
Pollock, David Stephen G.

Article

Multidimensional arrays, indices and Kronecker
products

Econometrics

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Pollock, David Stephen G. (2021) : Multidimensional arrays, indices and
Kronecker products, Econometrics, ISSN 2225-1146, MDPI, Basel, Vol. 9, Iss. 2, pp. 1-15,
https://doi.org/10.3390/econometrics9020018

This Version is available at:
https://hdl.handle.net/10419/247608

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/econometrics9020018%0A
https://hdl.handle.net/10419/247608
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


econometrics

Article

Multidimensional Arrays, Indices and Kronecker Products

D. Stephen G. Pollock

����������
�������

Citation: Pollock, D. Stephen G. 2021.

Multidimensional Arrays, Indices

and Kronecker Products. Econometrics

9: 18. https://doi.org/10.3390/

econometrics9020018

Academic Editor: Marc S. Paolella

Received: 18 November 2020

Accepted: 27 April 2021

Published: 28 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Economics, University of Leciceter, Leciceter LE1 7RH, UK; stephen_pollock@sigmapi.u-net.com

Abstract: Much of the algebra that is associated with the Kronecker product of matrices has been
rendered in the conventional notation of matrix algebra, which conceals the essential structures of
the objects of the analysis. This makes it difficult to establish even the most salient of the results. The
problems can be greatly alleviated by adopting an orderly index notation that reveals these structures.
This claim is demonstrated by considering a problem that several authors have already addressed
without producing a widely accepted solution.
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1. Introduction

The algebra of the Kronecker product is essential to multivariate statistical analysis.
It is involved in the formulation of multivariate statistical models and in the derivation
of their estimating equations. Such derivations commonly require the differentiation of
functions of matrices in respect of their matrix arguments. This generates expressions that
demand the use of the Kronecker product (see Pollock (1979, 1985) and Magnus (2010)
for examples).

The necessary algebraic results have become available in a variety of texts that have
arisen over a long period. Early texts on the subject were provided by Balestra (1976),
Rogers (1980) and Graham (1981). Other accounts were given by Pollock (1979) and by
Magnus and Neudecker (1988). More recently, there have been the texts of Steeb (1997) and
of Turkington (2002).

Given that the subject is so well served, one might wonder what scope exists for
further contributions. The repository of specialised results is extensive and most of what is
needed is available, if looked for diligently. Nevertheless, the subject remains problematic.
In many respects, it lacks sufficient transparency to allow easy access to its users, who are
liable to call upon it only to satisfy their occasional needs.

Much of the problem lies in the notational difficulty of the subject. This is not primarily
a matter of notational complexity. It is a more a result of the use of a notation that conceals
the underlying structure of the objects of the analysis. A litany of results has been created
that are not readily proven and that are mostly immemorable.

The contention that underlies this paper is that many of the difficulties can be relieved
by adopting an appropriate notation involving an explicit use of indices. In the context of a
treatise on differential geometry, Cartan (1952) famously decried the confusion that can arise
from what he described as une debauche d’indices. He suggested that a clearer understanding
of the geometry could be achieved by appealing to abstract concepts. This paper offers a
different opinion. An orderly index notation is an indispensable aid to efficient computation.
It assists rather that impedes ready access to vector space interpretations.

The continued adherence of econometricians and statisticians to the conventional
notation of matrix algebra, when dealing with Kronecker products, is explained by one
of their essential purposes, which is to cast complex multivariate models into the formats
of simpler models for which there exist well developed theories. An early example of
the use of the Kronecker product in econometrics was provided by Zellner (1962) in his
treatment of the so-called seemingly unrelated regression equations. His treatment enabled
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the system of equations to be cast in the format of a single multiple regression equation,
which enabled him to exploit the existing results pertaining to such equations.

This paper is concerned primarily with matters of computation. Therefore, the next
section considers the alternative ways in which computers handle multidimensional arrays.
Section 3 presents an index notation, which is designed to assist in computations, and it
provides an analysis of the Kronecker product, which is the matrix of a tensor product with
respect to a natural basis.

Section 4, which may be omitted without interrupting the flow of the exposition,
describes the formal algebra of the tensor product, and it mentions some of its applications.
Sections 5 and 6 deal with a particular problem concerning multiple Kronecker products,
which, it is believed, will serve to illustrate the power of the index notation.

2. The Multidimensional Framework and the Computer

The natural framework for a multi-dimensional array is a set of points in the posi-
tive orthant of a multi-dimensional space that have integer-valued co-ordinates. These
co-ordinates will serve as the indices of the elements of the array.

The simplest array is a linear array of one dimension, which is described as a vector.
Next is a rectangular array of two dimensions, which is a described as a matrix. In three
dimensions, there is a cubic array, and the progression continues with hypercubes of
increasing dimensions. However, there is an obvious difficulty that limits the dimensions
of a practical representation to no more than two. The elements in the interior of a cube are
hidden from view, and an object of more than three dimensions is incapable of visualisation.

The only practical recourse for making higher-dimensional arrays accessible and
amenable to manipulations is to map them into a linear array or into a matrix. Such a
mapping establishes an ordering within the lower-dimensional array of the elements of the
higher-dimensional array.

The simplest examples of such mappings are the ways in which a matrix
A = [aij; i = 1, 2, . . . , M, j = 1, 2, . . . , N] of M rows and N columns can be mapped into
a vector. The row-major mapping joins successive rows of the matrix in a wide row vector.
Here, the index j passes through N values for each increment of the index i. The index
that locates the element aij within the vector is given by (i − 1)N + j. The alternative
column-major mapping joins successive columns of the matrix in a long column vector,
and then the index that locates the element aij is given by (j− 1)M + i.

These two mappings are commonly employed in assigning the elements of a matrix to
contiguous cells of the memory of a computer. Whereas the Pascal and C compilers adopt
the row-major principle, the FORTRAN compiler and the MATLAB interpreter adopt the
column-major principle.

The space to store a matrix A of order M times N in the memory of a computer is
commonly provided by a statement such as

A : array [1, . . . , M][1, . . . , N]. (1)

Regardless of which of the two mappings has been used to store the matrix, its elements
can be accessed and displayed readily in either order, and matrix can also be reconstituted
and displayed in its original form. Thus, with the help of nested do-loops, the matrix can
be displayed via a code such as
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for i := 1 to M do
begin {i}

for j := 1 to N do
begin {j}

Write(a[i][j]);
SkipSpace;

end; {j}
SkipLine;

end; {i}

(2)

the row-major form would be displayed via

for i := 1 to M do
for j := 1 to N do

begin
Write(a[i][j]);
SkipSpace;

end;

(3)

and the column-major form would be displayed by reversing the order of the do-loops:

for j := 1 to N do
for i := 1 to M do

begin
Write(a[i][j]);
SkipLine;

end;

(4)

The extension to arrays of higher dimensions is straightforward. Consider a cubic array

A : array [1, . . . , M][1, . . . , N][1, . . . , P], (5)

in which the elements aijk are indexed by i = 1, . . . , M, j = 1, . . . , N, and k = 1, . . . , P. On
the assumption that the index k in now the most rapidly changing, the row-major mapping
would give the element a position corresponding to (i − 1)NP + (j− 1)P + k, whereas,
with i as the most rapid index, the column-major mapping would give it the position
corresponding to (k− 1)MP + (j− 1)P + i.

It should be noted that, if the initial values of i, j and k are 1, and if M = N = P = 10,
then, in the row-major mapping, it might be declared that k stands for units, j stands for
tens and i stands for hundreds. Then, the formula for the position corresponds to how
we count in base 10. More generally, if M, N and P were to take different values, then the
index would correspond to a mixed radix representation of a number. As it is, with the
initial values at one, we are liable to describe ijk within the row-major mapping as the
index of a lexicogoraphic or dictionary ordering.

A three-dimensional array has three indices. Two of these indices will serve to define
the framework of a matrix and the third index will serve to define the order of the resulting
matrices. The indices can be assigned to these roles in six different ways. To keep track of
the elements of a multidimensional array, it is clear that an index notation is called for. This
will be provided in the next section together with the definitions of a few of the objects that
arise most frequently in the processes of statistical computing. These objects are liable to
be compounded from objects of lower dimensions. This gives rise to structures that one
may be able to exploit in pursuit of computational efficiency.

To achieve computational efficiency, it is necessary to avoid displacing the values that
are stored in the memory of the computer. They must be left in place, regardless of the
changing nature of the structures to which they may give rise, whether these are vectors or
matrices or the products of matrices. Such objects can be created by the manipulation of
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pointers, which are variables that contain the addresses of the memory locations in which
the values are stored.

It is notable that do-loops are implemented by pointers, which accounts for the ease
with which their order can be altered within a nested sequence. Thus, whichever system
of storage is used, one can rely on do-loops (or pointers) to pluck the elements from the
memory in the orders that are required.

3. The Index Notation

The object that will be analysed in detail in subsequent sections of the paper is a
threefold Kronecker product postmultuplied by a long vector. It is appropriate already to
display this object, which may be denoted by

Yv = (A⊗ B⊗ C)Xv. (6)

Its factors are as follows:

A = [ajp] = (ajpep
j ), B = [bkq] = (bkqeq

k),

C = [c`r] = (c`rer
`), Xv = (xpqrepqr).

(7)

In these definitions, both the brackets [, ] and the parentheses (, ) are meant to signify that
each index is varying over its designated range. The lower limits of the indices are unity,
and their upper limits may be denoted by the corresponding capital letters, so that, for
example, j = 1, . . . , J. The alternative notation for the matrices and for the long vector
Xv has been taken from a paper of Pollock (1985). It expresses the matrices as weighted
combinations of the corresponding basic matrices. Thus, for example,

A = (ajpep
j ) = ∑

j
∑
p

ajpep
j , (8)

where ep
j is a basic matrix with a unit in the jth row and the pth column and with zeros

elsewhere (the parentheses indicate that summations are to be taken in respect of the
indices j and p that are associated with the basic matrices and which are repeated within
the accompanying scalar elements). The pth column of the matrix A is (ajpej) = ∑j ajpej,
whereas its jth row is (ajpep) = ∑p ajpep. Here, as in Equation (8), the summations are over
the basis elements, which are vectors in these cases. Summations occur only when there
are repeated instances of an index.

There are alternative ways of arranging the elements of the matrix to define different
objects. The transpose A′ of the matrix together with the long column vector Ac and the
wide row vector Ar, which are described, respectively, as its column-major and row-major
forms, may be denoted as follows:

A′ = (ajpep
j )
′ = (ajpej

p),

Ac = (ajpep
j )

c = (ajpepj),

Ar = (ajpep
j )

r = (ajpejp).

(9)

Observe that, in the mappings A→ Ac and A→ Ar, the migrating index moves ahead of
the index or the string of indices that it is joining. In the mappings A′ → Ac and A′ → Ar,
the migrating index joins from behind.

Whereas the matrix elements ajp will remain fixed in the computer memory in the
order indicated by their indices, the nature of a derived multidimensional object is indicated
by the positioning of the indices on the basic matrices or vectors. Thus, ep

j denotes a basic
matrix with a unit in the jth row and the pth column, whereas epj is a long column vector
with a unit in the {(p − 1)J + j}th position and ejp is a wide row vector with a unit in
the {(j− 1)P + p}th position. Elsewhere, there are only zero-valued elements. For the
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basis vectors, the composite indices follow a lexicographic ordering, which accords with
the conventional definition of a Kronecker product, as will be confirmed at the end of
this section.

The translation from the elements that are held in the computer’s memory to the
various multidimensional objects should be by virtue of the pointer arithmetic that is
associated with the basic arrays ep

j , epj and ejp. These matrices (or vectors) determine the
format of the object or its “shape”, which is the MATLAB terminology.

Observe that, in the case of the long column vector Ac, the elements are arrayed in the
reverse of their lexicographic ordering, with the trailing index p as the leading classifier
within the vector. In the case of the long column vector Xv = (xpqrepqr) of (6), which is the
transpose of the wide vector Xr = (xpqrepqr), the elements follow the lexicographic ordering
of the indices p, q, r that are associated with the basic vectors. It will also be necessary to
consider the long vector Xc = (xpqrerqp) in which the elements xpqr are arrayed in reverse
lexicographic order, which is the order adopted by the MATLAB program.

The composition of the matrix A with a matrix D = [dpr] = (dprer
p) may be denoted by

AD = (ajpep
j )(dprer

p) = ({ajpdpr}per
j ). (10)

The final expression is derived by cancelling the superscripted column index p of the
leading matrix with the subscripted row index p in the trailing matrix. The index p that
is affixed to the right brace within the product is to emphasise that the elements within
the braces are to be summed over the range of the repeated index. It may be omitted if the
eyes can be relied on to recognise repeated indices. Thus

{ajpdpr}p = ∑
p

ajpdpr, (11)

which is described as a contraction with respect to p.
The transformation A′c = ©Ac from Ac = (ajpepj) to A′c = (ajpejp) is effected by the

commutation matrix © = (epj
jp). Thus

A′c = (ajpejp) = (epj
jp)(ajpepj) = ©Ac, (12)

and it will be recognised that A′c = Ar′ = Av, albeit that these identities do not extend to
objects of higher dimensions.

It is easy to seen that © is an orthonormal matrix such that ©′ = ©−1. It has been given
various names. Pollock (1979) has called it the tensor commutator, denoted by a capital
T inscribed in a circle. Magnus and Neudecker (1979) described it as the commutation
matrix, which they denoted by K, and Van Loan (2000) has described it as the shuffle matrix,
denoted by S.

The notation for the Kronecker product of matrices is illustrated by the following example:

A⊗ B = (ajpep
j )⊗ (bkqeq

k) = ({ajpbkq}e
pq
jk ). (13)

Here, the row indices j, k and the column indices p, q associated with the basic matrices
both follow lexicographic orderings. The order of the matrices within a Kronecker product
can be reversed by applying the tensor commutator to both the rows and the columns.
Thus,

©jk(A⊗ B)©′pq = B⊗ A or

(ejk
kj)({ajpbkq}e

pq
jk )(e

qp
pq) = ({ajpbkq}e

qp
kj ).

(14)

The subscripts on the © matrices indicate the indices that are to be commuted.
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It is now possible to evaluate the product of (6). This can be expressed in the conven-
tional matrix notation and in the index notation as follows:

Yv = (A⊗ B⊗ C)Xv or

(yjk`ejk`) = {(ajpep
j )⊗ (bkqeq

k)⊗ (c`rer
`)}(xpqrepqr)

= ({ajpbkqc`r}e
pqr
jk` )(xpqrepqr).

(15)

On replacing the row-major vector Xv by the column-major vector Xc and on reversing the
order of the matrices, an alternative version of the product is created in the form of

Yc = (C⊗ B⊗ A)Xc or

(yjk`e`kj) = {(c`rer
`)⊗ (bkqeq

k)⊗ (ajpep
j )}(xpqrerqp)

= ({ajpbkqc`r}e
rqp
`kj )(xpqrerqp).

(16)

A series of commutation operations link the two forms. These forms might be regarded as
generalisations of the equations

Yv = (AXB′)v = (A⊗ B)Xv,

Yr = (AXB′)r = Xr(A′ ⊗ B′) and

Yc = (AXB′)c = (B⊗ A)Xc,

(17)

where Xv = (xpqepq) and Xc = (xpqeqp), and where the other matrices are as defined
previously. The equations of (17) tend to convey the idea that a multiple Kronecker product
can be computed via pairwise matrix multiplications. To pursue such a strategy, it is
necessary to cast the vectors Xv, Xr or Xc and their transforms into the shapes of matrices.

The various operations of reshaping that might be applied to the column-major vector
Xc = (xpqrerqp) would produce matrices that are denoted as follows:

Xc
p = (xpqrerq

p ), Xc
q = (xpqrerp

q ), Xc
r = (xpqreqp

r ). (18)

Similar operations can be applied to the row-major vector Xv = (xpqrepqr). It is important
that the reshaping operations should be effected by manipulating pointers, instead of by
moving the elements themselves.

The conversions Xc → Xc
p and Xc → Xc

r involve separating the trailing and leading
elements, respectively, from the rest of the composite index rqp, whereby erqp → erq

p and
erqp → eqp

r . These conversions will prove to be amenable to the reshape operator of
MATLAB. To create Xc

q via MATLAB would require a commutation operation to bring the
index q to the leading or trailing position. However, the creation of all of these matrices
is readily achieved with do-loops that are nested appropriately. The MATLAB reshape
operator is considered in detail in Section 6, and examples are provided in an appendix.
In a recent paper, Fackler (2019) has show that some efficiency in computing the product
of (6) can be gained by exploiting the reshape procedure of that program.

It may be helpful to demonstrate that the definition that has been provided in (13) for
the Kronecker product A⊗ B does correspond to the usual definition, which depends on
displaying the subscripted elements within the context of their matrices. It is sufficient to
consider the product of two square matrices of order 2 as follows:
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[
a11 a12
a21 a22

]
⊗
[

b11 b12
b21 b22

]
=


a11

[
b11 b12
b21 b22

]
a12

[
b11 b12
b21 b22

]
a21

[
b11 b12
b21 b22

]
a22

[
b11 b12
b21 b22

]
 (19)

=


a11b11 a11b12
a11b21 a11b22

a12b11 a12b12
a12b21 a12b22

a21b11 a21b12
a21b21 a21b22

a22b11 a22b12
a22b21 a22b22

.

It can be seen that the composite row indices jk associated with the elements ajpbkq
follow the lexicographic sequence {11, 12, 21, 22}, as do the composite column indices pq,
which is to say that the conventional definition of a Kronecker product is in accordance
with the row-major scheme.

4. Tensor Products and Associated Notations

The majority of econometric texts that consider the Kronecker product make no
mention of tensor products, notwithstanding the fact that a Kronecker product may be
classified as a tensor product. An exception is the account of Pollock (1985), which defines
tensors in the context of multilinear algebra.

There are two ways in which the algebra of tensors may be approached. The first way
is via mathematical physics, where vectors are liable to subsist in three-dimensional or
four-dimensional spaces. Tensors are used in expounding the theory of electrodynamics via
Maxwell’s equations—see Brau (2004)—the theory of special relativity—see Lawden (1967)
—and the theory of the elasticity of solids—see Bower (2010). In such contexts, vectors and
tensors are liable to acquire substantive connotations.

A second way of approaching tensors and tensor products is via the abstract theory of
multilinear algebra that was propounded originally by Bourbaki (1948) and which has been
expounded in the more recent texts of Greub (1967) and Marcus (1973). Such expositions
take a coordinate-free approach that avoids specifying bases for the vector spaces and
which does not preempt the choice of a metric.

The coordinate-free approach is well suited to a physical analysis that regards vectors
as geometric objects that exist in space independently of any coordinate system or of
its basis vectors. This flexibility is exploited in the theory of special relativity to enable
geometric vectors to be viewed within alternative frames of reference. The natural basis is
appropriate to an observer at rest within their own frame of reference. However, objects
that are in motion relative to the observer require other coordinate systems, which are
derived by applying the Lorentz transform to the natural basis. (see Marder (1968) and
Susskind and Friedman (2018), for examples).

In the main, data analysts and computer scientists are liable to regard vectors as
algebraic objects comprising an ordered set of elements, which are the coordinates of the
vector relative to a natural basis consisting of orthogonal vectors of unit length comprised
by an identity matrix. Our approach, in this section, is to express the basic definitions in
terms of arbitrary vector spaces, denoted by U and V etc., and to interpret them immediately
in terms of real finite-dimensional coordinate spaces. An n-dimensional real vector space
will be denoted byRn.

If V is a vector space defined over a scalar field F , then the dual space is the space
of all linear functionals V∗ = L(V ,F ) mapping from V to F . Given that it is of the same
dimension, the dual space V∗ is isomorphic to the primal vector space V . The relationship
between V∗ and V is reflexive or reciprocal, which is to say that the dual of the dual space
is the primal space.

The dual of the vector spaceRn may be denoted byR∗n. The elements of a coordinate
vector space Rn are column vectors, which may be denoted by subscripted lowercase
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symbols, such as x1, y2, whereas the elements of the corresponding dual space R∗n are
row vectors denoted by symbols with superscripts, such as x′, x∗, x1, y2. Lowercase letters
without subscripts, such as x, y, are liable to be regarded as column vectors. The inner
product x′y is a linear functional.

If U and V are vector spaces defined over a scalar fieldF , then a mapping φ : U ×V →
F from the Cartesian product of the spaces to the scalar field is a bilinear functional if,
when u1, u2 ∈ U and v1, v2 ∈ V and when α, β ∈ F , there are

φ(αu1 + βu2, v1) = αφ(u1, v1) + βφ(u2, v1),

φ(u1, αv1 + βv2) = αφ(u1, v1) + βφ(u1, v2).
(20)

The set of all such bilinear functionals is a vector space denoted by L(U ,V ;F ). Famil-
iar examples of the mappingR∗n ×Rn → R are as follows:

x′Eijy = (xiei)(ej
i)(yjej) = (xiei)(yjei) = xiyj,

x′ Iny = (xiei)(δije
j
i)(yjej) = (xiei)(δijyjei) = {xiyi}i,

x′Ay = (xiei)(aije
j
i)(yjej) = {xiaijyj}ij,

(21)

were Eij = (ej
i) denotes a matrix with a unit in the ijth position and with zeros elsewhere.

The second of these products may be written, more simply, as

x′y = (xiei)(yiei) = {xiyi}i. (22)

This is a bilinear functional, which can also be considered to be a linear functional, if one of
the vectors is regarded as the means by which the other vector is mapped to the fieldR.

Less familiar are the matrix forms of the mappingsRn ×Rn → R andR∗n ×R∗n → R.
Examples of these, in turn, are as follows:

Ar(x⊗ y) = (aijeij)
{
(xiei)⊗ (yjej)

}
= (aijeij)(xiyjeij) = {aijxiyj}ij (23)

and
(y′ ⊗ x′)Ac =

{
(yjej)⊗ (xiei)

}
(aijeji) = (yjxieji)(aijeji) = {yjxiaij}ij. (24)

Reference to (17) will show that Ar(x⊗ y) = (x′Ay)r and that (y′ ⊗ x′)Ac = (x′Ay)c.
It is important to recognise that the vector space L(U ,V ;F ) represents the means

by which vectors u ∈ U and v ∈ V are mapped into the scalar field F . It should be
distinguished from the individual mappings of U × V → F , each of which entails specific
values of u and v. The distinction can be made clear by considering the functional f = u′Av,
where u = [u1, . . . , un]′ and v = [v1, . . . , vm]′ are column vectors and A = [aij] is a matrix.
The pair (u, v) are an element of the Cartesian product U × V . The matrix A is an element
of L(U ,V ;F ), and f is a product of a specific mapping of U × V → F .

A tensor product of vector spaces may be defined in a confusing variety of ways.
However, it is appropriate to regard the tensor product U ⊗ V as unique linear mapping
from the set U × V . Thus, for example, Shephard (1966) defines it to be the dual of the
vector space L(U ,V ;F ) of bilinear functionals, so that each bilinear functional corresponds
to a unique linear functional on U ⊗V . From the point of view of the real coordinate spaces,
this amounts to nothing more than a change of notation, Nevertheless, what is revealed
can be insightful.

A distinction must be made between the forms U ∗ ⊗ V , U ∗ ⊗ V∗ and U ⊗ V . The
first of these is liable to be described as a contravariant product, and it may be noted that
U ∗ ⊗ V = V ⊗ U ∗. The others may be described as covariant products, and it should be
noted that the order of the two spaces is significant: U ⊗ V 6= V ⊗ U and U ∗ ⊗ V∗ 6= V∗ ⊗U ∗.
In the present context, covariance and contravariance denote relationships. However, in math-
ematical physics and in other contexts, they are regarded as attributes of the vector spaces.
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If x′ ∈ R∗n and y ∈ Rn, then their contravariant product is an element in R∗n ⊗Rn
that has the form

x′ ⊗ y = y⊗ x′ = (xiei)⊗ (yjej) = (xiyjei
j). (25)

The corresponding covariant products inRn ⊗Rn andR∗n ⊗R∗n, respectively. are

x⊗ y = (xiei)⊗ (yjej) = (xiyjeij) and x′ ⊗ y′ = (xiei)⊗ (yjej) = (xiyjeij). (26)

These are elementary or decomposable products. Examples of non-decomposable tensor
products of the three varieties are

A = ∑ij aij(ei ⊗ ej) = (aije
j
i),

Ac = ∑ij aij(ej ⊗ ei) = (aijeji),

Ar = ∑ij aij(ei ⊗ ej) = (aijeij).

(27)

These would become decomposable products if aij = αiβ j for all i, j, albeit that a decom-
posable product may be the product of two or more non-decomposable products.

It is when coordinates are attributed to physical vectors in 3-dimensional space or in 4-
dimensional spacetime that the terms covariant and contravariant come to denote attributes
as opposed to reciprocal relationships. The usage can be demonstrated by considering a
change of bases. Let W = [w1, w2, . . . , wn] and M = [m1, m2, . . . , mn] be alternative bases
of a vector space V . Then, there exists transformations M = WA and W = MA−1 that
transform one basis into the other.

Consider a vector expressed as v = v1e1 + v2e2 + · · ·+ vnen in terms of the natural
basis In = [e1, e2, . . . , en] and, alternatively, as v = Wx = My, where x = [x1, x2, . . . , xn]′

and y = [y1, y2, . . . , yn]′ are the coordinate vectors relative to the bases W and M, respec-
tively. Then, since M = WA, there are Wx = WAy, whence x = Ay and y = A−1x. Thus,
the bases and the corresponding coordinates transform as follows:

W
x

}
→
{

M = WA
y = A−1x.

(28)

Let A = (λiei
i) be a diagonal matrix. Then, the ith column of the transformed basis

M is
mi = (mijej) = (wije

j
i)(λjej) = ({wijλj}jei) (29)

and the vector of coordinates relative the basis vectors of M is

y = (yiei) = (λ−1
i ei

i)(xiei) = (λ−1
i xiei). (30)

They have a contravariant relationship with the basis vectors. The effect of halving the
length of a basis vector will be the doubling of the value of an associated coordinate.

In general, vectors that change their scale inversely to changes in the scale of the
reference axes (i.e. the basis vectors) are commonly described as contravariant. Dual vectors
that change in the same way as the changes to scale of the reference axes are described
as covariant. If v = v1e1 + v2e2 + · · ·+ vnen = (viei) denotes a velocity vector, then its
coefficients [v1, v2, . . . vn], which have the dimension of distance/time, can said to constitute
a contravariant vector. By contrast, a gradient vector of a dimension quantity/distance will
be a covariant vector.

In the Einstein notation, which suppresses the summation sign, contravariant compo-
nents carry upper indices, and the velocity vector will be denoted, typically, by

v = v1e1 + v2e2 + · · ·+ vnen = viei, (31)

where ei denotes a basis vector. The understanding is that, whenever an index is repeated
within an expression, there must be a corresponding summation. This easement of the
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notation, which dispenses with the summation signs, relies on an understanding of the
context of the expression.

The notation of the present paper adopts the same summation convention for expres-
sions that are found within parentheses. Thus, In = (δije

j
i) denotes an identity matrix.

However, in the absence of the parentheses, aije
j
i denotes a matrix with aij in the ith row

and the jth column and with zeros elsewhere. The expression (ej
i) from (21) denotes a

matrix with a unit in that position and with zeros elsewhere. Since there are no repeated
indices, the parentheses do not imply a summation.

It should be noted that, in this notation, scalar elements never carry superscripts.
Furthermore, the notation refers invariably to algebraic or coordinate vectors. It does not
encompass coordinate-free geometric vectors, which are common in physical contexts.

The diversity of the existing tensor notations is too great to be summarised here.
However, numerous references to alternative notations have been given by Harrison
and Joseph (2016). Mention should also be made of De Lathauwer et al. (2000) and
Bader and Kolda (2006), who have provided accounts that have been widely referenced by
computer scientists.

5. The Problem at Hand

In terms of the index notation, the product of (6) may be expressed as

(A⊗ B⊗ C)Xv = ({ajpbkqc`r}e
pqr
jk` )(xpqrepqr)

= ({ajpbkqc`rxpqr}pqrejk`) = Yv.
(32)

The final expression of the RHS is the product of the post multiplication of A⊗ B⊗ C by
Xv. It is derived by cancelling the (superscripted) column indices pqr, which are associated
with the basic matrices within the leading factor, which is the Kronecker product, with
the (subscripted) row indices in the trailing factor, which is the vector Xv. The indices pqr
affixed to the right brace in the penultimate expression emphasise that the elements within
the braces are to be summed over the repeated indices. The indices of summation can be
inferred from the contents of the braces.

The final expression of (32) suggests various ways of computing the product Yv. One
way would be by a single contraction or summation in respect of the composite index pqr.
In so far as the vector Xv is concerned, the composite index is liable to correspond to a set
of adjacent addresses in the memory of the computer.

The number of multiplications involved in forming the Kronecker product is
JP× KQ× LR, which is the product of the number of elements in the constituent ma-
trices. The operation of forming Yv via a single contraction in respect of the composite
index pqr entails PQR× JKL multiplications and (PQR− 1)× JKL additions.

A more efficient way of computing the product is by successive contractions in respect
of the indices r, q and p, separately and successively. This could be described as the divide-
and-conquer procedure. Then, a sequence of products, in long-vector form, that would
lead from Xv to Yv are as follows:

Xv = (xpqrepqr),

Wv = (w`pqe`pq) = ({c`rxpqr}re`pq),

Vv = (vk`pek`p) = ({bkqw`pq}qek`p) = ({bkqc`rxpqr}qrek`p),

Yv = (yjk`ejk`) = ({ajpvk`p}pejk`) = ({ajpbkqc`rxpqr}pqrejk`).

(33)

Here, the elements of the matrices C = [clr], B = [bkq] and A = [ajp] are adduced to
the product in the course of three successive contractions. Passing from Xv to Wv via
the contraction over r requires R × LPQ multiplications. Passing from Wv to Vv via
the contraction over q requires Q× KLP multiplications. Passing from Vv to Yv via the
contraction over p requires P× JKL multiplications.
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However, there are six different orders in which the contractions can be performed,
which correspond to the permutations of the indices p, q, r, which are the column indices
of the matrices A, B, and C, respectively. In comparing the efficiency of the alternative
procedures, one need only count the number of multiplications, since these are far more
expensive than are the additions (the orders of computational complexity are n2 and n,
respectively).

When R = 2, Q = 4 and P = 3, with J = K = L = 2 as before, there are 384 multipli-
cations in the slow procedure. The number of multiplications in the divide-and-conquer
procedure depends on the sequence of the contractions. The number of multiplications
in the various the divide-and-conquer procedures are listed below with the sequence of
contractions denoted by a sequence of matrices, where the order in which they are deployed
should be read from right to left (as in a sequence of matrix multiplications):

A, B, C : 120
B, C, A : 112
C, A, B : 88

C, B, A : 96
A, C, B : 96
B, A, C : 128

(34)

To minimise the computational burden by minimising the number of multiplications
within the divide-and-conquer procedure, one should ensure the contractions in respect of
p, q, and r are ordered such that numbers of the associated multiplications are declining.
When the row orders of the matrices are equal, the most efficient sequence of contractions
will be self-evident, and there will be no need to count the number of multiplications.

The calculation of the product of (32) can de accomplished using nested do-loops. Six
loops are required that fall into two groups, which comprise the outer indices j, k, ` and the
inner indices p, q, r. The former group are the indices of the product vector and the latter
group are the indices of the successive contractions. Within each group, the order of the
indices may be freely permuted.

However, it might pay to deploy the outer indices in the order listed above, since this
will enable the elements of the product to be created on the fly in the order in which they
would be printed in a column. Otherwise, the printing of the column would need to be
delayed until all of its elements have been created.

To illustrate a code appropriate to such calculations, it is enough to consider the
equation Yv = (A⊗ B)Xv, which can be rendered in the index notation as

(yjkejk) = ({ajpbkq}e
pq
jk )(xpqepq) = ({ajpbkqxpq}pqejk). (35)

The code is as follows:

for j := 1 to J do
for k := 1 to K do

begin {jk}
y[j][k] := 0;
for q := 1 to Q do

for p := 1 to P do
y[j][k] := y[j][k] + a[j][p] ∗ b[k][q] ∗ x[p][q];

end; {jk}

(36)

The code becomes increasingly prolix with a growing number of indices, each of which
gives rise to a nested do-loop. However, such code can be encapsulated within a procedure
or a subroutine with a concise interface.

6. Matrix Multiplications and the Reshaping Operations

Many authors have recognised the inefficiency of forming a multiple Kronecker
product before postmultiplying it by a vector. They have proposed a variety of methods
that rely on pairwise matrix multiplications that are accompanied by the shuffling of the
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elements of the products in order to facilitate the succeeding matrix multiplications. These
operations have been described as the reshaping of the matrices.

A method for solving the equation Yv = (A⊗ B⊗ C)Xv of (6) for X was proposed by
Pereyra and Scherer (1973). A much simplified solution was provided by de Boor (1979),
who showed that this could be achieved by a sequence of solutions involving the matrices
A, B and C successively.

An indication or the way in which the product (6) might be calculated via a sequence
of matrix multiplications was given in a paper on Dyksen (1987), which contained the
identity (A⊗ B)Xv = {B(AX)′}c, where X = (xpqeq

p) and Xv = (xpqepq), albeit that the
necessary vectorisations of the matrices was not indicated.

A paper by Davio (1981) dealt at length with the matter of shuffling the elements of
Kronecker product; but it did not relate such operations to pointers. Others, including
Benoit et al. (2003), Langville and Stewart (2004) and Dayar and Orhan (2015) have also
dealt with such issues. Programs that are aimed at computing the product of (6) have been
provided by Constantine and Gleich (2009) and by Kredler (2015).

In a recent paper, Fackler (2019) has proposed that computations involving multiple
Kronecker products can be achieved by ordinary matrix multiplications without displacing
elements that are stored in the computer memory, as shuffling is liable to do. To illustrate
how this method can be implemented in the MATLAB program, we may consider an input
vector Xc, which follows a column-major scheme. Then, the method, which applies the
matrices A = [ajp], B = [bkq] and C = [c`r] in succession to Xc, entails the following objects,

Xc = (xpqrerqp),

Wc = (wqrjejrq) = ({ajpxpqr}pejrq),

Vc = (vrjkekjr) = ({bkqwqrj}qekjr),

Yc = (yjk`e`kj) = ({c`rvrjk}re`kj).

(37)

In the process, the basis vector undergo the following transformation:

erqp → ejrq → ekjr → e`kj. (38)

It can be seen that, as the indices p, q, r of the contractions drop off the end of the sequence,
the new indices j, k, ` join at the head.

When the equations of (37) are given their appropriate shapes, they become

Xc
p = (xpqrerq

p ),

Wc
j = (wqrje

rq
j ) = ({ajpxpqr}perq

j ) = (ajpep
j )(xpqrerq

p ),

Vc
k = (vrjkejr

k ) = ({bkqwqrj}qejr
k ) = (bkqeq

k)(wqrje
jr
q ),

Yc
` = (yjk`e

kj
` ) = ({c`rvrjk}rekj

` ) = (c`rer
`)(vrjkekj

r ),

(39)

and the sequence of matrix multiplications can be denoted by

AXc
p = Wc

j → BWc
q = Vc

k → CVc
r = Yc

` . (40)

This entails two operations that are amenable to the reshape procedure:

Wc
j = (wqrje

rq
j )→Wc = (wqrjejrq)→Wc

q = (wqrje
jr
q ),

Vc
k = (vrjkejr

k )→ Vc = (vrjkekjr)→ Vc
r = (vrjkekj

r ).
(41)

Here, the variant matrices Wc
j , Wc

q and Vc
k , Vc

r have shapes that are derived directly from
Wc and Vc, respectively, which represent what is stored in the computer’s memory. The
reshape procedure is explained in detail in the Appendix A.
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If it is required to reverse the sequence of matrix multiplications that are applied
to the column-major vector Xc, then these must become post-multiplications, and the
corresponding equations will be

(Xc
r )
′ = (xpqrer

qp),
(Wc

` )
′ = (w`pqe`qp) = ({c`rxpqr}re`qp) = (xpqrer

qp)(c`re`r),
(Vc

k )
′ = (vk`pek

p`) = ({bkqw`pq}qek
p`) = (w`pqeq

p`)(bkqek
q),

(Yc
j )
′ = (yjk`e

j
`k) = ({ajpvk`p}pej

`k) = (vk`pep
`k)(ajpej

p).

(42)

The sequence of matrix multiplications can be denoted by

(Xc
r )
′C′ = (Wc

` )
′ → (Wc

q )
′B′ = (Vc

k )
′ → (Vc

p)
′A′ = (Yc

j )
′. (43)

However, reference to (15) indicates that, if the row-major vector Xv = (xpqrepqr) is avail-
able, then the following sequence of matrix pre-multiplications can be pursued:

CXv
r = Wv

` → BWv
q = Vv

k → AVv
p = Yv

j . (44)

According to the table of (34), which is based on the values P = 3, Q = 4, R = 2
and J = K = L = 2, neither of the sequences of (40) and (44) lead to a fully efficient
computation. A recourse might be to re-order the matrices within the multiple Kronecker
product to create the most efficient sequence, which would also require the elements within
the vector Yc to be re-ordered. Whether this would be allowable or convenient is a matter
that depends on the substantive nature of the problem that is represented by the equation.
However, it is reasonable to suppose that, in most cases, this will be easy to achieve,

Next is the apparent obstacle that the reshape procedure is specific to MATLAB.
However, as Fackler (2019) has indicated, it should be straightforward to replicate the
procedure in many of the available programming languages, using the arithmetic of
pointers. Whereas the method of pairwise multiplication has been described for the case of
a column-major scheme, there is no difficulty in adapting to a row-major scheme.

Our preference would be to calculate the product of (6) according to the scheme of (33),
or some permutation thereof, that does not require matrix multiplications. However, the
intention of this paper has not been to insist on one way of another of conducting the
computations, provided that gross inefficiency is avoided. Instead, the aim has been to
clarify the nature of the alternative procedures.

Funding: This research has received no external funding.

Conflicts of Interest: The author declares that there are no conflicts of interest.

Appendix A. Examples of the Reshape Procedure

It the MATLAB program, a matrix array is stored, according to a column-major scheme,
as a long vector, formed by adjoining successive columns of the matrix. The reshape
procedure divides the long column into successive segments of equal length, which are
arrayed in a new matrix.

An example of the reshaping operation is the following transformation:

A =

 1 4
2 5
3 6

→ B =

[
1 3 5
2 4 6

]
. (A1)

This would be accomplished by the command B = reshape A(2, 3).
To illustrate some of the structures into which a multidimensional array may be cast,

consider a three-dimensional array of which the elements are denoted by xpqr. The indices
range from 1 up to P, Q and R, respectively.
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We shall assume that P = Q = 2 and that R = 3. Then, the row-major array is a wide
row vector

Xr = (xpqrepqr) = [x111 x112 x113 x121 x122 x123 x211 x212 x213 x221 x222 x223]. (A2)

Reversing the order of the indices of the basic vectors and transposing gives

Xc = (xpqrerqp) = [x111 x211 x121 x221 x112 x212 x122 x222 x113 x213 x123 x223]
′. (A3)

which is a long column vector. Recall that the sequence of indices on the basis elements
follow a lexicographic order. Furthermore, note that the mapping Xr → Xc involves
a commutation of the indices of the basis vector followed by a transposition. It is not
amenable to a simple reshape operation.

A single reshape operation effects the following transformation of Xc:

Xc = (xpqrerqp)→ Xc
p = (xpqrerq

p ) =

[
x111 x121 x112 x122 x113 x123
x211 x221 x212 x222 x213 x223

]
. (A4)

Here, the leading index p = 1, 2 of the element xpqr has become the row index of Xc
p.

The composite column index qr follows two iterations of the sequence 11, 21, 12, 22, 13, 23 in
which r = 1, 2, 3 is evolving more slowly than q = 1, 2. This is an anti-lexicographic sequence.

An alternative reshape operation yields

Xc = (xpqrerqp)→ Xc
qp = (xpqrer

qp) =


x111 x112 x113
x211 x212 x213
x121 x122 x123
x221 x222 x223

. (A5)

Here, r = 1, 2, 3, which is the trailing index of the element xpqr, has become the column in-
dex of Xc

qp. The composite row index qr follows three iterations of the sequence 11, 21, 12, 22,
which is also in an anti-lexicographic order.

Transposing this matrix gives

Xc
qp = (xpqrer

qp)→ Xc
r = (xpqreqp

r ) =

 x111 x211 x121 x221
x112 x212 x122 x222
x113 x213 x123 x223

. (A6)

The object that remains unchanged in the memory of the computer throughout these
operations is Xc = (xpqrerqp). It follows that the transformation

Xc
r = (xpqreqp

r )→ Xc
p = (xpqrerq

p ) (A7)

can be accomplished by a single reshape operation. This transformation is the prototype of
the transformations of (41):

Wc
j = (wqrje

rq
j )→Wc

q = (wqrje
jr
q ), (A8)

Vc
k = (vrkje

jr
k )→ Vc

r = (vrjkekj
r ). (A9)

The matrices in question have either the leading or the trailing elements of the composite
indices qrj and rjk as their row indices. The middle indices cannot become row indices
without first resorting to a commutation operation, which would bring then to the head or
the tail of a triple index.
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