of the treatment is equal to one.
17 Since the Pair Matching estimator in Table 4 uses 1 nearest neighbor for the matching process, we tested two cases

M = 1 and M = 5 for nearest-neighbor matching and bias adjusted nearest-neighbor matching. The results are
depicted in Table A3 in Appendix A and show that, in general, increasing the number of matching neighbors, slightly
increases the bias of the estimator and decreases its variance (whether it is biased corrected or not).

18 Results for the Stahel (1981) and Donoho (1982) method as mentioned in Section 3 are very similar and are presented
in Table A4 in Appendix A.

19 Similar results were obtained when applying the SD tool to other estimators (see Verardi et al. (2012)).
20 Similar results are obtained when using the Smultiv/SD algorithms to check for outliers when estimating the Average

Treatment Effect (ATE) and also when changing the number of neighbors in nearest neighbor matching.
21 DW applied propensity score matching estimators to subsamples of the same experimental data from the National

Supported Work (NSW) Demonstration and the same non-experimental data from the Current Population Survey
(CPS) and the Panel Study of Income Dynamics (PSID) analyzed by LaLonde (1986). ST re-estimated DW’s model
using three samples: LaLonde’s full sample, DW’s sub-sample, and a third sub-sample (ST-sample). See Dehejia and
Wahba (1999, 2002), and Smith and Todd (2005) for details.

22 We would like to thank professor Smith for kindly sharing his data with us.
23 The experimental treatment effect is the treatment effect from the randomized experiment in LaLonde (1986).
24 The specifications for the PSID comparison group are age, age squared, schooling, schooling squared, no high school

degree, married, black, Hispanic, real earnings in 1974, real earnings in 1974 squared, real earnings in 1975, real
earnings in 1975 squared, dummy zero earning in 1974, dummy zero earning in 1975, and Hispanic * dummy zero
earning in 1974. The specifications for the CPS group are age, age squared, age cubed, schooling, schooling squared,
no high school degree, married, black, Hispanic, real earnings in 1974, real earnings in 1975, dummy zero earning in
1974, dummy zero earning in 1975, and Hispanic * dummy zero earnings in 1974.
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