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Abstract: This paper develops residual-based monitoring procedures for cointegrating polynomial
regressions (CPRs), i.e., regression models including deterministic variables and integrated processes,
as well as integer powers, of integrated processes as regressors. The regressors are allowed to be
endogenous, and the stationary errors are allowed to be serially correlated. We consider five variants
of monitoring statistics and develop the results for three modified least squares estimators for the
parameters of the CPRs. The simulations show that using the combination of self-normalization and
a moving window leads to the best performance. We use the developed monitoring statistics to assess
the structural stability of environmental Kuznets curves (EKCs) for both CO2 and SO2 emissions for
twelve industrialized countries since the first oil price shock.

Keywords: cointegrating polynomial regression; environmental kuznets curve; monitoring; struc-
tural change

JEL Classification: C22; C52; Q56

1. Introduction

This paper develops residual-based monitoring procedures for structural change in
cointegrating polynomial regressions (CPRs), using the terminology of Wagner and Hong
(2016). CPRs are regression models that include as explanatory variables deterministic
terms, integrated processes, and integer powers of integrated processes. The regressors
are allowed to be endogenous, and the stationary errors are allowed to be serially corre-
lated. Structural change—at an unknown point in time—can occur in two facets: First,
the relationship may turn into a spurious relationship.1 Second, the parameters of the
relationship may change. The developed monitoring statistics extend those of Wagner
and Wied (2017) in two dimensions. First, a variety of monitoring statistics is considered,
including self-normalized versions and moving window detectors.2 Second, the approach
is extended from cointegrating linear to cointegrating polynomial regressions.

All considered monitoring statistics are based on parameter estimation for the CPR
relationship over a calibration period known to be—or at least assumed to be—free of struc-
tural change, an approach to monitoring inspired by Chu et al. (1996). With regressors that

1 In the CPR setting the concept of spurious regression has to be interpreted a bit wider than in cointegrating linear regression settings. If, e.g., the
polynomial degree of a CPR relationship increases at a certain point in time but one continues to consider a CPR relationship with an unchanged
polynomial degree, then the error term of this spurious relationship contains higher order powers of an integrated process and is, thus, not integrated,
as in the usual form of spuriousness considered in linear cointegration.

2 Some of these possibilities have been mentioned in Wagner and Wied (2017, Footnote 4) but have not been explored in full detail and systematically.
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are potentially endogenous and errors that are potentially serially correlated, appropriately
modified least squares estimators have to be employed to allow for the construction of
nuisance parameter-free limiting distributions of the detectors obtained by scaling out a
scalar long-run variance parameter. We consider the CPR-versions of three well-known es-
timators: Fully Modified Ordinary Least Squares (FM-OLS) considered in the CPR context
in, e.g., Wagner and Hong (2016), Dynamic Ordinary Least Squares (D-OLS) considered for
more general functions in Choi and Saikkonen (2010), and Integrated Modified Ordinary
Least Squares (IM-OLS) considered in Vogelsang and Wagner (2014b).3 In the general CPR
case, however, even the usage of the mentioned modified least squares estimators is not
sufficient for nuisance parameter-free limiting distributions, and the assumption of full
design, using the terminology of Vogelsang and Wagner (2014b), is required. Full design
means that the limiting distributions of the modified estimators can be written as the
product of a regular non-random matrix and a functional of standard Brownian motions
and deterministic components. This allows to construct monitoring statistics, based on
the residual limit processes, which are proportional up to a scalar long-run variance to
functionals of standard Brownian motions and deterministic components. Scaling out
the long-run variance, either by self-normalization or by standardization, then leads to
nuisance parameter-free limiting distributions of the monitoring statistics. Note that full
design, albeit not generally prevalent in the CPR case, holds in a variety of empirically
relevant settings, including cointegrating linear regressions, cointegrating polynomial
regressions where only one of the integrated regressors occurs as regressor also with higher
order powers, and Translog-type relationships (see, e.g., Christensen et al. 1971). Environ-
mental Kuznets curves (EKCs), which are the focus of our paper, typically include only
one integrated regressor and its powers and are, therefore, of full design.

We perform a detailed simulation study of the five considered variants of the monitor-
ing procedure in combination with the three mentioned parameter estimation methods.
The performance dimensions considered include null rejection probabilities, (empirical)
size-corrected power, as well as detection delays. It turns out that the combination of
self-normalization and a moving window leads almost throughout to the best performance
in terms of lowest over-rejections, whilst exhibiting very favorable size-corrected power
properties and short delays. The choice of the estimator, FM-, D-, or IM-OLS, affects the
results in particular for small samples. IM-OLS mostly leads to smaller over-rejections
under the null hypothesis than FM-OLS, which in turn outperforms D-OLS. With respect to
size-corrected power IM-OLS is outperformed, as expected, by both FM-OLS and D-OLS.
In addition, the delays are often a bit smaller for FM-OLS than for IM-OLS. Since the
differences are often relatively small, there is no clear choice between IM-OLS and FM-OLS.

We use the developed monitoring tools to assess the stability of environmental Kuznets
curves (EKCs) for CO2 and SO2 emissions for twelve countries using a calibration period
1946–1973 and a monitoring period 1974–2016. The EKC hypothesis postulates an in-
verted U-shaped relationship between the level of economic development and pollution or
emissions.4 Brock and Taylor (2005) or Kijima et al. (2010) provide survey discussions of
the links between economic activity or growth and the environment.5 We, thus, use our
monitoring tools to assess whether and if so when the relationship between emissions and
economic activity has changed after the first oil price shock, which has led to fundamental
changes in economic activity triggered not least by changing energy prices, but also by

3 The settings considered in Choi and Saikkonen (2010) and Vogelsang and Wagner (2014b) are discussed in a bit more detail in Footnote 11.
4 The term EKC refers by analogy to the inverted U-shaped relationship between the level of economic development and the degree of income

inequality postulated by Kuznets (1955) in his 1954 presidential address to the American Economic Association. Since the seminal contributions of,
e.g., Grossman and Krueger (1991, 1993, 1995) or Shafik and Bandyopadhyay (1992), the literature—both theoretical, as well as empirical—has
become voluminous and continues to grow rapidly. Already early survey papers, like Yandle et al. (2004), count more than 100 refereed publications
on the subject.

5 The long list of theory contributions presenting specific models that lead to EKC-type behavior under certain assumptions includes Andreoni and
Levinson (2001), Arrow et al. (1995), Brock and Taylor (2010), Cropper and Griffiths (1994), Jones and Manuelli (2001), Selden and Song (1995), or
Stokey (1998).
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changes in environmental legislation that has been put in place in the 1970s.6 Taking
into account that the polynomial functional form should probably be interpreted more as
an approximation to an underlying relationship of unknown form rather than as a true
relationship, of course, implies a trade-off (at least in-sample) between finding structural
breaks and approximation with a higher polynomial degree.7 Against this background,
it may be interesting to use monitoring tools to study whether, and at which point in
time, the EKC relationship needs to be modeled with more curvature: Over the calibration
period 1946–1973, for most countries (as minimum polynomial degree), a cointegrating
linear relationship prevails.8 This is not too big of a surprise since, about until the mid
1970s, economic activity expanded roughly in line with emissions in many countries. Only
thereafter, and triggered—as mentioned—by price, technical, and legislative changes the
economic activity and pollution start to be decoupled to a certain extent. From a CPR
perspective, this could mean either a structural change in the parameters of a relationship
of given degree or a change to a relationship with a higher polynomial degree, e.g., from
a linear to a quadratic relationship. For both CO2 and SO2 emissions, for nine of the
twelve countries structural breaks are detected. The detected break points are, in some
cases, quite late, which most likely reflects the delays inherent in monitoring procedures.
The evidence, when considering also the full sample, is mixed with respect to structural
change in the parameters but unchanged polynomial degree or structural change also with
respect to the polynomial degree. The monitoring decisions lead to, as a simple empirical
cross-check, good results in the following sense: For those country-pollutant combinations
where no structural break is detected, using the specification and parameter values from
the calibration period leads to good fit also for the full period until 2016, with obviously
even better fit when re-estimating the relationship over the full sample.

The paper is organized as follows: Section 2 contains the setting, assumptions, mon-
itoring statistics, and asymptotic results. Section 3 discusses finite sample simulation
results. Section 4 presents the monitoring application to CO2 and SO2 emissions data.
Section 5 briefly summarizes and concludes. Appendix A contains all proofs. In addition,
four supplementary appendices are available: Supplementary Appendix B discusses lo-
cal asymptotic power properties. Supplementary Appendix C contains additional finite
sample simulation results, and Supplementary Appendix D presents additional empirical
results. Supplementary Appendix E includes tables with critical values for the detectors for
a broad variety of specifications relevant for EKC-type analysis. MATLAB code—including
the critical values for the mentioned variety of specifications—for the monitoring statistics
developed in this paper is available upon request.9

We use the following notation: Definitional equality is signified by := and⇒ denotes
weak convergence. bxc denotes the integer part of x ∈ R and diag(·) denotes a diagonal
matrix. For a vector x ∈ Rn we denote by ‖x‖2 := ∑n

i=1 x2
i and for a matrix M ∈ Rm×n

we denote by ‖M‖ := supx
‖Mx‖
‖x‖ . E(·) denotes the expected value and L is the backward-

shift operator, i.e., L{xt}t∈Z := {xt−1}t∈Z. The first-difference operator is denoted with
∆ := 1− L. We denote the k- dimensional identity matrix with Ik. A Brownian motion with
covariance matrix specified in the context is denoted by B(r), and W(r) denotes a standard
Brownian motion.

6 This means that we use our monitoring tools for an ex-post analysis rather than “true” online monitoring.
7 This is obvious since one can achieve perfect fit with a polynomial of degree sample size minus one. There is an ongoing discussion in the EKC

literature concerning appropriate functional form and estimation strategies (see, e.g., Bertinelli and Strobl 2005; Millimet et al. 2003; Schmalensee
et al. 1998). Inverted U-shaped relationships are also considered, e.g., in the intensity of use or material Kuznets curve (MKC) literature that
investigates the potentially inverted U-shaped relationship between gross domestic product (GDP) and energy or metals use per unit of GDP (see,
e.g., Grabarczyk et al. 2018; Guzmán et al. 2005; Labson and Crompton 1993; Stuermer 2018), for which the tools developed in this paper may also
be useful.

8 A cointegrating linear relationship implies tautologically that CPRs with higher polynomial degrees are also present, albeit with (theoretically) zero
coefficients to the higher order powers.

9 The MATLAB code can be straightforwardly modified to other specifications to obtain additional critical values; under the assumption of full design.
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2. Theory
2.1. Model, Assumptions, and Parameter Estimation

We consider monitoring—using the terminology of Wagner and Hong (2016)—a
cointegrating polynomial regression (CPR), i.e., a regression of the form:

yt =

{
D′tθD + X′tθX + ut, t = 1, . . . , brTc,
D′tθD,1 + X′tθX,1 + ut, t = brTc+ 1, . . . , T,

(1)

xt = xt−1 + vt, t = 1, . . . , T, (2)

with xt := [x1t, . . . , xkt]
′ ∈ Rk and Xt := [x′t, x2

kt, . . . , xpk
kt ]
′ ∈ Rp with p = k − 1 + pk, the

deterministic trend function Dt ∈ Rq, the parameter vectors θD, θD,1 ∈ Rq and θX , θX,1 ∈ Rp.
Furthermore, we define the combined parameter vectors θ := [θ′D, θ′X ]

′, θ1 := [θ′D,1, θ′X,1]
′ ∈

Rq+p. Note that, as, e.g., discussed in Wagner (2012) and Stypka and Wagner (2019),
polynomial transformations of integrated processes—in our case, {yt}—are not integrated
processes (of any order). This is due to the basic fact that summation (integration) and
polynomial transformation do not commute.

Under the null hypothesis, no structural change occurs, that is θ1 = θ and {ut}t∈Z
is an I(0) process, with detailed assumptions specified below, throughout. Under the
alternative hypothesis, either some parameters change or the relation turns spurious, i.e.,
{ut}t∈Z turns into an I(1) process for every θ ∈ Rq+p, or both at a sample fraction brTc that
has to be—as discussed in the introduction—larger than bmTc for some 0 < m < 1.10 In
formal terms:

H0 :

{
θ1 = θ ∀ r ∈ [m, 1) and

ut is I(0) for t = 1, . . . , T

H1 :


∃ r ∈ [m, 1) : θ1 6= θ or

∃ r ∈ [m, 1) : ut, t = 1, . . . , brTc is I(0) and
ut, t = brTc+ 1, . . . , T, is I(1).

Remark 1. Note that the regression model given in (1) is a special case of the CPR model considered
in Wagner and Hong (2016) since only one of the integrated regressors, w.l.o.g. xkt, is allowed
to enter the regression model with powers larger than one. Whilst this is, obviously, restrictive
compared to the case where higher order powers of all elements of xt can be present as regressors,
this special case covers EKCs and MKCs and similar applications. The mathematical reason for
considering this special case is that it allows for—potentially up to a scalar nuisance parameter that
can be consistently estimated and scaled out—nuisance parameter-free limiting distributions of the
considered detectors that can be simulated. In the terminology of Vogelsang and Wagner (2014b), a
cointegrating polynomial regression needs to exhibit full design to allow for asymptotic standard
inference by scaling out a scalar long-run variance. This is the case for EKC-type relationships
with only one integrated regressor present with powers larger than one but also for some other
economically relevant more general cases of CPRs, e.g., Translog functions (see, e.g., Christensen et
al. 1971). Given our focus on EKCs, we abstain from formulating the results here in the most general
form; the required extensions are straightforward. For even more general specifications that do not
exhibit full design, a sub-sampling approach may be considered relying upon similar arguments
as discussed in Wagner and Hong (2016, Proposition 6). The performance of sub-sampling-based
procedures, however, suffers particularly from short sample periods, as also illustrated by the

10 Effectively, {ut}t∈Z being an I(0) process in this paper means that it satisfies Assumption 2. An I(1) process is a process that does not fulfill
Assumption 2, but where the first difference does.
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simulations reported in Wagner and Hong (2016). Consequently, a sub-sampling-based approach
cannot be expected to perform well in a monitoring context.

The results developed below rest upon the following assumptions:

Assumption 1. There exists a sequence of q× q scaling matrices GD(T) and a q-dimensional
vector of functions D(z), with

∫ s
0 D(z)D(z)′dz < ∞ for 0 ≤ s ≤ 1, such that, for 0 ≤ s ≤ 1, it

holds that:
lim

T→∞

√
TG−1

D (T)DbsTc = D(s). (3)

If, e.g., Dt := [1, t, t2, . . . , tq−1]′, then GD(T) := diag(T1/2, T3/2, T5/2, . . . , Tq−1/2) and
D(z) = [1, z, z2, . . . , zq−1]′. In relation to the integrated regressors and the powers, we need

a scaling matrix GX(T) := diag(T × Ik, T3/2, . . . , T
pk+1

2 ) later.

Assumption 2. The process {ηt}t∈Z := {[ut, v′t]
′}t∈Z is generated under the null hypothesis as:

ηt = C(L)ξt =
∞

∑
j=0

Cjξt−j, t ∈ Z, (4)

with Cj ∈ R(k+1)×(k+1), j = 0, 1, . . . , and the conditions:

det(C(1)) 6= 0,
∞

∑
j=0

j‖Cj‖ < ∞ and ‖C0‖ < ∞. (5)

Furthermore, we assume that the process {ξt}t∈Z is a strictly stationary and ergodic martingale
difference sequence with natural filtration Ft := σ({ξs}t

−∞), E(ξtξ
′
t|Ft−1) =: Σξξ > 0 with, in

addition supt≥1 E(‖ξt‖a|Ft−1) < ∞ a.s., for some a > 4.

The assumptions on the deterministic components, the regressors, and error terms
are similar to the assumptions used in Wagner and Hong (2016) and, more implicitly, in
Wagner and Wied (2017). In particular, Assumption 2 is sufficient for a functional central
limit theorem to hold for {ηt}t∈Z:

1√
T

bsTc

∑
t=1

ηt ⇒ B(s) =
[

Bu(s)
Bv(s)

]
= Ω1/2W(s), 0 ≤ s ≤ 1, (6)

with the positive definite long-run covariance matrix Ω := ∑∞
j=−∞ E(ηt−jη

′
t) and W(s) :=

[Wu·v(s), Wv(s)′]′ a (k + 1)-dimensional vector of standard Brownian motions. We also
define the half long-run covariance matrix ∆ := ∑∞

j=0 E(ηt−jη
′
t). The matrices Ω and ∆ are

partitioned according to the partitioning of B(s), i.e.,

Ω =

[
Ωuu Ωuv
Ωvu Ωvv

]
, ∆ =

[
∆uu ∆uv
∆vu ∆vv

]
. (7)

Using, e.g., the Cholesky decomposition of Ω yields:

Ω1/2 =

[
ωu·v λuv

0 Ω1/2
vv

]
, (8)

where ω2
u·v := Ωuu − ΩuvΩ−1

vv Ωvu and λuv := Ωuv(Ω1/2
vv )−1. The conditional long-run

variance ω2
u·v is a key quantity that needs to be estimated for all but the two self-normalized

detectors.
Where needed, consistent long-run covariance estimation is performed non-parametrically,

requiring the choice of both a kernel function and a bandwidth parameter. The inputs in
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the non-parametric estimation are the OLS residuals from estimating (1) over the calibra-
tion period and the first difference of xt over the same period. For consistent long-run
covariance estimation, it suffices to assume (following, e.g., Jansson 2002):

Assumption 3. The kernel function k(·) satisfies:

(i) k(0) = 1, k(·) is continuous at 0 and k̄(0) := supx≥0 |k(x)| < ∞,
(ii)

∫ ∞
0 k̄(x)dx < ∞, where k̄(x) = supy≥x |k(y)|.

Assumption 4. The bandwidth parameter MT ⊆ (0, ∞) satisfies limT→∞(M−1
T + T−1/2MT) = 0.

All our monitoring statistics discussed in the following subsection are based on
consistent parameter estimators that are required to lead to limiting distributions that are
nuisance parameter free up to a scalar parameter, the conditional long-run variance ω2

u·v,
that can (asymptotically) be scaled out, either by scaling by a consistent estimator, which
we refer to later as standardized, or by self-normalization.

As indicated, estimation takes place on the calibration sample t = 1, . . . , bmTc for
some 0 < m < 1 that is known to be generated under the null hypothesis. This approach
to monitoring, based on parameter estimation on a calibration sample known to be—or at
least assumed to be—free of structural change, has been popularized in the econometrics
community by the seminal work of Chu et al. (1996).

The cointegration literature provides a variety of modified ordinary least squares
estimators of θ with the required asymptotic properties; see, e.g., Wagner (2018), for
a survey. All these estimators commence from the fact that the OLS estimator of θ is
consistent with—in case of regressor endogeneity and error serial correlation—a limiting
distribution that is contaminated by second order bias terms. These second order bias
terms are removed, one way or another, by the various modifications of OLS. In this paper,
we consider three modified OLS estimators: Fully Modified OLS (FM-OLS), Dynamic OLS
(D-OLS), and Integrated Modified OLS (IM-OLS). These three estimators were originally
developed for cointegrating linear regressions: FM-OLS in Phillips and Hansen (1990);
D-OLS in Saikkonen (1991), Phillips and Loretan (1991), or Stock and Watson (1993); and
IM-OLS in Vogelsang and Wagner (2014a). The extensions to the CPR setting are discussed
for FM-OLS in Wagner and Hong (2016), for D-OLS in Choi and Saikkonen (2010), and for
IM-OLS in Vogelsang and Wagner (2014b).11

Our brief discussion of the three estimators first necessitates the definition of a few
more quantities, i.e., Zt := [D′t, X′t]

′ and y+t,m := yt − ∆x′tΩ̂
−1
vv,mΩ̂vu,m, with the second

subscript m indicating that estimation of the long-run covariances is—as mentioned—also
based on the calibration sample t = 1, . . . , bmTc. Furthermore, define:

A∗m :=

 0q×1
bmTc∆̂+

vu,m
M∗m

, M∗m := ∆̂+
vku,m


2 ∑
bmTc
t=1 xkt

...
pk ∑

bmTc
t=1 xpk−1

kt

, (9)

with ∆̂+
vu,m := ∆̂vu,mΩ̂−1

vv,m∆̂vv,m and ∆̂+
vku,m := ∆̂vku,mΩ̂−1

vv,m∆̂vvk ,m.

11 To be precise, Choi and Saikkonen (2010) propose an extension of the dynamic regression approach, adding leads and lags of the first differences of
the integrated regressors, to a more general setting than CPRs. Given that the CPR model is linear in parameters, D-OLS can be extended relatively
straightforwardly, without the need to resort to modified nonlinear least squares type estimators. Vogelsang and Wagner (2014b) consider an
extension of IM-OLS to general multivariate polynomials allowing also for arbitrary cross-products of powers of integrated regressors. Stypka and
Wagner (2020) extend the FM-OLS estimation principle to this more general polynomial-type setting.
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Long-run covariance estimation uses the OLS residuals of (1) from estimation over the
calibration period t = 1, . . . , bmTc in conjunction with the first differences of the integrated
regressors, i.e., η̂t,m := [ût,m, v′t]

′, with ût,m denoting the OLS residuals here:

∆̂m :=
1
bmTc

bmTc−1

∑
h=0

k
(

h
MT

) bmTc−h

∑
t=1

η̂t,mη̂′t+h,m, (10)

Σ̂m :=
1
bmTc

bmTc

∑
t=1

η̂t,mη̂′t,m, (11)

Ω̂m := ∆̂m + ∆̂′m − Σ̂m. (12)

In both the finite sample simulations, as well as the application, we use for long-run
covariance estimation, in line with Assumptions 3 and 4, the Bartlett kernel with bandwidth
chosen according to Newey and West (1994).

With all required quantities defined, the FM-OLS estimator computed over the cali-
bration sample is given by:

θ̂F
m :=

(bmTc

∑
t=1

ZtZ′t

)−1(bmTc

∑
t=1

Zty+t,m − A∗m

)
. (13)

While FM-OLS is based on a two-part nonparametric transformation to remove endo-
geneity and serial correlation related bias terms from the limiting distribution of the OLS
estimator, D-OLS is based on a more “classical projection and orthogonalization” argu-
ment by performing OLS estimation in an augmented version of the CPR regression (1),
with leads and lags of the first differences of xt added as regressors to “clean the limiting
distribution”. The D-OLS regression—estimated by OLS over the calibration sample—is
given by:

yt = Z′tθ +
d2

∑
j=−d1

∆x′t−jΘj + ut, (14)

with the number of leads (d1) and lags (d2) chosen to ensure consistent parameter estimation
of θ with a limiting distribution that is—up to a scalar—nuisance parameter-free. In general,
this requires that d1, d2 → ∞ at suitable rates. More specifically, in our finite sample
simulations and the application, we choose leads and lags using the AIC-type criterion of
Choi and Kurozumi (2012). The resultant OLS estimators of θ and Θ̂j from (14), estimated
over the calibration sample, are referred to as θ̂D

m and Θ̂D
j,m, respectively.

The third estimation principle addresses endogeneity correction by partial summation.
Define for a sequence zt, t = 1, . . . , T, the partial summed variable by Sz

t := ∑t
j=1 zj, t =

1, . . . , T. Then, the IM-OLS regression—estimated by OLS over the calibration sample—is
given by:

Sy
t = SZ′

t θ + x′t ϕ + Su
t . (15)

The OLS estimators of θ and ϕ from (15) estimated over the calibration sample are referred
to as θ̂I

m and ϕ̂I
m, respectively. Note that endogeneity correction in the IM-OLS estimator

does not require any lead-lag or kernel-bandwidth choices, as it suffices to simply add the
original integrated regressor vector xt to the partial summed regression.

The key input for the monitoring statistics discussed in the following subsection are the
residual (processes) obtained with these three estimators. In particular, the asymptotic null
behavior of the residual (partial sum) processes is the key ingredient to derive asymptotic
properties of any of our variance-ratio type monitoring statistics. This result is formalized in
the following lemma, for which formulation requires to define some additional (asymptotic)
quantities first, i.e., Wv(s) := [Wv1(s), Wv2(s), . . . , Wvk (s), W2

vk
(s), . . . , Wpk

vk (s)]
′, J(s) :=

[D(s)′, Wv(s)′]′, f (s) := [
∫ s

0 D(z)′dz,
∫ s

0 Wv(z)′dz, Wv(s)′]′ and F(s) :=
∫ s

0 f (z)dz.
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Lemma 1. Let the data be generated according to (1) and (2) with Assumptions 1 and 2 in place.
Furthermore, let long-run covariance estimation be performed under Assumptions 3 and 4 and let
lead-lag choices be made as discussed in Choi and Kurozumi (2012).

Based on estimation over the calibration period t = 1, . . . , bmTc—with the estimators θ̂F
m, θ̂D

m
and θ̂ I

m as discussed before—denote the FM-OLS residuals by:

ûF
t,m := y+t,m − Z′t θ̂

F
m, (16)

the D-OLS residuals by:

ûD
t,m := yt − Z′t θ̂

D
m −

d2

∑
j=−d1

∆x′t−jΘ̂
D
j,m, (17)

and the IM-OLS residuals by:

Ŝu,I
t,m := Sy

t − SZ′
t θ̂I

m − x′t ϕ̂I
m. (18)

For T → ∞, it holds under the null hypothesis for m ≤ s ≤ 1 that:12

1√
T

Ŝu,F
bsTc,m :=

1√
T

bsTc

∑
t=2

ûF
t,m ⇒ ωu·v

(
Wu·v(s)−

∫ s

0
J(z)′dz

(∫ m

0
J(z)J(z)′dz

)−1 ∫ m

0
J(z)dWu·v(z)

)

=: ωu·vW̃u·v,m(s), (19)

1√
T

Ŝu,D
bsTc,m :=

1√
T

min{bsTc,T−d1}

∑
t=d2+2

ûD
t,m ⇒ ωu·vW̃u·v,m(s), (20)

1√
T

Ŝu,I
bsTc,m :=

1√
T

bsTc

∑
t=2

∆Ŝu,I
t,m ⇒ ωu·v

(
Wu·v(s)− f (s)′

(∫ m

0
f (z) f (z)′dz

)−1 ∫ m

0
[F(m)− F(z)]dWu·v(z)

)

=: ωu·v P̃u·v,m(s). (21)

The lemma shows that indeed all three partial sum processes of the residuals converge
to processes that are (i) functionals of standard Brownian motions, Wv(r) and Wu·v(r), and
(ii) proportional to ωu·v, a scalar nuisance parameter that can be consistently estimated and
hence scaled out from the limit processes or that can be eliminated by self-normalization.
The limiting null distributions of test statistics based on the (normalized) limit processes
consequently can be obtained by simulating the corresponding functionals of standard
Brownian motions. Note that the FM-OLS and D-OLS residual partial sum processes
converge to the same limiting process, which is a consequence of these two estimators
having identical limiting distributions.

2.2. The Monitoring Statistics

Similarly to Wagner and Wied (2017), the starting point of our monitoring statistics
is to combine the approach of Chu et al. (1996) with variance-ratio statistics that diverge
under the alternative. More specifically, the underlying variance-ratio (full sample) statistic
motivating the construction of our monitoring statistics is the Kwiatkowski et al. (1992) sta-

12 For the asymptotic results, the lower bounds of the summations could all be set equal to t = 1. We, however, start the sums with the first residual
actually available for computations, at the expense of potentially making matters appear overly complicated, at least in terms of notation, but
replicable for implementation by the reader.
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tionarity test, respectively, the related Shin (1994) cointegration test.13 Using our notation,
the (full sample) Shin-statistic is given by:

TShin :=
1

ω̂2
u·v

 1
T

T

∑
t=1

(
1√
T

t

∑
i=1

ûi

)2
 (22)

=
1

ω̂2
u·v

(
1
T

T

∑
t=1

(
1√
T

Ŝu
t

)2
)

,

with ût denoting the residuals from (full sample) estimation with, e.g., FM-OLS or D-OLS.
In case that IM-OLS is used for estimation, the resultant residuals are already partial
summed quantities, i.e., one immediately obtains (by construction) quantities to insert into
the expression in the second line of (22). The test statistic given above converges under
the null hypothesis to a functional of standard Brownian motions, which is as expected
when considering (22), where convergence to the squared integral of a standard Brownian
motion follows immediately from our assumptions if instead of ût the errors ut were used
(and scaling would take place by a consistent estimator of ω2

u). Using ût instead of ut leads
to a similar result, but with a different (specification dependent) functional of standard
Brownian motions after scaling out ω2

u·v rather than ω2
u. To be precise, when using FM-OLS

or D-OLS for parameter estimation, the limiting null distribution will be a function of
W̃u·v,m(r). When using IM-OLS for parameter estimation, the limiting null distribution will
be a function of P̃u·v,m(r); see Proposition 1 below.

The above test statistic (22) can be easily seen to diverge under the alternative hypoth-
esis of a structural break occurring after the calibration period. Consider, e.g., the FM-OLS
residuals (with the argument entirely analogous for all three considered estimators) using
our already established notation:

ûF
t,m := y+t,m − Z′t θ̂

F
m (23)

= ut − v′tΩ̂
−1
vv,mΩ̂vu,m − D′t(θ̂

F
D,m − θD)− X′t(θ̂

F
X,m − θX),

1√
T

bsTc

∑
t=2

ûF
t,m =

1√
T

bsTc

∑
t=2

ut −
1√
T

bsTc

∑
t=2

v′tΩ̂
−1
vv,mΩ̂vu,m −

1√
T

bsTc

∑
t=2

D′t(θ̂
F
D,m − θD) (24)

− 1√
T

bsTc

∑
t=2

X′t(θ̂
F
X,m − θX).

Now, suppose that at some time point brTc > bmTc a structural change occurs. If, e.g.,
{ut}t∈Z turns from being I(0) to I(1), then the first term in (24) diverges for s > r. Simi-
larly, the third or fourth term (or both) diverge in case of change in the parameter vector,
i.e., when θ1 6= θ, as, of course, θ̂F

m → θ, because of parameter estimation on the calibra-
tion sample.

13 For completeness, note that the Shin (1994) test has been considered in the CPR setting in Wagner and Hong (2016). In principle, of course, also
other variance-ratio type statistics for the null hypothesis of stationarity—or cointegration—could serve as building blocks, e.g., the test statistic of
Busetti and Taylor (2004) or Kim (2000) more or less directly leads, when extended and considered for monitoring, to a self-normalized detector
similar to Ĥm

sn.
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We consider, for each of the three considered estimators—neglecting for notational
brevity the dependence of the residuals and, thus, the test statistics on the estimation
method—, five monitoring statistics:

Ĥm(s) :=
1

ω̂2
u·v,m

 1
T

bsTc

∑
i=bmTc+1

(
1√
T

Ŝu
i,m

)2
, (25)

Ĥm
d (s) :=

1
ω̂2

u·v,m

 1
T

bsTc

∑
i=bmTc+1

(
1√
T

Ŝu
i,m

)2
− 1

T

bmTc

∑
i=1

(
1√
T

Ŝu
i,m

)2
, (26)

Ĥm
sn(s) :=

∑
bsTc
i=bmTc+1

(
Ŝu

i,m

)2

∑
bmTc
i=1

(
Ŝu

i,m

)2 , (27)

Ĥm,n
mov(s) :=

1
ω̂2

u·v,m

 1
T

bsTc

∑
i=max{1,bsTc−bnTc+1}

(
1√
T

Ŝu
i,m

)2
, (28)

Ĥm,n
mov,sn(s) :=

∑
bsTc
i=max{1,bsTc−bnTc+1}

(
Ŝu

i,m

)2

∑
bmTc
i=1

(
Ŝu

i,m

)2 . (29)

The monitoring statistic Ĥm(s) given in (25) is of the same form as the monitoring statistic
used in Wagner and Wied (2017) considered here in the CPR context. The monitoring
statistic Ĥm

d (s) given in (26)—with a term calculated only over the calibration sample
subtracted—is of a similar form as used in Chu et al. (1996). The third variant Ĥm

sn(s)
given in (27) is a self-normalized statistic, for which, under the null hypothesis, both the
numerator and denominator converge (appropriately scaled) to functionals of standard
Brownian motions proportional to ωu·v, which is hence scaled out in the ratio. Long-run
covariance estimation is known to be a notoriously problematic aspect in unit root and
cointegration analysis; therefore, test statistics that do not require this step may exhibit
better performance. The fourth considered variant is a moving window statistic Ĥm,n

mov(s)
given in (28) with n denoting the moving window (sample fraction or) length. The key
difference between the moving window detector and the expanding window detectors is
that Ĥm,n

mov(s) is based on a constant number of residual partial sums for all values of s. This
construction increases, under the alternative hypothesis, the impact of post-break residuals
on the test statistic, which is ex ante expected to lead to faster detection of structural breaks.
The performance of the fourth variant will depend on the length of the moving window,
to be chosen in applications. Finally, the fifth monitoring statistic Hm,n

mov,sn(s) given in (29)
combines self-normalization and moving window estimation, with the performance as for
the fourth variant expected to depend upon the moving window length.14 The following
proposition summarizes the asymptotic behavior of the monitoring statistics under the
null hypothesis.

Proposition 1. Let the data be generated according to (1) and (2) with Assumptions 1 and 2 in
place. Furthermore, let long-run covariance estimation be performed under Assumptions 3 and
4 and let lead-lag choices be made as discussed in Choi and Kurozumi (2012). In case parameter
estimation is performed with FM-OLS or D-OLS, the limiting process Q̃u·v,m(s) below equals
W̃u·v,m(s), and, in case parameter estimation is performed by IM-OLS, it equals P̃u·v,m(s). The

14 To be precise, only when using Ĥm
sn(s) or Ĥm,n

mov,sn(s) in conjunction with D-OLS or IM-OLS, no long-run covariance estimators are required, whereas
estimated long-run covariances are required for FM-OLS estimation. For D-OLS, still, lead-lag length choices have to be made, and only when using
Ĥm

sn(s) or Ĥm,n
mov,sn(s) in conjunction with the IM-OLS estimator does no kernel/bandwidth or lead-lag choices have to be made. In this case, the

only choice to still be made when using Ĥm
sn(s) is the length of the calibration sample, a choice required throughout. In case of Ĥm,n

mov,sn(s), both the
calibration sample length m and the moving window length n have to be chosen.
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defined monitoring statistics converge under the null hypothesis for T → ∞; in particular, it holds
that:

Ĥm(s)⇒
∫ s

m
Q̃2

u·v,m(z)dz =: Hm(Q̃u·v,m, s), (30)

Ĥm
d (s)⇒

∫ s

m
Q̃2

u·v,m(z)dz−
∫ m

0
Q̃2

u·v,m(z)dz =: Hm
d (Q̃u·v,m, s), (31)

Ĥm
sn(s)⇒

∫ s
m Q̃2

u·v,m(z)dz∫ m
0 Q̃2

u·v,m(z)dz
=: Hm

sn(Q̃u·v,m, s), (32)

Ĥm,n
mov(s)⇒

∫ s

max{0,s−n}
Q̃2

u·v,m(z)dz =: Hm,n
mov(Q̃u·v,m, s), (33)

Ĥm,n
mov,sn(s)⇒

∫ s
max{0,s−n} Q̃2

u·v,m(z)dz∫ m
0 Q̃2

u·v,m(z)dz
=: Hm,n

mov,sn(Q̃u·v,m, s). (34)

It is widely-used practice in monitoring to base the decision not on monitoring statis-
tics as just defined, but on monitoring statistics divided by a weighting function, say g(s).
For chosen weighting function g(s)—with 0 < g(s) < ∞—, the null hypothesis is rejected,

if the weighted monitoring statistic
∣∣∣ Ĥ(s)

g(s)

∣∣∣ is larger than a critical value c for the first time.
We denote this point in time as detection time τm, i.e.,

τm := min
s:bmTc+1≤bsTc≤T

{∣∣∣∣ Ĥ(s)
g(s)

∣∣∣∣ > c
}

, (35)

with Ĥ(s) short-hand notation for any of the considered detectors.15 In case no structural

change is detected, i.e.,
∣∣∣ Ĥ(s)

g(s)

∣∣∣ ≤ c for all m ≤ s ≤ 1, we set τm = ∞. A finite value of τm

not only indicates a structural break but also contains information about the location of the
potential break point.

Weighting function and critical value have to be chosen so that, under the null hypoth-
esis, it holds that:

lim
T→∞

P(τm < ∞) = lim
T→∞

P
(

min
s:[mT]+1≤[sT]≤T

{∣∣∣∣ Ĥ(s)
g(s)

∣∣∣∣ > c
}

< ∞
)

= lim
T→∞

P
(

sup
s:[mT]+1≤[sT]≤T

∣∣∣∣ Ĥ(s)
g(s)

∣∣∣∣ > c

)
(36)

= P
(

sup
m≤s≤1

∣∣∣∣H(s)
g(s)

∣∣∣∣ > c

)
= α,

with α denoting the chosen significance level, andH(s) short-hand notation for the limit
corresponding to the considered monitoring statistic. Considering only positive and
bounded weighting functions, also seen in Aue et al. (2012, Assumption 3.6), allows us to
derive the required result given above based on the developed asymptotic null behavior of
the monitoring statistics and the continuous mapping theorem.

Proposition 2. Let the data be generated according to (1) and (2) with Assumptions 1 and 2 in
place. Furthermore, let long-run covariance estimation be performed under Assumptions 3 and 4
and let lead-lag choices be made as discussed in Choi and Kurozumi (2012). In addition, assume

15 For brevity, we sometimes use Ĥ instead of Ĥ(s) and g instead of g(s).
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that the weighting function g(s) is continuous and bounded. Then, there exist critical values
c = c(α, Ĥ, g, m, n) such that, for any 0 < α < 1, it holds that:16

lim
T→∞

P
(
τm(Ĥ, g, c) < ∞

)
= α. (37)

Clearly, the choice of a weighting function g(s) impacts the performance of monitoring
procedures and has to combine two opposing goals: (i) small size distortions under the
null hypothesis and (ii) small delays under the alternative hypothesis, that is, detection of
a break as soon as possible after the break. The discussion in Chu et al. (1996, Section 3)
makes clear that it is, in general, even in more standard regression models, impossible to
derive analytically tractable optimal weighting functions (from a certain class of functions),
e.g., with respect to minimal expected delay.17

Given the lack of analytical results concerning optimal choices of weighting functions,
we have performed a large number of preliminary simulations using a range of candidate
weighting functions.18 The starting point of these considerations is Wagner and Wied (2017),
who choose the weighting function in relation to the expected value of the monitoring
statistics, resulting in g(s) = s3 in case Dt = 1 (intercept only) and g(s) = s5 in case
Dt = [1, t]′ (intercept and linear trend). In case of a linear trend, we have, in addition,
experimented with g(s) ∈ {1, s10, s5(0.5+m), s5(0.85+m)2

,
√

m(1 + s−m
m ), s√

m

( s−m
s
)1/2}, with

the last two functions inspired by Horváth et al. (2004).19 It turns out that no weighting,
i.e., g(s) = 1 does not lead to favorable performance compared to g(s) = s3 or s5. The
function s10 is chosen by “extrapolation” of the fact that s5 works better than s0 = 1. The
idea of the third and fourth functions is—merely the result of some experimentation and
heuristics—to make the detector more sensitive by increasing the value of the statistic,
whilst at the same leaving the critical values effectively unchanged. The effects are to a
certain extent as expected, without, however, leading to overall better performance. Taking
s6 = (s3)2 or s10 = (s5)2 as weighting functions does indeed lead, e.g., to earlier detection
times, however, often also to detections in cases when there is no structural change, i.e.,
these functions lead to larger over-rejections under the null hypothesis. The two functions
s5(0.5+m), s5(0.85+m)2

, where we have also experimented with other powers and values, try
to strike a balance between earlier rejections and size distortions. Altogether, however, the
simple functions s3 and s5 perform most stably over a variety of configurations, in terms
of comparably low over-rejections under the null hypothesis as first priority and short
delays in the detection times.20 Finally, the two functions inspired by Horváth et al. (2004),
where we have also experimented with different powers, lead to essentially the same
null rejection probabilities and size corrected power as, e.g., s3 or s5, but lead to partly
substantially bigger delays than the other weighting functions. Therefore, we stick to the
weighting functions already used also in Wagner and Wied (2017), i.e., the end point of the
considerations is the starting point. As mentioned, it remains an open challenge to make
progress on finding optimal weighting functions for the monitoring problem and detectors
considered in this paper, or more generally when monitoring cointegrating relationships.

16 By construction, the critical values depend on n only for the moving window detectors.
17 Aue et al. (2009) derive the limiting distributions of the delay time for a one-time parameter change in a linear regression model with stationary

errors for a simple class of weighting functions depending only upon a single (tuning) parameter. The situation is much more involved in our
context and any result concerning asymptotic distributions of delay times will depend upon intricate crossing-probability calculations involving
complicated functions of Brownian motions. Results in this direction, therefore, appear to be very hard to obtain, at least for us.

18 We have performed the type of simulations reported in Section 3 investigating the performance with respect to null rejection probabilities, size
corrected power, and detection times for all weighing functions discussed here. The simulations in Section 3 report the results based on the overall
best performing weighting function, s3 (intercept only) and s5 (intercept and linear trend).

19 In the intercept only specification, the set of functions considered are given by {1, s6, s3(0.5+m), s3(0.85+m)2
,
√

m(1 + s−m
m ), s√

m

( s−m
s
)1/2}. The

observations are similar for both specifications of the deterministic component.
20 More specifically, the simpler functions lead to the lowest over-rejections almost throughout, the “race” in terms of size-corrected power is relatively

even, and, in some cases, the more complicated weighting functions, particularly s3(0.85+m)2
or s5(0.85+m)2

, lead to slightly smaller delays.
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It remains to characterize the asymptotic behavior of the proposed monitoring pro-
cedures under the relevant alternatives in our setting: First, the error process {ut}t∈Z
changes its behavior from I(0) to I(1), i.e., it changes to being an integrated process, and,
second, there are breaks in (some of) the parameter values. For both cases, we consider the
asymptotic behavior against fixed and local alternatives, with the local alternatives having
to be specified, as always, in line with the convergence rates of parameter estimation.

Proposition 3. Let the data be generated for t = 1, . . . , brTc according to (1) and (2) with As-
sumptions 1 and 2 in place. Furthermore, let long-run covariance estimation be performed under
Assumptions 3 and 4 and let lead-lag choices be made as discussed in Choi and Kurozumi (2012).
In addition, assume that the weighting function g(s) is continuous, positive, and bounded. Further-
more, Ĥ(s) again denotes any of the considered monitoring statistics.

(a) Let

(i) {ut}t∈Z be an I(1) process from brTc+ 1 onwards, or
(ii) θ1 6= θ, with the condition

lim
T→∞

1√
T

T

∑
t=brTc+1

D′t(θD − θD,1) = ±∞ (38)

fulfilled.

Then, the monitoring procedures are consistent, i.e., for any 0 < c < ∞, it holds that

lim
T→∞

P(τm(Ĥ, g, c) < ∞) = 1. (39)

(b) Let

(i) {ut}t∈Z = {u0
t }t∈Z for all t ≤ brTc, with {u0

t }t∈Z satisfying Assumption 2 and

ut = u0
t +

δ

T

t

∑
i=brTc+1

γi, (40)

for all t > brTc, where {u0
t }t∈Z and {γt}t∈Z are independent processes and where

{γt}t∈Z fulfills an invariance principle with long-run variance ω2
γ > 0 and δ > 0;

(ii) θD,1 = θD + G−1
D (T)∆θD from brTc+ 1 onwards with GD(T) as in Assumption 1 and

∆θD fulfilling ∫ 1

r
D(z)′dz∆θD 6= 0; (41)

or
(iii) θX,1 = θX + G−1

X (T)∆θX from brTc+ 1 onwards with ∆θX 6= 0.

Then, for any 0 < ε ≤ 1− α and the critical value 0 < c < ∞ from Proposition 2, there exists
a δ = δ(c, g), ∆θX = ∆θX (c, g) or ∆θD = ∆θD (c, g) such that

lim
T→∞

P(τm(Ĥ, g, c) < ∞) ≥ 1− ε. (42)

The local asymptotic power (LAP) properties of the procedures, with respect to break
type, estimation method, self-normalization, and window size of the moving window
detectors, are discussed in some detail in Supplementary Appendix B.21 The LAP results
carry over by and large to similar relative performance findings in the finite sample
simulations presented in Section 3, e.g., in case of I(1) breaks, a small moving window leads
to both highest LAP, as well as highest size-corrected finite sample power. Another example

21 Figures S1 to S7 in Supplementary Appendix B display corresponding LAP results.
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is power differences across estimation methods, with IM-OLS dominated by FM-/D-OLS
in terms of LAP and also in finite sample size-corrected power for large sample sizes.

The critical values depend on the specification in several ways: on the specification
of the deterministic component, the number of I(1) regressors, the highest power of the
single integrated regressor that enters the CPR with higher order powers, the estimation
method, and—as discussed in Proposition 2—the detector, the weighting function, the
calibration fraction, and for the moving window detectors, in addition the window size.
Supplementary Appendix E provides tables containing critical values for the usual deter-
ministic components, i.e., an intercept only and intercept and linear trend, and up to four
integrated regressors, of which one regressor enters the model with up to power three.
Furthermore, the critical values are available for all considered detectors, FM-/D-OLS and
IM-OLS estimation and significance levels of 0.01, 0.025, 0.05, 0.1. The weighting function
g(s) is set to s3 and s5, depending on the deterministic specification. Critical values are
available for a fine grid of the calibration fraction m ranging from 0.1, 0.11, . . . , 0.9. For
the moving window detectors, critical values are available for the window sizes equal to
10%, 20%, and 30% of the sample size.22

It remains to clarify the “meaning” of m and T for the monitoring procedures (also see
p. 967 in Wagner and Wied 2017). It is convenient to interpret T as the sample size including
the out-of-sample monitoring period. Let T0 denote the length of the actually available
sample—in our application, in Section 4, T0 = 71 with annual data from 1946–2016. Then,
denote T = T0 + H, with H > 0, indicating that out of sample monitoring is intended,
and H = 0, indicating that monitoring takes place on a historic data set, as in Section 4.
The fact that the critical values depend on m, and the moving detectors on n, means that a
decision has to be made about the length of the calibration period, potentially the length
of the moving window and about the out-of-sample monitoring period H prior to the
analysis. The latter necessity renders our procedure a closed-end monitoring procedure.
The calibration period will be chosen as large as possible (as a sub-sample 1, . . . , TC of
1, . . . , T0) to increase the precision of the parameter estimates while avoiding the risk of
having a structural break in the calibration period. Now, m is given by m = TC

T0+H . Thus,
choosing H larger implies that m is smaller, which in turn implies that the critical values are
larger (since they are decreasing in m). This decreases ceteris paribus, despite asymptotic
size control, the empirical rejection probabilities under both the null and the alternative.
This is the reason why one should choose the monitoring period as short as possible, a
calibration period as large as possible, and an out-of-sample monitoring period as short
as possible.

Finally, similar to Wagner and Wied (2017), the procedures are consistent also against
a variety of other forms of structural changes, with all results following more or less
straightforwardly from the construction principle. Of course, the finite sample performance
may be relatively poor in some cases.

Remark 2. The developed monitoring procedures are, in addition to the results provided in Propo-
sition 3, also consistent against the following types of structural change:

(i) The process {ut}t∈Z changes its behavior from I(0) to being a near-integrated process, compare
Phillips (1987), from brTc + 1 onwards. In this case, effectively, under the alternative
functionals of Wiener processes will be replaced by functionals of Ornstein-Uhlenbeck processes.
The rates of divergence are the same as for the I(1) alternative.

(ii) Similarly, consistency also prevails in case {ut}t∈Z changes its behavior from brTc + 1
onwards to being fractionally integrated, compared to Davidson and de Jong (2000), with
fractional integration parameter 0 < f < 1/2. In this case, contrary to item (i), the
divergence rate under the alternative changes and depends upon f since, under this alternative,

22 Altogether, this makes for more than 400 pages of tables. However, of course, these are embedded in the available MATLAB code.
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1
T1/2+ f ∑

bsTc
t=brTc+1 ut converges to a fractional Brownian motion. Thus, the smaller f , the more

difficult it will be be to detect this form of structural change.
(iii) The approach can also be employed for detecting bubbles. In the recent literature, a bubble is

often characterized as a period where the behavior of a time series has switched to explosive
behavior, compare, e.g., Phillips et al. (2011), Phillips et al. (2015a, 2015b), and Phillips
and Shi (2018). Thus, our procedure allows us to detect (the beginning of) a bubble by
considering the first difference of the series since, in the absence of a bubble, the first differences
are stationary, whereas, in case of explosive behavior, the first differences also exhibit explosive
behavior.

(iv) In relation to the previous item, with bubbles typically considered to be temporary rather than
permanent phenomena, it has to be noted that our procedures will be consistent in detecting
episodes of I(1) or explosive behavior, as long as these episodes have asymptotically positive
length. In, e.g., the case of only one period under the alternative, it has to hold that this period
occurs over a sub-sample of the form br1Tc, . . . , br2Tc with r1 < r2. It is immediate that
consistency generalizes to multiple periods of this form.

3. Finite Sample Performance

Under the null hypothesis of no structural change, we consider the same data generat-
ing process as Wagner and Hong (2016, Section 3), i.e., we consider a quadratic cointegrating
polynomial regression model:

yt = θD0 + θD1 t + θX1,1 xt + θX1,2 x2
t + ut, (43)

with the errors ut and ∆xt = vt generated as:

ut = ρ1ut−1 + e1,t + ρ2e2,t, u0 = 0,

vt = e2,t + 0.5e2,t−1,
(44)

where (e1,t, e2,t)
′ ∼ N (0, I2). The parameter ρ1 controls the extent of serial correlation

in {ut}t∈Z and is set to ρ1 = 1 after brTc under the alternative of I(1) errors, whereas ρ2
controls the extent of regressor endogeneity. The parameter values are θD0 = θD1 = 1,
θX1,1 = 5 and θX1,2 = −0.3, with the values for θX1,1 and θX1,2 inspired by the FM-OLS EKC
coefficient estimates for Austria (see Wagner 2015).23

We provide simulation results for T ∈ {200, 500} and ρ1 = ρ2 ∈ {0, 0.3, 0.6, 0.9}.24 For
the moving window and self-normalized moving window detectors, we use window sizes
n ∈ {0.1, 0.2, 0.3}. As indicated in the previous section, long-run covariance estimation is
performed with the Bartlett kernel with bandwidth chosen according to Newey and West
(1994). For D-OLS, estimation leads and lags choices are performed using the AIC-type
criterion of Choi and Kurozumi (2012). The number of replications is 10,000 throughout.
All monitoring decisions are performed at the nominal 5% significance level.

We start the analysis by considering empirical null rejection probabilities. In doing
so, we vary the calibration fraction over a grid of 81 values in the range m = 0.1, 0.11, . . . , 0.9.
Two main observations that allow us to zoom in subsequently, mostly on the self-normalized
detectors, emerge. Figure 1 clearly shows that with respect to null rejection probabilities,
the detectors are separated in two groups, with the better performance offered by self-

23 The results are, of course, invariant with respect to the values chosen for the parameters θD0 , θD1 , θX1,1 , and θX1,2 .
24 Varying ρ1 and ρ2 separately has the following effects on the performance: Starting from a given pair of values for (ρ1, ρ2), an increase of ρ1

(alone) has bigger detrimental effects on larger over-rejections under the null hypothesis, smaller size-corrected power, and larger delays under the
alternative than an increase of ρ2 (alone) by the same amount. In this sense, serial correlation is ceteris paribus more detrimental than endogeneity,
and the magnitude of ρ1 effectively drives performance. For brevity, therefore, we only report results for the ρ1 = ρ2 cases.
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normalization. Figure 2 shows that, when using moving window detectors, the choice of
the window size has no visible impact on null rejection probabilities.25
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Figure 1. Empirical null rejection probabilities for a grid of values of m, with T = 200 and ρ1 = ρ2 = 0.3.
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Figure 2. Empirical null rejection probabilities for a grid of values of m, with T = 200 and ρ1 = ρ2 = 0.3.

To assess the performance improvement that can be realized by self-normalization in
some detail, Figure 3 compares Ĥm,0.1

mov and Ĥm,0.1
mov,sn for T = 200.26 This figure illustrates also

other more generally observed patterns: First, using IM-OLS for parameter estimation leads
to the smallest over-rejections under the null hypothesis. Often, and particularly for small
values of m, D-OLS estimation leads to the largest over-rejections. The differences across
estimation methods widen for increasing ρ1, ρ2, with D-OLS most strongly negatively
affected. In addition, with the exception of D-OLS, self-normalization attenuates the
detrimental impact of increasing ρ1, ρ2. An increasing sample size, of course, reduces
over-rejections by and large.

We turn to size-corrected power.27 For brevity, the main text focuses on size-corrected
power against I(1) breaks, i.e., the situation where {ut}t∈Z changes its behavior from I(0) to

25 The null rejection probability differences between the standardized and self-normalized detectors increase with increasing ρ1, ρ2. The null rejection
probability results for T = 500 are contained in Figures S8 and S9 in Supplementary Appendix C. As expected, over-rejections are smaller than for
T = 200, especially for small values of m, and the differences between the detectors also decrease.

26 Figure S10 in Supplementary Appendix C displays the corresponding results for T = 500.
27 We focus on size-corrected power because of the potential over-rejection problems under the null hypothesis. This allows us to see power differences

across detectors while holding null rejection probabilities constant at 0.05. Clearly, this is useful for theoretical power comparisons, but it has to be
kept in mind that such size-corrections are not feasible in practice.
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I(1) after brTc. The other two breaks dealt with in Proposition 3, trend and slope breaks,
with changes in θD or θX , respectively, are discussed in Supplementary Appendix C.28

Size-corrected power simulations are performed for m, r ∈ {0.25, 0.5, 0.75}, which
includes, therefore, cases where r < m, i.e., where a break occurs in the calibration pe-
riod. We report results for all nine detectors considered, for all three estimation methods,
ρ1 = ρ2 = 0.3 until brTc and T = 200 in Table 1.29 The following observations emerge:
Grosso modo, highest size-corrected power is achieved by the moving window detec-
tor with n = 0.1, either with or without self-normalization; with as reported above self-
normalization leading to smaller over-rejections under the null hypothesis. The differences
in size-corrected power are typically relatively or even very small. This, in conjunction
with the performance improvement of self-normalization under the null hypothesis, makes
the case in favor of self-normalization clear. In line with standard asymptotic theory con-
cerning estimator efficiency, size-corrected power is typically lower for IM-OLS than for
FM-/D-OLS, with the difference between the latter two often rather small, also in line
with asymptotic theory.30 These results, of course, have to be seen in conjunction with the
smaller over-rejections of IM-OLS under the null hypothesis.
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Figure 3. Empirical null rejection probabilities for a grid of values of m and T = 200. The left panel displays results for
Ĥm,0.1

mov . The right panel displays results for Ĥm,0.1
mov,sn.

Next, consider the impact of m and r on size-corrected power. In case r < m, i.e., when
a break occurs in the calibration period, size-corrected power is often low, which is related
to inconsistency of parameter estimation due to the structural break in the calibration
period. It turns out that, in this case, the self-normalized detectors lead to lower size-
corrected power than the standardized detectors; see Table 1. For m ≤ r, size-corrected
power behavior is as expected, i.e., for fixed m, size-corrected power decreases with
increasing r, and, for fixed r, size-corrected power increases with increasing calibration

28 See Figures S11 to S19 in Supplementary Appendix C for size-corrected power results in case of trend and slope breaks.
29 Table S1 in Supplementary Appendix C displays the corresponding size-corrected power results for T = 500. In addition, Tables S2 to S7 in

Supplementary Appendix C display the results for ρ1 = ρ2 ∈ {0, 0.6, 0.9} for both T = 200 and T = 500.
30 The main motivation for developing IM-OLS in Vogelsang and Wagner (2014a) was to develop an estimator that allows to perform fixed-b inference,

which is an alternative asymptotic theory that captures the impact of kernel and bandwidth choices. These aspects are not covered by standard
asymptotic theory.
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period m. The case m = r leads to the highest size-corrected power. In addition, as
expected, increasing T leads to higher size-corrected power, whereas increasing ρ1, ρ2 leads
to lower size-corrected power. For trend breaks—investigated in some more detail in
Supplementary Appendix C—, many observations are qualitatively similar. One difference
is that, in case of trend breaks, the detectors Ĥm or Ĥm

d lead to highest size-corrected power
in some configurations. This finding, however, has to be considered in light of the larger
over-rejections exhibited by these two detectors under the null hypothesis. Slope breaks
lead to very similar results as I(1) breaks.

Table 1. Size-corrected power against I(1) breaks for T = 200 and ρ1 = ρ2 = 0.3.

ρ1 = ρ2 = 0.3
m = 0.25 m = 0.5 m = 0.75

r 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

FM 0.19 0.07 0.05 0.32 0.64 0.14 0.34 0.46 0.80
Ĥm D 0.13 0.06 0.05 0.30 0.59 0.11 0.34 0.46 0.76

IM 0.09 0.06 0.05 0.26 0.47 0.07 0.32 0.41 0.66

FM 0.19 0.07 0.05 0.32 0.64 0.14 0.33 0.45 0.79
Ĥm

d D 0.13 0.06 0.05 0.30 0.59 0.11 0.33 0.45 0.76
IM 0.09 0.06 0.05 0.26 0.47 0.07 0.32 0.41 0.66

FM 0.20 0.07 0.05 0.17 0.61 0.14 0.16 0.26 0.77
Ĥm

sn D 0.14 0.06 0.05 0.20 0.56 0.11 0.19 0.30 0.73
IM 0.11 0.05 0.05 0.19 0.49 0.08 0.21 0.31 0.66

FM 0.18 0.07 0.05 0.32 0.66 0.17 0.34 0.46 0.80
Ĥm,0.1

mov D 0.12 0.06 0.05 0.29 0.61 0.13 0.34 0.46 0.77
IM 0.09 0.05 0.05 0.25 0.48 0.09 0.31 0.40 0.67

FM 0.18 0.07 0.05 0.32 0.65 0.15 0.34 0.46 0.80
Ĥm,0.2

mov D 0.13 0.06 0.05 0.30 0.60 0.12 0.34 0.46 0.76
IM 0.09 0.06 0.05 0.26 0.48 0.08 0.32 0.41 0.66

FM 0.18 0.07 0.05 0.32 0.64 0.14 0.34 0.46 0.80
Ĥm,0.3

mov D 0.13 0.06 0.05 0.30 0.59 0.11 0.34 0.46 0.76
IM 0.09 0.06 0.05 0.26 0.47 0.08 0.32 0.41 0.66

FM 0.20 0.07 0.05 0.17 0.63 0.18 0.16 0.26 0.77
Ĥm,0.1

mov,sn D 0.14 0.06 0.05 0.20 0.58 0.13 0.20 0.30 0.74
IM 0.10 0.05 0.05 0.18 0.49 0.10 0.20 0.30 0.66

FM 0.20 0.07 0.05 0.17 0.62 0.15 0.16 0.26 0.77
Ĥm,0.2

mov,sn D 0.14 0.06 0.05 0.20 0.57 0.11 0.19 0.30 0.73
IM 0.10 0.05 0.05 0.19 0.49 0.09 0.21 0.31 0.66

FM 0.20 0.07 0.05 0.17 0.62 0.14 0.16 0.26 0.77
Ĥm,0.3

mov,sn D 0.14 0.06 0.05 0.20 0.56 0.11 0.19 0.30 0.73
IM 0.10 0.05 0.05 0.19 0.49 0.08 0.21 0.31 0.66

It remains to investigate the detection times and delays. We again consider the
case of I(1) breaks in the main text, for T = 200 and for ρ1 = ρ2 = 0.3 in Figure 4.31

With respect to m and r we only display results for m = 0.5 and r = 0.5; additional
configurations leading to qualitatively very similar results are displayed in Figures S21–S26
in Supplementary Appendix C. The figures display the results in the form of box-whiskers
plots—for completeness—for all nine considered detectors. The numbers below the detector
labels indicate the corresponding null rejection probabilities, i.e., size-corrected power,
given in Table 1. Thus, the different box-whiskers plots are based on different numbers of

31 Figure S20 in Supplementary Appendix C displays the corresponding detection times results for T = 500.
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replications because of different numbers of rejections across different detectors, sample
sizes, and ρ values.

One relatively clear observation that emerges from the figures, both in the main text
and in Supplementary Appendix C, is that the choice of the estimation method does not
exhibit major impacts on detection times and delays. Given the standard asymptotic
properties of the estimators, as expected, IM-OLS leads to slightly larger delays than FM-
OLS and D-OLS in many cases. The moving window detectors lead to the shortest delays,
both standardized and self-normalized, with the best performance achieved with n = 0.1.
One interesting observation is that, for the delay, the choice of the window size does matter
and, in fact, exerts bigger influence on the results than the choice of standardizing or self-
normalizing. Furthermore, an increasing sample size leads to a—ceteris paribus—more
concentrated distribution of the estimated detection times (based on a larger number of
observations) but does not, throughout, lead to smaller average delays.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 4. Detection times against I(1) breaks for T = 200, m = 0.5, r = 0.5, and ρ1 = ρ2 = 0.3.

The results of the finite sample simulations can essentially be summarized as follows:
First, when comparing self-normalized monitoring statistics with their standardized ver-
sions, self-normalization leads to smaller over-rejections, without having any systematic
or sizeable negative impacts on size-corrected power (for m ≤ r), and without leading
to larger delays when compared to standardization. Second, within the group of self-
normalized detectors, the moving window detector with n = 0.1 leads almost throughout
to highest size-corrected power without detrimental effects on null rejection probabilities.
For the moving window detectors, size-corrected power decreases with increasing win-
dow size. For all moving window detectors, size-corrected power is at least as good or
higher than for the expanding window detector. Some exceptions occur in case of trend
breaks, in which case the expanding window detector sometimes outperforms the moving
window detectors in terms of size-corrected power. In addition, the window size exhibits
some impact on the delays, with the moving window detector with n = 0.1 leading to
the shortest delays. Third, with respect to estimator choice, the usual trade-off between
IM-OLS, on the one hand, and FM-/D-OLS, on the other, occurs. IM-OLS leads to lower
over-rejections at the cost of lower size-corrected power and slightly larger delays than
FM-OLS, with D-OLS outperformed by FM-OLS in terms of larger over-rejections by D-OLS
under the null hypothesis. Size-corrected power and detection times based on D-OLS
are by and large very similar compared to those based on FM-OLS. Self-normalization in
conjunction with IM-OLS is particularly beneficial for small samples, as in this case no
long-run covariance estimates are required. The poor performance of FM-OLS compared
to IM-OLS for small samples can be traced back to long-run covariance estimation required
for FM-OLS parameter estimation, even when using self-normalized detectors. For larger
sample sizes, with better properties of long-run covariance estimation, the asymptotic
efficiency advantage of FM-OLS over IM-OLS becomes visible, particularly with respect to
higher size-corrected power.

Altogether, we recommend to use the self-normalized moving window detector with
n = 0.1, i.e., Ĥm,0.1

mov,sn. The choice of the estimator is dictated by the trade-off between null
rejection probabilities on target and high size-corrected power.
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4. The Environmental Kuznets Curves (EKCs) for Carbon and Sulfur Dioxide Emissions

We now apply the developed monitoring procedures to EKCs for carbon and sulfur
dioxide (CO2 and SO2) emissions. We commence from a sample of 18 industrialized
countries, listed in Table 2, over the period 1946–2016.32 The highest polynomial degree we
consider is the cubic cointegrating polynomial relationship, i.e.,

yt = θD0 + θD1 t + θX1,1 xt + θX1,2 x2
t + θX1,3 x3

t + ut, (45)

with xt the logarithm of real per capita GDP and yt the logarithm of per capita CO2 or SO2
emissions. As will be seen below, over the calibration period 1946–1973, for many countries,
in fact, a cointegrating quadratic or even cointegrating linear relationship prevails, i.e., is
not rejected.

The GDP and CO2 emissions data are similar to those used in Wagner et al. (2020). The
main difference is the extension of the sample period from 2013 to 2016; additionally, there
are some marginal changes in the GDP data in the newer vintage. More precisely, the GDP
(in 2011 prices) and population data stem from the Maddison project database (in the 2018
version of Bolt et al. 2018). The CO2 emissions data—which cover CO2 emissions from fossil
fuel usage—are taken from the Carbon Dioxide Information and Analysis Center (CDIAC)
of the U.S. Department of Energy; see Boden et al. (2018). The SO2 emissions have been
combined from two sources. The data for 1946–2005 are from the NASA Socioeconomic
Data and Applications Center (SEDAC); see Smith et al. (2011). The data for the period
2006–2016 are from the OECD (2020).33

Table 2. List of countries included in the empirical analysis. The sample range is 1946–2016. Italic
country names indicate that the augmented Dickey-Fuller test rejects the unit root null hypothesis for
log GDP per capita on the calibration period (1946–1973) at the 10% level, and bold country names
indicate rejections at the 5% level. Intercept and linear trend are included.

Australia Austria Belgium Canada Denmark Finland
France Germany Italy Japan New Zealand Norway
Portugal Spain Sweden Switzerland United Kingdom United States

With the developed methods resting upon a calibration period, a corresponding choice
has to be made. We choose the calibration period 1946–1973, reflecting that the first oil price
shock of 1974 is considered a major event for changes in energy consumption patterns.34

In our notation, this amounts to m = 28/71 ≈ 0.4. Given this choice, the first step is to
perform the CPR modeling cycle for the calibration period. The augmented Dickey and
Fuller (1981) test results, obtained on the calibration period for the null hypothesis of a
unit root in log real per capita GDP against the alternative of (linear-)trend stationarity, are

32 Only for twelve of these 18 countries, as discussed below, is the unit root null hypothesis not rejected for the logarithm of real per capita GDP. This,
of course, reduces the number of countries for which monitoring is performed in this section to twelve countries.

33 Note that the combination of these two data sources using growth rates rests upon the assumption that the share of SO2 in SOx is constant at about
98% also over the period 2006 onwards, as the OECD data comprise all SOx emissions and not only SO2 emissions.

34 In addition, and preceding the oil price shock, many countries have put more stringent environmental legislation in place in the late 1960s or early
1970s, e.g., the United States introduced Clean Air Acts in 1963 and 1970, Canada introduced a similarly named law 1971, and Sweden introduced
its Environmental Protection Act in 1969.
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contained in the country list Table 2.35 These results lead to the following twelve countries
being included in the subsequent analysis (based on a 5% significance level): Australia,
Belgium, Canada, Denmark, Finland, Italy, Japan, Portugal, Spain, Sweden, the United
Kingdom (UK), and the United States (U.S.). The next step is to test for the prevalence of
a CPR relationship over the monitoring period—for both CO2 and SO2 emissions for the
countries with I(1) log real per capita GDP. Given that the polynomial degree is ex ante
unclear, we perform a testing sequence with polynomial degrees ranging from three (the
cubic specification) to one (linear cointegration).36 The deterministic specification consists
of intercept and linear trend throughout. The lowest degree polynomial for which a CPR
relationship is not rejected is considered as starting point for monitoring in the following
subsections; see Table 3.

Table 3. Minimal polynomial degrees for cointegrating environmental Kuznets curves (EKCs) over
the calibration period 1946–1973.

Polynomial Degree

Country CO2 SO2

Australia 1 1
Belgium 1 1
Canada 1 1
Denmark 1 2
Finland 2 2
Italy 1 1
Japan 1 2
Portugal 1 1
Spain 1 1
Sweden 1 2
United Kingdom 1 1
United States 2 3

The most striking feature of Table 3 is that, in most countries—for CO2 even more
than for SO2—, a cointegrating linear relationship appears to be present over the period
1946–1973. This seems to be at odds, at first sight, with the EKC hypothesis of an inverted
U-shaped relationship. However, these results reflect the fact that, until the early 1970s, per
capita GDP and per capita emissions developed very similarly on a “log-linear extension
path”; see the scatter plots in Figures S27 and S28 in Supplementary Appendix D. Only start-
ing in the mid 1970s, the oil price shock, as well as environmental legislation—particularly

35 The detailed unit root test results using both the augmented Dickey-Fuller and the Phillips and Perron (1988) tests are contained in Supplementary
Appendix D, Table S8, for the calibration period, and in Table S9 for the full sample period. With the exception of Germany and the augmented
Dickey-Fuller test, and Austria, Germany, and New Zealand and the Phillips-Perron test, the unit root null hypothesis is not rejected over the full
sample period. Thus, for the full sample period, the evidence for I(1) behavior of log real per capita GDP is, as expected, much stronger. We could,
in principle, also consider a larger set of countries in the subsequent analysis, based on the probably more precise unit root test results obtained
from a longer period. Zooming in a bit more by using a modified Phillips-Perron test of Perron and Vogelsang (1993) leads, e.g., for Austria to a
non-rejection of the unit root null hypothesis when allowing for breaks in the intercept and trend slopes. Investigating such issues further, i.e.,
allowing for breaks in the regressors, is, despite its importance, beyond the scope of the present paper. As mentioned in Section 2.1, polynomial
transformations of integrated processes are not integrated processes. Consequently, we do not perform unit root tests for the log per capita emissions
series. Only in cases where a linear cointegrating relationship prevails (see Table 3) could we perform unit root tests also for the log per capita
emissions series.

36 For linear cointegration, we also consider the Johansen (1995) test, in addition to the Shin (1994) test. For the higher order polynomial degrees,
we use the extension discussed in Wagner and Hong (2016) or Wagner (2020). The detailed test results are available in Tables S10 and S11 in
Supplementary Appendix D.
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with respect to SO2 and “acid rain”—, lead to a decoupling of the two quantities, to a certain
extent, in many countries.37

Given these preliminary results, we turn in the following two subsections to moni-
toring, using the moving window detector Ĥm,0.1

mov,sn with window size n = 0.1, i.e., seven
years.38

4.1. Results for Carbon Dioxide Emissions

The detection times for the twelve considered countries using, with the exceptions of
Finland and the United States, where the quadratic specification is estimated, the linear
specification are displayed in Table 4.

Table 4. Detection times when monitoring CO2 emissions using the detector Ĥm,0.1
mov,sn and both

Fully Modified Ordinary Least Squares (FM-OLS) and Integrated Modified Ordinary Least Squares
(IM-OLS). The column p indicates the polynomial degree, the calibration period is 1946–1973, the
monitoring period is 1974–2016. The nominal significance level is 5%.

Ĥm,0.1
mov,sn

Country p
FM-OLS IM-OLS

Australia 1 1993 2001
Belgium 1 1988 1992
Canada 1 ∞ ∞
Denmark 1 1991 2011
Finland 2 1989 1990
Italy 1 1981 1982
Japan 1 1982 1980
Portugal 1 1998 ∞
Spain 1 ∞ ∞
Sweden 1 1982 1983
United Kingdom 1 1984 1987
United States 2 1988 1992

With the exception of Canada and Spain for all countries the linear relationship found
over the calibration period appears to break down. Furthermore, Portugal is a “mixed”
case, with unsurprisingly similar behavior to Spain in many ways, as discussed below.
In line with the simulation results, the detection times are—with the exception of Japan—
earlier with FM-OLS than with IM-OLS, with the differences often just a few years. Mostly,
breaks are dated in the 1980s or early 1990s, with a few exceptions: Australia (IM-OLS:
2001), Denmark (IM-OLS: 2011), Portugal (FM-OLS: 1998; IM-OLS: no break, which is the
only difference in finding a break point or not between the two methods). This can be
interpreted, admittedly unsurprisingly, as strong evidence against a continued log-linear
co-movement, i.e., aligned expansion, of log per capita GDP and CO2 emissions from
the—given the delays seen in the simulation section at latest—early 1990s onwards. Or,
the other way around, these findings are indicative of curvature picking up in CO2 EKC-

37 It is probably a philosophical question whether we observe in these cases a “straight-looking” line segment of an actually inverted U-type relationship
or “really” a linear relationship. From an econometric perspective, the evidence is in favor of a linear relationship in a number of countries, and it,
thus, is an interesting question to detect and date structural breaks based on monitoring a cointegrating linear relationship. We could alternatively
also monitor for these countries, e.g., over-specified cubic relationships, where we would be also bound to find structural change for those countries
where the data after the calibration period are changing from a linear towards an inverted U-shaped CPR relationship with a polynomial degree
larger than one.

38 The full sets of results, including detection times for all detectors and estimators, are available in Supplementary Appendix D, in Table S15 for CO2
emissions, and in Table S16 for SO2 emissions. Given the performance advantages of FM-OLS over D-OLS, we exclude the D-OLS results from the
discussion in the main text and discuss only FM-OLS and IM-OLS results here.
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type relationships in the 1980s, in most of the considered countries, with the exception of
Canada, and potentially Portugal and Spain, which is discussed further below.39

As an illustration, Figure 5 displays the mechanics of the monitoring procedure
for Finland.40 The upper graph displays the FM- and IM-OLS residuals over both the
calibration and the monitoring period. By definition, since an intercept is included, the
residuals have zero mean over the calibration period and then turn systematically (more
and more) negative thereafter on the monitoring period. This, by definition, means that the
estimated—in case of Finland quadratic—relationship systematically over-predicts actual
log per capita CO2 emissions, i.e., the slope of an actual relationship between output and
emissions is estimated as too high; also see Figure 6. The statistical monitoring procedures
need to collect enough signals until a break is detected; in this example, this takes until 1989
for FM-OLS and until 1990 for IM-OLS, which is clearly too late. Nevertheless, it may
be interesting to note that Finland was severely adversely affected by the collapse of the
Soviet Union in the early 1990s, which, in fact, for Finland, led to a deeper recession than
the Great Depression in the 1930s.
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Figure 5. Monitoring results for CO2 emissions of Finland using Ĥm,0.1
mov,sn with both FM-OLS and IM-OLS in the quadratic

specification. The lower panel shows the detectors, the critical values, and the detection times for FM-OLS on the left-hand
side, and for IM-OLS on the right-hand side.

39 Considering a quadratic specification over the full sample period, see Table S17 in Supplementary Appendix D for details, confirms this. For all
countries, except Canada, Portugal, and Spain, the coefficients to log per capita GDP squared are (significantly) negative, whereas they show
a positive sign for these three countries. The coefficient is, however, only significantly positive for Portugal, underlining the “borderline case”
behavior of Portugal.

40 Figures S32 to S42 in Supplementary Appendix D display monitoring results for CO2 emissions for the other eleven countries in exactly the same
format as Figure 5 for Finland.
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Figure 6. FM-OLS estimation results for a cointegrating quadratic relationship between log per capita GDP and log per
capita CO2 emissions for Finland. The figure shows pairs of observations of log per capita GDP and log per capita CO2

emissions, for 1946–1973 (blue circles), 1974–1988 (turquoise squares), and 1989–2016 (yellow diamonds). The lines display
fitted values over time obtained using different samples for parameter estimation: the dashed red line 1946–1973, the dotted
black line 1946–1988, and the dash-dotted blue line 1946–2016.

Figure 6 shows the fitted values obtained when estimating the quadratic EKC with
FM-OLS over the calibration sample, the sample ending prior to the detected break-point
1988 and when estimation takes place over the full sample.41 The dashed red line shows
that, in fact, more or less immediately after the oil price shock, the relationship between
GDP and CO2 emissions appears to have changed, with the detector taking about 15 years
to collect enough signals to declare the null hypothesis rejected at the 5% significance
level.42 Parameter estimation until 1988 “catches the turn” of the mid 1970s and leads to
good fit. However, using the full sample for parameter estimation of the quadratic EKC
leads to the best fit, particularly for the period after 1989. This leads to some support for
the interpretation that maybe the relationship is after all quadratic and one needs to have a
sample that is (i) larger and (ii) covers the inverted U behavior to be able to estimate the
relationship with sufficient precision; compare Footnote 37.43

To complete the analysis for CO2 emissions, we now turn to the countries for which
no structural change is indicated by the monitoring procedure, Canada, the mixed case
Portugal, and Spain. Table 5 displays the estimated coefficients for these three countries
when the cointegrating (linear) relationships between log per capita GDP and log per capita
CO2 emissions are estimated over the calibration sample and over the whole sample period.

The results reported in Table 5 are a bit mixed, and no uniform pattern across all three
countries emerges, with some of the smoke clearing when considering Figure 7 below.
For Canada, the slope coefficient corresponding to log per capita GDP becomes much
smaller when estimated over the full sample, but the trend coefficient also becomes less
negative. For Portugal, the trend coefficient is not significant in both periods, but turns from
non-negative point estimates in the calibration period to smaller, and for FM-OLS negative,
values in the full period. The slope coefficient, however, is bigger, when estimated over the
full sample. For Spain, the trend coefficient does become more negative and significant
when estimated over the full sample period and the slope coefficient becomes bigger. Thus,
qualitatively, the results are similar for the two countries on the Iberian peninsula, which

41 See Figure S29 in Supplementary Appendix D for analogous—and very similar—IM-OLS results.
42 Clearly, this is a long delay—particularly when looking at Figure 6, but it has to be taken into account that the estimation sample comprises only 28

observations, which is an rather small sample for cointegration analysis.
43 This appears to be the case indeed. The coefficients to squared log per capita GDP are very small but positive and borderline significant when

estimated over the calibration sample (results are available upon request) and are significantly negative when estimated over the full sample (see
Table S17 in Supplementary Appendix D).
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not only share many economic similarities but also political similarities, with the end of
the Franco and Salazar regimes in these countries in the mid 1970s.

Table 5. FM-OLS and IM-OLS estimation results for a cointegrating linear relationship between log
per capita GDP and log per capita CO2 emissions for Canada, Portugal and Spain for the calibration
period 1946–1973 (left panel) and the full sample period 1946–2016 (right panel). Italic entries indicate
significance of coefficients at the 10% level, and bold entries significance of coefficients at the 5% level.

1946–1973 1946–2016

θD1 θX1,1 θD1 θX1,1

Canada

FM-OLS −0.056 2.841 −0.027 1.661
IM-OLS −0.059 2.990 −0.028 1.714

Portugal

FM-OLS 0.000 1.003 −0.008 1.341
IM-OLS 0.008 0.869 0.001 1.156

Spain

FM-OLS −0.023 1.519 −0.033 1.818
IM-OLS −0.039 1.789 −0.036 1.911

Probably more informative, Figure 7 displays similar results for these three countries
as displayed for Finland in Figure 6.44 The message is clear, particularly in comparison
with Figure 6. In case no structural break is detected, estimation over the larger sample
does lead—unsurprisingly—to better fit, but the differences in fit are, compared to the
differences observed in Figure 6, minor. From a standard inverted U quadratic EKC
perspective, the excellent fit obtained for these three countries with the linear specification
is to a certain extent surprising—and, which might be bad news, of course, there is no
turning point.

Note that, when considering the full sample period 1946–2016, we find a cointegrating
EKC relationship for all nine countries, for which monitoring detects a structural break.45

For about a third of the countries, the polynomial degree of the EKC appears to be larger
for the full sample than for the calibration period, supporting the notion of more curva-
ture. For most countries, the evidence, with an unchanged minimal polynomial degree,
points, however, more towards structural change of the parameters for a given form of the
relationship. For Finland and the U.S., it appears that the polynomial degree is lower over
the full sample than for the calibration period, albeit the coefficients to squared log per
capita GDP are significant when estimated over the full sample, which leads to an unclear
picture. Altogether, the results in this CO2 subsection indicate that the procedures work
even on such small samples, albeit, of course, for many applications the sizeable delay is
most certainly problematic.

44 Figure S30 in Supplementary Appendix D shows the corresponding results obtained with IM-OLS.
45 Table S12 in Supplementary Appendix D contains similar results concerning the minimal polynomial degrees of a CPR relationship for the full

sample period as Table 3 for the calibration period.
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Figure 7. FM-OLS estimation results for a cointegrating linear relationship between log per capita GDP and log per capita
CO2 emissions for Canada, Portugal and Spain. The figure shows pairs of observations of log per capita GDP and log per
capita CO2 emissions, for 1946–1973 (blue circles) and 1974–2016 (yellow diamonds). The lines display fitted values over
time obtained using different samples for parameter estimation: the dashed red line is 1946–1973, and the dash-dotted blue
line is 1946–2016.

4.2. Results for Sulfur Dioxide Emissions

We now turn to monitoring the EKC for SO2 emissions, with the results displayed in
Table 6 for the detector Ĥm,0.1

mov,sn for both FM-OLS and IM-OLS.46

46 Figures S43 to S54 in Supplementary Appendix D display monitoring results for SO2 emissions, with residuals and monitoring statistics analogous
to Figure 5 for CO2 emissions for Finland, for all twelve countries.
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Table 6. Detection times when monitoring SO2 emissions using the detector Ĥm,0.1
mov,sn and both FM-

OLS and IM-OLS. The column p indicates the polynomial degree, the calibration period is 1946–1973,
the monitoring period is 1974–2016. The nominal significance level is 5%.

Ĥm,0.1
mov,sn

Country p
FM-OLS IM-OLS

Australia 1 ∞ ∞
Belgium 1 1985 1985
Canada 1 1980 1981
Denmark 2 1997 2006
Finland 2 1988 1991
Italy 1 1982 1982
Japan 2 1991 2004
Portugal 1 2015 ∞
Spain 1 2005 2012
Sweden 2 1985 1988
United Kingdom 1 1983 1983
United States 3 ∞ ∞

Qualitatively, the results for SO2 are similar to the results for CO2 discussed in the
previous subsection. With the exception of Australia, the United States and the mixed
case (as for CO2 emissions) Portugal monitoring indicates structural breaks. Again, in
line with the simulation findings, the FM-OLS break points are in no case later than the
IM-OLS break points, with equal break dates from both estimators for three countries. This
similarity of detected break points can be tentatively interpreted as evidence for underlying
structural changes in the relation between economic activity and emissions in—or due
to the delays prior to—the 1980s, potentially as a consequence of tighter environmental
legislation.47

Table 7 displays the estimation results for Australia, Portugal and the U.S., i.e., the
three countries where no structural break was detected, or—to be precise—where, for
Portugal, only FM-OLS estimation leads to a break being detected. The results lead to
some interesting observations. For Australia, estimation on the calibration period leads
to (with all coefficients not significantly different from zero) positive trend coefficient and
negative slope coefficient in a cointegrating linear relationship.48 This is surprising to
a certain extent, as a negative trend slope is typically considered to capture autonomous
energy efficiency increases, admittedly more important for CO2 emissions rather than SO2
emissions. The expected signs, with the trend coefficient negative and the slope coefficient
positive (and significant), emerge only over the full sample. For Portugal, the coefficient
signs are as expected, with the trend coefficient only significant for the full sample. The
slope coefficient to log per capita GDP becomes much larger when estimated over the full
sample. The results for the cubic specification estimated for the U.S. are hard to interpret
with the enormous fluctuations in the coefficient values. However, the implied turning
points do change in expected ways, meaning that the first one becomes smaller and the
second one larger, e.g., for FM-OLS and estimation over the short sample the two turning
points are at about US$ 16,000 and 27,000, whereas full sample estimation leads to turning
points at about US$ 5400 and 79,000.

The results in Figure 8, however, indicate that indeed the relationship specified over the
calibration period, when estimated over the full sample, leads to very good fit, either with

47 This finding again indicates the potential gains to be reaped by considering pooling, across countries, or pollutants or both. Compare Wagner et al.
(2020) for a discussion of pooling issues and options in the context of EKC analysis. This suggests that a worthwhile extension to be considered
could be combining Wagner et al. (2020) with the monitoring ideas pursued in this paper. Such an extension, beyond the scope of this paper, could
potentially lead to smaller delays.

48 It is in all likelihood mere coincidence that the trend coefficients are of more or less same magnitude over both sample periods with, effectively, only
the sign changing.
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a cointegrating linear relationship for Australia and Portugal or with a cubic relationship
for the U.S.49
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Figure 8. FM-OLS estimation results for a cointegrating linear relationship between log per capita GDP and log per capita
CO2 emissions for Australia and Portugal, and a cointegrating cubic relationship for the United States. The figure shows
pairs of observations of log per capita GDP and log per capita SO2 emissions, for 1946–1973 (blue circles) and 1974–2016
(yellow diamonds). The lines display fitted values over time obtained using different samples for parameter estimation: the
dashed red line is 1946–1973, and the dash-dotted blue line is 1946–2016.

Considering the full sample period leads—similar to CO2 emissions—to a CPR re-
lationship for all nine countries where a structural break has been detected. In addition,

49 Figure S31 in Supplementary Appendix D shows similar results when using IM-OLS for parameter estimation.
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similar to CO2, the evidence is mixed with respect to either change in the parameters or a
change in the minimal polynomial degree of a cointegrating EKC for SO2 emissions.50

Table 7. FM-OLS and IM-OLS estimation results for a cointegrating linear relationship between log
per capita GDP and log per capita SO2 emissions for Australia and Portugal, and a cointegrating
cubic relationship for the United States, for the calibration period 1946–1973 (left panel) and the full
sample period 1946–2016 (right panel). Italic entries indicate significance of coefficients at the 10%
level, and bold entries significance of coefficients at the 5% level.

1946–1973 1946–2016

θD1 θX1,1 θX1,2 θX1,3 θD1 θX1,1 θX1,2 θX1,3

Australia

FM-OLS 0.043 −0.819 −0.042 2.541
IM-OLS 0.042 −0.770 −0.043 2.550

Portugal

FM-OLS −0.005 1.047 −0.104 3.491
IM-OLS 0.002 0.873 −0.092 3.215

United States

FM-OLS −0.013 −1,831.120 183.982 −6.158 −0.133 −305.981 31.361 −1.052
IM-OLS −0.005 −2,190.198 220.246 −7.380 −0.133 −61.963 7.512 −0.275

5. Summary and Conclusions

The paper extends the residual-based monitoring procedure for cointegrating rela-
tionship developed in Wagner and Wied (2017) in two dimensions. First, in addition to
the detector studied in that paper, we consider a number of detectors that consider two
aspects not considered in detail in the earlier paper: self-normalization and moving win-
dow detectors. Second, the approach is extended from cointegrating linear to cointegrating
polynomial regressions (CPRs).

The starting point is the extension of the Shin (1994) test statistic for the null hypothesis
of linear cointegration to the CPR setting (see, e.g., Wagner 2020). The full sample test
statistic is then used as the basis for developing monitoring procedures, similar to Wagner
and Wied (2017) for the case of cointegrating linear regressions. As also usual in the
cointegrating regression literature, the regressors are allowed to be endogenous and the
stationary errors are allowed to be serially correlated. Consequently, parameter estimation
is based on modified OLS estimators, to be precise, FM-OLS, D-OLS, and IM-OLS, in their
versions adapted to the CPR setting to allow for the construction of nuisance parameter-free
monitoring statistics by scaling out a scalar long-run variance. However, even the usage of
suitably modified least squares regressors is not, in the general case, sufficient to arrive at
nuisance parameter-free monitoring statistics. In the CPR case, as mentioned in Remark 1,
additionally, full design is required to arrive at nuisance parameter-free test statistics, either
by standardization or by self-normalization. By construction, and as in the cointegrating
linear case, the limiting distributions of the monitoring statistics coincide for FM-OLS and
D-OLS, whilst IM-OLS leads to different limiting distributions for the monitoring statistics.

Both self-normalization, as well as the consideration of moving window detectors,
turn out to be beneficial. The combination of these two new elements leads to the, grosso
modo, best performance. More precisely, this means that self-normalization leads to
smaller over-rejections under the null hypothesis, without leading to strong disadvantages
in terms of either size-corrected power or detection delays. The performance differences
between a standardized and a self-normalized detector reflect the (well-known small-
sample) problems associated with long-run covariance estimation. Using a moving window
rather than an expanding window also contributes positively to performance. The idea

50 See Table S12 in Supplementary Appendix D for the minimal polynomial degrees on the full sample.
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behind moving window detectors is to reduce the impact of pre-break observations on
the monitoring statistics in the post-break period, and the simulation evidence indicates
that this is indeed what happens. The finite sample performance differs to a certain extent
across the three estimators. IM-OLS leads to, with the differences more pronounced for
small samples, smaller over-rejections under the null hypothesis than FM-OLS, which in
turn leads to lower over-rejections than D-OLS. This, however, comes in conjunction with
slightly smaller size-corrected power and slightly bigger delays of IM-OLS compared to
FM-OLS. The evidence is a bit mixed, and the differences are often a bit too small to give
an unequivocal recommendation concerning the usage of either FM-OLS or IM-OLS.

The monitoring statistics, precisely (in the main text only) the best performing variant
using self-normalization in conjunction with a short moving window, are then used to
investigate the stability of cointegrating (polynomial) EKCs for both carbon and sulfur
dioxide emissions for a sample of twelve countries over the period 1946–2016, with a
calibration period ranging from 1946–1973, i.e., until prior to the first oil price shock.
One interesting observation is that, over the calibration period, especially for CO2 for the
majority of countries, in fact, a cointegrating linear relationship is present, in line with
effectively “balanced” growth of economic activity and emissions (from burning fossil
fuel), until the mid 1970s. The monitoring procedures indicate, for both CO2 and SO2,
structural changes in nine out of twelve countries. Of course, especially for the cases where
a linear cointegrating relationship prevails over the calibration period, this may not be
too big a surprise. No structural break is detected for Canada, Portugal, and Spain for
CO2 emissions, and Australia, Portugal, and the U.S. for SO2 emissions. For the country-
pollutant combinations where no structural break is detected, the type of cointegrating
relationship specified over the calibration period leads to very good fit also over the full
sample period, and, of course, even better fit when the parameters are estimated over the
full sample. This is not the case for countries where breaks are detected, indicating that
structural breaks are indeed detected when present. Altogether, with the caveat of, in some
cases, late detection times, remember the delays illustrated in the simulation study, the
monitoring procedures lead to “plausible” findings in our application.

Future work needs to address inter alia the following issues left open in this paper:
First, of course, large delays are problematic, even in an ex-post exercise one would want
to date the breaks as precisely as possible, e.g., to gauge the time it takes until behavioral
or legislative changes translate into changes in the economic activity-emissions nexus. For
certain applications (when, e.g., legislation comes into place in a group of countries at
the same time), it may be possible to rely also upon the cross-sectional dimension to date
break points. The seemingly unrelated cointegrating polynomial regression analysis put
forward in Wagner et al. (2020) or the classical panel EKC analysis of de Jong and Wagner
(2018) might serve as starting points for developing monitoring statistics for small and
large cross-sectional dimension, respectively. Second, if one wants to use the monitoring
procedures in a real time manner—rather than for a historical analysis as in this paper—, it
may be important to consider extending end-of-sample cointegrating break point tests to
the setting considered here (one such test for the cointegrating linear case is discussed in
Andrews and Kim 2006). Extensions to more general settings are, however, not obvious.
Third, it may be interesting to monitor and detect structural breaks in the other direction,
i.e., from a spurious regression to a cointegrating polynomial regression. This could be
achieved, e.g., by suitably extending the results of Sakarya et al. (2015) from cointegrating
linear to cointegrating polynomial regressions.

Supplementary Materials: The following are available online at https://www.mdpi.com/2225-114
6/9/1/12/s1: Supplementary Appendix B discusses local asymptotic power properties, Supplemen-
tary Appendix C contains additional finite sample simulation results, Supplementary Appendix D
presents additional empirical results, and Supplementary Appendix E includes tables with critical
values for the detectors for a broad variety of specifications.
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Appendix A. Proofs

Proof of Lemma 1. The lemma follows with straightforward changes essentially from
available full sample results: For FM-OLS, see Wagner and Hong (2016, Proof of Proposi-
tion 5), and, for D-OLS, see Choi and Saikkonen (2010, Lemma A.2). For IM-OLS, the result
follows with two changes from the results in Vogelsang and Wagner (2014b). First, again,
a change from a full sample result to a calibration (sub-)sample result and, second, the
results in that paper are all formulated only under the null hypothesis of a true linear rela-
tionship nested in a CPR-type relationship; a few results have to be correspondingly—and
straightforwardly—modified.

Proof of Proposition 1. Using the results from Lemma 1, the continuous mapping theorem
(see, e.g., Hall and Heyde 1980, Theorem A.3) and the assumption of consistent long-
run covariance estimation leads to the stated asymptotic distributions under the null
hypothesis.

Proof of Proposition 2. The result follows from Proposition 1 in conjunction with the
continuous mapping theorem since the limitH(s) of Ĥ(s), using short-hand notation also
for the limit quantities, is well defined for all considered monitoring statistics. The same

holds true for | Ĥ(s)
g(s) | since 0 < g(s) < ∞ is assumed to be continuous.

Proof of Proposition 3. The proof of the proposition is similar in spirit and follows from
similar arguments as the proof of Proposition 2 of Wagner and Wied (2017, Supplementary
Appendix A) for monitoring in the linear cointegration case.

To show consistency against fixed alternatives for part (a) of the proposition, the
limiting behavior of the residual partial sum processes is key. Consider here the FM-OLS
residual partial sum process, with the results being similar for both D-OLS and IM-OLS
(without partial summing due to the partial summed regression). For 0 < m ≤ r < s ≤ 1,
it holds that:

https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2018?lang=en
https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2018?lang=en
https://data.ess-dive.lbl.gov/view/doi:10.15485/1712447
https://data.ess-dive.lbl.gov/view/doi:10.15485/1712447
http://sedac.ciesin.columbia.edu/data/set/haso2-anthro-sulfur-dioxide-emissions-1850-2005-v2-86
http://sedac.ciesin.columbia.edu/data/set/haso2-anthro-sulfur-dioxide-emissions-1850-2005-v2-86
https://doi.org/10.1787/93d10cf7-en
https://doi.org/10.1787/93d10cf7-en


Econometrics 2021, 9, 12 32 of 35

1√
T

bsTc

∑
t=2

ûF
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The first term converges to ωu·vW̃u·v,m(r) according to Lemma 1. Depending upon
which case considered, at least one of the other terms diverges in case of a fixed alternative.
In case (i), the second term diverges at rate T since, in this case, {ut} is an I(1) process for
t ≥ brTc+ 1. Similarly, in cases (ii) or (iii), either the next to last or last term diverges—or
both in case breaks occurring in both θD and θX .

Therefore, for any of the considered fixed alternatives, the partial summed residual
process or—in case of IM-OLS—the residual process diverges. The result stated in (a)
follows immediately from the definitions of the considered monitoring statistics.

We now turn to part (b) of Proposition 3 and consider local asymptotic power. For
item (i), it follows for the residual partial sum processes of FM-OLS, D-OLS, and IM-OLS
residuals that:

1√
T

Ŝu
bsTc,m ⇒ ωu·vQ̃u·v,m(s) + δωγ

∫ s

r
(Wγ(z)−Wγ(r))dz, (A2)

with Q̃u·v,m(s) denoting the corresponding limiting process as in Proposition 1. For item
(ii), it follows that:

1√
T

Ŝu
bsTc,m ⇒ ωu·vQ̃u·v,m(s) +

∫ s

r
D(z)′dz∆θD . (A3)

It remains to consider the asymptotic behavior of the residual partial sum process
appearing in the third item of part (b) of the proposition. The partial sum process of the
residuals converges to the following limiting process:

1√
T

Ŝu
bsTc,m ⇒ ωu·vQ̃u·v,m(s) +

∫ s

r
Bv(z)′dz∆θX

= ωu·vQ̃u·v,m(s) +
∫ s

r
Wv(z)′dzΩ1/2′

vv ∆θX ,
(A4)

with Ω1/2
vv := diag(Ω1/2

vv , ω2
k , . . . , ω

pk
k ) and ωk the lower right-hand corner element of

Ω1/2
vv corresponding to the k-the element of vt. Equations (A2) to (A4) show that in case

of local alternatives the limiting processes differ from the limiting processes derived
under the null hypothesis by an extra term, depending upon the case considered equal to
δωγ

∫ s
r (Wγ(z)−Wγ(r))dz,

∫ s
r D(z)′dz∆θD and

∫ s
r Wv(z)′dzΩ1/2′

vv ∆θX . These terms can be
made arbitrarily big (in mean square sense) by choosing δ, ∆θD or ∆θX which translates in
the detectors also becoming arbitrarily large. To illustrate the mechanics, consider Ĥm,n

mov,sn
and the case of a local I(1) break, in which case one obtains for 0 < m ≤ r < s ≤ 1:
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Ĥm,n
mov,sn(s)⇒

∫ s
max{0,s−n}

(
ωu·vQ̃u·v,m(z) + δωγ

∫ z
r Wγ(ζ)−Wγ(r)dζ

)2
dz

ω2
u·v
∫ m

0 Q̃2
u·v,m(z)dz

=

∫ s
max{0,s−n} Q̃2

u·v,m(z)dz∫ m
0 Q̃2

u·v,m(z)dz

+
2δωγ

∫ s
max{0,s−n} Q̃u·v,m(z)

∫ z
r Wγ(ζ)−Wγ(r)dζdz

ωu·v
∫ m

0 Q̃2
u·v,m(z)dz

+
(δωγ)

2 ∫ s
max{0,s−n}

(∫ z
r Wγ(ζ)−Wγ(r)dζ

)2dz

ω2
u·v
∫ m

0 Q̃2
u·v,m(z)dz

= Hm,n
mov,sn(Q̃u·v,m, s) +

2δωγ

∫ s
max{0,s−n} Q̃u·v,m(z)

∫ z
r Wγ(ζ)−Wγ(r)dζdz

ωu·v
∫ m

0 Q̃2
u·v,m(z)dz

+
(δωγ)

2 ∫ s
max{0,s−n}

(∫ z
r Wγ(ζ)−Wγ(r)dζ

)2dz

ω2
u·v
∫ m

0 Q̃2
u·v,m(z)dz

,

(A5)

with
∫ z

r Wγ(ζ)−Wγ(r)dζ = 0 for r > z. Equation (A5) shows that, as expected, the extra
term in the residual process translates (upon squaring) into two additional terms in the
limiting process in comparison to the behavior under the null hypothesis. The third term,
being a squared expression, can be made arbitrarily large and positive by choosing δ large
enough and is of larger order than the second (non-squared) term. The result follows
analogously for all detectors and all three considered local alternatives.
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