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Abstract: This study proposes a nonlinear cointegrating regression model based on the well-known
energy balance climate model. Specifically, I investigate the nonlinear cointegrating regression of the
mean of temperature anomaly distributions on total radiative forcing using estimated spatial distri-
butions of temperature anomalies for the Globe, Northern Hemisphere, and Southern Hemisphere.
Further, I provide two types of nonlinear response functions that map the total radiative forcing level
to mean temperature anomalies. The proposed statistical model provides a climatological implication
that spatially heterogenous warming effects play a significant role in identifying nonlinear climate
sensitivity. Cointegration and specification tests are provided that support the existence of nonlinear
effects of total radiative forcing.

Keywords: climate change; climate sensitivity; cointegration; distributional time series; energy
balance climate model

JEL Classification: C14; C23; C33; Q54

1. Introduction

Over the past few decades, the observed global mean surface temperature has in-
creased. With such an evident fact, global warming has received rapidly increasing at-
tention during the past decades. Since all countries are involved in both the causes and
consequences of this issue in a variety of complex ways, there have been worldwide de-
bates on global warming among scientists and policymakers. To identify whether human
activities are causing the recent rise in global mean temperature or whether their effects
will have serious effects on the Earth, the detection and attribution of an anthropogenic
influence on climate change has been studied extensively.

Climate sensitivity measures how much global warming will occur in response to a
doubling of atmospheric concentration of carbon dioxide. Ultraviolet light from the Sun
passes through greenhouse gases (GHG) such as carbon dioxide, water vapor, methane,
nitrous oxide, and chlorofluorocarbons, and is absorbed by objects on the ground. Since
GHG absorb the infrared radiation released by the objects and then reradiates it back to
the surface of the Earth, global temperature is increasing as a result. We refer to this as the
“Greenhouse Effect” (Hansen et al. 2011). It is well-known that GHG in the atmosphere
have been consistently increasing due to human activity. Note that the atmospheric
lifetime of carbon dioxide is currently estimated at 5–200 years (IPCC 2007). As a result
of such accumulation, the stock of carbon dioxide in the atmosphere has increased by
approximately 130 ppm over the last 270 years, from a range of between 275 and 285 ppm
in the pre-industrial era to 410 ppm in 2018.

According to IPCC (2014), the global mean temperature on the surface of the Earth has
increased by approximately 0.85 ◦C since 1880 and “most of the observed warming over
the last 50 years is likely to have been due to the increase in GHG emissions.” Scientists
have attempted to estimate the effect of GHG, according to which doubling carbon dioxide
concentration in the atmosphere (a forcing of 4 W/m2) may increase the average global
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temperature by 1.5 to 4.5 ◦C. To stress the serious impact of increasing global temperature,
Stern (2008) states that, “around 10,000–12,000 years ago, temperatures were approximately
5 ◦C lower than today, and ice sheets came down to latitudes just north of London and
south of New York. As the ice melted and sea levels rose, England separated from the
continent, rerouting much of the river flow. These magnitudes of temperature changes
transform the planet”.

A time series analysis has been employed to test the anthropogenic global warming hy-
pothesis. This hypothesis test has resulted in extensive controversy over the last two decades.
The main argument relates to whether observing trends in temperature series and radiative
forcing contain stochastic trends or deterministic trends with a structural break. During
early years, Kaufmann et al. (2006a, 2006b, 2010, 2013) and Kaufmann and Stern (2002)
had a breakthrough on the linear cointegration analysis between temperature series and
radiative forcing variables by assuming they are integrated processes or difference station-
ary processes. Using Dynamic Ordinary Least Squares estimation, they concluded that the
increase in global mean temperature can be associated with the change in radiative forcing
variables. Such a linear cointegration analysis has also been investigated by Pretis (2020).
He linked a two-component energy balance climate model of global mean temperature
with a testable cointegrated Vector Autoregressive model.

Some econometricians cast doubt on their statistical rigor and challenged their empirical
results (Gay-Garcia et al. 2009; Perron and Estrada 2012; Estrada et al. 2013a, 2013b; Estrada
and Perron 2014). They first argued that temperatures and radiative forcing variables are
described more effectively as trend stationary processes rather than difference stationary
processes (or random walk with drift). By defining variables of interest as stationary
processes fluctuating around a common breaking deterministic trend, they claimed that
the conventional Least Squares (LS) method on the regression may negate a common
feature as in cointegration analysis. Moreover, they argued that the residual-based ADF
test (or formally nonparametric nonlinear co-trending test of Bierens 2000) may identify
the existence of a long-run relationship.

Recently, Chang et al. (2020) analyzed the global warming issue under a novel time
series framework. By using Global, Northern Hemisphere, and Southern Hemisphere
temperature anomaly data from 1850 to 2012, they generated the distributions of temper-
ature anomalies for each year. Instead of only analyzing mean temperature anomalies,
they analyzed and tested the persistent features of distributions of temperature anoma-
lies by regarding them as functional time series observations on the Hilbert space. More
importantly, they distinguished unit-root nonstationarity from deterministic or explosive
nonstationarity in their testing procedure Chang et al. (2016b, 2020). They concluded
that the first few moments of temperature anomaly distribution indicate stochastic trends,
rather than linear/exponential/quadratic trends or explosive roots.

In particular, they reasoned that the seemingly structural break in the global mean
temperature anomaly trend, as argued by many authors, are more likely inherited from
unit-root type persistency (stochastic trend), than from higher order persistency associated
with deterministic trends. Based on their analysis, global temperature anomaly distribu-
tion and radiative forcing variables can share common stochastic trends and their linear
combination can produce a stationary process. In this context, the nonlinear cointegration
analysis, which allows for bidirectional causality and postulates a long-run equilibrium
relationship between mean temperature anomalies and total radiative forcing and pos-
sibly with nonlinear moments of temperature anomaly distributions, seems the most
reasonable approach.

More importantly, the linear regression model, which postulates the linear relation-
ship between global mean temperature and total radiative forcing, fails to consider the
climatological mechanism regarding how to change the global mean temperature. Since
atmospheric carbon dioxide increases the global mean temperature by generating an
imbalanced energy equation, a channel for the greenhouse effect must be considered.
As shown in Section 2, the climate channel could be represented as temperature-dependent
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(or spatially heterogenous) net incoming absorbed radiation, implying that the relationship
between total radiative forcing and the global mean temperature could be expressed as
a temperature heterogeneous function. Evidently, ignoring the net incoming absorbed
radiation term generates an endogeneity problem, invalidating the slope estimator of the
linear model.

Throughout this study, I aim to develop a new statistical model to provide a more
informative estimate for climate sensitivity. To do so, I propose a nonlinear cointegrating
regression of the Earth’s surface mean temperature anomalies on total radiative forcing
under technical backgrounds provided by Chang et al. (2020). Put differently, I analyze the
cointegrating relationship between the time series of spatial distributions of temperature
anomalies and the time series of total radiative forcing. In a climatological sense, the
proposed statistical methodology provides two types of nonlinear climate sensitivity that
map the total radiative forcing to mean temperature anomalies for the Globe, Northern
Hemisphere, and Southern Hemisphere.

Specifically, I explicitly estimate the nonlinear effects by defining the nonlinear tem-
perature term from the temperature anomaly distribution. I refer to the nonlinear response
function as the temperature-dependent effect of total radiative forcing by assuming that
net incoming absorbed radiation is hypothetically determined at some regional spaces that
correspond to the temperature anomaly. I also define the misspecification error from the
nonlinear cointegration model and identify the source of error in terms of temperature
anomaly. Lastly, I conduct cointegration and specification tests that support the existence
of nonlinear effects of total radiative forcing.

The statistical result of the study contributes an important insight to climate research.
As is well-known, the popular term, “polar amplification” describes that the warming
speed of the higher latitude area has been faster than that of the lower latitude area. The
proposed nonlinear cointegration model provides a better understanding of such spatially
heterogeneous warming effects by incorporating the higher-order moments of spatial
distributions of temperature anomaly. Moreover, the notion that human forcing generates
the probabilistic change of the temperature anomaly indicates that the true effect of human
forcing on the mean temperature anomaly would be overestimated in the literature. In
other words, ignoring the spatially heterogenous effects on the change in the global mean
temperature anomaly would generate the upward bias when we attempt to identify the
effect of human forcing.

The remainder of the paper is organized as follows. Section 2 provides the climatologi-
cal background according to the global energy balance climate model. Section 3 presents the
statistical model and methodology. Specifically, I employ the functional coefficient model
for a nonlinear cointegrating regression model and apply it to the current climate model.
In Section 4, the details of the data are discussed. The empirical results and interpretation
of the results are presented in Section 5, while Section 6 concludes.

2. Climatological Analysis
2.1. Global Energy Balance Climate Model

North et al. (1983) developed the two-dimensional Energy Balance Climate Model
(hereafter EBCM) and Brock et al. (2013) considered their model with human relating
forcing activity. The EBCM model recently provided by Brock et al. (2013) is given by

C(r̂)
∂sr̂,t

∂t
= QS(x)α(x, sr̂,t)︸ ︷︷ ︸

Incoming absorbed radiation

+ hr̂,t − Ir̂,t︸ ︷︷ ︸
(−)Outgoing radiation

+ ∇[D(x)∇sr̂,t]︸ ︷︷ ︸
Divergence in heat flux

where r̂ = (θ, φ) is the point on the surface, θ ∈ [−π
2 , π

2 ] is the latitude and φ ∈ [0, 2π] is
the longitude, C(r̂) is effective local heat capacity per unit area, and sr̂,t is the Earth surface
temperature at location r̂ and time t. By defining x = sin θ, incoming solar radiation hitting
the surface of the Earth is QS(x)α(x, sr̂,t), where Q is the solar constant divided by 4, S(x)
is the mean annual meridional distribution of solar radiation, in which its integral from −1
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to 1 must be unity, and α(x, sr̂,t) is the absorption coefficient or co-albedo function, which
is one minus the albedo of the Earth–atmosphere system. Outgoing radiation is Ir̂,t, which
is determined by surface temperature and clouds.

As in Brock et al. (2013) who include atmospheric CO2 concentration in the EBCM
model, I included an external radiative forcing component, hr̂,t, at specific location r̂ and
time t in the model. Following Hansen et al. (2017), however, I employed the sum of well-
mixed GHG, ozone, surface albedo, tropospheric aerosols, and solar irradiance, in order to
represent Total Radiative Forcing (hereafter, TRF). Clearly, the included TRF reflects human-
related activities that influence the climate. The diffusion term for all different forms of
heat transport, is D(x). The heat transport (divergence in heat flux) term, ∇[D(x)∇sr̂,t],
is due to incoming absorbed radiant heat not matched by net outgoing radiation.

As explained in the data section, global temperature data are expressed as anomalies
from the zero-base period.1 Regarding data characteristics, I consider the discretized EBCM
model at specific location r̂ and time t as given by

Cr̂(sr̂,t − sr̂,0) = QS(x)α(x, sr̂,t) + hr̂,t −Or̂sr̂,t +∇[D(x)∇sr̂,t]

where r̂ = (x, φ) instead of r̂ = (θ, φ) for simplicity and sr̂,0 is the mean temperature at
location r̂ during the zero-base period, [t, t̄]. Note that the outgoing radiation term, Ir̂,t,
can be replaced with empirical formula, Or̂sr̂,t (Budyko 1969).2 Throughout this study,
I consider the EBCM of the entire surface area of the Earth by integrating over r̂ (the Global
Energy Balance Climate Model),∫ 1

−1

∫ 2π

0
Cr̂(sr̂,t − sr̂,0)dφdx =

∫ 1

−1

∫ 2π

0
QS(x)α(x, sr̂,t)dφdx︸ ︷︷ ︸

Incoming absorbed radiation

−
∫ 1

−1

∫ 2π

0
Or̂sr̂,tdφdx︸ ︷︷ ︸

Outgoing radiation

+
∫ 1

−1

∫ 2π

0
hr̂,tdφdx︸ ︷︷ ︸

Total radiative forcing

+
∫ 1

−1

∫ 2π

0
∇[D(x)∇sr̂,t]dφdx︸ ︷︷ ︸

Divergence in heat flux

. (1)

Note that the last term,
∫ 1
−1

∫ 2π
0 ∇[D(x)∇sr̂,t]dφdx, is assumed to be zero because heat

transports (typically from low to high latitudes) are negated across the entire surface area of
the Earth. Moreover, dividing 4π on both sides of Equation (1) provides an interpretation
that the global mean temperature anomaly is net incoming absorbed radiation across the
globe plus TRF.

Although integrating divergence in heat flux across the globe is zero, there are spatial
heterogeneities in net incoming absorbed radiation across the globe. Assuming a constant
heat capacity (i.e., Cr̂ = C for all r̂)3 in Equation (1) provides

C(st − s0) =
1

4π

∫ 1

−1

∫ 2π

0
(QS(x)α(x, sr̂,t)−Or̂sr̂,t + hr̂,t)dφdx

=
1

4π

∫ 1

−1

∫ 2π

0
(QS(x)α(x, sr̂,t)−Or̂sr̂,t)dφdx + ht

≡ Bt(sr̂,t) + ht (2)

1 For HadCRUT4 dataset, the zero-base period is from 1961M1 to 1990M12.
2 Outgoing radiation is set as a linear function of the Earth’s surface temperature and cloudiness (Budyko 1969; Fasullo and Trenberth 2012). Due to

complexity and data uncertainty of the cloud dynamics, however, I presume the simplest function for outgoing radiation (i.e., Ir̂,t = Or̂sr̂,t as in
Brock et al. 2013).

3 I acknowledge that the constant heat capacity is an excessively restrictive assumption. Since the goal of this study is to develop the statistical model
based on underlying physics while the non-constant heat capacity makes the model too complicated, I assume a phenomenological constant heat
capacity (Brock et al. 2013). However, this issue is addressed in another working paper (see Miller and Nam 2020).
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where

Bt(sr̂,t) =
1

4π

∫ 1

−1

∫ 2π

0
(QS(x)α(x, sr̂,t)−Or̂sr̂,t)dφdx, ht =

1
4π

∫ 1

−1

∫ 2π

0
hr̂,tdφdx

and

st − s0 =
1

4π

∫ 1

−1

∫ 2π

0
(sr̂,t − sr̂,0)dφdx

Note that st is the global mean temperature at time t, s0 is the global mean temperature
during the zero-base period, [t, t̄], and therefore st − s0 is the global mean temperature
anomaly at time t. Further, note that integrating local temperatures across x = sin θ
provides a way for temperatures in low latitudes to carry more weight in calculating
the global mean temperature st, so that the increase in temperature at high latitudes
due to divergence in heat flux from low to high latitudes, is roughly proportional to
the temperature difference between high and low latitudes (Held and Suarez 1974 for
one-dimensional EBCM model).

Equation (2) indicates that the spatially distributed TRF level along with different spa-
tial characteristics over the Earth’s atmosphere, creates spatially heterogeneous warming
effects. Consequently, the Global EBCM illustrates that spatially averaged net incom-
ing absorbed radiation could be proportional to the global mean temperature anomaly
we observed according to the data. More specifically, outgoing radiation to space is reduced
by the TRF level at each location (greenhouse effect) and discrepancies between incoming
radiation and outgoing radiation that is offset by exogenous forcing such as human and
volcanic activity (without considering divergence in heat flux), generatetheirtorical global
mean temperature anomaly data. In other words, the global mean temperature anomaly
is determined by spatially heterogeneous net incoming absorbed radiation, which is a
function of local temperatures, sr̂,t, as well as the TRF level in a complex way.

Notice that global climate change could be linked not only to ocean heat content, but
also to the Top-of-Atmosphere (TOA) net energy imbalance. More specifically, the ocean ab-
sorbs more than 90 percent of excess energy inherited from human forcing (Loeb et al. 2012),
and that clouds would enhance the anthropogenic influences by generating positive feed-
back (Fasullo and Trenberth 2012). Therefore, the Global EBCM should encompass the
dynamics of both the change in TOA radiation and upper-ocean heating rate. Due to
observational uncertainty and its complexity, however, I primarily focus on analyzing the
Global EBCM (2) on the surface of the Earth.

2.2. Nonlinear Relationship between the Total Radiative Forcing Level and the Global Mean
Temperature Anomaly

The precise estimation of climate sensitivity is of vital importance to climate scientists.
The literature mainly considers three types of climate sensitivity. The first is Earth system
sensitivity, which predicts resulting global warming associated with the doubled atmo-
spheric CO2 concentration from the pre-industrial value. It attempts to reflect the long-run
Earth system feedback such as the change in ice sheets and the Earth’s orbit for millennial
timescales (Knutti et al. 2017). According to Vostok Ice-Core long-term temperature data for
the last 420,000 years (Petit et al. 2001), more specifically, there has been a high correlation
between atmospheric CO2 concentration and temperatures and sea level through the four
glacial-interglacial cycles. The distribution of sunlight on Earth has experienced small
changes in the Earth’s orbit over hundreds of thousands of years. Melting ice sheets due
to more sunlight decreases the Earth’s surface albedo and increasingly warms the Earth.
Consequently, the atmospheric CO2 concentration increased because the warming natural
reservoirs such as the ocean release more carbon dioxide into the atmosphere (Hansen and
Sato 2012).

The second one is equilibrium climate sensitivity, which measures the change in
eventual (equilibrium) global surface mean temperature (∆seq) per unit of atmospheric CO2
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concentration (h) or TRF (Hansen et al. 2013).4 The word “equilibrium” imposes a notion
of the duration of time between two equilibrium climate states, which refer to the climate
state in which the unit of TRF bumps the energy budget out of balance, and the climate
state in which the Earth’s energy balance system is restored. Therefore, equilibrium climate
sensitivity measures the difference in two of the Earth’s surface mean temperatures that
compose the Earth’s energy balance body in a different time. Mathematically, equilibrium
climate sensitivity is expressed as

CS =
∆seq

h
. (3)

Note that the energy budget is determined by numerous feedbacks through which the
temperature change affects the overall imbalance of the Earth’s climate system. For instance,
carbon storage in the ocean can also be affected by ocean circulation. The decline in
latitudinal overturning oceans (Ocean Conveyor Belt) as a result of global warming, slows
down absorption of atmospheric CO2. Such nonlinear positive feedbacks enhance the
increase in atmospheric CO2 concentration. However, the time scale of equilibrium climate
sensitivity is moderate compared to Earth system sensitivity as it only considers the ocean
heat uptake for decades.

The final one is the transient climate response. Similar to equilibrium climate sen-
sitivity, it measures the magnitude of global warming per unit of atmospheric CO2 con-
centration or TRF. However, the difference is that it fails to consider the equilibrium
climate states. Since the global surface temperature cannot respond to TRF or other cli-
mate forcing variables instantaneously due to thermal inertia of the climate system, and
it is difficult to identify the equilibrium (steady) state from the observational dataset, the
applied statistician would be more interested in measuring the transient climate response.
Bindoff et al. (2013) provided an estimate of the change in temperature associated with a
doubling of the concentration of carbon dioxide in the Earth’s atmosphere, which is likely
to be in the range of 1 to 2.5 ◦C.

To estimate a constant climate sensitivity parameter, numerous authors estimate the
slope of the following linear model: Kaufmann and Stern (2002) and Estrada et al. (2013b),
inter alia.

st − s0 = constant + slope × ht (4)

Note that the slope estimate indicates the change in the global surface mean tempera-
ture anomaly with respect to unit change in TRF and is expressed in units of ◦C/(W/m2),
and therefore the estimation model (4) postulates that TRF effects are heterogeneous
across the evaluated point, unlike the defined climate sensitivity in (3). More importantly,
there is an endogeneity problem, inherited from the omitted term Bt(sr̂,t) in estimating
Equation (4), implying the invalidity of the slope estimator.

Specifically, the reduced form regression model for structural Equation (2) cannot be
simply estimated, because two terms, Bt(sr̂,t) and ht, are intertwined physically. To produce
physically sound estimates, there must be a channel for the TRF level, ht, to affect the
global mean temperature through net incoming absorbed radiation, Bt(sr̂,t), (indirect effect)
because TRF affects the global temperature by generating an imbalanced energy equation.
In the absence of a net incoming absorbed radiation term, however, a constant TRF effect is
evaluated at all temperature anomalies, assuming a linear dependence structure between
the global mean temperature anomaly and TRF. In this light, considering the omitted term,
Bt(sr̂,t), in evaluating climate sensitivity is required.

4 Note that scientific literature uses the atmospheric CO2 concentration as external forcing instead of TRF. Contrastingly, I consider TRF because the
purpose of this study is to build a statistical model, so it is important to include all external forcing in the regression model that could affect the
global climate system.
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Note that net incoming absorbed radiation cannot be entirely observable, and con-
sequently the nonlinear climate sensitivity cannot be directly identified by unobservable
information. Here, I consider that the TRF level affects the entire temperature anomaly
distribution and that nonlinear temperature terms (or higher order moments of tempera-
ture anomaly distribution), which are defined as distributional temperature terms minus a
linear temperature term, are regarded as information for net incoming absorbed radiation.
Further, I assume that the way in which TRF affects net incoming absorbed radiation is
temperature-dependent.

In the estimation procedure, I not only identify a constant (linear) TRF effect on the
global mean temperature anomaly, but also estimate the remaining nonlinear TRF effect at
each temperature anomaly. Climatologically, I may refer to the sum of a constant linear
effect and a nonlinear effect of TRF at a temperature anomaly, r0, the temperature-dependent
TRF effect (or the TRF response function) by assuming that net incoming absorbed radiation
is hypothetically and solely determined by a temperature anomaly, r0. The positive gap
between the TRF response function and a linear TRF effect at some temperature anomaly,
therefore, implies that their relationship given the anomaly is underestimated. The reader
is referred to Miller (2017) for the advanced climatological modeling.5

3. Statistical Model and Methodology
3.1. Reverse Functional Coefficient Model

In what follows, the statistical procedure is proposed to estimate the greenhouse effect.
The reverse functional coefficient model is of particular interest of this study, as given by∫ ∞

−∞
B∗(r) ft(r)dr = a0 + a1ht + εt (5)

where rt is the random variable representing the raw temperature anomaly with density
ft(r), and ht is the TRF level. The functional coefficient that is divided by some constant,
B∗(r)/a1, measures the TRF effect on the temperature anomaly, r. Therefore, the interpreta-
tion of Equation (5) is that the TRF level can affect the entire distribution of temperature
anomaly in an arbitrary manner. The last term, εt, is the mean-zero error. Note that
I assume that there is no deterministic component in time series of spatial distributions of
raw temperature anomaly, rt in Equation (5).

Here, it is assumed that B∗(r) can be approximated by a Functional Fourier Flexible
form as given by

B∗pq(r) =
p

∑
j=1

b∗j rj +
q

∑
j=1

(b∗p+2j−1, b∗p+2j)φj(r),

where φj(r) = (cos 2π jr, sin 2π jr)′ as introduced by Gallant (1981) and extensively uti-
lized by Park et al. (2010) and Chang et al. (2014). At first, I decompose the left-hand
side into the linear part, b∗1r, and the nonlinear part, B∗pq(r), where B∗pq(r) = ∑

p
j=2 b∗j rj +

∑
q
j=1(b

∗
p+2j−1, b∗p+2j)φj(r).

Specifically, the linear part contains a term according to which the functional coefficient
is linear in temperature anomaly r and expressed as the mean temperature anomaly.
On the other hand, the nonlinear part contains terms that refer to the functional coefficient
as nonlinear in temperature anomaly r. As a result, I obtain

b∗1
∫ ∞

−∞
r ft(r)dr +

∫ ∞

−∞
B∗pq(r) ft(r)dr = a0 + a1ht + εt (6)

5 This study focuses on developing a reduced-form nonlinear cointegrating regression model based on the EBCM. However, Miller (2017) provides
the climatological modeling with the first law of thermodynamics (i.e., integrating net incoming absorbed radiation across the globe is zero, but with
non-zero derivatives).
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After rearranging Equation (6), I obtain∫ ∞

−∞
r ft(r)dr = b0 + b1ht +

∫ ∞

−∞
B(r) ft(r)dr + ut (7)

where B(r) = −B∗pq(r)/b∗1 , b0 = a0/b∗1 , b1 = a1/b∗1 , and ut = εt/b∗1 . Note that Equation (7)
specifies the statistical relationship between the global mean temperature anomaly (the left-
hand side), the TRF level (second term of the right-hand side), and the sum of probability-
weighted net incoming absorbed radiation (third term of the right-hand side). Specifi-
cally, it is implicitly assumed that net incoming absorbed radiation, Bt(sr̂,t), in the Global
EBCM (2) is decomposed into linearly additive functions at each local temperature anomaly,
b(s), with associated probability weight, ft(s). Mathematically, it is expressed as

Bt(sr̂,t) =
∫

s
b(s) ft(s)ds ≡ E[b(st)] (8)

which evaluates the effect of net incoming absorbed radiation of the regions that are
represented by the temperature anomaly s at time t. Therefore, the third term,

∫
B(r) ft(r)dr,

which is also expressed as E[B(rt)] in Equation (7), provides a channel for net incoming
absorbed radiation, Bt(sr̂,t), in the Global EBCM (2). This term affects the global mean
temperature anomaly through changed temperature probabilities. Consequently, the
reduced form model (7) corresponds to the Global EBCM in Equation (2).6

Statistically, Equations (5) and (7) can be analyzed as a cointegrating relationship
given by

ht − β′pqxpqt ∼ I(0) (9)

where the multivariate time series vector, xpqt = (
∫

r ft(r)dr,
∫

r2 ft(r)dr, . . . ,
∫

φj(r) ft(r)dr)′,
with cointegrating vector, βpq = (1, c1, c2, . . . , cp+2q)

′. Note that the mean-level regression
implemented in climate research assumes that the TRF level only affects the aggregated
temperature anomaly distribution towards the mean process. In this study, however,
I consider the cointegrating relationship between the temperature anomaly distribution
and the TRF level. It turns out that the relationship between the two is the cointegrating
relationship between the global mean temperature anomaly, the TRF level, and nonlinear
temperature terms.

Given the fact that GHG are well-mixed in the atmosphere, furthermore, the nonlinear
cointegration analysis in this study becomes the distributional cointegration analysis be-
tween the temperature anomaly distribution and the TRF distribution (Chang et al. 2020).
In other words, since TRF would be distributed homogeneously across the Earth’s at-
mosphere, it would be uninformative to consider the higher-order moments of the TRF
distribution for the distributional cointegration analysis.

In particular, two types of estimators are provided from a nonlinear cointegration
model. The first estimator, D1, provides the slope estimator that considers the TRF
effect on the global mean temperature anomaly through nonlinear temperature terms.
On the other hand, the second estimator, D2(r), provides the temperature-dependent slope
estimator, which is illustrated by the TRF response function. Statistically, the derivative
∂(
∫

r ft(r)dr)/∂ht—which is equal to b1 in the linear case—estimates climate sensitivity.
I first suppose that the spatial temperature anomaly distributions ft(r) across the globe

for all times t are observed over the domain, Dr = [λ1, λ2], where λ1 and λ2 are the lowest
and highest temperature anomalies observed for the entire sample period, respectively.
Moreover, it is assumed that the spatial temperature anomaly distributions themselves
are regarded as random variables under predetermined temperature anomalies rs. Under

6 Note that sr̂,t in the Global EBCM (2) is the observed temperature anomaly at location r̂ and time t, and rt in reduced form Equation (7) is the
temperature anomaly observed on the surface of the Earth. Therefore, they are regarded as the same variable.



Econometrics 2021, 9, 6 9 of 25

fixed temperature anomalies rs, the total derivatives of ft(r, ht) with respect to ht become
the partial derivatives of ft(r, ht) with respect to ht. Thus, we have

D1 ≡
∂
∫

Dr
r ft(r)dr

∂ht
=
∫

Dr
r

∂ ft(r)
∂ht

dr = b1 +
∫

Dr
B(r)

∂ ft(r)
∂ht

dr = b1 +
∂
∫

Dr
B(r) ft(r)dr

∂ht
(10)

Note that total differentiating Equation (7) and replacing it with partial derivatives
provide Equation (10). As stated above, the last equality of Equation (10) holds under
fixed temperature anomalies (i.e.,

∫ ∂B(r)
∂ht

ft(r)dr = 0), which means that the temperature
anomalies rs are invariant with respect to ht. The probabilities at fixed temperature
anomalies, however, are affected by ht.

More importantly, model (7) is reduced to the standard linear model in climate litera-
ture when B(r) = 0 (Estrada et al. 2013a, 2013b). If B(r) 6= 0 and the term

∫
B(r) ft(r)dr is

omitted, however, the estimator of climate sensitivity in the regression Equation (7) would
be biased, and the conventional test statistics on estimator b̂1 would be also invalid. By
including a second term in Equation (10), temperature-dependent climate sensitivity can
be identified and therefore the heterogeneous TRF effects on the global mean temperature
anomaly can be identified at each anomaly. When net incoming absorbed radiation is
hypothetically determined at r0 ∈ [λ1, λ2], more specifically, the TRF effect on the global
mean temperature anomaly is estimated by

D2(r0) = b1 + B(r0)dT(r0) (11)

where

dT(r0) =
∂ ft(r)

∂ht

∣∣∣
r=r0

Note that dT(r) is estimated by the linear regression of the probability series at each
temperature anomaly on TRF with a constant using the least squares method. I refer to the
second terms in Equations (10) and (11) as the nonlinear effect of TRF on the global mean
temperature anomaly. Subsequently, I define the misspecification error of the linear model,
which represents error from ignoring the nonlinear effects, as

Error ≡ bRes
1 − D1 = bRes

1 −
(

bUnres
1 +

∂
∫

Dr
B(r) ft(r)dr

∂ht

)

where bRes
1 and bUnres

1 are the slope estimators calculated by the linear and nonlinear
regressions of the global mean temperature anomaly on TRF, respectively.

Further, note that the sum of nonlinear effects of estimator D2(r) across temperature
anomalies rs is equal to the nonlinear effect of estimator D1. In this sense, error calculation
from estimator D2(r) enables us to identify the contribution of misspecification error at
each temperature anomaly, r0 ∈ [λ1, λ2], which is represented as

−B(r0)
∂ ft(r)

∂ht

∣∣∣
r=r0

Notably, nonlinear cointegration models (5) and (9) yield the implication that the linear
model imposes an implausible restriction on the relationship between the temperature
anomaly distribution and the TRF level. To illustrate this, consider the linear model
as given by ∫ ∞

−∞
b∗1r ft(r)dr = a0 + a1ht + εt (12)

Note that only the linear part b∗1r of the functional coefficient B∗pq(r) is preserved in
Equation (12). Then, the climate sensitivity of the linear model can be expressed as the
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temperature-weighted linear sum of the derivatives of the global temperature anomaly
distribution with respect to the TRF level. Mathematically, climate sensitivity

b1 = a1/b∗1 =
∫ ∞

−∞
r

∂ ft(r)
∂ht

dr

assumes that the derivative at the high (low) temperature should be weighted more (less)
than the low (high) temperature.

As this study provides a structural modeling for temperature anomaly on a yearly
global scale, it is worth comparing the nonlinear cointegration model with the temperature
model provided in the climate economics literature. In particular, Campbell and Diebold
(2005) provide a daily average temperature model of the U.S. cities. Their econometric
model consists of the conditional mean and variance components. The conditional mean
part captures the deterministic trend using time trends, seasonality using a fourier series,
and high-frequency cycle using autoregressive lags. In the meantime, the conditional
variance part captures the seasonal volatility dynamics using a fourier series and the cycli-
cal volatility dynamics using a generalized autoregressive conditional heteroscedasticity
(GARCH) process.

Similarly, Morana and Sbrana (2019) provides a monthly average temperature model
in hemispheric and regional scales. However, the econometric model of Morana and
Sbrana (2019) differs from that of Campbell and Diebold (2005) in several aspects. First, the
former captures the stochastic trend in the temperature dynamics using a radiative forcing
variable. Second, the former does not allow the seasonal volatility dynamics, but impose
the conditional covariance structure between the average temperatures in different regions.
Third, the former allows a structural break in the conditional mean equation, while the
latter does not.

Notice that the well-known temperature regression models such as the linear cointegra-
tion model of Kaufmann and Stern (2002) and the cotrending model of Estrada et al. (2013b)
are different from the reduced-form regression models of Campbell and Diebold (2005)
and Morana and Sbrana (2019). Specifically, the global temperature models employed by
Kaufmann and Stern (2002) and Estrada et al. (2013b) assume that the radiative forcing is
cointegrated, or shares a structural break with the mean temperature, and the conditional
variance of mean temperature is time-invariant. More importantly, their global temperature
models do not attempt to explain the short-run and medium-run variations in the tempera-
ture dynamics using autoregressive lags and a fourier series, explaining only the long-run
component using the radiative forcing. In this light, the nonlinear cointegration model
of this study would be regarded as a long-run version of Morana and Sbrana (2019) with
extension for the spatial heterogeneity. Put differently, this study incorporates the spatial
heterogeneity of the effects of radiative forcing in the existing long-run temperature model.

3.2. Estimation and Inference

To estimate the derivative of interest D1 and D2(r) from Equations (10) and (11), b1 and
B(r) must be estimated. Prior to displaying the estimation procedure, the time-varying
domain of the temperature anomaly distribution is discussed. The Functional Fourier
Flexible form has been exploited to generate smoothed nonlinearity as a basis function.
The polynomial and trigonometric basis functions turn out to be useful in describing the
nonlinear relationship between temperature and the economic variable (Chang et al. 2016a).
It is worth noting that the literature restricts the support to unit interval, in order to ensure
the linear independence between basis functions on the domain. Indeed, the nth-order
trigonometric function is periodic with 1

n period, making the different order trigonometric
functions linearly independent. Likewise, the different order polynomial functions are
linearly independent.

Nevertheless, when we integrate the polynomial basis functions with the temperature
density on the unit interval, the multicollinearity problem would be generated in the sense
that the polynomial function on the unit interval could be interpreted as a weight function.
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Put differently, since the low-order polynomial functions on the unit interval, which are
integrated with identical time series of temperature density, cannot generate a notable
difference, the generated regressors would have the high collinearity. Further, note that
Chang et al. (2020) generated the global temperature anomaly distribution on the bounded
common support, and that common support is calculated using 95 percent of the total
probability mass over the entire time span. By definition, however, the nonstationarity of
the distributional time series is not compatible with bounded common support, and that
restricting the support of the entire time series to the common domain could also generate
the multicollinearity issue, implying that the nonstationary domain can be the source of
variability of the time series.

Given that the global mean temperature anomaly has a stochastically increasing
trend, more specifically, 2.5 percent of the probability mass at the left end would eliminate
the heterogeneity of the beginning of the distributional time series, and 2.5 percent of
the probability mass at the right end would eliminate the heterogeneity of the end of
the distributional time series. Indeed, the correlation coefficient between

∫
s s ft(s)ds and∫

s s2 ft(s)ds is calculated as a value, 0.994, where s ∈ [0, 1]. Consequently, the regression
analysis with such a high collinearity could be misdirected.

To overcome this, the variability inherited from the polynomial basis function on
the time-varying support must be preserved. For this, 99 percent of the total probability
mass of the temperature anomaly distribution at each time t is calculated, making the
support of spatial distribution of temperature anomaly vary over time. The time-varying
support of the raw temperature anomaly, rt, is denoted as Dr

t = [λ1
t , λ2

t ]. Moreover, the
unit interval is only applied to the trigonometric basis function by normalizing the raw

temperature anomaly (i.e., s = rt−λ1
t

λ2
t−λ1

t
∈ [0, 1]). In the meantime, the support of the raw tem-

perature anomaly is directly applied to the polynomial basis function, implying that sample
moments of the temperature anomaly distribution are included in the regression equation.

Subsequently, the mathematical procedure to estimate the derivative of interest is
provided,

D1 ≡
∂
∫

Dr
t

rt ft(r)dr

∂ht
=

∂
∫

Ds
{λ1

t + (λ2
t − λ1

t )s} ft(s)ds

∂ht
where rt = λ1

t + (λ2
t − λ1

t )s ∈ Dr
t ≡ [λ1

t , λ2
t ]Ds.

Note that we have∫
Dr

B(r) ft(r)dr =
∫

Dr

(
Bp(r) + Bt(r)

)
ft(r)dr

=
∫

Dr
Bp(r) ft(r)dr +

∫
Ds

Bt(s) ft(s)ds

due to the normalization-invariance property. Estimator D̂1 can be estimated by

∫
Dr

t

rt ft(r)dr = b0 + b1ht +
p

∑
i=2

bi

∫
Dr

t

ri
t ft(r)dr +

q

∑
j=1

(bs
p+2j−1, bs

p+2j)
∫

Ds
φj(s) ft(s)ds + (ut − epqt) (13)

where s denotes the normalized temperature, which is defined as rt−λ1
t

λ2
t−λ1

t
and bounded in

unit interval (i.e., Ds = [0, 1]). Define

βp0 = (b2, b3, . . . , bp)
′, βs

0q = (bs
p+1, bs

p+2, . . . , bs
p+2q−1, bs

p+2q)
′,

πp0(r) =
(

r2, r3, . . . , rp
)′

, π0q(s) = (cos(2πs), sin(2πs), . . . , cos(2qπs), sin(2qπs))′

Then, functional coefficients Bp(r) and Bt(s) are estimated by

B̂p(r) = β̂
′
p0πp0(r), B̂t(s) = β̂s′

0qπ0q(s)



Econometrics 2021, 9, 6 12 of 25

Subsequently, we calculate the TRF response function as

B̂(r) = B̂p(r) + B̂t(λ1 + (λ2 − λ1)s)

Finally, we estimate

∂
∫

Dr
B̂(r) ft(r)dr

∂ht
(14)

by implementing a linear regression of
∫

Dr
t

B̂(r) ft(r)dr on ht with a constant.
It is widely known that the LS method on cointegration analysis provides a super-

consistent estimator. However, LS estimators may be inefficient and asymptotically biased.
Moreover, the hypothesis testing based on LS estimator is invalid, due to the presence
of nuisance parameters. Throughout this study, the canonical cointegrating regression
developed by Park (1992) is employed.

In a matrix form, Equation (13) is re-written as

yt = α′pqzpqt + upqt (15)

where

yt =
∫

Dr
t

rt ft(r)dr

zpqt =

(
ht,
∫

Dr
t

r2
t ft(r)dr, . . . ,

∫
Ds

cos(2qπs) ft(s)ds,
∫

Ds
sin(2qπs) ft(s)ds

)′
upqt = epqt + ut

For the convenience of theoretical development, I assume both yt and zpqt are mean
zero processes by taking demeaning or detrending procedure from Equation (15).

Assume {wpqt} defined by

wpqt = (upqt, ∆zpqt)
′

satisfies the Invariance Principle (IP). Define φpq(k) = Ewpqtw′pq,t−k as the autocovariance
function of (wpqt). The long-run variance matrix Ω of {wpqt} is then given by

Ω =
∞

∑
k=−∞

φ(k)

Henceforth, the subscript pq is suppressed at the variance matrix for notational con-
venience. The contemporaneous variance Σ = φ(0) and the one-sided long-run variance
Λ = ∑∞

k=1 φ(k) is also defined so that Ω = Σ + Λ + Λ′. Further, define

Γ = Σ + Λ

which is (p + 2q + 1)× (p + 2q + 1) matrix. Consider the partitioned submatrices of Ω
and Γ by

Ω =

(
ω11 ω12
ω21 Ω22

)
, Γ =

(
γ11 γ12
γ21 Γ22

)
= [γ1 Γ2]

by assuming Ω22 > 0. The Canonical Cointegrating Regression (CCR) method proposed
by Park (1992) is based on the regression

y∗t = α′pqz∗pqt + u∗pqt (16)
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Here, {y∗t } and {z∗pqt} are stationary transformations of {yt} and {zpqt}, which are
given by

y∗t = yt − α′pqΓ′2Σ−1wpqt − w12Ω−1
22 ∆zpqt

z∗pqt = zpqt − Γ′2Σ−1wpqt (17)

The CCR estimator α̂CCR
pq of αpq is the LS estimator of αpq in the transformed regres-

sion (16). Note that the long-run relationship between yt and zpqt in Equation (15) remains
in the relationship between y∗t and z∗pqt in Equation (16) because the stationary transfor-
mation does not affect their long-run relationship. In this sense, the CCR estimate γ̂CCR,
must be the same for the LS estimate, γ̂LS.

For the feasible CCR estimation, Park (1992) and Park et al. (2010) suggest estimating
the long-run variance in Equation (17) with LS estimator α̂LS

pq from Equation (15). Note
that LS standard errors are not efficient under the presence of endogeneity of error term.
Meanwhile, the CCR estimator could be problematic if the long-run variance is not con-
sistently estimated due to nonstationarity in errors, inherited from misspecified orders
p and q. In this case, we cannot guarantee that the CCR estimator is more effective than the
LS estimator, implying that both CCR and LS methods may fail to provide correct standard
errors under misspecified orders p and q. Moreover, there has been no clear consensus that
the CCR estimator is more effective than the LS estimator in the nonlinear model. Note
that the CCR estimator’s role as per Park et al. (2010) is to fix only the linear part of the
regression model. In light of this, finding an exact order of p and q is a critical issue in
this study.

Practically, it is assumed that the exact orders of p and q are known for the consistent
long-run variance estimation with the Akaike Information Criterion (AIC) and the Bayesian
information criterion (BIC), so that nonlinearity or nonstationarity in errors is effectively
removed. Along the lines of Park et al. (2010), the consistent kernel estimator is considered
for the long-run variance Ω of ŵpqt = (ûpqt, ∆zpqt)′ that is given by

Ω̂n =
1
n ∑
|i|<ln

τ

(
i
ln

)
∑

t
ŵpqtŵpq,t−i

with lag window τ and lag truncation number ln. The LS residual from Equation (15),
is (ûpqt). Note that the Parzen window is applied to τ, and the data dependent rule of
Newey and West (1994) to ln.

To test the cointegration relationship between the temperature anomaly distribution
and the TRF level, the variable addition test (VAT) developed by Park (1990), is em-
ployed. To implement the test, two types of instruments are considered to the regression
Equation (16) as

y∗t = z∗
′

pqtαpq + si′
t ζ + u∗pqt, where i = 1, 2. (18)

where

s1
t = (t2, t3)

s2
t = sin

(
13.75

(
t
T

)
+ 0.21

)
, where

t
T
∈ [0, 1]

The first instrument, s1
t , is the two-dimensional superfluous regressors, quadratic and

cubic trends, and the second instrument, s2
t , is a single sine function to capture the Oceanic

Multidecadal Oscillation (Miller and Nam 2020).7

7 The estimates of Miller and Nam (2020) show that the Oceanic Multidecadal Oscillation has 76 year period, 3 year phase shift, and 0.130 amplitude.
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The null hypothesis H0 : ζ = 0 cannot be rejected if there is a cointegration between the
variables in Equation (16) in the sense that the added superfluous regressors are irrelevant
variables. Under the alternative of spurious regression, superfluous regressors would be
significant in the sense that the error contains nonstationary trends. Therefore, the null
hypothesis would be rejected if there is no cointegration in Equation (16) (i.e., spurious
regression). The reason for consideration of the second instrument, is that the 65–80 year
oceanic cycle does not strictly follow the covariance stationary process. That is, the test is
implemented for the case that the time-varying mean violates the stationarity of the error,
and therefore the cointegrating relationship. Note that Estrada et al. (2013b) presented their
empirical analysis with the Atlantic Multidecadal Oscillation-filtered Global and Northern
Hemisphere mean temperature anomalies.

The main benefit of the VAT test is that it is easy to implement in addition to the
robustness of many possible specification errors. Moreover, the VAT test prevents the
nonlinear cointegration model from including too many nonlinear temperature terms. The
test statistics of the VAT is given by

VAT =
RSS− RSSk

ω̂∗2nk
−→d χ2

k as n→ ∞

where RSS and RSSk are the sum of squared residuals from Equations (16) and (18),
respectively, and ω̂∗2nk is the consistent long-run variance estimate for the CCR errors from
Equation (18). Note that the VAT statistics is the cointegration test for the linear regression
model and it is feasible in the presented model because the nonlinear cointegration model
can be reduced to the linear model of Equation (15).

Further, the model specification test is implemented using the Wald test based on the
CCR estimator. Note that Wald statistics follow the asymptotically chi-square distribution
because the limiting distribution of the CCR estimator follows mixed-normal. To do so, the
mean-level regression is considered (i.e., p = 1 and q = 0) as a restricted model. For an
unrestricted model, the CCR regression model is considered at the optimal p and q order,
which is selected according to AIC and BIC criteria. Then, the Wald statistics based on the
CCR estimator is

W =
RSS1 − RSS2

ω̂∗2nk
−→d χ2

p+2q−1 as n→ ∞

where RSS1 and RSS2 are the sum of squared residuals from a restricted model and
a minimum IC-based model, respectively, and ω̂∗2nk is the consistent long-run variance
estimate for the CCR errors from a minimum IC-based model. Notably, the rejection of the
Wald test indicates the statistical significance of the specification error.

4. Data

The following data sources are employed for the Global, Northern Hemisphere, and
Southern Hemisphere temperature anomalies and the TRF variable. As in Chang et al. (2020)
who provided the technical background for the nonstationarity of global temperature
anomaly distributions, the HadCRUT4 temperature anomaly data from 1850 to 2015 are
employed for the Global, Northern Hemisphere, and Southern Hemisphere temperature
anomaly data (Morice et al. 2012).8 Basically, temperature anomaly data from HadCRUT4
and the Goddard Institute for Space Studies (GISS) are generated from the same raw dataset.
However, their treatments on the same raw dataset are different. Specifically, the GISS
dataset uses an interpolated sea-surface temperature analysis by filling the empty grid boxes
in the sea-surface area, while HadCRUT4 does not attempt to calculate the values for empty

8 Ensemble median of HadCRUT4.6.0.0 downloaded from http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html on
29 December 2019.

http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html
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grid boxes. In light of this, HadCRUT4 would understate the effect of Arctic temperature
anomalies, in which the warming has been significant over the past decades.9

Since the temperatures in land stations are measured at various elevations and since
different countries employ different methods, the Global, Northern Hemisphere, and
Southern Hemisphere temperature data are expressed as anomalies in degrees Celsius from
the monthly temperature average from 1961 to 1990, which is known as the “zero-base”
(i.e., climatological normal temperature) period. Note that since the number of stations
and the methods of temperature measurement are different across grid boxes, calculating
deviation from the zero-base may eliminate the heterogeneity across grid boxes over
the entire space of the Earth. In this context, the temperature anomaly data are directly
exploited for each grid box instead of recovering the actual temperature dataset.

Further, 99 percent of the total probability mass is exploited as the support of the
temperature anomaly distribution at each time t because 0.5 percent of the probability mass
at each end would be an adequate threshold to minimize the estimation errors induced
by the boundary problem from the standard kernel density estimation technique. Figure 1
shows the time series of left and right ends of the chosen support of the global tempera-
ture anomaly distribution, indicating that non-common support would be necessary to
effectively generate the distributions of temperature anomaly. Specifically, the right end of
the support of the global temperature anomaly distribution reveals an increasing trend,
implying the warming phenomena.

Figure 1. Time–series of left and right ends of the support of the global temperature anomaly distribution.

For the radiative forcing variable, TRF data from 1850 to 2015 (Hansen et al. 2017)
are employed, which represent the sum of anthropogenic forcing and natural variability.
Specifically, TRF is the sum of well-mixed GHG (CO2, CH4, N2O, and CFCs), ozone, surface
albedo and tropospheric aerosols, and solar irradiance.10 Figures 2–4 provide detailed
information of the temperature anomaly distribution for the Globe, Northern Hemisphere,
and Southern Hemisphere and TRF. Specifically, the top-left panels of Figures 2–4 show
the temperature anomaly distribution generated by the procedure of Chang et al. (2020),
and the top-right panels of the figures illustrate the graphical comparison between the
first moment estimated from the generated temperature anomaly distribution and the
web-posted mean temperature anomalies from the GISS11 and HadCRUT4 (the median
of the 100 ensemble member time series)12 websites for the Globe, Northern Hemisphere,
and Southern Hemisphere.

9 http://www.metoffice.gov.uk/hadobs/indicators/index.html, assessed on 29 December 2019.
10 Downloaded from www.columbia.edu/~mhs119/Burden on 30 January 2018.
11 http://data.giss.nasa.gov/gistemp/, assessed on 29 December 2019.
12 http://www.metoffice.gov.uk/hadobs/hadcrut4/, assessed on 29 December 2019.

http://www.metoffice.gov.uk/hadobs/indicators/index.html
www.columbia.edu/~mhs119/Burden
http://data.giss.nasa.gov/gistemp/
http://www.metoffice.gov.uk/hadobs/hadcrut4/
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Indeed, 99 percent of probability mass in estimating the temperature anomaly distribu-
tion provides a good approximation for estimating the first moment (i.e., mean temperature
anomaly) at each time t, in the sense that estimated mean temperature anomalies are simi-
lar to mean temperature anomalies widely-used by climate scientists. Note that the GISS
surface temperature data are expressed as an anomaly in degrees Celsius with the base
period 1951–1980, which is available after the year 1880. As mentioned earlier, the differ-
ences in the mean temperature anomalies between the HadCRUT4 and GISS sources are
greater for the Southern Hemisphere, in which the GISS team interpolates the sea-surface
temperature data.

Figure 2. Global temperature anomaly densities and moments.

Figure 3. Cont.
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Figure 3. Northern hemisphere temperature anomaly densities and moments.

Figure 4. Southern hemisphere temperature anomaly densities and moments.



Econometrics 2021, 9, 6 18 of 25

The bottom panels of Figures 2–4 provide the first four central moments of the gener-
ated temperature anomaly distribution. While the variances of the estimated temperature
anomaly distribution have decreased, roughly similar to Chang et al. (2020), the means,
the skewness, and the kurtosis of the estimated temperature anomaly distribution have
increased. In particular, the skewness appears to have increased from negative to posi-
tive. These statistical facts imply that the temperature anomaly distributions have been
concentrated around their increasing means, and the probabilities of extremely positive
temperature anomalies have increased. Not surprisingly, the decreasing variances of the
temperature anomaly distribution would be on the same lines with the movements of the
other central moments. Lastly, the calculated mean temperature anomalies are compared
with the TRF variable, clearly showing that they moved together for the last 165 years.

5. Empirical Analysis

Throughout this study, the statistical testing result of the unit-root type nonstationarity
of Chang et al. (2020) was followed. Specifically, the estimated persistence of the global
mean temperature anomaly was closer to a stochastic trend, but not high enough to a
deterministic trend, implying that no linear deterministic trend has been detected. As some
econometricians discover a broken deterministic trend from the global mean temperature
anomaly (Gay-Garcia et al. 2009; Estrada et al. 2013b, inter alia), moreover, Gao and
Hawthorne (2006) attempt to estimate a general deterministic trend by allowing the flexible
nonlinearity in the deterministic trend component. However, Chang et al. (2020) argue
that a deterministic trend with the excessive nonlinearity and variability could be better
expressed as a stochastic trend. Subsequently, the failure of rejection of the cointegration
test implies that the TRF variable shares a stochastic trend with the global temperature
anomaly distribution.

In the literature, climate sensitivity for the Globe is estimated as the value 0.43 ◦C/(W/m2)
and 0.35 ◦C/(W/m2) with AMO-unfiltered HadCRUT4 and NASA dataset, respectively
(Estrada et al. 2013b).13 As expected, linear climate sensitivity is estimated as the value
0.435 ◦C/(W/m2), which is a similar value to the Global case.

Table 1 provides the estimation result of Equation (13) with a derivative of interest.
Based on AIC and BIC criteria, the optimal models for the Globe, Northern Hemisphere,
and Southern Hemisphere are (p = 2, q = 1), (p = 2, q = 1), and (p = 2, q = 0), respec-
tively. Moreover, the first VAT test statistics (VAT1) for the Globe, Northern Hemisphere,
and Southern Hemisphere cases as well as for linear/optimally chosen nonlinear models,
indicate that all considered models are authentic, supporting the cointegration technique
using the CCR methodology. However, the second VAT test statistics (VAT2) indicate that all
regression models could be spurious if we assume the strict stationarity in the residual. No-
tice that the second VAT statistics decreased by considering the nonlinear temperature term
for the Globe and Northern Hemisphere cases, indicating that the nonlinear temperature
term s2

t in Equation (18) plays a role in explaining the oceanic multidecadal oscillation.
The nonlinear estimator D1 represents climate sensitivity that considers all nonlinear

effects across the observed temperature anomalies. The resulting climate sensitivity, D1,
of the nonlinear cointegration model is provided as the value 0.380 for the Globe, indicating
that the global mean temperature anomaly increases by 0.380 ◦C when TRF increases by
1 W/m2. In the meantime, the misspecification error of the linear model is greatest for
the Northern Hemisphere (0.1077 ◦C/(W/m2)), and lowest for the Southern Hemisphere
(0.0402 ◦C/(W/m2)). The Wald test decisively rejects the null of no statistical significance
of the nonlinear temperature term for the Globe, Northern Hemisphere, and Southern
Hemisphere cases (p-values are less than 0.01).

13 With the AMO-filtered HadCRUT4 (version 4.2.0.0) and NASA dataset, climate sensitivity is estimated by 0.40 ◦C/(W/m2) and 0.39 ◦C/(W/m2),
respectively.
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Table 1. Estimation results.

Global Temperature Anomaly

p q D1 Error(r) bCCR
1 T-Stat AIC BIC VAT1 Stat VAT2 Stat WALD Stat

1 0 0.435 0.000 0.435 20.191 −217.336 −211.112 1.303 42.614 0.000
2 1 0.380 0.055 0.398 18.085 −244.910 −229.350 2.998 22.737 22.962

Northern Hemisphere Temperature Anomaly

p q D1 Error(r) bCCR
1 T-Stat AIC BIC VAT1 Stat VAT2 Stat WALD Stat

1 0 0.503 0.000 0.503 16.427 −95.034 −88.810 1.229 53.397 0.000
2 1 0.395 0.108 0.420 13.289 −125.168 −109.608 0.081 21.760 28.836

Southern Hemisphere Temperature Anomaly

p q D1 Error(r) bCCR
1 T-Stat AIC BIC VAT1 Stat VAT2 Stat WALD Stat

1 0 0.367 0.000 0.367 19.058 −256.415 −250.191 3.846 8.214 0.000
2 0 0.327 0.040 0.336 15.553 −268.311 −258.975 0.592 12.040 7.708

As shown by Figures 2–4, TRF has affected not only the mean temperature anomaly,
but also variance, skewness, and kurtosis temperature anomalies for approximately 150 years.
This implies that the Earth’s surface temperature has been affected by human and nat-
ural forcing in a spatially heterogenous manner. The nonlinear cointegration model
enables us to estimate the true effect by including the spatial distributions of temper-
ature anomalies in the model, showing that the change in the global mean temperature
anomaly associated with TRF (0.380 ◦C/(W/m2)) would be less than what we have ob-
served (0.435 ◦C/(W/m2)).

In the literature, the transient climate response is often calculated as the global mean
temperature response in ◦C to a doubling of atmospheric CO2 from pre-industrial level
by an increase of 1 percent per year. Schwartz (2012) estimates the value 3.71 W/m2 of
the TRF level at the time when the atmospheric CO2 is doubled from the pre-industrial
level. Subsequently, the transient climate response is calculated as the value 1.410 ◦C
(=3.71 × 0.380 ◦C/(W/m2)), which is 0.204 ◦C lower than the estimated transient climate
response from the linear model (1.614 ◦C). Given that the global mean temperature anomaly
was −0.40◦C in 1850, the predicted global mean temperature anomaly associated with a
doubled atmospheric CO2 level is 1.01 ◦C.

Climatologically, the TRF response function at temperature anomaly r0, D2(r0), in-
dicates a change in the mean temperature anomaly, if net incoming absorbed radiation
is solely determined by temperature anomaly r0. As such, the nonlinear effect, in ad-
dition to the mean effect (or linear effect), would provide the temperature-dependent
TRF effect on the mean temperature anomaly. The nonlinear effects of the estimated
climate sensitivity, D̂1, are calculated as values −0.018 ◦C/(W/m2), −0.025 ◦C/(W/m2),
and −0.009 ◦C/(W/m2) for the Globe, Northern Hemisphere, and Southern Hemisphere
(i.e., the term, ∂

∫
Dr

B(r) ft(r)dr/∂ht in Equation (10)). Therefore, we may conclude that the
nonlinearity of the relationship induced by the spatial heterogeneity was strongest for the
Northern Hemisphere.

In Figure 5, both the net incoming absorbed radiation, B(r), and the derivative of
the temperature anomaly distribution with respect to TRF, dT(r), are presented for the
Globe, Northern Hemisphere, and Southern Hemisphere. Note that the domain of the
temperature anomaly is shortened below −1.0 ◦C and above 2.0 ◦C for a practical purpose.
The left panels of Figure 5 illustrate that the nonlinear effect becomes more significant
in the opposite direction as the temperature anomaly approaches the left and right ends.
As mentioned in Section 3, more specifically, B(r) estimates the effect of net incoming
absorbed radiation of the regions that are represented by the temperature anomaly r.
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Figure 5. Nonlinear response function B(r) and dT(r) for Globe (top)/NH (middle)/SH (bottom).

Note that the popular term, “polar amplification,” states that the low (high) temper-
ature anomaly region, which mainly represents higher (lower) latitude areas, is related
to the mean temperature anomaly in a positive (negative) direction (Boer and Yu 2003).
Consistent with this notion, a positive (negative) value of the net incoming absorbed ra-
diation term, B(r) implies that the TRF effect under linearity would be underestimated
(overestimated). In other words, the TRF effect under linearity should be amplified for
the negative anomalies (high latitude areas) for the Globe and Northern Hemisphere,
and be attenuated for the positive anomalies (low latitude areas) for the Globe, Northern
Hemisphere, and Southern Hemisphere.

By considering the nonlinear temperature term with the derivative of the temperature
anomaly distribution with respect to TRF, B(r)dT(r), the nonlinear TRF effect would be
obtained by amplifying or attenuating the linear TRF effect (see Equation (11)). Since the
changes in probability with respect to the change in TRF (i.e., dT(r)) are very small at
extreme temperature anomalies, the nonlinear effects at extreme temperature anomalies
could be much less than those at low or high temperature anomalies.
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Figure 6 illustrates the TRF response function for the Globe, Northern Hemisphere,
and Southern Hemisphere, which is the estimator D2(r) for r ∈ Dr in Equation (11). The
reference (dashed blue) line represents the linear TRF response function, postulating that
the TRF effect on the mean temperature anomaly is constant across temperature anomalies.
That is, it illustrates the TRF effect on the mean temperature anomaly without the nonlinear
effect. For the Globe, the linear term provides an estimate of the constant climate sensitivity
as the value 0.40 ◦C/(W/m2), and the nonlinear TRF response function intersects with the
linear TRF response function at two anomalies, −0.14 ◦C and 0.18 ◦C. This implies that the
linear TRF response function underestimates the true effect between these two anomalies.

Figure 6. Nonlinear TRF response function over temperature anomaly for Globe (top)/NH (left bottom)/SH (right bottom)
(see Equation (11)).

In Figure 6, more importantly, the nonlinear TRF response function (i.e., nonlinear
climate sensitivity) provides an interpretation of the relative magnitude of the TRF effect
on the mean temperature anomaly. In particular, the greatest temperature-dependent TRF
effect on the global mean temperature anomaly is estimated as the value 0.398 ◦C/(W/m2),
if net incoming absorbed radiation is solely determined by a temperature anomaly, 0.015 ◦C.
That is, the spatial contribution to the change in the global mean temperature anomaly
is strongest for the areas in which their temperature levels correspond to 0.015 ◦C. Such
spatially heterogeneous contributions could be better understood by incorporating the
higher-order moments of spatial distributions of temperature anomaly in the nonlinear
cointegration model.

Moreover, the smoothed global mean temperature anomaly using a polynomial func-
tion was approximately 0.01 ◦C in 1974, implying that the TRF effect on the global mean
temperature anomaly would be strongest in 1974. Note that the sum of nonlinear effects
of estimator D2(r) across temperature anomaly in Equation (11) is equal to the nonlinear
effect of estimator D1 in Equation (10). In this light, the high degrees of nonlinearity could
be estimated by adding all nonlinear effects, although the magnitude of nonlinear effect
at each temperature anomaly is small. Further note that the nonlinear TRF effect for the
Northern Hemisphere case shows a similar pattern to the Global case. However, its effect is
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greater than the Global case because the speed of global warming is faster in the Northern
Hemisphere than in the Southern Hemisphere.

To elaborate on this discussion, Figure 7 provides the nonlinear TRF response function
over time. Specifically, I postulate that the spatial regions where provide the biggest contri-
bution on the change of mean temperature anomaly at time t is located at the areas where
have a record of the mean temperature anomaly at time t. This is a reasonable situation,
in the sense that the mean value of spatial distribution would be largely determined by
the spatial areas where have a similar or closer mean value. Consequently, the value of
the nonlinear TRF response function at time t indicates the relative magnitude of the TRF
effect when the biggest spatial contribution is evaluated at the mean temperature anomaly
at time t.14

Figure 7. Nonlinear TRF response function over year for Globe (top)/NH (left bottom)/SH (right bottom).

The TRF response functions presented in Figure 7 imply that the warming speed
of the Globe and Northern Hemisphere has decreased since 1980. However, the speed
would start to increase when the mean temperature anomaly reaches approximately 0.8 ◦C.
Notably, the presented TRF response function for the Southern Hemisphere has decreased
since 1910. Similar to the Globe and Northern Hemisphere cases, however, the warming
speed of the Southern Hemisphere would start to increase when the mean temperature
anomaly reaches approximately 0.7 ◦C, which is much earlier compared to other cases.
Based on the information provided by the HadCRUT4 website,15 the mean temperature
anomalies for the Globe, Northern Hemisphere, and Southern Hemisphere in 2019 were
estimated at 0.736 ◦C, 0.972 ◦C, and 0.502 ◦C, respectively, indicating that the warming
speed of the Northern Hemisphere has already started to increase.

14 The four-year moving average mean temperature anomaly is applied to calculate the TRF response function over time, in order to exclude the
ENSO-induced short-run variability in the discussion.

15 Downloaded from https://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html on 20 January 2020.

https://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html
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6. Conclusions

In this paper, I proposed the nonlinear cointegration model based on the well-known
EBCM. For this, the nonlinear cointegrating regression of the mean temperature anomaly
for the Globe, Northern Hemisphere, and Southern Hemisphere, were estimated using
the spatial distributions of temperature anomalies. Subsequently, the nonlinear TRF effect
on the mean temperature anomaly was estimated, suggesting that the TRF effect on the
mean temperature anomaly would be temperature-dependent for the Globe, Northern
Hemisphere, and Southern Hemisphere. Graphically, the TRF response function has a
flexible shape to represent the change in the mean temperature anomaly when net incoming
absorbed radiation is hypothetically determined at some temperature anomaly.

Statistically, the linear model fails to take into account the net incoming absorbed radi-
ation term, which would cause the slope estimator to be invalid. Considering the functional
form of net incoming absorbed radiation, the proposed nonlinear cointegration model
shows the reasonable nonlinear dependence structure between the mean temperature
anomaly and TRF. Specifically, climate sensitivity is estimated to be temperature-dependent
(or spatially heterogenous), providing that the estimated nonlinear climate sensitivity was
highest in the mid-1970s for the Globe. Moreover, the TRF effect on the mean temperature
anomaly, which considers all nonlinear effects, is less than the estimate of the linear climate
sensitivity provided by the literature. Lastly, the statistical testing results indicate that
the linear model possesses a significant misspecification error for the Globe, Northern
Hemisphere, and Southern Hemisphere cases.

The next step regarding this research refers to climate variability. As emphasized by
Brock et al. (2013), spatial complexity on Earth is a big challenge for analyzing temperature
series at hemispheric scales. The complexity inherited from spatial diversity produces
hardly explainable natural variability through the observed data. At least to date, the well-
known inter-annual global variability or hemispheric climate variability is regarded as the
El Niño/Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the At-
lantic Multidecadal Oscillation (AMO). Among them, the most influential natural variation
for the attribution study is the AMO, which could distort the long-term global warming
trend. Specifically, the large ocean-atmosphere cycle over the North Atlantic, which is
defined as approximately 60 to 90 years of low-frequency patterns of sea surface tempera-
ture variability, explains the larger variability in Northern Hemisphere temperatures and
therefore, globally.

In particular, Estrada et al. (2013b) identified its difficulty when they conducted an
attribution study. They argued that the detrended Global and Northern Hemisphere
temperatures with forcing variables could be further explained by the AMO and therefore
the difference between the dates of a structural break could be explained as well. In light
of this, Estrada et al. (2013b) filtered the AMO information from the Global and Northern
Hemisphere mean temperature anomalies to estimate constant climate sensitivity. To put
these factors into perspective, it is worth estimating nonlinear climate sensitivity after
extracting the major climate variabilities.

Moreover, the uncertainty of the estimator of the TRF response function needs to
be evaluated. As the estimation is implemented via two-step approach, it is difficult to
evaluate the bootstrapping confidence bands, in the sense that the estimator’s uncertainty
comes from both steps. We may estimate the uncertainty by fixing the point estimate of
the first step as a constant. Since the first step is the nonstationary nonlinear regression
model, however, the uncertainty of the first step’s estimator would be larger than that of
the second step’s estimator. I leave these tasks to future research.
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