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Abstract: Econometric studies for global heating have typically used regional or global temperature
averages to study its long memory properties. One typical explanation behind the long memory
properties of temperature averages is cross-sectional aggregation. Nonetheless, formal analysis
regarding the effect that aggregation has on the long memory dynamics of temperature data has
been missing. Thus, this paper studies the long memory properties of individual grid temperatures
and compares them against the long memory dynamics of global and regional averages. Our results
show that the long memory parameters in individual grid observations are smaller than those from
regional averages. Global and regional long memory estimates are greatly affected by temperature
measurements at the Tropics, where the data is less reliable. Thus, this paper supports the notion that
aggregation may be exacerbating the long memory estimated in regional and global temperature
data. The results are robust to the bandwidth parameter, limit for station radius of influence, and
sampling frequency.

Keywords: global heating; temperature anomalies; climate econometrics; long memory; aggregation

JEL Classification: Q54; C22; C43; C14.

1. Introduction

From its inception, long memory models have been associated with the analysis of
climate data. One of the first works on long memory originates from Hurst (1956). The
author studied the long-term capacity of water reservoirs on the Nile. Given the cycles of
highs at the river, he recommended increasing the height of a dam to be built. His analysis
showed that a dam built based on a short memory model would be more prone to overflow,
increasing the risk of a catastrophic event, than one built based on a long memory model.
That is, incorporating long memory properties leads to a more accurate characterisation
of climate data. Hurst’s observations served as inspiration for Mandelbrot’s work on
fractional Brownian motion (see Mandelbrot (1967); Mandelbrot and Van Ness (1968)). The
authors labelled this phenomenon the Joseph effect in reference to the “seven years of great
abundance” followed by “seven years of famine”.

As recognised by Hurst, assessing the long memory properties of natural phenomena
can have major repercussions in policy design. Under the current climate emergency,
assessing the long memory properties of temperature data can help to properly evaluate
the pace of global heating and its likely repercussions.

In a recent analysis, Calel et al. (2020) show that uncertainty plays a major role in
computing the economic costs of climate change. The authors show that studies that do
not incorporate all uncertainties can vastly underestimate the economic costs. Furthermore,
they argue that long memory properties in temperature data can result in estimates of even
greater economic damages thus, they appeal for a proper characterisation of the long-term
temperature dynamics.

It has been shown that failing to account for long memory dynamics can result in spurious
regressions (see Marmol (1995), Tsay and Chung (2000), and Ventosa-Santaulària et al. (2020)).
Linear models to explain global heating could provide misleading results if they do not control
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for the long memory in the data. Thus, assessing the long memory properties of temperature
data is of major theoretical and applied relevance.

Bloomfield (1992) and Bloomfield and Nychka (1992) are among the first to use long
memory models in the analysis of temperature data. The authors noted that long memory
should be incorporated in trend estimations for temperature series to obtain correct confi-
dence intervals. More recently, Baillie and Chung (2002) and Mills (2007) use fractionally
differenced models to estimate the long memory parameter, while Gil-Alana (2005) and
Mangat and Reschenhofer (2020) use semiparametric estimators in the frequency domain.
They all conclude that temperature data possess long memory. Nonetheless, they differ as
to the degree of memory. The distinction is relevant given that a large degree of memory
implies a nonstationary process or even a process that does not revert to the mean.

Most articles have focused on analysing regional or global average temperature anoma-
lies. In this regard, several authors have argued that aggregation may be the reason behind
the presence of long memory in the data (see Baillie and Chung (2002); Gil-Alana (2005); Mills
(2007)). Nonetheless, to the best of our knowledge, there is no formal analysis of whether ag-
gregation may explain long memory in temperature data. Thus, this paper looks to determine
the role aggregation has on the presence of long memory in temperature data. The analysis
relies on estimating the long memory parameters in the individual grid temperature series
and comparing them against regional and global averages.

We use data from the Goddard Institute for Space Studies Surface Temperature Analy-
sis (GISTEMP) and estimate the long memory parameters using semiparametric estimators
in the frequency domain. The data is further detailed in Section 2, while the long memory
estimators are presented in Section 3. Our results, presented in Section 4, show that the
long memory parameters in individual grid observations are lower than for the regional
averages. The long memory dynamics for the aggregated data seems to be greatly affected
by measurements around the Tropics, where data is less reliable. Thus, our results support
the notion that aggregation may be exacerbating the long memory estimated in aggregated
temperature data.

2. Temperature Anomalies

The GISTEMP data is an estimate of global surface temperature change constructed
by the NASA Goddard Institute for Space Studies (GISS). GISS specifies the temperature
anomaly at a given location as the weighted average of the anomalies for all stations located in
close proximity. A total of 16,200 grid observations are reported, along with several regional
temperature averages. The data is updated monthly and combines data from land and ocean
surface temperatures (see GISTEMP Team (2020); Lenssen et al. (2019)). GISTEMP is publicly
available at data.giss.nasa.gov/gistemp/ (accessed on 18 February 2021).

It is important to point out that our analysis does not impute any missing data.
Instead, we focus on the most recent subsample without missing observations for each
grid. We discard grids with less than 50 observations in the last subsample without missing
observations. A total of 219 grids out of 16,200 are removed from the analysis. The
design allows us to have a large enough sample size for long memory estimation without
introducing imputation uncertainties.

Figure 1 shows the temperature anomalies for August 2020 against the 1951–1980
baseline. The figure shows the temperature anomalies at individual grids across the globe
considering a 1200 km smoothing radius; that is, each grid considers stations located within
1200 km from the specified grid point. A similar map can be plotted for each month since
1850. Additionally, GISTEMP presents data using a 250 km smoothing radius, which we
will use in our analysis as part of our robustness exercises.

https://data.giss.nasa.gov/gistemp/
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Figure 1. Author’s own plot with data from Goddard Institute for Space Studies Surface Temperature Analysis (GISTEMP).
Smoothing radius of 1200 km.

Given the vast amount of information contained in GISTEMP, regional and global
temperature averages are typically considered in climate econometrics research. Figure 2
shows global, Northern Hemisphere, and Southern Hemisphere temperature anomalies
data reported by GISTEMP. Our goal is to compare the dynamics of these regional aggre-
gates against individual grid data.

Figure 2. Temperature anomalies for monthly regional temperatures presented by GISTEMP. For illustrative purposes, the
temperature reported near London (51◦,−1◦) is also shown.

It would be unwieldy to plot the time series data for all individual grids. Hence, we
have selected a representative candidate for the individual grid observations. For illustra-
tive purposes, the figure shows the temperature anomaly series for the grid containing
London, (51◦,−1◦). We select the London grid given that it contains a large city and thus
reliable measurements are available.

This paper argues that the long memory properties of the regional and global series
are affected by cross-sectional aggregation. To test this hypothesis, we estimate the long
memory parameters for the temperature data at all grids shown in Figure 1 and compare
them against the long memory estimates for the regional temperature data shown in
Figure 2.
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3. Methods
3.1. Long Memory

The study of long memory in econometrics goes back to Granger’s (1966) research on
the shape of the spectrum of economic series. Granger found that the spectrum diverges
to infinity as the frequency goes to zero for many financial and economic series, what the
author called “the typical shape”. This kind of behaviour has led to several definitions of
long memory. This paper considers three of the most common definitions of long memory,
which are presented in the following definition.

Definition 1. Let xt be a time series with autocovariance function γx(k), and spectral density
function fx(λ), and let d ∈ R, then xt has long memory:

(i). In the spectral sense if fx(λ) ∼ C f λ−2d as λ→ 0 with C f a constant;

(ii). In the self-similar sense if m1−2dCov
(

x(m)
t , x(m)

t+k

)
∼ Cmk2d−1 as k, m → ∞ where x(m)

t =

(xtm−m+1 + · · ·+ xtm)/m, with m ∈ N, m/k→ 0, and Cm is a constant;
(iii). In the covariance sense if γx(k) ∼ Cxk2d−1 as k→ ∞ with Cx a constant.

Above, Cov(x, y) is the covariance function between x and y, g(x) ∼ h(x) as x → x0
means that g(x)/h(x) converges to 1 as x tends to x0, and d is called the long memory parameter.
Furthermore, the process is shown to be stationary if d < 1/2, and it reverts to its mean if d < 1.

Definition 1(i) is the feature discussed by Granger (1966) in his study of the typical
spectral shape of economic variables. The definition is based on the property that the
spectral density for a long memory process has a pole at the origin. The behaviour of the
spectrum near the origin is also used in the construction of semi-parametric estimators in
the frequency domain (see Section 3.3).

Definition 1(ii) is based on the work on fractals and self-similarity by Mandelbrot
and Van Ness (1968). Self-similarity implies that the degree of memory is asymptotically
equivalent for different levels of temporal aggregation. Thus, asymptotically, the long
memory parameter is statistically the same whether we estimate it at different sampling
frequencies. This property is relevant for the study of temperature data given that the
literature has used both monthly and yearly data to test for long memory properties. Under
self-similarity, the long memory parameter estimates are statistically equivalent in both
sampling frequencies. However, the shortened sample size must be considered when
estimating the long memory parameter on yearly data.

Definition 1(iii) is concerned with the behaviour of the autocorrelation function for
large lags. It was one of the motivations behind the AutoRegressive Fractionally Inte-
grated Moving Average (ARFIMA) class of models due to Granger and Joyeux (1980) and
Hosking (1981). They proposed to use the fractional difference operator to induce slowly
decaying autocorrelations.

Figure 3 shows the autocorrelation functions for global, Northern Hemisphere, and
Southern Hemisphere temperature anomalies data. The autocorrelation functions exhibit
hyperbolic decay. In particular, they are above one half even after a hundred lags. That is,
temperature data exhibits long memory in the covariance sense.
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Figure 3. Sample autocorrelation functions for monthly regional temperatures presented by GISTEMP. The autocorrelation
function for the temperature reported near London (51◦,−1◦) is also shown. The shaded area covers from the first to the
third quartile of the autocorrelation functions of the individual grid series.

For illustrative purposes, the figure also shows the autocorrelation function for the
grid containing London. The regional and global averages decay at a slower pace than the
individual temperature grid, suggesting a smaller degree of memory for the individual grid
data. The shaded area covers from the first to third quartile of the autocorrelation functions
for all individual grids. Thus, the figure shows that the the behaviour of the autocorrelation
function at the London grid resembles the typical shape for the autocorrelation functions at
other grids. Moreover, Figure A1 in Appendix A presents boxplots for the autocorrelation
functions at all grids. The figure further shows that the dynamics at the grid near London
are similar to the dynamics at most grids.

3.2. Cross-Sectional Aggregation

Long memory by cross-sectional aggregation was first discussed by Granger (1980).
The author showed that long memory can result from aggregation fof short memory
processes. He considered the process defined by:

xt =
1√
N

N

∑
j=1

xj,t, (1)

where j = 1, · · · , N ∈ N, and each xj,t is an independent autoregressive process with
random coefficient given by:

xj,t = αjxj,t−1 + εj,t, (2)

where ε j,t is an independent identically distributed process with E[εj,t] = 0, and E[ε2
j,t] = σ2,

∀t ∈ Z. Furthermore, α2
j is sampled from the Beta distribution, independent from ε j,t.

Granger (1980) showed that taking a large number in the cross-sectional dimension
the resulting process will exhibit long memory in the covariance sense, see Definition 1(iii).
Haldrup and Vera-Valdés (2017) extended Granger’s result to show that cross-sectionally
aggregated processes possess long memory according to all definitions considered in
Definition 1.

The aggregation argument is illustrated in Figure 4.
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Figure 4. Autocorrelation functions for individual AR(1) processes with different autoregressive
coefficient. Also shown, the autocorrelation function of the aggregated process.

The figure shows the autocorrelation functions for four autoregressive processes with
different autoregressive parameter, and the autocorrelation function for the aggregated
process, Equation (1). As can be seen, the autocorrelation function of the aggregated process
exhibits hyperbolic decay consistent with long memory in the covariance sense. In this
regard, the aggregation argument proves that the degree of memory of the aggregated
series is non-zero. Meanwhile, the degrees of memory of the four autoregressive processes
are zero by construction. Thus, the aggregated series has a larger degree of memory than
the average of the degrees of memory of the four individual series.

As argued by Granger (1980), the degree of memory of the aggregated process is
determined by the autoregressive process’ probability mass around one. The more likely
it is to obtain near-unit root processes in the aggregate, the greater the degree of memory.
An example of this argument can be seen in Figure 4. The long-term behaviour of the
aggregated process is influenced by combining three autoregressive processes with a
coefficient away from one with one autoregressive process with a near-unity coefficient.
Intuitively, the near-unity process pulls on the autocorrelation function of the aggregate. In
this regard, the more autoregressive processes with coefficients near unity, the greater the
degree of memory in the aggregate.

The cross-sectional aggregation result has been extended in several directions, including
to allow for general AutoRegressive Moving Average (ARMA) processes, as well as to other
distributions, see Linden (1999), Oppenheim and Viano (2004), and Zaffaroni (2004), to name
a few. Furthermore, Vera-Valdés (2020) has shown that the fractional difference operator
produces well-performing forecasts for aggregated processes via simulations.

In economic data, cross-sectional aggregation plays a significant role in long memory
generation. Cross-sectional aggregation has been cited as the source of long memory
for inflation, output, and volatility; see Balcilar (2004), Diebold and Rudebusch (1989),
Altissimo et al. (2009), and Osterrieder et al. (2019). As pointed in Section 1, aggregation
has been cited as the explanation behind the presence of long memory in temperature data
given its reliance on temperature aggregates.

One important distinction regarding long memory generated by aggregation is that
it does not belong to the class of processes generated using the fractional difference op-
erator (see Haldrup and Vera-Valdés (2017)). In particular, the autocorrelation function
for the aggregated process does not correspond to the autocorrelation function of any
ARFIMA process. Thus, parametric estimators based on the fractional difference operator
are misspecified for long memory processes by cross-sectional aggregation. Nonetheless,
given that aggregated processes are long memory in the spectral sense, we can consistently
estimate the long memory parameter in the frequency domain.
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3.3. Semiparametric Estimators of Long Memory

The semiparametric estimators in the frequency domain are based on the long memory
definition in the spectral sense, see Definition 1(i). The idea is to evaluate the periodogram
of the time series, an estimator of the spectral density, in a vicinity of the origin where the
long memory parameter drives the spectral density. Focusing on the vicinity of the origin
further circumvents the need to specify the short-term dynamics of the data. Indeed, the
semiparametric estimators are robust to short-run dynamics like observational noise.

Long memory estimators in the frequency domain are typically divided between the
log-periodogram regression method proposed by Geweke and Porter-Hudak (1983), and
the local Whittle approach developed by Künsch (1987).

On the one hand, the log-periodogram regression (GPH, from now on) is given by:

log(I(λk)) = c− 2d log(λk) + uk, k = 1, · · · , m, (3)

where I(λk) is the periodogram of xt, λk = ei2πk/T are the Fourier frequencies, c is a con-
stant, uk is the error term, and m is a bandwidth parameter that grows with the sample size.
The zero frequency is not included in (3), making the estimator robust to the specification
of the mean.

The consistency and asymptotic normality of the log-periodogram regression have
been proved by Robinson (1995b); Velasco (1999b 2000). Denote d̂GPH to the estimate of the
long memory parameter via the log-periodogram regression, the authors show that:

√
m(d̂GPH − d) −→

d
N
(

0,
π2

24

)
, (4)

where m is the bandwidth as before, and −→
d

denotes convergence in distribution.

Andrews and Guggenberger (2003) (AG, from now on) proposed to replace the con-
stant in (3) with a polynomial in λ2

k to reduce the bias. The polynomial only considers even
degrees given that odd degrees do not help in reducing the bias. In classical bias-variance
trade-off, the reduction in bias comes at the cost of an increase in the variance, which
depends on the degree of the polynomial used for estimation. For our analysis, we add
one polynomial term in (3), which results in the variance of the estimate of 2.25 times the
one shown in (4).

On the other hand, Künsch (1987) used a likelihood approach in the so-called local
Whittle estimator (LW, from now on). The author proposed to estimate the parameter as
the minimiser of the local Whittle likelihood function given by:

R(d) = log

(
1
m

m

∑
k=1

λ2d
k I(λk)

)
− 2d

m

m

∑
k=1

log(λk), (5)

where I(λk) is the periodogram of xt, λk = ei2πk/T are the Fourier frequencies, and m is the
bandwidth parameter.

The consistency and asymptotic normality of the local Whittle estimator have been
proved for regions of d that are empirically relevant in most application by Phillips and
Shimotsu (2004); Robinson (1995a); Velasco (1999a). Denote d̂LW to the estimate of the long
memory parameter via the local Whittle estimator, the authors show that:

√
m(d̂LW − d) −→

d
N
(

0,
1
4

)
, (6)

where m is the bandwidth as before. In particular, the local Whittle estimator has less
variance than both estimators by log-periodogram regression above.
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A further refinement to the local Whittle approach was suggested by Shimotsu and
Phillips (2005). The authors proposed the exact local Whittle estimator as the minimiser of
the function given by:

R(d) = log

(
1
m

m

∑
k=1

I∆d(λk)

)
− 2d

m

m

∑
k=1

log(λk),

where I∆d(λk) is the periodogram of (1− L)dxt, where (1− L)d is the fractional difference
operator, λk = ei2πk/T are the Fourier frequencies, and m is the bandwidth parameter.

The exact local Whittle estimator was later extended to allow for nonzero means and time
trends in the so-called feasible exact local Whittle (FELW, from now on); see Shimotsu (2010).
Furthermore, the author shows that the consistency and asymptotic normality of the FELW are
the same as for the local Whittle estimator.

Our preferred method uses the mean-squared error optimal bandwidth of m = T4/5,
where T is the sample size, for all the estimators. The optimal bandwidth was obtained
by Hurvich et al. (1998). Nonetheless, we consider the commonly used bandwidth of
m = T1/2 to allow for easy comparisons of other research, and as a robustness exercise.

The variances of the semiparametric estimators of long memory only depend on the
bandwidth, which directly depends on the sample size (see (4) and (6)). Thus, estimates
using the same bandwidth and approximately the same sample size will exhibit similar
uncertainty. Our analysis will use this property to discuss statistical significance while
avoiding duplicating standard errors multiple times. Nevertheless, the analysis using
yearly observations may suffer from increased uncertainty in the estimates given the re-
duced sample size. However, following the self-similar property of long memory processes,
they are asymptotically equivalent, see Definition 1(ii).

4. Results

This section shows the results from estimating the long memory parameter using
semiparametric estimators in temperature anomalies data. We consider temperature
anomalies in individual grids and compare them against regional and global averages.
Our preferred method uses the optimal bandwidth and the larger monthly datasets. As a
robustness exercise, yearly data, different smoothing radius, and values for the bandwidth
parameter are considered.

4.1. Monthly Data with 1200 km Smoothing Radius and Optimal Bandwidth

Table 1 presents the long memory estimates from the monthly regional and global
temperature averages computed by GISS; that is, the data presented in Figure 2. The table
also presents the standard deviation for all estimates. Recall that the standard deviations
of the semiparametric long memory estimators depend only on the bandwidth and sample
size. Given that all series considered in the table have the same sample size, the standard
deviations are the same for all estimates.

Table 1. Long memory estimates for monthly regional temperature anomalies using the optimal
bandwidth. For the London grid, we use the 1200 km smoothing radius dataset. * Note that all series
have equal sample sizes so that the estimates share the same standard deviations.

Series GPH AG LW FELW Sample Size

Global 0.6332 0.7475 0.6682 0.6304 1688
North Hem. 0.5429 0.6247 0.5765 0.5584 1688
South Hem. 0.6407 0.6904 0.6430 0.6159 1688

London (51◦,−1◦) 0.2346 0.2388 0.2288 0.2354 1688

Std. Dev. * (0.0328) (0.0492) (0.0256) (0.0256)
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The long memory estimates for the regional and global averages imply that they
follow a nonstationary process, d > 0.5. Nevertheless, all long memory estimates imply
processes that revert to the mean, d < 1. We will compare these values against the long
memory estimates at all individual grids.

For illustrative purposes, the table shows the long memory estimates for the London
grid series. The long memory parameters are statistically larger for the regional and global
averages than for the London grid. In particular, all estimates from the regional and global
averages are more than four standard deviations apart from the individual grid estimates.
That is, the confidence intervals do not intersect, and are thus statistically different.

As previously discussed, GISTEMP contains individual temperature data for 16,200 grids.
It will be unwieldy to present a table with long memory estimates for the temperature at all
grids. Instead, Figure 5 presents the results for all individual grid points in a global map for
each estimator considered.

Figure 5. Long memory estimates for monthly individual grid observations of temperature anomalies. We use the optimal band-
width and the 1200 km smoothing radius dataset. GPH: Log-periodogram regression, AG: Andrews and Guggenberger (2003)
estimator, LW: Local Whittle estimator, and FELW: Feasible exact local Whittle.

The figure presents some interesting findings.
First, the degree of memory is smaller for land than for ocean surface temperature. This

could relate to the ocean’s larger ‘thermal inertia’ (see Hansen et al. (2010); Sutton et al. (2007)).
The authors analyse the common finding that temperatures over land increase more rapidly
than over the sea. In this regard, the larger thermal inertia manifests itself in larger degrees
of memory.

Second, long memory estimates at individual land grids seem to be in the stationary
range, d < 0.5, particularly for grids besides Africa and South America. Thus, the degrees
of memory near all individual land temperature grids are smaller than those for regional
and global averages. The larger degree of memory for temperatures around Africa and
South America could relate to increased uncertainty due to the smaller number of long tem-
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perature measuring stations in these regions, see Peterson and Vose (1997), and Figure A2
in Appendix A.

Third, besides a few ocean grid temperatures using the LW and FELW estimators, all
long memory estimates are in the mean-reverting range, d < 1. This indicates that shocks
to the temperature series seem to be non-permanent. This result has major implications
in terms of the discussion regarding ways to mitigate climate heating. If the degree of
memory of temperature data is in the mean-reverting range, we would expect the increase
in temperature to revert in the long-run, provided that we implement climate heating
mitigating policies.

Finally, the degree of memory of the London grid is in the same range as most of the
land temperature grids away from the Equator. Moreover, the sample size for the London
grid is comparable to the sample sizes for most of the individual grid series, see Figure A2
in Appendix A. Thus, the standard deviations for all estimates, reported in Figure A3 in
Appendix A, are similar to those shown in Table 1. In turn, the discussion regarding the
statistical difference between long memory estimates at individual grid temperatures and
long memory estimates for regional and global averages extends to most grid series. As
previously argued, the London grid shows behaviour similar to other individual grids and
its selection is done for illustrative purposes. The figures show that the results extend to
most of the land temperature grids.

Overall, the results from Figure 5 suggest that the long memory dynamics for the
global and regional averages are greatly affected by aggregation, particularly due to the
influence of temperatures at the Tropics. The estimates from the less reliable temperature
measurements at Africa and South America, mixed with the higher degrees of memory of
temperature at the oceans, propagate due to aggregation to the global and regional long
memory estimates.

To shed light on the influence that aggregation and the temperature data at the Tropics
has on the long memory estimates, Table 2 presents averages from the long memory
estimates in individual grid stations for selected regional subsamples. The table shows
mean values for the long memory estimates for all grids, the global estimate as well as
for grids in the Northern and Southern Hemispheres. Furthermore, the table shows long
memory estimate averages for grids located in the Tropics, the Arctic, and Antarctic, that is,
those between latitudes −30◦ and 30◦, 67◦ and 90◦, and −67◦ and −90◦, respectively.

Table 2. Regional long memory averages for monthly temperature anomalies. We use the optimal
bandwidth and the 1200 km smoothing radius dataset. The bar on top denotes averages. Standard
deviations given the average sample sizes are given below between parentheses.

Series GPH AG LW FELW Sample Size No. of Grids

Global 0.3427 0.2951 0.3540 0.3738 1463 15,981
(0.0347) (0.0521) (0.0271) (0.0271)

North Hem. 0.3236 0.3082 0.3389 0.3539 1560 8100
(0.0338) (0.0508) (0.0264) (0.0264)

South Hem. 0.3624 0.2817 0.3695 0.3942 1364 7881
(0.0357) (0.0536) (0.0279) (0.0279)

Tropics 0.4855 0.4103 0.5019 0.5216 1642 5397
(0.0332) (0.0497) (0.0259) (0.0259)

Arctic 0.2164 0.2588 0.2404 0.2525 1286 2160
(0.0366) (0.0549) (0.0285) (0.0285)

Antarctic 0.1174 0.0874 0.1084 0.1401 681 2090
(0.0471) (0.0707) (0.0368) (0.0368)

Table 2 presents some interesting findings.
First, the averages of the degrees of memory for global and regional temperature grids

are smaller than the degrees of memory estimated for the aggregated data. In particular,
the global average of the degrees of memory is almost half that of the degree of memory of
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the global temperature series. The smaller average degrees of memory can be explained
due to the smaller degrees of memory estimated for most temperature grids, as shown
in Figure 5. This is in line with the aggregation argument explained in Section 3.2, and
it provides evidence that aggregation seems to be exacerbating the estimated degrees of
memory for global and regional temperature series.

Second, the table broadly confirms that the degree of memory seems to be smaller as
we move away from the Tropics. Only the average degree of memory at the Tropics seems
to fall into the nonstationary range, and only for the LW and FELW estimators. Thus, the
table suggests that the temperature at a few grids around the Tropics increases the degree
of memory for the global and regional temperature averages.

Finally, the last column of Table 2 shows the number of individual grids used to
compute the regional averages. Note that each region’s number of grids is consistent with
equally spaced grid points and a total number of grids of 15,981 once we remove the 219
with no more than 50 observations. That is, around 8000 grids for each hemisphere, or half
the total, which is more than 5000 grids for the Tropics, covering a third of the world, and
more than 2000 for the Arctic and Antarctic that cover approximately an eight of the globe.

The effect that the memory estimates around the Tropics have on the regional ag-
gregates is further illustrated in Figure 6. The figure shows histograms and estimated
probability densities for the long memory estimates for all regions considered in Table 2.
For ease of exposition, the figure shows the estimates by the AG method and similar figures
for the other estimators are reported in Appendix A.

Figure 6. Histograms and probability density estimates of long memory estimates for monthly individual grid observations
of temperature anomalies. We use the optimal bandwidth, the 1200 km smoothing radius dataset, and the Andrews and
Guggenberger (2003) (AG) estimator.

The figure shows that the probability density of the estimates around the Tropics puts
more weight in the nonstationary range than the densities for the other regions. Using
an analogous argument to the one in Figure 4, this larger weight to nonstationary values
results in a larger degree of memory for the regional average. The same effect can be
observed in all regions. In particular, both the Arctic and Antarctic regional estimates
assign almost no weight to the nonstationary region, which results in degrees of memory
well inside the stationary range. Finally, the figure shows that the mean values are in the
stationary range, as shown in Table 2. As previously discussed, the aggregation argument
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explains the larger degree of memory of the aggregated series in comparison to the average
of the degrees of memory of the individual grid series.

4.2. Monthly Data with 250 km Smoothing Radius and Optimal Bandwidth

Figure 7 presents the results for all individual grid points for the 250 km smoothing
radius dataset and optimal bandwidth.

Figure 7. Long memory estimates for monthly individual grid observations of temperature anomalies. We use the optimal
bandwidth and the 250 km smoothing radius dataset.

The figure shows that the long memory estimates are smaller for the smaller smoothing
radius. In particular, almost all long memory estimates are in the stationary range. This
once again points to the effect that aggregation has on the long memory estimates. The
smaller smoothing radius corresponds to fewer temperature measurements in the averages,
translating to smaller degrees of memory due to aggregation.

A thorough analysis of the long memory estimates and standard deviations, reported
in Figure A4 in Appendix A, shows that the London grid results are not exceptional and
are replicated for most land grids. In particular, the statistical analysis for the London grid
extends to other grids.

The figure shows that there is information for fewer grids at the smaller smoothing
radius, particularly at sea and around the Tropics. As previously discussed, these missing
observations result from the fewer long temperature measuring stations in these regions
(see Peterson and Vose (1997)). In turn, the smaller number of temperature grids translates
into smaller degrees of memory for the regional averages, as shown in Table 3.
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Table 3. Regional long memory averages for monthly temperature anomalies. We use the optimal
bandwidth and the 250 km smoothing radius dataset. The bar on top denotes averages. Standard
deviations given the average sample sizes are given below between parentheses.

Series GPH AG LW FELW Sample Size No. of Grids

Global 0.2279 0.2406 0.2277 0.2626 895 6185
(0.0423) (0.0634) (0.0330) (0.0330)

North Hem. 0.2179 0.2286 0.2315 0.2596 1106 3927
(0.0389) (0.0583) (0.0303) (0.0303)

South Hem. 0.2452 0.2615 0.2209 0.2678 528 2258
(0.0522) (0.0783) (0.0407) (0.0407)

Tropics 0.3308 0.3406 0.3315 0.3786 732 1685
(0.0458) (0.0687) (0.0357) (0.0357)

Arctic 0.2009 0.2259 0.2248 0.2678 845 797
(0.0432) (0.0649) (0.0337) (0.0337)

Antarctic 0.1680 0.2005 0.1205 0.1633 284 1070
(0.0669) (0.1003) (0.0521) (0.0521)

To illustrate the effect that aggregation has on the regional averages, Figure 8 shows
the long memory histograms and probability density estimates. For ease of exposition, the
figure shows the estimates by the GPH method. Similar figures for the other estimators are
reported in Appendix A.

Figure 8. Histograms and probability density estimates of long memory estimates for monthly individual grid observations
of temperature anomalies. We use the optimal bandwidth, the 250 km smoothing radius dataset, and the log-periodogram
regression (GPH) estimator.

The figure shows that long memory estimates for regions away from the Tropics put
no weight to the nonstationary range. Following the aggregation argument, the smaller
weight translates into smaller degrees of memory for all regional averages, particularly for
the Arctic and Antarctic.

Overall, the results from the smaller smoothing radius agree with the results of our
preferred method. Aggregation seems to exacerbate the long memory estimates of global
and regional temperature averages. The smaller cross-sectional dimension associated
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to a reduced smoothing radius results in smaller degrees of memory for the individual
temperature grids.

4.3. Robustness Exercises

This section presents the results from some of the robustness exercises considered
in this study. In particular, Tables 4 and 5 show results using yearly data for the 250 km
smoothing radius dataset. Table 4 presents the results using the optimal bandwidth, while
Table 5 uses the commonly used bandwidth given by T1/2, where T is the sample size.

Table 4. Regional long memory averages for yearly temperature anomalies. We use the optimal
bandwidth and the 250 km smoothing radius dataset. The bar on top denotes averages. Standard
deviations given the average sample sizes are given below between parentheses.

Series GPH AG LW FELW Sample Size No. of Grids

Global 0.4051 0.4278 0.3458 0.5573 78 6006
(0.1116) (0.1674) (0.0870) (0.0870)

North Hem. 0.3784 0.5079 0.3621 0.5218 94 3982
(0.1040) (0.1560) (0.0811) (0.0811)

South Hem. 0.4542 0.2802 0.3159 0.6225 47 2114
(0.1367) (0.2051) (0.1066) (0.1066)

Tropics 0.4621 0.5088 0.4074 0.6608 66 1563
(0.1191) (0.1786) (0.0928) (0.0928)

Arctic 0.3166 0.4880 0.3083 0.4939 77 761
(0.1134) (0.1700) (0.0884) (0.0884)

Antarctic 0.4682 0.1177 0.2578 0.6449 24 1059
(0.1779) (0.2668) (0.1387) (0.1387)

Table 5. Regional long memory averages for yearly temperature anomalies. The bandwidth is given
by m = T1/2, with T the sample size. We use the 250 km smoothing radius dataset. The bar on top
denotes averages.

Series GPH AG LW FELW Sample Size No. of Grids

Global 0.5947 0.8443 0.5343 0.6429 78 6006
(0.2138) (0.3206) (0.1667) (0.1667)

North Hem. 0.6276 1.0159 0.5650 0.6364 94 3982
(0.2028) (0.3042) (0.1581) (0.1581)

South Hem. 0.5342 0.5284 0.4777 0.6549 47 2114
(0.2424) (0.3636) (0.1890) (0.1890)

Tropics 0.6718 0.8727 0.6115 0.6725 66 1563
(0.2267) (0.3401) (0.1768) (0.1768)

Arctic 0.5528 1.2723 0.4883 0.5924 77 761
(0.2138) (0.3206) (0.1667) (0.1667)

Antarctic 0.4133 0.4156 0.3766 0.6872 24 1059
(0.2868) (0.4302) (0.2236) (0.2236)

The results from the robustness exercise broadly agree with the main results of this
paper. That is, the degrees of memory of an individual grid series is smaller than for the
aggregated series, and the degree of memory decreases as we move away from the Tropics.
Nonetheless, the reduced sample size product of considering yearly observations increases
the variance of all estimates, making them less reliable. Recall that the standard errors for
the semiparametric estimators of long memory only depend on the bandwidth parameter
and sample size. Thus, smaller sample sizes imply larger standard errors.

Decreasing the bandwidth also increases the variance of the estimates. Hence, the
degrees of memory estimated in Table 5 are even more uncertain than those presented in
Table 4. However, as argued before, they point to the same conclusions as those from the
larger dataset.
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Finally, note that the results from Table 5 are in line with the ones from Mangat and
Reschenhofer (2020). The authors use some of the semiparametric estimators considered in this
study along with the small-sample estimator developed by Reschenhofer and Mangat (2020).
Using the same sampling frequency and bandwidth, the authors found that global and regional
temperature series fall into the nonstationary range. Furthermore, the authors found some of
the long memory estimates for regional temperature series to imply processes that do not revert
to the mean, d ≥ 1. Our analysis suggest that these results may come from a small bandwidth
and sample size.

Additional robustness exercises considering all combinations of the sampling fre-
quency, smoothing radius, and bandwidth all point broadly in the same direction, and they
are available upon request.

5. Discussion

The current climate emergency makes it crucial to characterise the long term dynamics
of temperature data. In the econometric literature, most climate studies have focused on
analysing regional or global average temperature data given the vast amount of information
in temperature data. Using regional temperature data, the literature has shown that
temperature anomalies possess long memory properties. While several authors have
pointed to aggregation as a possible explanation behind the long memory in temperature
data, to the best of our knowledge, no analysis has focused on determining if aggregation
can indeed be the long memory generating mechanism for temperature data.

This paper looked to determine if aggregation is behind the presence of long memory
in global and regional temperature data. The analysis relied on estimating the long memory
parameters in individual grid temperature series and comparing them against the regional
and global averages. We considered several regional averages in addition to the ones
commonly used in the literature. The long memory parameters were obtained using
semiparametric estimators in the frequency domain given that the fractional difference
operator is misspecified for aggregated processes.

Our results showed that the long memory parameters at individual grid observa-
tions were smaller than the regional averages. Thus, our results support the notion that
aggregation may be exacerbating the long memory estimated in temperature data.

Furthermore, the degrees of memory of the aggregates seem to be influenced by the
long term dynamics of temperature anomalies in the Tropics. We argue that the dynamics
of temperatures around the Tropics could be explained due to the oceans’ greater thermal
inertia and the increased uncertainty given the smaller number of temperature measuring
stations in Africa and South America.

Our results are robust to the frequency sampling, smoothing radius, and bandwidth
parameter.

There are several limitations to this study. Our analysis relies on temperature anoma-
lies at individual grids. Global data for temperature analysis already incorporate some
level of aggregation at each grid. In light of this paper’s results, additional studies should
be considered for temperature data at individual stations where the data may be obtained.

Moreover, our analysis showed that temperature at the Tropics plays a major role in
determining the long memory properties of global and regional temperature data. A robust
analysis of temperature data around the Tropics that considers measurement uncertainties
and the El Niño effect should be considered. In particular, a climatological analysis of why
these areas show different degrees of memory than the rest of the globe is called upon. This
line of research is left open for future work.
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Abbreviations
The following abbreviations are used in this manuscript:

GISTEMP NASA Goddard Institute for Space Studies Surface Temperature Analysis
North Hem. Northern Hemisphere
South Hem. Southern Hemisphere
GPH Geweke and Porter-Hudak log-periodogram regression
AG Andrews and Guggenberger bias reduced log-periodogram estimator
LW Local Whittle estimator
FELW Feasible Exact Local Whittle estimator
Std. Dev. Standard deviation
Prob. Density Est. Probability density estimate
No. of Grids Number of grids

Appendix A

Figure A1. Boxplots for autocorrelation functions of individual temperature series. On each box, the central mark indicates
the median, and the bottom and top edges of the box indicate the 1st and 3rd quartiles, respectively. The whiskers extend to
approximately 99.3% coverage if the data are normally distributed. Also shown in a black line, the autocorrelation function
for the temperature at the grid near London (51◦,−1◦).

https://data.giss.nasa.gov/gistemp/
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Figure A2. Author’s own plot with data from GISTEMP. Smoothing radius of 1200 km.

Figure A3. Standard deviations for long memory estimates of monthly individual grid observations of temperature
anomalies. We use the optimal bandwidth and the 1200 km smoothing radius dataset.
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Figure A4. Standard deviations for long memory estimates of monthly individual grid observations of temperature
anomalies. We use the optimal bandwidth and the 250 km smoothing radius dataset.

Figure A5. Histograms and probability density estimates of long memory estimates for monthly individual grid observations
of temperature anomalies. We use the optimal bandwidth, the 1200 km smoothing radius dataset, and the GPH estimator.
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Figure A6. Histograms and probability density estimates of long memory estimates for monthly individual grid observations
of temperature anomalies. We use the optimal bandwidth, the 1200 km smoothing radius dataset, and the LW estimator.

Figure A7. Histograms and probability density estimates of long memory estimates for monthly individual grid observations
of temperature anomalies. We use the optimal bandwidth, the 1200 km smoothing radius dataset, and the FELW estimator.
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Figure A8. Histograms and probability density estimates of long memory estimates for monthly individual grid observations
of temperature anomalies. We use the optimal bandwidth, the 250 km smoothing radius dataset, and the AG estimator.

Figure A9. Histograms and probability density estimates of long memory estimates for monthly individual grid observations
of temperature anomalies. We use the optimal bandwidth, the 250 km smoothing radius dataset, and the LW estimator.
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Figure A10. Histograms and probability density estimates of long memory estimates for monthly individual grid obser-
vations of temperature anomalies. We use the optimal bandwidth, the 250 km smoothing radius dataset, and the FELW
estimator.
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