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Abstract: This article considers goodness-of-fit tests for bivariate INAR and bivariate Poisson autore-
gression models. The test statistics are based on an L2-type distance between two estimators of the
probability generating function of the observations: one being entirely nonparametric and the second
one being semiparametric computed under the corresponding null hypothesis. The asymptotic distri-
bution of the proposed tests statistics both under the null hypotheses as well as under alternatives is
derived and consistency is proved. The case of testing bivariate generalized Poisson autoregression
and extension of the methods to dimension higher than two are also discussed. The finite-sample
performance of a parametric bootstrap version of the tests is illustrated via a series of Monte Carlo
experiments. The article concludes with applications on real data sets and discussion.

Keywords: goodness-of-fit; bivariate time series; probability generating function; time series of counts

1. Introduction

Time series of counts enjoy numerous applications in such diverse fields as business,
economics, engineering, and epidemiology, and corresponding inferential procedures have
been intensively studied in recent years. The reader is referred to the earlier work of
McKenzie (2003), as well as to the much updated full-book treatment of Davis et al. (2015)
and Weiss (2018a) for an overview of the subject. Among the most popular models for count-
time series are the integer autoregression (INAR) model and the Poisson autoregressive
(PAR) model, also termed Poisson INARCH model. The INAR and PAR models, originally
conceived for univariate counts, have been extended in order to accommodate bivariate,
and more generally multivariate counts; see Latour (1997) and Liu (2012), respectively.
One of the basic parametric elements of these generalizations involves moving from a
univariate to a bivariate distribution, and eventually to a multivariate one.

In this connection, when confronted with a vectorial data-set of time series of counts,
and since one is presented with a choice of several possible candidate models, it is extremely
important to check model-adequacy via some goodness-of-fit (GOF) test. Otherwise a
poorly fitted model might yield misleading inference. Various such procedures have
been proposed in the literature for univariate series of counts. A brief overview of these
approaches is provided in Section 2.

Inspired by the univariate test criteria, we propose GOF tests for bivariate INAR and
PAR models. Our tests mainly target the (by far most popular) Poisson specification of these
models, but also involve other structural aspects, such as order and functional specification
of the underlying model. The suggested test statistic is constructed as a contrast between
an estimator of the probability generating function (PGF) which is entirely model-free and
a semiparametric counterpart that “respects” the model under test. Hence each new test
may be viewed as a bivariate extension of the earlier PGF-based procedure suggested by
Meintanis and Karlis (2014), Hudecová et al. (2015) and Schweer (2016).
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The remainder of this work unfolds as follows. Section 2 provides a review of the
models considered and of goodness-of-fit testing for univariate time series of counts. In
Sections 3 and 4 we introduce the bivariate models and the new test criteria. In Section 5
the asymptotic properties of the methods are investigated and resampling versions of the
tests are proposed. An extension of one the tests to a more complicated model is discussed
in Section 6. The finite-sample properties of the new criteria are studied by means of
Monte Carlo methods in Section 7. Applications to real data sets are included in Section 8
while our final thoughts regarding the news methods and potential extensions thereof are
summarized in Section 9. Proofs of asymptotics are provided in Appendix A.

2. Goodness-of-Fit Methods for Univariate Time Series of Counts

Many of the models for time series of low counts assume that conditionally on the
past, the distribution of the current variable is fully specified by a family of laws indexed by
a certain parameter. An important example is a class of integer autoregressive conditionally
heteroscedastic (INGARCH) models, covering PAR models as special cases. Different
models are based on the thinning operator see Steutel and van Harn (1979), with the
INAR model being the most popular one. In the following, a count distribution refers to a
discrete distribution on N0 = N∪ {0} and a count variable is a random variable with such
distribution.

Let {Yt} = {Yt, t ∈ Z} be a univariate time series and let Ft = σ{Ys, s ≤ t} is the
information known up to time t. An integer GARCH model, abbreviated as nonlinear
INGARCH(p, q), is defined as

Yt|Ft−1 ∼ F(λt), λt = r(Yt−1, . . . , Yt−p, λt−1, . . . , λt−q, η), (1)

where F(λ) is some count distribution with mean λ, and the regression function r :
[0, ∞)p+q × Θ belongs to some specific parametric family of functions R = {r(·, η) :
η ∈ Θ ⊂ Rk} for some k ≥ 1. If F is Poisson and R is a family of linear functions then
this model is referred to as Poisson (linear) INGARCH, see Ferland et al. (2006). Some
authors also use the name Poisson autoregression for cases where F is Poisson and r could
be nonlinear, see, e.g., Fokianos and Tjøstheim (2009), Fokianos and Tjøstheim (2012),
Fokianos (2012), for the case p = q = 1. If q = 0 then the model has a purely autoregressive
structure and is abbreviated as INARCH(p). In the following the acronym PAR(p) is used
for INARCH(p) with F Poisson and r linear. It has been shown that if p = q = 1 and r is
linear, i.e., r(x, η) = η1 + η2x1 + η3x2, and if ηi ≥ 0 and η2 + η3 < 1 and F belongs to the
single-parameter exponential family of distributions (that includes the Poisson distribution
as a special case), then there exists a strictly stationary and ergodic solution of (1), see
Davis and Liu (2016). For an overview of conditions for strict stationarity and ergodicity
for other choices of F see e.g., (Ahmad and Francq 2016, Section 3).

A different class of models consists of integer autoregressive moving average (IN-
ARMA) models. These models arise from the same structure as the classical ARMA time
series models, but the multiplication sign is replaced by the Steutel and van Harn’s thinning
operator ◦. If Y is a count random variable and α ∈ (0, 1) then

α ◦Y :=
Y

∑
i=1

Ui, (2)

where {Ui} are iid Bernoulli variables with α = P(Ui = 1) = 1− P(Ui = 0), which are
independent of Y, with the convention that an empty sum (the case Y = 0) equals 0. Let
{εt} be a sequence of iid count random variables with distribution G with a finite variance,
and let αi, β j ∈ (0, 1) for i = 1, . . . , p, j = 1, . . . , q. The INARMA(p, q) model is defined as

Yt =
p

∑
i=1

αi ◦Yt−i + εt +
q

∑
j=1

β j ◦ εt−j, (3)
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where the Bernoulli variables involved in all the thinning operations are independent and
independent of {εt}. If p = 1, q = 0 then the model (3) corresponds to the INAR(1) model
introduced in McKenzie (1985) and Al-Osh and Alzaid (1987), taking the following form

Yt = α ◦Yt−1 + εt =
Yt−1

∑
i=1

Ut,i + εt. (4)

For α ∈ (0, 1) there exists a strictly stationary solution of (4) and the law of the innova-
tions {εt} uniquely determines the marginal distribution of Yt as well as the conditional
distribution Yt|Ft−1. In particular, if {εt} are iid Poisson then Yt has Poisson distribution
as well, and this special case has been considered in many applications. Model (3) with
p > 1, q = 0, was introduced and studied by Du and Li (1991) and since then, many
authors have considered variants of model (3), various extensions and modifications, see
Scotto et al. (2015) for a comprehensive review.

Various GOF tests have been suggested in the literature for the aforementioned two
classes of models. Neumann (2011) and Fokianos and Neumann (2013) considered GOF
tests for the regression function r in a Poisson INGARCH(1,1); see model (1) with p = q = 1
and Poisson F. A slightly less formal assessment of model adequacy is explored in
Aleksandrov and Weiss (2020) for a PAR(1) model as well as for a Poisson INAR(1). GOF
tests based on the sample index of dispersion were considered in Schweer and Weiss (2014)
and Weiss et al. (2019) for a Poisson INAR(1), and by Weiss and Schweer (2015) for a PAR(1).
A test based on the classical Pearson’s χ2 statistic for the marginal distribution specified by
the null hypothesis is proposed by Weiss (2018b) for a Poisson INAR(p).

A different approach to GOF testing for time series of counts is based on the probability
generating function (PGF). Recall that if Y is a nonnegative discrete random variable then its
PGF is defined as gY(u) = EuY for all u for which the expectation is finite, which is always
the case for u ∈ [0, 1]. The distribution of Y can be easily obtained from g(k)Y (0) and thus the
PGF uniquely determines the distribution of Y. If Y = (Y1, Y2)

> is a count random vector
then its PGF is defined as gY(u) = E

(
uY1

1 uY2
2

)
and exists for all u = (u1, u2)

> ∈ [0, 1]2.

Test criteria involving the estimates of the PGF of (Yt, Yt−1)
> have proved as useful not

only for assessing the specification of F in (1) or G in (4), but also for determination the
model itself, see Meintanis and Karlis (2014) for INAR(1) and Schweer (2016) for a more
general setup involving INAR(1) and PAR(1) as special cases. In both mentioned articles
the considered test statistic is an integrated L2 distance between the empirical PGF of
(Yt, Yt−1)

> and the parametric estimate of g(Yt ,Yt−1)>
under the null hypothesis. Hudecová

et al. (2015) also consider tests based on PGF, but instead of the estimator g(Yt ,Yt−1)>
, their

criteria are constructed as an integrated L2 distance between the nonparametric estimate
ĝn(u) = n−1 ∑n

t=1 uYt of the marginal PGF gY and a semiparametric estimate of gY, which
is model-specific. In the following sections we extend this approach from the univariate to
the bivariate setup.

3. Bivariate Models for Time Series of Counts

The bivariate INAR and PAR models considered in this paper are based on the
following bivariate distribution: We say that Y = (Y1, Y2)

> follows a bivariate Poisson
distribution, see Kocherlakota and Kocherlakota (1992), denoted as BP(λ1, λ2, φ), if its
PGF is

gY(u) = exp{λ1(u1 − 1) + λ2(u2 − 1) + φ(u1 − 1)(u2 − 1)}, u ∈ [0, 1]2, (5)

where λ1 − φ > 0, λ2 − φ > 0, φ > 0. This distribution arises via the trivariate reduction
method, i.e., Y1 = U1 + U2, Y2 = U1 + U3, where U1, U2, U3 are independent with Poisson
distribution with mean φ, λ1 − φ, λ2 − φ respectively.
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The models based on this kind of bivariate Poisson distribution seem to be the most popu-
lar in the literature despite some of their limitations. Please note that a different construction of
a bivariate distribution with Poisson marginals is considered in Lakshminarayana et al. (1999).

3.1. Bivariate INAR Model

Suppose that we have a time series {Yt} composed by a pair of counts, i.e., Yt :=
(Yt,1, Yt,2)

>. Following Latour (1997) we say that {Yt} follows a bivariate INAR model of
the first order, in the following referred to as BINAR, if

Yt = A ◦ Yt−1 + εt, (6)

where εt = (εt,1, εt,2)
> are iid bivariate count random vectors with finite covariance matrix,

A denotes a 2× 2 matrix with elements aij, i, j = 1, 2, and the operator ◦ is a multivariate
generalization of (2). Namely the operator ◦ from (6) acts on a count random vector Y of
dimension two by means of the equation

A ◦ Y =

(
a11 ◦Y1 + a12 ◦Y2

a21 ◦Y1 + a22 ◦Y2

)
,

where the univariate thinning operators was defined in (2).
Latour (1997) showed that if the spectral radius (the absolute value of the largest eigen-

value) of A is smaller than 1 and εt has a finite covariance matrix then there exists a strictly
stationary and ergodic process satisfying (6). Furthermore, the conditional least squares
(CLS) estimate is shown to be consistent and asymptotically normal. Maximum likelihood
estimation is considered in Pedeli and Karlis (2011) and Pedeli and Karlis (2013c), with a
special emphasis on the Poisson specification for εt. For estimation of BINAR with negative
Binomial innovations the reader is referred to Mamode Khan et al. (2019) and references
therein.

3.2. Bivariate PAR Model

Let Ft = σ{Ys, s ≤ t}. We say that {Yt} follows a bivariate Poisson autoregression
model of the first order, referred to as BPAR, model if,

Yt|Ft−1 ∼ BP(λt,1, λt,2, φ), λt =

(
λt,1

λt,2

)
=

(
α1

α2

)
︸ ︷︷ ︸

α

+

(
b11 b12

b21 b22

)
︸ ︷︷ ︸

B

(
Yt−1,1

Yt−1,2

)
, (7)

where α1, α2 ≥ 0 and the matrix B has non-negative entries and is of full-rank. This
model is sometimes referred to as a bivariate Poisson INARCH(1) model, e.g., Lee et al.
(2018). Liu (2012) proved that if 21−1/p‖B‖p < 1 for some 1 ≤ p ≤ ∞ then {Yt, λt} is
strictly stationary and ergodic, with ‖B‖p = supx 6=0, x∈C2 ‖Bx‖p/‖x‖p. Strong consistency
of the conditional maximum likelihood estimator (CMLE) of parameters was proved by
Andreassen (2013) under the extra assumption φ < min{α1, α2}, while Lee et al. (2018)
further showed that the CMLE has an asymptotic normal distribution.

4. Goodness-of-Fit Tests

Assume that we have observations Y1, . . . , Yn, which come from a stationary bivariate
time series of counts and we would like to perform a GOF test to a particular model for
this data, with the model being fixed apart from finite-dimensional parameters. Let υ(·, ·)
be a non-negative weight function which will be further specified below. We propose as
test statistic the weighted distance measure

Sn,υ = n
∫ 1

0

∫ 1

0
[ĝn(u1, u2)− ĝn,0(u1, u2)]

2υ(u1, u2)du1du2, (8)
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where ĝn(u1, u2) is a non-parametric estimate of gY(u1, u2) based on Y1, . . . , Yn, given by
ĝn(u1, u2) = n−1 ∑n

t=1 uYt,1
1 uYt,2

2 and where ĝn,0(u1, u2) is a semi-parametric estimate of the
PGF gY(u1, u2) of Y, which is constructed specifically under the model being tested. The
null hypothesis is rejected for large values of Sn,υ.

By analogy to most, if not all, of the previously published work we consider u ∈ [0, 1]2 as
our working interval, despite the fact that uniqueness of PGFs and corresponding consistency
of the test might require working on a region of u containing the origin. Nevertheless we
further investigate this aspect of our tests by simulations. See Esquível (2008) for a recent
account of uniqueness of PGFs.

Although the idea of the proposed test statistics is analogous as for the univariate
models mentioned in Section 2, the extension to a bivariate case is not straightforward,
neither in terms of asymptotics nor on computational grounds as the multivariate nature of
the data brings in some elevated technical difficulties. We state the necessary assumptions
and provide a formal proof for the asymptotics of the suggested test statistic. In addition,
extension of our GOF tests to more complex models is briefly discussed. In fact, and
although here we only treat the bivariate case, extension to higher dimension also comes
completely natural with our methods.

4.1. Tests for the BINAR Model

Let G = {gε(·; θ) : θ ∈ Θ} denote a parametric family of PGFs indexed by a parameter
θ ∈ Θ, with Θ being a compact subset of Rk, k ∈ N. We would like to test the null
hypothesis

H0 :{Yt} follows model (6) for some sequence εt with PGF in G.

Assume that {Yt} is strictly stationary with PGF gY. Then it follows from the proper-
ties of BINAR that

gY(u1, u2) = E
(

uYt,1
1 uYt,2

2

)
= E

(
E
(

uYt,1
1 uYt,2

2 |Ft−1

))
(9)

= gε(u1, u2; θ) · gY(w11w21, w12w22),

where
wij = wij(u, a) = 1 + aij(ui − 1),

and a := vec(A) = (a11, a21, a12, a22)
> denotes the vectorized version of A.

Here we used the fact that for a Binomial distribution with parameters (m, p) the PGF
is (1 + p(u− 1))m, so that if additionally â and θ̂ are suitable estimators of the unknown
parameters, then (9) yields a semi-parametric estimate of gY under model (6) as

ĝn,0(u1, u2) = gε(u, θ̂)ĝn(ŵ11ŵ21, ŵ12ŵ22), (10)

where ŵij = wij(u, â).
We will consider a GOF test for the null hypothesis H0 with G being the family of

bivariate Poisson distributions with unspecified parameters. Interest in testingH0 lies in
the fact that while this distribution is by far the most popular in the univariate as well as in
the multivariate context, alternative specifications have also been employed such as models
with innovations following a bivariate negative Binomial distribution; see for instance
Pedeli and Karlis (2013a), Popović et al. (2018), and Kim and Lee (2017). Also BPAR models
(see next section) may be considered to be alternative models of interest.

4.2. Tests for the BPAR Model

The corresponding null hypothesis for the BPAR model is formulated as

H̃0 : {Yt} follows model (7).
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If {Yt} is strictly stationary, then it follows from the properties of the model that the
PGF of Yt is given by

gY(u1, u2) =E
(

uYt,1
1 uYt,2

2

)
= E

(
E(uYt,1

1 uYt,2
2 |Ft−1)

)
(11)

= E(exp{λt,1(u1 − 1) + λt,2(u2 − 1) + φ(u1 − 1)(u2 − 1)})
= eφ(u1−1)(u2−1)+α1(u1−1)+α2(u2−1)

× E
(

eYt−1,1[b11(u1−1)+b12(u2−1)]eYt−1,2[b21(u1−1)+b22(u2−1)]
)

= eφ(u1−1)(u2−1)+α1(u1−1)+α2(u2−1)gY(w1, w2), (12)

where
wi = eb1i(u1−1)+b2i(u2−1), i = 1, 2. (13)

Thus, if we have an appropriate estimator θ̂ of the parameter θ := (α>, vec(B), φ)> =
(α1, α2, b11, b21, b12, b22, φ)>, then in view of (11) we may define a semi-parametric estimate
of gY as

ĝn,0(u1, u2) = eφ̂(u1−1)(u2−1)+α̂1(u1−1)+α̂2(u2−1) ĝn(ŵ1, ŵ2) := c(u, θ̂)ĝn(ŵ1, ŵ2), (14)

where
ŵi = eb̂1i(u1−1)+b̂2i(u2−1),

and
c(u, θ) = eφ(u1−1)(u2−1)+α1(u1−1)+ α2(u2−1). (15)

Deviations from the null hypothesis H̃0 include non-Poisson conditionals (see Heinen
and Rengifo (2007)) as well as model violations towards more general specifications.

Remark 1. We should remark that the tests proposed in this article are not for BINAR or BPAR
models per se. Specifically the test criterion for BINAR is for bivariate counts for which the PGF
satisfies Equation (9), and analogously the test criterion for BPAR is for bivariate counts for which
the PGF satisfies Equation (12). In the context of time series of counts however, BINAR and BPAR
models are framed by equations (9) and (12), respectively, to such an extend that for all practical
purposes these equations may be regarded as characterizing equations for the models themselves.
Thus, our tests could be viewed as being on an equal footing with universally consistent methods
such as those suggested by Fokianos and Neumann (2013), Jiménez-Gamero et al. (2020), and
Leucht et al. (2015).

4.3. Computations

From (8) and by means of (10) and (14), we have after straightforward algebra

Sn,υ =
1
n

n

∑
i=1

n

∑
j=1

∆i,j,

where ∆i,j = ∆(Yi, Yj) with

∆i,j =
∫ 1

0

∫ 1

0
Di(u1, u2)Dj(u1, u2)υ(u1, u2)du1du2 (16)

where
Di(u1, u2) = uYi,1

1 uYi,2
2 − gε(u1, u2; θ̂)(ŵ11ŵ21)

Yi,1(ŵ12ŵ22)
Yi,2 ,

for the BINAR model, and

Di(u1, u2) = uYi,1
1 uYi,2

2 − c(u, θ̂)ŵYi,1
1 ŵYi,2

2 ,
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for the BPAR model.
The integral figuring in Equation (16) with weight function υ(u1, u2) = uγ

1 uγ
2 , γ ≥ 0,

may be expressed in more elementary terms. However the final fully reduced explicit
forms, which are available from the authors upon request, are not convenient from the
computational point of view. Thus, the tests were implemented by numerical evaluation of
the corresponding integrals.

5. Asymptotics

In this section, we study the asymptotic distribution of the test statistic Sn,υ under
the null hypothesis of a BINAR model as well as the corresponding limit null distribution
under a BPAR model. Results for the behavior under fixed alternatives are also provided
and show that in both cases the test is consistent against certain fixed alternatives. Finally
resampling versions are proposed that circumvent the problem of unknown components
in the aforementioned limit null distributions. Please note that under the standing assump-
tions these results are valid for general innovation distribution and weight function as well
as for arbitrary parameter-estimates.

5.1. Asymptotics of the Test Statistic: BINAR Case

Assume the test statistic Sn,υ (8) is constructed for testing H0 with specified G =
{gε(·; θ) : θ ∈ Θ}, for a compact Θ, i.e., the semi-parametric estimate ĝn,0 is constructed
by (10). Consider the following assumptions:

(A.1) Let υ(·, ·) be a non-negative function satisfying 0 <
∫ 1

0

∫ 1
0 υ(u1, u2)du1du2 < ∞.

(A.2) Let {Yt} follow model (6), where the spectral radius of A is smaller than 1.

(A.3) Let G correspond to distributions with finite second moment. Furthermore, let the
second partial derivatives of gε with respect to θ exist and be continuous in θ and
suppose that

sup
u∈[0,1]2,θ∈Θ

∣∣∣∣∂gε

∂θi
(u, θ)

∣∣∣∣ < ∞,

sup
u∈[0,1]2,θ∈Θ

∣∣∣∣∣ ∂

∂ui

∂gε

∂θj
(u, θ)

∣∣∣∣∣ < ∞,

∫
[0,1]2

∣∣∣∣∣ ∂2gε

∂θi∂θj
(u, θ)

∣∣∣∣∣υ(u)du < ∞

hold true for all θ ∈ Θ and i, j ∈ {1, . . . , k}, where (recall) that k is the dimension
of θ.

(A.4) Let ζ̂ := (θ̂
>

, â>)> be an estimator of ζ := (θ>, a>)> such that for some q ≥ 1

√
n(ζ̂ − ζ) =

1√
n

n

∑
t=q+1

l(Yt, Yt−1, . . . , Yt−q, ζ) + oP(1),

where lt = l(Yt, Yt−1, . . . , Yt−q, ζ) = (l>t,1, l>t,2)
> form a strictly stationary and

ergodic sequence of martingale differences with finite variance. Here, lt,1 is of the
same dimension as θ and lt,2 has the dimension of vec(A), i.e., four.

Under (A.2) and (A.3), {Yt} is strictly stationary and ergodic with finite second order
moments, see Franke and Rao (1995). Regarding possible estimators ζ̂ in (A.4), Franke
and Rao (1995) considered the CMLE and proved its asymptotic normality under a set of
regularity conditions. These conditions involve the finiteness of E

(
‖εt‖3) and some further

assumptions on the distribution of εt.
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Theorem 1. Under (A.1)–(A.4) and as n → ∞, the limit distribution of Sn,υ under the null
hypothesisH0 is the same as the distribution of∫

[0,1]2
Q2(u, ζ)υ(u)du,

where {Q(u, ζ), u ∈ [0, 1]2} is a Gaussian random field with zero mean and covariance structure

E
(
Q(u, ζ)Q(v, ζ)

)
=E
(
[u

Yq+1,1
1 u

Yq+1,2
2 − gε(u, θ)Wq(u, a)− lq+1,1(ζ)

>h2(u, ζ)− lq+1,2(ζ)
>h3(u, ζ)]

× [v
Yq+1,1
1 v

Yq+1,2
2 − gε(v, θ)Wq(v, a)− lq+1,1(ζ)

>h2(v, ζ)− lq+1,2(ζ)
>h3(v, ζ)]

)
,

where lq+1,1 and lq+1,2 are from assumption (A.4) and

Wt(u, a) =
2

∏
i,j=1

wij(u, a)Yt,j ,

h2(u, ζ) = ∇θgε(u, θ)gY(w11w21, w12w22),

h3(u, ζ) = gε(u, θ)E(∇aW1(u, a)).

The proof of the assertion is postponed to the Appendix A.
The asymptotic distribution of the test statistic Sn,υ depends on several unknown

quantities. One possibility is to generate the Gaussian random field figuring in Theorem 1
with the theoretical quantities replaced by some consistent estimators and then compute
the critical values. Another possibility is the parametric bootstrap, which is quite natural
here. The justification of the bootstrap approximation under the null hypothesis proceeds
along similar lines as the proof of Theorem 1, conducted conditionally on the observed data
Y1, . . . , Yn and with the help of assertions for triangular arrays and sums of martingale
difference arrays.

Write Sn := Sn(Y1, . . . , Yn; ζ̂) for the test statistic based on the original observations
Y1, . . . , Yn, and the resulting parameter estimate ζ̂. (Here for simplicity we suppress the
dependence of Sn,υ on the weight function υ(·, ·)).

1. Generate ε∗t , t = 1, ...n, where ε∗t are iid and follow the distribution with PGF gε(u, θ̂).

2. Compute pseudo-observations Y∗t , t = 1, ...n, using Equation (6) with εt replaced by
ε∗t , t = 1, ...n, and A replaced by Â.

3. Fit the model (6) using Y∗1 , . . . , Y∗n, and compute the bootstrap estimator ζ̂
∗

of ζ.

4. Compute the corresponding test statistic S∗n := Sn(Y∗1 , . . . , Y∗n; ζ̂
∗
).

5. Repeat steps 1–4 several times, say B, and obtain the sequence of test statistics,
S∗1,n, . . . , S∗B,n.

6. Compute the p-value as (#b : S∗b,n ≥ Sn)/(B + 1).

Next we shortly discuss the limit behavior of the test statistic under alternatives of
type gε /∈ G. We assume that model (6) holds true but gε in the null hypothesis H0 does

not belong to G. Moreover suppose that the estimators (θ̂
>

, â>)> satisfy

(θ̂
>

, â>)> P→ (θ>A , a>A)
>, (17)

for some θA ∈ Θ and some aA such that the largest eigenvalue of the respective matrix AA
is in absolute value smaller then 1.
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Theorem 2. Let {Y t} be strictly stationary with PGF gA(u1, u2) that is continuous in (u1, u2) ∈
[0, 1]2 and let gε(u, θ) be continuous in θ. Let (A.1) and (17) be satisfied. Then, as n→ ∞,

Sn,v

n
P→
∫
[0,1]2

{
gA(u)− gε(u, θA)gA(w11,Aw21,A, w12,Aw22,A)

}2
v(u)du, (18)

where wij,A = wij(u, aA), i, j = 1, 2.

The proof is omitted since it suffices to follow the line of proof of Theorem 1 and use
stationarity and ergodicity of {Yt}.

The right-hand side of (18) is strictly positive unless the true PGF gε(·) coincides with
the PGF gε(·; θa) from the null hypothesis H0. This fact and the uniqueness of the PGF
implies the consistency of the test which rejects the null hypothesis H0 for large values
of the test statistic Sn,v under such fixed alternatives. The test is also consistent for other
types of fixed alternatives, e.g., against model violation. This feature of the test is further
illustrated by Monte Carlo simulations in Section 7.

Please note that the test even has (non-negligible) power for some local alternatives,
i.e., when the difference gε(u) − gε(u; θa) tends to 0 not too fast as n → ∞ and gε(u)
depends on n. However, a rigorous proof of this result is quite technical, and therefore it is
not discussed here any further.

5.2. Asymptotics of the Test Statistic: BPAR Case

This section considers the problem of testing the BPAR model. Recall that θ =
(α1, α2, b11, . . . , b22, φ)> stands for the vector of the parameters of the model (7), and sup-
pose that:

(B.1) The series {Yt} is strictly stationary solution of (7) with parameters θ ∈ Θ such
that φ < min{α1, α2} and Θ is compact.

(B.2) The estimator θ̂ of the parameter θ is such that

√
n(θ̂− θ) =

1√
n

n

∑
t=q+1

l(Yt, Yt−1, . . . , Yt−q, θ) + oP(1),

where lt = l(Yt, Yt−1, . . . , Yt−q, θ) = (lt,1, . . . , lt,7)> form a strictly stationary and
ergodic sequence of martingale differences with finite variances.

An estimator θ̂ that satisfies (B.2) is for instance the CMLE; see Lee et al. (2018).

Theorem 3. Under (A.1),(B.1)–(B.2) the limit distribution of Sn,υ as n → ∞ is the same as the
distribution of ∫

[0,1]2
Q2(u, θ)υ(u)du,

where {Q(u, θ), u ∈ [0, 1]2} is a Gaussian random field with zero mean and covariance structure

E
(
Q(u, θ)Q(v, θ)

)
=E
(
[uYt,1

1 uYt,2
2 − c(u, θ)w1(u)Yt,1 w2(u)Yt,2 + l>t d(θ, u)]

× [vYt,1
1 vYt,2

2 − c(v, θ)w1(v)Yt,1 w2(v)Yt,2 + l>t d(θ, v)]
)

,

with lt defined in assumption (B.2), c(u, θ) defined in (15),

wi(u) = eβi1(u1−1)+βi2(u2−1), i = 1, 2,

d(θ, u) = c(u, θ)E
(

D1(u)w
Y1,1
1 wY1,2

2

)
and
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Dt(u) = (u1 − 1, u2 − 1, (u1 − 1)Yt,1, (u1 − 1)Yt,2, (u2 − 1)Yt,1, (u2 − 1)Yt,2, (u1 − 1)(u2 − 1))>.

Similarly as for the BINAR model, the parametric bootstrap can be carried out in a
very natural way and is recommended for practical use. The justification of the bootstrap
approximation would again proceed along similar lines as the proof of Theorem 3.

The following theorem is analogous to Theorem 2 and describes the behavior of the
test statistic under some alternatives.

Theorem 4. Let {Yt} be strictly stationary with PGF, g̃A(u1, u2) that is continuous in (u1, u2) ∈
[0, 1]2 and let the estimator θ̂ of θ = (α>, vec(B)>, φ)> satisfy θ̂→P θA for some θA ∈ Θ. Let
(A.1) be satisfied. Then, as n→ ∞,

Sn,v

n
P→
∫
[0,1]2

{(
g̃A(u)− c(u, θA)g̃A(w1,A, w2,A)

}2
υ(u)du,

where w1,A, w2,A are defined by (13) with bij replaced by bij,A, and c(u, θ) is defined in (15).

The proof is omitted since it suffices to follow the line of the proof of Theorem 3 and
to use stationarity and ergodicity of {Yt}. Possible comments for this theorem are quite
parallel to Theorem 1 and therefore are omitted.

6. Extension to Generalized BPAR Model

Extension of the proposed test to arbitrary higher order or dimension will be discussed
in Section 9. In this section we aim at a new PGF-based GOF test for a relatively mild,
yet very important, generalization of the BPAR model. Specifically consider the following
model for {Yt}:

Yt|Ft−1 ∼ BP(λt,1, λt,2, φ), λt = α + Aλt−1 + BYt−1, (19)

where α = (α1, α2)
> with α1, α2 ≥ 0, A, B are matrices of non-negative entries and B is of

full rank. (Please note that if A is replaced by the zero matrix, then model (19) reduces to the
BPAR model defined in (7)). Model (19) was studied, e.g., in Andreassen (2013), Liu (2012),
and Lee et al. (2018), with the acronym INGARCH(1,1). If ‖A‖p + 21−1/p‖B‖p < 1 for
some 1 ≤ p ≤ ∞, then {Yt, λt} is strictly stationary and ergodic, see Liu (2012), and
if φ < min{a1, a2}, where (a1, a2)

> = (I − A)−1α, then the CMLE is consistent and
asymptotically normal, see Andreassen (2013), Lee et al. (2018).

Assume that {Yt} follows a stationary model (19). Following analogous arguments as
in Section 4.2 we have that the PGF of Y under this model is given by,

gY(u1, u2) =E
(

uYt,1
1 uYt,2

2

)
= E

(
E
(

uYt,1
1 uYt,2

2 |Ft−1

))
(20)

= E(exp{λt,1(u1 − 1) + λt,2(u2 − 1) + φ(u1 − 1)(u2 − 1)})

= eα1(u1−1)+α2(u2−1)+φ(u1−1)(u2−1)E
(

wYt−1,1
1,b wYt−1,2

2,b wλt−1,1
1,a wλt−1,2

2,a

)
= eα1(u1−1)+α2(u2−1)+φ(u1−1)(u2−1)hY,λ(w1,b, w2,b, w1,a, w2,a),

where
wi,a = ea1i(u1−1)+a2i(u2−1), wi,b = eb1i(u1−1)+b2i(u2−1), i = 1, 2, (21)

with the joint PGF of the vector (Y>, λ>)> defined by

hY,λ(u1, u2, v1, v2) := E
(

uYt,1
1 uYt,2

2 vλt,1
1 vλt,2

2

)
.



Econometrics 2021, 9, 10 11 of 20

It is straightforward to device a test for the model (19) by using Equation (20) and
proceeding analogously as with Equation (8). However the asymptotics of such a test
as well as its actual implementation require a separate investigation. In this connection
preliminary Monte Carlo results showed some promise but there were also problems, and
therefore we decide not to pursue this extension any further here.

7. Simulations

The finite sample behavior of the suggested bootstrap test is investigated in the
following simulation study. We consider the null hypotheses H0 of Poisson BINAR and
H̃0 of BPAR model and investigate the size of the test under the null hypothesis and the
power for various alternatives.

The unknown parameters of the BINAR model are estimated using the CLS method,
and φ is estimated using the moment method, see Pedeli and Karlis (2013b). The parameters
of BPAR model are estimated by the CMLE method. For simplicity the weight function is
set to υ(·, ·) ≡ 1, i.e., we take γ = 0 in υ(u1, u2) = uγ

1 uγ
2 . The simulations were conducted

in the R-computing environment R Core Team (2019) and by employing the warp-speed
bootstrap of Giacomini et al. (2013) for M = 1000 repetitions. When using this method,
B=1 bootstrap samples are generated for each Monte Carlo repetition and the resulting
p-value is computed from the overall bootstrap sample of M replicas.

Our results are for sample size n = 100, 200 and n = 500 at level of significance
α = 0.01, 0.05 and 0.1 for bothH0 and H̃0. For the BINAR model, a reasonable alternative
might be BPAR model or model (6) with innovations εt following a distribution other
than the bivariate Poisson. Such a popular alternative is a bivariate distribution with
negative Binomial marginals. There are several possibilities as to how to generate such
variables. Here we consider the bivariate negative Binomial distribution BNB(λ1, λ2, r)
of Dunn (1967), whereby (U1, U2)

> ∼ BNB(λ1, λ2, r), with Ui, i = 1, 2, being marginally
negative Binomial with mean λi and variance λi(1+ λi/r) and cov(U1, U2) = λ1λ2/r. This
bivariate negative Binomial distribution is also used in an alternative considered to a BPAR
model. Namely a model of form (7) with conditional distribution BNB(λt1, λt2, r) instead
of bivariate Poisson is considered, with the dependence of λti on Ft−1 the same as specified
in Equation (7). We will refer to this model as the negative Binomial BINARCH. Finally,
we also explored the power of the test when testing H̃0 and the data follow BINAR model
and vice versa.

The results for the size of the two tests are summarized in Table 1 and for the BINAR
model were obtained by using either A = A1 or A = A2, where

A1 =

(
0.3 0.1
0.2 0.2

)
, A2 =

(
0.6 0.0
0.0 0.7

)
,

and εt following a BP(6, 4, 3) distribution. For BPAR, we set α = (6, 4)>, φ = 3, and again
B equal either to A1 or A2. As it may be seen from Table 1, the tests are conservative if the
matrix A1 is used in the data generating process. On the other hand, the size slightly exceeds
the nominal size α if A2 is used in the data generating process Please note that a similar
phenomenon was already observed for the univariate series in Hudecová et al. (2015): The
test may be slightly conservative for certain parametric settings of the model at hand,
while it can be slightly anticonservative for other settings. Recall also that the unknown
parameters are estimated by a CLS method for BINAR models whereas CMLE is used for
BPAR models, which might also partly explain the different behaviour observed in Table 1.
In either case however, the observed size approaches the prescribed significance level as
the sample size increases.

In this connection, the rather poor small sample behavior observed in the left part
of Table 1 for the BINAR model parameterised by the matrix A1, can be improved by
considering a modified test statistic for which integration in Equation (8) is carried over
[−1, 1]2 rather than over [0, 1]2; see the corresponding discussion at the end of Section 4.
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Specifically this approach (performed on the same simulated data) and for nominal size
α = 0.05 leads to empirical size equal to 0.033, 0.039 and 0.052, for n = 100, 200, and
500, respectively. For all other settings however, the results for the modified test statistic
(available from the authors upon a request) are very similar and hence we only present
here results for the original test statistic Sn,υ defined by Equation (8).

Table 1. Size of the test for testing Poisson BINAR inH0 and BPAR in H̃0.

Poisson BINAR BPAR

A = A1 A = A2 B = A1 B = A2

n\α 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

100 0.000 0.010 0.030 0.011 0.039 0.104 0.002 0.029 0.075 0.013 0.077 0.145
200 0.001 0.010 0.048 0.017 0.065 0.114 0.006 0.040 0.076 0.028 0.094 0.168
500 0.002 0.025 0.069 0.005 0.049 0.105 0.005 0.050 0.094 0.014 0.053 0.127

The power of the test forH0 with data from a BINAR model with negative Binomial
innovations is provided in Table 2. The considered bivariate negative Binomial distribution
is BNB(6, 4, r) for r = 5, 10. Please note that for larger r, the BNB distribution is closer
to a bivariate Poisson distribution, and this fact is also reflected in the power of the test,
which is lower for r = 10. For example, a sample size n = 100 seems to be insufficient for
distinguishing between Poisson and negative binomial INAR for this larger r. However, as
the sample size n growths, the test performs very well even for r = 10 irrespective of the
matrix A being used to simulate the model.

Table 2. Power of the test forH0 for data from BINAR model with negative Binomial marginals.

A = A1 A = A2

r = 5 r = 10 r = 5 r = 10

n\α 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

100 0.005 0.139 0.328 0.004 0.065 0.135 0.357 0.581 0.694 0.080 0.196 0.296
200 0.120 0.639 0.902 0.009 0.119 0.331 0.715 0.897 0.955 0.167 0.432 0.540
500 0.951 1.000 1.000 0.132 0.884 0.984 1.000 1.000 1.000 0.637 0.861 0.920

A similar observation also holds for the results in Table 3 which correspond to the null
hypothesis H̃0 with data from a negative Binomial BINARCH. These results were obtained
with the same values of α and B used for the null hypothesis, and r = 30, 50.

Table 3. Power of the test for H̃0 with data generated by a negative Binomial BINARCH model.

B = A1 B = A2

r = 30 r = 50 r = 30 r = 50

n\α 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

100 0.085 0.357 0.469 0.060 0.169 0.265 0.347 0.672 0.821 0.124 0.350 0.526
200 0.446 0.740 0.833 0.143 0.345 0.460 0.448 0.871 0.956 0.203 0.568 0.746
500 0.942 0.989 0.994 0.502 0.701 0.797 0.810 0.996 1.000 0.524 0.874 0.957

On the other hand, Table 4 reports the power of the test forH0 with data following a
BPAR model and the power of the test for H̃0 with data from a Poisson BINAR model. The
results in Table 4 show that if the matrix B in the BPAR model equals A1 then the test for
H0 fails to distinguish between the two models for sample sizes up to n = 500. In contrast,
if the matrix B is equal to A2 in BPAR and we test for Poisson BINAR then the power is
satisfactory even for n = 200. The same observation holds for the opposite situation when
one tests for BPAR and the data come from a Poisson BINAR.
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Table 4. Power of the test of Poisson BINAR inH0 for data following BPAR and vice versa.

Test H0 for Data from BPAR Test H̃0 for Data from BINAR(1)

B = A1 B = A2 A = A1 A = A2

n\α 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

100 0.003 0.022 0.061 0.613 0.791 0.852 0.003 0.024 0.082 0.011 0.244 0.626
200 0.006 0.027 0.102 0.955 0.988 0.994 0.004 0.058 0.168 0.109 0.810 0.942
500 0.009 0.136 0.278 1.000 1.000 1.000 0.030 0.151 0.346 0.724 0.980 0.995

8. Real-Data Application

Joint modelling of count observations finds important applications in the insurance
industry, see for instance Partrat (1994), and Vernic (1997). In this connection, it is a common
practice for insurance companies to split the reported claims into several types. Typically,
it is reasonable to expect that aggregate amounts (daily or monthly) of these different types
of claims to be dependent, see, e.g., Shi et al. (2016). If the mean size of claims counts is
high, then classical models for continuous variables could be applied. On the other hand, if
the observed counts of claims are formed by small integers it is appropriate to treat the data
as genuine counts, and, consequently, engage models and methods specifically tailored for
count time series.

We illustrate this kind of application on real data sets on the monthly number of claims
of short-term disability benefits made by injured workers to the British Columbia Workers
Compensation Board. The time period is from January 1985 to December 1994. The original
data set from Freeland (1998) contains five time series corresponding to five different injury
categories: burn injuries, soft tissue injuries, cuts, dermatitis and dislocations. These five
time series have been previously analyzed by several authors, and separate univariate
models were fitted. It has been found that the Poisson INAR is appropriate for all five series,
except for series #3 (cuts), for which this model is not appropriate, see e.g., Freeland (1998),
Zhu and Joe (2006), Hudecová et al. (2015). In particular, Freeland and McCabe (2004) and
Zhu and Joe (2006) suggest to model the time series of cuts claims using an extension of
INAR(1) model with a seasonal component. On the other hand, Biswas and Song (2009)
argue that the ACF and PACF do not indicate a significant seasonal effect.

We first consider a bivariate series of soft tissue injuries claims and dermatitis claims;
see Figure 1 (left panel). Possible dependence among these two series may be due to the
fact that a major accident causes several injuries, often of different types. Previous analyses
in Freeland (1998) or Hudecová et al. (2015) reveal that the marginal INAR(1) models might
be appropriate for these two series. Hence, we consider a Poisson BINAR model with a
diagonal matrix A and estimate the parameters using the conditional least squares method
(note that if a general, i.e., non-diagonal, matrix A is considered, then the estimates of the
off-diagonal entries are very close to zero). Estimators of parameters were obtained by
the methods used in the simulations of the previous section. The matrix A is estimated
as Â = diag(0.452, 0.293), and the parameters of the bivariate Poisson distribution of the
innovations εt are estimated as λ̂ = (5.376, 0.202)>, φ̂ = 0.109. The resulting GOF test
applied with υ ≡ 1 and B= 999 bootstrap samples leads to Sn,υ = 8.618 · 10−4 with p-value
0.327. Thus, one may conclude that the Poisson BINAR model with a diagonal matrix A
seems to fit the data well.

On the other hand, if one considers a bivariate series of soft tissue injuries claims
and cuts claims, see Figure 1 (right panel), and tests the GOF for a Poisson BINAR model
with a diagonal matrix A (which corresponds to univariate INAR models for the two
series), the null hypothesis is rejected with p-value 0.0370. A Poisson BINAR with a general
matrix A is rejected as well (p-value 0.002). This is in accordance with the findings of
previous papers mentioned above. However, the hypothesis of BPAR is not rejected with
p-value 0.277. The MLEs in this model are α̂ = (5.144, 2.944)>, φ̂ = 0.721 and B̂ is such
that vec(B̂) = (0.455, 0.004, 0.043, 0.521)>. One could further scrutinize this data set by
postulating an extended (nonstationary) BPAR model with a seasonal component. This
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might improve the models’ predictions compared to the fitted stationary model, but such a
model lies outside the scope of this paper.
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Figure 1. Monthly number of claims. (a) Soft tissue injuries claims (black dots) and dermatitis claims (gray triangles).
(b) Cuts claims.

9. Concluding Remarks

We suggest consistent goodness-of-fit tests for bivariate INAR and bivariate Poisson
autoregressive models, estimated by least squares and maximum likelihood, respectively,
with well defined limit null distributions. Since these limit distributions are complicated
we suggest parametric bootstrap resampling which engages distributional assumptions
featuring in the null hypothesis in order to actually carry out the tests. Monte Carlo results
show that this bootstrap version of the new tests is generally reasonably sized and has good
power against certain popular alternative configurations. Our real-data applications are in
the direction of further scrutiny and better understanding of the mechanisms generating
the data at hand.

At this point, we wish to discuss potential extension of the tests to models of higher
order or dimension, such as the multivariate INAR type processes studied by Franke
and Rao (1995), Latour (1997), Pedeli and Karlis (2011), Pedeli and Karlis (2013c), and
Pedeli and Karlis (2013a), and corresponding extensions of PAR type models considered by
Liu (2012), Andreassen (2013), Lee et al. (2018), Ciu and Zhu (2018) and Ciu et al. (2020).
In this connection, and while it is conceptually straightforward to extend the tests for INAR
or PAR models of higher order, see also Section 6 of Hudecová et al. (2015), we wish to
emphasize the fact that a certain order and/or dimension increase brings about serious
challenges in estimation as well as on the actual implementation of the methods due to the
potentially great number of new parameters introduced.

Finally, before we close, we wish to point out that while this paper deals solely with
stationary time series models, certain real world phenomena, including time series of
counts, often exhibit deterministic trends or seasonal patterns, and thus GOF tests for
non-stationary models would be of great practical interest. However, despite the fact that
univariate INAR and PAR models with deterministic components have been extensively
studied in the literature, multivariate extensions of such nonstationary models are rather
scarce; we refer to Santos et al. (2019) for some recent works.
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 1.

Proof. Denote as A ⊂ [0, 1]4 such that if a ∈ A then A has the largest eigenvalue smaller
than 1. The test statistic Sn,υ is of the form

Sn,υ =
∫
[0,1]2

[
1√
n

n

∑
t=1

(
uYt,1

1 uYt,2
2 − gε(u, θ̂)Wt(u, â)

)]2

υ(u)du

=
∫
[0,1]2

[
1√
n

n

∑
t=2

(
uYt,1

1 uYt,2
2 − gε(u, θ̂)Wt−1(u, â)

)]2

υ(u)du + oP(1).

Let At = At(θ, a) = gε(u, θ)Wt(u, a). In the following, we omit for a moment the argument
u in all the considered functions. Namely we consider Wt = Wt(a) as a function of the
argument a alone, i.e., ∇Wt is a differential of Wt with respect to a, ∇Wt = ∇aWt =
(∂W/∂a11, ∂W/∂a12, ∂W/∂a21, ∂W/∂a22)

>. Likewise, ∇gε = ∇θgε is a differential of gε

with respect to θ. Then a Taylor expansion gives:

At(θ̂, â) = At(θ, a) +

(
θ̂− θ

â− a

)>(
Wt(a)∇gε(θ)

gε(θ)∇Wt(a)

)
+ Rt,

where

Rt =
1
2

(
θ̂− θ

â− a

)>(
Wt(a∗)Hgε(θ

∗) ∇gε(θ
∗)∇Wt(a∗)>

∇Wt(a∗)∇gε(θ
∗)> gε(θ

∗)HWt(a
∗)

)(
θ̂− θ

â− a

)
,

with a∗ = â + c(a − â) and θ∗ = θ̂ + d(θ− θ̂) for some c, d ∈ (0, 1) and where Hgε =(
∂2gε/(∂θk∂θl)

)
k,l is the k× k matrix of second partial derivatives of gε with respect to θ.

Similarly, HWt is the 4× 4 matrix of second partial derivatives of Wt with respect to a. For
∇Wt we have

∂Wt

∂aij
=

Wt

w
Yt,j
ij

Yt−1,jw
Yt,j−1
ij (ui − 1) = Wt

Yt,j

wij
(ui − 1),



Econometrics 2021, 9, 10 16 of 20

and clearly
∣∣∂Wt/∂aij

∣∣ ≤ Ytj for all u ∈ [0, 1]2 and a ∈ A. Furthermore,

∂2Wt

∂aij∂akl
=


Wt

Yt−1,jYt−1,l

wijwkl
(ui − 1)(uk − 1), (i, j) 6= (k, l),

Wt
Yt−1,j(Yt−1,j − 1)

w2
ij

(ui − 1)2 (i, j) = (k, l),

and thus,
∣∣∂2Wt/(∂aij∂akl)

∣∣ ≤ Yt−1,jYt−1,l for all u ∈ [0, 1]2 and all a ∈ A.
Due to the finite second order moments of {Yt} and Assumption (A.2) we have∣∣∣∣∣ 1√

n

n

∑
t=2

Rt

∣∣∣∣∣ ≤ K1
√

n‖θ̂− θ‖2 +
√

n‖â− a‖2K2 + K3
√

n(θ̂− θ)>1k×4(â− a),

where Ki are constants and 1k×4 is a matrix of 1’s of dimension k× 4. Hence, it follows

from the Cauchy–Schwartz inequality that
∫
[0,1]2

∣∣∣ 1√
n ∑n

t=2 Rt

∣∣∣2υ(u)du P→ 0, as n→ ∞, and
thus the asymptotic distribution of Sn,υ is the same as the asymptotic distribution of∫

[0,1]2
[J1n(θ, a, u) + J2n(θ, a, u) + J3n(θ, a, u)]2υ(u)du,

where

J1n(θ, a, u) =
1√
n

(
n

∑
t=2

uYt,1
1 uYt,2

2 − gε(u, ε)Wt−1(u, a)

)
,

J2n(θ, a, u) = −
√

n(θ̂− θ)>∇gε(u, θ)
1
n

n

∑
t=2

Wt−1(u, a),

J3n(θ, a, u) = −gε(u, θ)
√

n(â− a)>
1
n

n

∑
t=2
∇aWt−1(u, a).

Regarding the behavior of J2n, notice that |Wt(a)| ≤ 1 and thus, for a given a and as n→ ∞

1
n

n

∑
t=2

Wt−1(a)
P→ EW1(u, a) = E

2

∏
i,j=1

w
Y1,j
ij = gY(w11w21, w12w22),

uniformly in u ∈ [0, 1]2 due to the uniform ergodicity theorem. Now define

J2n0(θ, a, u) = −
[

1√
n

n

∑
t=q+1

lt1

]>
h2(θ, a, u),

where h2(θ, a, u) = ∇θgε(θ, u)gY(w11w21, w12w22). Due to (A.2), it follows that∫
[0,1]2 [J2n(θ, a, u)− J2n0(θ, a, u)]2υ(u)du = oP(1) as n→ ∞. Similarly, in view of the form

of ∇Wt−1(a) given above and the finiteness of EY1j, we get from the uniform ergodicity
theorem that as n→ ∞

gε(θ, a)
1
n

n

∑
t=2
∇Wt−1(u, a) P→ gε(u, θ)E∇W1(u, a) =: h3(θ, a, u)

uniformly in u ∈ [0, 1]2. Define

J3n0(θ, a, u) = −gε(θ, u)

[
1√
n

n

∑
t=q+1

lt2

]>
h3(θ, a, u).
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As |h3(θ, a, u)| ≤ maxj=1,2 EY1,j then
∫
[0,1]2 [J3n(θ, a, u) − J3n0(θ, a, u)]2υ(u)du = oP(1).

Hence, it suffices to study the asymptotic behavior of
∫
[0,1]2 Q2

n(u, θ, a)υ(u)du, where

Qn(u, θ, a) = J1n0(θ, a, u) + J2n0(θ, a, u) + J3n0(θ, a, u)

with J1n0(θ, a, u) = 1√
n

(
∑n

t=q+1 uYt,1
1 uYt,2

2 − gε(u, ε)Wt−1(u, a)
)

. We will make use Theo-
rem 22 from Ibragimov and Chasminskij (1981) and the subsequent remark in order to show
that the integral

∫
[0,1]2 Q2

n(u, θ, a)υ(u)du converges in distribution to
∫
[0,1]2 Q2(u, θ, a)υ(u)du,

where Q is a Gaussian random field specified in the statement of the theorem. To this end,
we need to verify that

I. supn,u,θ,a EQ2
n(u, θ, a) < ∞.

II. There exist constants α > 0 and H > 0 such that

sup
n,θ,a

E|Qn(u, θ, a)−Qn(v, θ, a)|2 ≤ H‖u− v‖α.

III. The marginal distributions of Qn converge to the marginal distributions of Q uniformly
in θ and a.

First, notice that Qn is of a form 1√
n ∑n

t=q+1 Lt, where {Lt} is a martingale difference

sequence Lt = uYt1
1 uYt2

2 − gε(θ, u)Wt−1(u, a) − lt1(θ, a)>h2(θ, a, u) − lt2(θ, a)>h3(θ, a, u).
Thus EQ2

n ≤ 1
n ∑n

t=q+1 E|Lt|2 ≤ 4(1 + g2
ε + ‖h2‖2E‖l11‖2 + ‖h3‖2E‖l12‖2). Since we assume

finite variances of lt,j and thus ‖hj‖2 are bounded (due to finiteness of EYt,j and assumption
A.2), condition I. directly follows. Condition III. follows from the central limit theorem for
martingale difference sequences on Lt.

In order to prove condition II., we will show that E|Jjn0(θ, a, u) − Jjn0(θ, a, v)|2 ≤
D‖u − v‖α for j = 1, 2, 3, for some D > 0 and α > 0. In the following K is a generic
constant. For j = 1 we have

E|J1n0(θ, a, u)− J1n0(θ, a, v)|2

=
1
n
E
{ n

∑
t=q+1

uYt,1
1 uYt,2

2 − vYt,1
1 vYt,2

2 − gε(u)Wt−1(u) + gε(v, θ)Wt−1(v, a)
}2

≤ K
{
E[uYt,1

1 uYt,2
2 − vYt,1

1 vYt,2
2 ]2 + gε(u, θ)2E[W1(u, a)−W1(v, a)]2

+ (gε(u, θ)− gε(v, θ))2E|W1(u, a)|2
}

.

By the mean value theorem applied on the function f (x, y) = xayb and due to the fact
that E|Yt,j| is finite, we get that E[uYt,1

1 uYt,2
2 − vYt,1

1 vYt,2
2 ]2 ≤ K‖u− v‖2. Next, |gε| ≤ 1 and

the partial derivatives |∂W1/∂uj| are bounded by |Y1,1 + Y1,2|, which has finite expectation.
This implies that gε(u, θ)2E[W1(u, a)−W1(v, a)]2 ≤ K‖u− v‖2. Finally, it follows from
the definition of gε as a PGF that it is Lipschitz. Furthermore, E|W1(u, a)|2 ≤ 1, which
implies (gε(u, θ)− gε(v, θ))2E|W1(u, a)|2 ≤ K‖u− v‖2. Together, we get E|J1n0(θ, a, u)−
J1n0(θ, a, v)|2 ≤ K‖u− v‖2. Similar arguments are used to show that the condition holds
also for j = 3. If we use the assumption that lt has finite variances, it remains to show
that ‖hj(θ, a, u) − hj(θ, a, v)‖2 ≤ K‖u − v‖α. First, notice that the partial derivatives of
h3 with respect to u are continuous functions for u ∈ [0, 1]2. Thus, they are bounded
and we can apply the mean value theorem on the components of h3, which implies that
‖h3(θ, a, u)− h3(θ, a, v)‖2 ≤ K‖u− v‖2. Similarly, if the assumption (A.2) holds then the
partial derivatives of h2 are bounded and this implies that ‖h2(θ, a, u)− h2(θ, a, v)‖2 ≤
K‖u− v‖2, which completes the proof of condition II., and thus the assertion of the theorem
follows.
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Appendix A.2. Proof of Theorem 3.

Proof. The proof proceeds along the same lines as the proof of Theorem 1. A Taylor
expansion is used to show that

Sn,υ =
∫ 1

0

∫ 1

0
[J0(θ, u)− J1(θ, u)]2υ(u)du + oP(1),

where Dt(u) are defined in the statement of the theorem,

J0(θ, u) =
1√
n

n

∑
t=2

[
uYt,1

1 uYt,2
2 − ft−1(θ, u)

]
,

J1(θ, u) = n−1/2
n

∑
t=2

ft−1(θ, u)Dt−1(u)>(θ̂− θ),

ft−1(θ, u) = c(u, θ)w1(u)Yt−1,1 w2(u)Yt−1,2 .

The term J1(θ, u) can be replaced by J10(θ, u) =
[
ED1(u)> f1(θ, u)

](
n−1/2 ∑n

t=q lt
)
. Finally,

the conditions I.–III. from Theorem 22 of Ibragimov and Chasminskij (1981) can be verified
similarly as it is done for BINAR using the fact that the fourth moments of Yt are finite and
the parametric space Θ is compact.
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