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Abstract: The maximum diversification has been shown in the literature to depend on the vector of
asset volatilities and the inverse of the covariance matrix of the asset return covariance matrix. In
practice, these two quantities need to be replaced by their sample statistics. The estimation error
associated with the use of these sample statistics may be amplified due to (near) singularity of the
covariance matrix, in financial markets with many assets. This, in turn, may lead to the selection of
portfolios that are far from the optimal regarding standard portfolio performance measures of the
financial market. To address this problem, we investigate three regularization techniques, including
the ridge, the spectral cut-off, and the Landweber–Fridman approaches in order to stabilize the
inverse of the covariance matrix. These regularization schemes involve a tuning parameter that needs
to be chosen. In light of this fact, we propose a data-driven method for selecting the tuning parameter.
We show that the selected portfolio by regularization is asymptotically efficient with respect to the
diversification ratio. In empirical and Monte Carlo experiments, the resulting regularized rules
are compared to several strategies, such as the most diversified portfolio, the target portfolio, the
global minimum variance portfolio, and the naive 1/N strategy in terms of in-sample and out-
of-sample Sharpe ratio performance, and it is shown that our method yields significant Sharpe
ratio improvements.

Keywords: portfolio selection; maximum diversification; regularization

JEL Classification: G11; C16; C52

1. Introduction

Since the seminal work of Markowitz (1952), which offers essential basis to portfolio
selection, diversification issues have been in the center of many problems in the financial
market. According to Markowitz’s portfolio theory, a portfolio is diversified if its variance
could not be reduced any further at the same level of the expected return.The fundamental
objective of this diversification is to construct a portfolio with various assets that earns
the highest return for the least volatility that may be a good alternative to the market cap-
weighted portfolios. In fact, there is evidence that market portfolios are not as efficient as
assumed by Sharpe (1964) in his Capital Asset Price Model (CAPM). The CAPM model as
introduced by Sharpe (1964) implies that the tangency portfolio is the only efficient one and
should produce the greatest returns relative to risk. Nonetheless, several empirical studies
have shown that investing in the minimum variance portfolio yields better out-of-sample
results than does an investment in the tangency portfolio (see Haugen and Baker 1991;
Choueifaty et al. 2013; Lohre et al. 2014).

Even if these surprising results seem to be due to the high estimation risk associ-
ated with the expected returns (according to Kempf and Memmel (2006)), the efficiency
of the market capitalization-weighted index has been questioned motivating numerous
investment alternatives (see Arnott et al. (2005); Clarke et al. (2006); Maillard et al. (2010)).
Subsequently, Choueifaty (2011) introduced the concept of maximum diversification, via
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a formal definition of portfolio diversification: the diversification ratio (DR) and claimed
that portfolios with maximal DRs were maximally diversified and provided an efficient
alternative to market cap-weighted portfolios.

This optimal maximum diversification portfolio is shown to be a function of the in-
verse of the covariance matrix of asset returns (see Theron and Van Vuuren 2018), which is
unknown and needs to be estimated. Solving for the maximum diversification portfolio
leads to estimate the covariance matrix of returns and take its inverse. This results in
estimation error, amplified due to (near) singularity of the covariance matrix, in financial
markets with many assets. This, in turn, may lead to the selection of portfolios that are
far from the optimal regarding standard portfolio performance measures of the financial
market. Therefore, Choueifaty et al. (2013) propose the most diversified portfolio (MDP) by
imposing a non-negative constraint on the maximum diversification problem1. However,
this ad hoc constraint suggests that the MDP is unlikely to represent the final word of
diversification. Without the ability to short securities it may be impossible to unlock the
full range of uncorrelated risk sources present in the market (see Maguire et al. 2014).
Therefore, this paper proposes a more general method to control for estimation error in the
covariance matrix of asset returns without restricting the ability to short sell in the financial
market. This method is fundamentally based on different ways to stabilize the inverse
of the covariance matrix particularly useful when the number of assets in the financial
market increases considerably compared with the estimation window. More precisely, as in
Carrasco (2012) and Carrasco and Tchuente (2015) we investigate three regularization tech-
niques including the spectral cut-off, the Tikhonov, and Landweber–Fridman approaches
in order to stabilize the inverse of the covariance matrix. This procedure has been used by
Carrasco et al. (2019) to stabilize the inverse of the covariance matrix in the mean-variance
portfolio.

These regularization schemes involve a tuning parameter that needs to be chosen.
Therefore, we propose a data-driven method for selecting the tuning parameter that
minimizes the distance between the inverse of the estimated covariance matrix and the
inverse of the population covariance matrix.

We show, under appropriate regularity conditions, that the selected strategy by reg-
ularization is asymptotically efficient with respect to the diversification ratio for a wide
choice of the tuning parameter. Meaning that, even if the optimal diversified portfolio is
unknown, there exists a feasible portfolio obtained by regularization capable of reaching
similar level of performance in terms of the diversification ratio.

To evaluate the performance of our procedures, we implement a simulation exercise
based on a three-factor model calibrated on real data from the US financial market. We
obtain by simulation that our procedure significantly improve the performance of the
proposed strategy with respect to the Sharpe ratio. Moreover, the regularized rules are
compared to several strategies such as the most diversified portfolio, the target portfolio, the
global minimum variance portfolio, and the naive 1/N strategy in terms of in-sample and
out-of-sample Sharpe ratio, and it is shown that our method yields significant Sharpe ratio
improvements. To confirm our simulations, we do an empirical analysis using Kenneth R.
French’s 30-industry portfolios, 100 portfolios formed on size and book-to-market, and a
subset of the S&P500 index constituents. The empirical results show that by stabilizing the
inverse of the covariance matrix in the maximum diversification portfolio, we considerably
improve the performance of the selected strategy in terms of maximizing the Sharpe ratio.

The main finding of this paper is that by stabilizing the inverse of the covariance
matrix in the maximum diversification portfolio, we considerably improve the perfor-
mance of the selected portfolio with respect to several statistics in the financial market
including the diversification ratio, the Sharpe ratio, and the rebalancing costs (turnover) as
shown by extensive simulations and empirical study. Therefore, our methods are highly

1 The objective is to reduce the effect of estimation error on the performance of selected maximum diversification portfolio.
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recommended for investors in the sense that these procedures help them to select very
effective strategies with lower rebalancing cost.

The rest of the paper is organized as follows. Section 2 presents the economy. The
regularized portfolio is presented in Section 3. Section 4 gives some asymptotic properties
of the selected strategy and proposes a data-driven method to select the tuning parameter.
Section 5 presents some simulation results and an empirical study. Section 6 concludes the
paper.

2. The Model

We consider a simple economy with N risky assets with random returns vector Rt+1
and a risk-free asset. Let us denote R f the gross return on this risk-free asset. Empirically
with monthly data, R f is calibrated to be the mean of the one-month Treasury-Bill (T-B)
rate observed in the data. The number of risky assets in our economy N is assumed to be
large for diversification issue.

We assume that the excess returns rt+1 = Rt+1−R f 1N are independent and identically
distributed with the mean and the covariance matrix given by µ and Σ =

{
σi,j
}

i,j∈N ,

respectively. Let us denote by ω = (ω1, ..., ωN)
′

the vector of portfolio weights that
represents the amount of the capital to be invested in the risky assets and the remain
1−ω

′
1N is allocated to the risk-free asset. Short-selling is allowed in the financial market,

i.e., some of the weights ωi could be negative. Let us denote σ = (σ1,1, ..., σN,N)
′

the vector
of asset volatilities.

According to Choueifaty (2011), the diversification ratio (DR) of any portfolio ω is
given by

DR(ω) =
ω
′
σ√

ω
′Σω

(1)

which is the ratio of weighted average of volatilities divided by the portfolio volatility.
Using the relation in Equation (1), the maximum diversification portfolio is obtained

by solving the following optimization problem

max
ω

DR(ω). (2)

As the DR is invariant by scalar multiplication (for instance see Choueifaty et al. (2013)),
solving the problem in Equation (2) is equivalent of solving the following new problem
according to Theron and Van Vuuren (2018)

min
ω
′
σ=1

1
2

ω
′
Σω. (3)

This new optimization problem is very close to the global minimum variance portfolio.
The only difference is that the constraint ω

′
1 = 1 in the global minimum variance problem

is replaced by ω
′
σ = 1. The solution of this new optimization problem is given by

ω =
Σ−1σ

σ
′Σ−1σ

=
(

σ
′
Σ−1σ

)−1(
Σ−1σ

)
. (4)

The solution in (4) is unknown because it depends on the covariance matrix of asset
returns and the vector of volatilities that are unknown and need to be estimated from
available data set. We need, in particular, to estimate the covariance matrix and take its
inverse. The sample covariance may not be appropriate because it may be nearly singular,
and sometimes not invertible. The issue of ill-conditioned covariance matrix must be
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addressed because inverting such matrix increases dramatically the estimation error and
then makes the maximum diversification portfolio unreliable. Many techniques have been
proposed in the literature to stabilize the inverse of the covariance matrix in the solution
in (4). According to Carrasco et al. (2007), an interesting way to stabilize the inverse of
the covariance matrix consists of dampening the explosive effect of the inversion of the
singular values of Σ̂. It consists in replacing the sequence

{
1/λj

}
of explosive inverse

singular values by a sequence
{

q(α, λj)/λj
}

, where the damping function q(α, λ) is chosen
such that

1. q(α, λ)/λ remains bounded when λ→ 0
2. for any λ, limα→0 q(α, λ) = 1

where α is the regularization parameter. The damping function is specific to each
regularization.

In this paper, we propose a consistent way to estimate the solution in (4) using three
regularization schemes based on three different ways of inverting the covariance matrix of
asset returns. These regularization techniques are the spectral cut-off, the Tikhonov, and
the Landweber–Fridman. The spectral cut-off regularization scheme is based on principal
components whereas the Tikhonov’s one is based on Ridge regression (also called Bayesian
shrinkage) and the last one is an iterative method.

3. The Regularized Portfolio

The regularization methods used in this paper are drawn from the literature on inverse
problems (see Kress (1999)). They are designed to stabilize the inverse of Hilbert–Schmidt
operators (operators for which the eigenvalues are square summable). These regularization
techniques will be applied to the sample covariance matrix of asset returns to stabilize its
inverse in the selected portfolio.

Let λ̂2
1 ≥ λ̂2

2 ≥ ... ≥ λ̂2
N ≥ 0 be the eigenvalues of the sample covariance matrix Σ̂. By

spectral decomposition, we have that Σ̂ = PDP
′

with PP
′
= IN , where P is the matrix of

eigenvectors and D the diagonal matrix with eigenvalues λ̂2
j on the diagonal. Furthermore,

let Σ̂α be the regularized inverse of Σ̂.

Σ̂α = PDαP
′

where Dα is the diagonal matrix with elements q(α, λ̂2
j )/λ̂2

j . The positive parameter α

is the regularization parameter, a kind of smoothing parameter which is unknown and
needs to be selected. q(α, λ̂2

j ) is the damping function that depends on the regularization
scheme used.

3.1. Tikhonov Regularization (TH)

This regularization scheme is close to the well known ridge regression used in presence
of multicollinearity to improve properties of OLS estimators. In Tikhonov’s regularization
scheme, the real function q(α, λ̂2

j ) is given by

q(α, λ̂2
j ) =

λ̂2
j

λ̂2
j + α

3.2. The Spectral Cut-Off (SC)

It consists in selecting the eigenvectors associated with the eigenvalues greater than
some threshold.

q(α, λ̂2
j ) = I

{
λ̂2

j ≥ α
}
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The explosive influence of the factor 1/λ̂2
j is filtered out by imposing q(α, λ̂2

j ) = 0 for small

λ̂2
j , that is, λ̂2

j < α. α is a positive regularization parameter such that no bias is introduced

when λ̂2
j exceeds the threshold α. Another version of this regularization scheme is the

Principal Components (PC) which consists in using a certain number of eigenvectors to
compute the inverse of the operator. The PC and the SC are perfectly equivalent, only
the definition of the regularization term α differs. In the PC, α is the number of principal
components. In practice, both methods will give the same estimator.

3.3. Landweber–Fridman Regularization (LF)

In this regularization scheme, Σ̂α is computed by an iterative procedure with the formula

{
Σ̂α

l =
(

IN − cΣ̂α
)
Σ̂l−1 + cΣ̂ for l = 1, 2, ...1/α− 1

Σ̂α
0 = cΣ̂

The constant c must satisfy 0 < c < 1/λ̂2
1. Alternatively, we can compute this

regularized inverse with

q(α, λ̂2
j ) = 1−

(
1− cλ̂2

j

) 1
α

The basic idea behind this procedure is similar to the spectral cut-off method but with a
smooth bias function.

See Carrasco et al. (2007) for more details about these regularization techniques. The
regularized diversified portfolio for a given regularization scheme is

ω̂α =
Σ̂ασ̂

σ̂
′ Σ̂ασ̂

=
(

σ̂
′
Σ̂ασ̂

)−1
Σ̂ασ̂. (5)

This regularized portfolio depends on an unknown tuning parameter that needs to be
selected through a data-driven method.

4. Asymptotic Properties of the Selected Portfolio

In this section, we will look at the efficiency of the regularized portfolio with respect
to the diversification ratio. We will also propose a data-driven method to select the
tuning parameter.

4.1. Efficiency of the Regularized Diversified Portfolio

To obtain the efficiency of the selected portfolio, we need to impose some regularity
conditions, in particular we will need the following assumption.

Assumption A: Σ
N is a trace class operator.

A a trace class operator K is a compact operator with a finite trace, i.e., Tr(K) = O(1).
This assumption is more realistic than assuming that Σ is a Hilbert–Schmidt operator.
Moreover, Carrasco et al. (2019) show that Assumption A holds when the returns are
generated from a standard factor model.

Under Assumption A, the following proposition presents information about the
asymptotic property of the diversification ratio associated with the selected portfolio.

Proposition 1. Under Assumption A we have that

DR(ω̂α)→p DR(ωt), (6)

if N
α
√

T
→ 0 as T goes to infinity.
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Proof. In Appendix A.

Comment on Proposition 1. The regularity condition behind proposition 1 implies several
things: First, α

√
T → +∞ implies that the estimation window should go to infinity faster

than the optimal tuning parameter goes to zero. Second, N
α
√

T
→ 0 implies that α

√
T

should go to infinity faster than the number of assets in the financial market. Therefore,
the number of assets should be limited asymptotically compared with the estimation
window. As the regularization parameter α is in (0, 1), N

α
√

T
→ 0 is implied by the following

condition N√
T
→ 0. However, the regularity condition N√

T
→ 0 seems to be more restrictive

than assuming that N
T → Constant. One way to avoid this regularity condition will be to

assume that the covariance matrix of assets returns is a trace class operator or to assume
that this covariance matrix is a Hilbert–Schmidt operator. These assumptions seem to
be more restrictive than assuming that N√

T
→ 0, which seems to be close to the reality

asymptotically. Moreover, N√
T
→ 0 is only an asymptotic assumption and we do not need to

have N√
T

close to zero in practice to obtain good performance with the regularized portfolio.
Particularly, in finite sample, N could be larger than T or too close to T. Proposition 1
shows that the regularized diversified portfolio is asymptotically efficient in terms of the
diversification ratio for a wide choice of the tuning parameter. Meaning that, even if the
optimal diversified portfolio in Equation (4) is unknown, there exists a feasible portfolio
obtained by regularization capable of reaching similar level of performance in terms of the
diversification ratio.

4.2. Data-Driven Method for Selecting the Tuning Parameter

We show in the previous sections that the selected portfolio depends on a certain
smoothing parameter α ∈ (0, 1). We have derived the efficiency of the selected portfolio
assuming that this tuning parameter is given. However, in practice, the regularization
parameter is unknown and needs to be selected. Therefore, we propose a data-driven
selection procedure to obtain an approximation of this parameter.

Our objective here is to select the tuning parameter which minimizes the distance
between the inverse of the estimated covariance matrix and the inverse of the true co-
variance matrix. According to Ledoit and Wolf (2003), most of the existing shrinkage
estimators from finite-sample statistical decision theory as well as in Frost and Savarino
(1986) break down when N ≥ T because their loss functions involve the inverse of the
sample covariance matrix which is a singular matrix in this situation. Therefore, to avoid
this problem, they propose a loss function that does not depend on this inverse. This loss
function is a quadratic measure of distance between the true and the estimated covariance
matrices based on the Frobenius norm. Unlike in Ledoit and Wolf (2003), we will use a
loss function that depends on the inverse of the covariance matrix under the assumption
that the true covariance matrix is invertible. One important thing to notice here is that
the regularized covariance matrix is always invertible even if N ≥ T meaning that our
loss function exists for N ≥ T. In fact, we know that the optimal diversified portfolio as
given by Equation (4) depends on the inverse of the covariance matrix of assets returns.
Moreover, because our objective is to stabilize the inverse of this covariance matrix in the
estimated portfolio by regularization, we propose to use a loss function that minimizes a
quadratic distance between the regularized inverse and the theoretical covariance matrix.

The loss function we consider here is given by

µ
′
[(

Σ̂α − Σ−1
)′

Σ
(

Σ̂α − Σ−1
)]

µ (7)

where µ is the expected excess return. The choice of this specific quadratic distance is
useful to obtain a criterion that can easily be approximated by generalized cross validation
approach.
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Therefore, the objective is to select the tuning parameter that minimizes

E
{

µ
′
[(

Σ̂α − Σ−1
)′

Σ
(

Σ̂α − Σ−1
)]

µ

}
. (8)

It implies that

α̂ = arg min
α∈HT

E
{

µ
′
[(

Σ̂α − Σ−1
)′

Σ
(

Σ̂α − Σ−1
)]

µ

}
(9)

To obtain a better approximation of the tuning parameter based on a generalized
cross-validation criterion, we need additional assumptions. Therefore, let us start with
some useful notations.

We denote by Ω = E
(

rtr
′
t

)
= E

(
X
′
X
)

/T and β = Ω−1µ = E(X′X)−1E(X′1T) where
rt, t = 1, · · · , T are the observations of the excess returns and X the T× N matrix with tth
row given by r′t.

Assumption B

For some ν > 0, we have that

N

∑
j=1

< β, φj >
2

η2ν
j

< ∞

where φj and η2
j denote the eigenvectors and eigenvalues of Ω

N .

The regularity condition in Assumption B can be found in Carrasco et al. (2007) and
Carrasco (2012). Moreover, Carrasco et al. (2019) show that Assumption B hold if the
returns are generated by a factor model. Assumption B is used combined with Assumption
A to derive the rate of convergence of the mean squared error in the OLS estimator of
β. These two assumptions imply in particular that ‖β‖2 < +∞ such that we have the
following relations,

‖β− βα‖2 =

{
O(αν) for SC, LF
O
(

αmin(ν,2)
)

for T

βα is the regularized version of β.
The following result gives us a very nice equivalent of the objective function. We can

easily apply a cross-validation approximation procedure on this expression of the objective
function.

Proposition 2. Under Assumptions A and B we have that

E
{

µ
′
[(

Σ̂α − Σ−1
)′

Σ
(

Σ̂α − Σ−1
)]

µ

}
∼ E

{(
Σ̂αµ̂− Σ−1µ

)′
Σ
(

Σ̂αµ̂− Σ−1µ
)}

if 1
α2T → 0 and

√
Nαmin( ν

2 ,1) → 0 as T goes to infinity.

Proof. In Appendix B.

We obtain the following corollary from this proposition.

Corollary 1. Under Assumptions A and B we have that

E
{

µ
′
[(

Σ̂α − Σ−1
)′

Σ
(

Σ̂α − Σ−1
)]

µ

}
∼ 1

T
E
∥∥X
(

β̂α − β
)∥∥2

+
(µ′(βα − β))2

(1− µ′β)

if 1
α2T → 0 and

√
Nαmin( ν

2 ,1) → 0 as T goes to infinity.
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The result in Corollary 1 is obtained by using Proposition 2 combined with Proposition 1
in Carrasco et al. (2019).

From Corollary 1, it follows that minimizing E
{

µ
′
[(

Σ̂α − Σ−1)′Σ(Σ̂α − Σ−1)]µ} is
equivalent to minimizing

1
T

E
∥∥X
(

β̂α − β
)∥∥2

(10)

+
(µ′(βα − β))2

(1− µ′β)
. (11)

Terms (10) and (11) depend on the unknown β, and therefore need to be approximated.
The approximation of these two quantities is borrowed from Carrasco et al. (2019). More
precisely, the rescaled MSE

1
T

E
[∥∥∥X

(
β̂α − β

)∥∥∥2
]

can be approximated by generalized cross-validation criterion:

GCV(α) =
1
T
‖(IT −MT(α))1T‖2

(1− tr(MT(α))/T)2 .

Using the fact that

µ̂′(βα − β) =
1′T
T
(MT(α)− IT)Xβ,

(11) can be estimated by plug-in: (
1′T(MT(α)− IT)Xβ̂α̃

)2

T2
(
1− µ̂′ β̂α̃

) (12)

where β̂α̃ is an estimator of β obtained for some consistent α̃ (α̃ can be obtained by mini-
mizing GCV(α)).

The optimal value of τ is defined as

α̂ = arg min
τ∈HT

{
GCV(α) +

(
1′T(MT(α)− IT)Xβ̂α̃

)2

T2
(
1− µ̂′ β̂α̃

) }

where HT = {1, 2, ..., T} for spectral cut-off and Landweber–Fridman and HT = (0, 1)
for Ridge.

5. Simulations and Empirical Study

We start this section by a simulation exercise to set up the performance of our pro-
cedure and compare our result to the existing methods. In particular, we compare our
method to the most diversified portfolio proposed by Choueifaty and Coignard (2008).
More precisely, we focus on how our procedure performs in terms of the Sharpe ratio and
the diversification ratio. To end this section, we analyze the out-of-sample performance of
the selected portfolio.

5.1. Data

In our simulations and empirical analysis, various forms of monthly data will be used
from July 1980 to June 2016. The one-month Treasury-Bill (T-Bill) rate is used as a proxy
for the risk-free rate, and R f is calibrated to be the mean of the one-month Treasury-Bill
rate observed in the data. We use monthly returns of Fama–French three factors and of 30
industry portfolios from the Kenneth R. French data library in order to calibrate unknown
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parameters of the simulation model. In the empirical study, we also use monthly data for
the 100 portfolios formed on size and book-to-market from the Kenneth R. French data
Library and the CRSP monthly data for the S&P500 index constituents.

5.2. Simulation

We implement a simple simulation exercise to assess the performance of our procedure
and compare it with the existing procedures. Let us consider for this purpose a simple
economy with N ∈ {10, 20, 40, 60, 80, 90, 100} risky assets. We use several values of N to
see how the size of the financial market (defined by the number of assets in the economy)
could affect the performance of the selected strategy. Let T be the sample size used to
estimate the unknown parameters in the investment process. Following Chen and Yuan
(2016) and Carrasco et al. (2019), we simulate the excess returns at each simulation step
from the following three-factor model for i = 1, ..., N and t = 1, ..., T

rit = bi1 f1t + bi2 f2t + bi3 f3t + εit (13)

ft = ( f1t, f2t, f3t)
′

is the vector of common factors, bi = (bi1, bi2, bi3)
′

is the vector of factor
loadings associated with the ith asset, and εit is the idiosyncratic component of rit satisfying
E(εit| ft) = 0. We assume that ft ∼ N

(
µ f , Σ f

)
, where µ f and Σ f are calibrated on the

monthly data of the market portfolio, the Fama–French size, and the book-to-market
portfolio from July 1980 to June 2016. Moreover, we assume that bi ∼ N (µb, Σb) with
µb and Σb calibrated using data of 30 industry portfolios from July 1980 to June 2016.
Idiosyncratic terms εit are supposed to be normally distributed. The covariance matrix of
the residual vector is assumed to be diagonal and given by Σε=diag

(
σ2

1 , ..., σ2
N
)

with the
diagonal elements drawn from a uniform distribution between 0.10 and 0.30 to yield an
average cross-sectional volatility of 20%.

In the compact form (13) can be written as follows,

R = BF + ε (14)

where B is a N× 3 matrix whose ith row is b
′
i . The covariance matrix of the vector of excess

return rt is given by
Σ = BΣ f B

′
+ Σε.

The mean of the excess return is given by µ = Bµ f . The return on the risk-free asset R f
is calibrated to be the mean of the one-month T-B observed in the data from July 1980 to
June 2016.

The calibrated parameters used in our simulation process are given in Table 1. The
gross return on the risk-free asset calibrated on the data is given by R f = 1.0036. Once
generated, the factor loadings are kept fixed over replications, while the factors differ from
simulations and are drawn from a trivariate normal distribution.

Table 1. Calibrated parameters.

Parameters for Factors Loadings Parameters for Factors Returns

µb Σb µ f Σ f

1.0267 0.0422 0.0388 0.0115 0.0063 0.0020 0.0003 −0.0004
0.0778 0.0388 0.0641 0.0162 0.0011 0.0003 0.0009 −0.0003
0.2257 0.0115 0.0162 0.0862 0.0028 −0.0004 −0.0003 0.0009

Let SR(ωt) be the Sharpe ratio associated with the optimal portfolio ωt, then SR(ωt) is
given as follows,
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SR(ωt) =
[
µ
′
Σµ
]1/2

To evaluate the performance of our procedure in terms of the Sharpe ratio, we focus
on the actual Sharpe ratio associated with the selected portfolio. The actual Sharpe ratio at
time point t is given by

SR(ω̂t) =
ω̂
′
tµ[

ω̂
′
tΣω̂

′
t
]1/2

We consider the following portfolio selection procedures.

• The sample-based diversified portfolio (SbDP). This strategy is obtained using sample
moments to estimate the unknown parameters in the maximum diversification portfolio.

SbDP =
Σ̂−1σ̂

σ̂
′ Σ̂−1σ̂

• The most diversified portfolio (MDP) proposed by Choueifaty et al. (2013). This
strategy is obtained by solving the optimization problem in Equation (2) under the
following constraint,
ωi ≥ 0 f or i = 1, ..., N.
The closed form associated with this new optimization problem is given as follows,

MDP = diag(Σ)C−11

where diag(Σ) is a diagonal matrix of assets volatilities, C the correlation matrix, and
1 a N × 1 vector of ones. The MDP is then estimated by replacing the unknown
parameters by their empirical counterparts.

• The global minimum variance portfolio (GMVP) obtained by minimizing the variance
of the return on the optimal selected portfolio. By solving this optimization problem,
the following closed form is obtained,

GMVP =
Σ−11

1′Σ−11

This solution is then estimated by replacing the covariance matrix by the sample
covariance matrix.

• The regularized strategies such as: the ridge regularized diversified portfolio (RdgDP),
the spectral cut regularized diversified portfolio (SCDP), and the Landweber–Fridman
regularized diversified portfolio (LFDP).

• The equal-weighted portfolio which is also called the naive portfolio (XoNP) which
allocates a constant amount 1/N+1 in each asset.

• The target (or the maximum Sharpe ratio) portfolio (TgP). The closed form of the
target portfolio is

TgP =
Σ−1µ

µ
′Σ−11

This portfolio is also estimated using sample moments such as the sample mean and
the sample covariance matrix to estimate the unknown parameters.
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• The linear factor-based shrinkage estimators proposed by Ledoit and Wolf (2003)
(LWP). It consists of replacing the sample covariance matrix in the selected portfolio by
an optimally weighted average of two existing estimators: the sample covariance ma-
trix and single-index covariance matrix. This method involves also a tuning parameter
that is unknown and has been selected by the authors. The tuning parameter selection
procedure proposed in Ledoit and Wolf (2003) is based on minimizing the distance
between the population covariance matrix and the regularized one. This implies that
the way they select the turning parameter is different from our data-driven method.
Therefore, the LWP will be considered here as a very good benchmark (and it will
be the only benchmark that we consider) to evaluate the ability of our data-driven
method to deliver additional performance compare to other data-driven methods.

We perform 1000 simulations and estimate our statistics over replications. We obtain
the following results about the actual Sharpe ratio.

Table 2 contains the results about the average monthly Sharpe ratio obtained by
simulations. The results show that the sample based diversified portfolio performs very
poorly in terms of maximizing the Sharpe ratio in the financial market with large number
of assets. This result is essentially due to the fact that the estimation error from estimating
the vector of assets volatilities is amplified by using the sample covariance matrix of assets
returns closed to a singular matrix when N becomes too large compared with the sample
size. Therefore, even if this strategy is supposed to be the maximum diversification’s one
with the highest Sharpe ratio, the SbDP is dominated by several other strategies such as the
GMVP, the XoNP, and the TgP. Therefore, this strategy cannot be consider as the maximum
diversification strategy in practice. To solve this problem, Choueifaty et al. (2013) proposes
the most diversified portfolio (MDP) obtained by maximizing the diversification ratio
under a non-negative constraint on the portfolio weights. This additional constraint in the
investment process may help to reduce the effect of estimation error on the performance
of the selected portfolio. The results of this analysis are in Table 2. By imposing the
non-negative constraint, investors considerably improve the performance of the selected
portfolio in terms of the Sharpe ratio. This new strategy even outperforms the global
minimum variance portfolio. However, this procedure is still dominated by the target
portfolio and the equal weighted portfolio meaning that much remains to be done about
finding the maximum diversification strategy in practice. One explanation to this result is
that imposing the non-negative constraint on the portfolio weight may limit the ability of
the selected portfolio to be fully diversified. Therefore, one needs to find a more general
estimation procedure for the maximum diversified portfolio that allows for short selling.

Table 2. The average monthly Actual Sharpe ratio from optimal strategies using a three-factor
model as a function of the number of assets in the economy with the sample size n = 120, over
1000 replications. True SR is the true actual Sharpe ratio.

Strategies
Number of Risky Assets

10 20 40 60 80 90 100

SbDP 0.1549 0.0906 0.0889 0.0779 0.0652 0.0719 0.0704
XoNP 0.2604 0.2604 0.2415 0.2525 0.2406 0.2461 0.2467
GMVP 0.2227 0.2338 0.2098 0.2298 0.1710 0.1640 0.1449
MDP 0.2514 0.2545 0.2410 0.2544 0.1778 0.1821 0.1935
TgP 0.2608 0.2818 0.2662 0.2687 0.2026 0.1925 0.1699
LWP 0.2589 0.2702 0.2688 0.2704 0.2628 0.2521 0.2507

RdgDP 0.2587 0.2785 0.2817 0.2907 0.2947 0.2830 0.2991
SCDP 0.2592 0.2872 0.2993 0.2898 0.2746 0.2887 0.2853
LFDP 0.2605 0.2765 0.2840 0.2870 0.2850 0.2912 0.2980

True SR 0.2626 0.2922 0.3393 0.3379 0.3592 0.3477 0.3657
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For this purpose, we propose a new way to estimate the optimal diversified portfolio
by stabilizing the inverse of the sample covariance matrix without imposing a non-negative
constraint on the portfolio weights in the investment process. The results of these methods
are also in Table 2. The first thing to point out about these results is that the regularized
diversified portfolio outperforms the most diversified portfolio in terms of maximizing
the Sharpe ratio. For instance, we obtain an average Sharpe ratio of 0.2514, 0.2587, 0.2592,
and 0.2605 for the MDP, the RdgDP, the SCDP, and the LFDP, respectively, when only
10 assets are considered in the economy. The difference in terms of the actual Sharpe
ratio performance between our procedure and the most diversified portfolio significantly
increases with the number of assets in the financial market. For example, for 100 assets, the
average Sharpe ratio is about 0.1935, 0.2991, 0.2853, and 0.2980 for the MDP, the RdgDP,
the SCDP, and the LFDP, respectively. This results may be due to the fact that when the
number of assets in the economy increases, the degree of diversification of the selected
strategy may deteriorate with non-negative constraints on the investment process that
may reduce the ability to find a strategy that performs the Sharpe ratio. Moreover, the
regularized diversified portfolio outperforms the target strategy and the equal-weighted
portfolio when the number of assets in the financial market exceeds 40. Nonetheless,
for 10 assets in the economy, the target portfolio outperforms the RdgDP and the SCDP
but is dominated by the LFDP. With 20 assets the target portfolio dominates the RdgDP
and the LFDP and is dominated by the SCDP. The equal-weighted portfolio outperforms
some regularized strategies such as the RdgDP and the SCDP only for 10 assets in the
financial market. The fact that the regularized strategies give very interesting results in
terms of maximizing the Sharpe ratio (compared with the existing strategies) for large
N is because these methods are essentially used to address estimation issues in large
dimensional problems. The performance of these procedures seems to be independent of
the size of the financial market. In fact, with a reasonable choice of the tuning parameter,
each of these methods can achieve satisfactory performance in terms of the Sharpe ratio
even if the number of assets in the economy is large.

Our regularized portfolio also outperforms the selected strategy obtained using the
linear shrinkage estimator of Ledoit and Wolf (2003) to estimate the covariance matrix of
asset returns. The difference in terms of performance between these two portfolios tends to
become large when the number of assets we consider in the economy increases. This result
can be due to the fact that the estimation error associated with estimating the single-index
covariance matrix may be important for very large assets. One other thing that could
explain this result comes from the fact that our tuning parameter is selected to minimize
the distance between the regularized inverse of the covariance matrix and the inverse of
the population’s one. Moreover, because the optimal portfolio depends on the inverse of
the covariance matrix, selecting a tuning parameter that minimizes the estimation error
in the inverse of the covariance matrix seems to be more appropriate than choosing this
parameter to minimize the estimation error in the covariance matrix. One important thing
to point out is that the Ridge regularized portfolio is a special case of the selected portfolio
with the linear shrinkage estimation of the covariance matrix. In this case, the structural
covariance matrix is replaced by the identity to avoid the potential estimation error which
may be associated with this covariance matrix.

Similar results are obtained when choosing the estimation window to be 1000 and by
increasing the number of assets in the economy from 150 to 999 (N ∈ {150, 250, 400, 550,
700, 850, 950, 999}) as given in Table 3.
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Table 3. The average monthly Actual Sharpe ratio from optimal strategies using a three-factor
model as a function of the number of assets in the economy with the sample size n = 1000, over
1000 replications. True SR is the true actual Sharpe ratio.

Strategies
Number of Risky Assets

150 250 400 550 700 850 950 999

SbDP 0.1230 0.1104 0.103 0.0998 0.060 0.03 0.012 0.008
XoNP 0.2630 0.2640 2507 0.240 0.238 0.2207 0.2180 0.220
GMVP 0.3080 02908 0.2890 0.2780 0.250 0.1980 0.1017 0.095
MDP 0.3280 0.3305 0.3198 0.309 0.2679 0.2892 0.1985 0.120
TgP 0.3290 0.3105 0.307 0.3100 0.2608 0.210 0.180 0.098
LWP 0.3302 0.3408 0.3318 0.3070 0.415 0.4504 0.4601 0.4807

RdgDP 0.3702 0.3850 0.3980 0.458 0.524 0.540 0.558 0.601
SCDP 0.3689 0.3860 0.3980 0.460 0.5230 0.535 0.590 0.608
LFDP 0.3704 0.3840 0.3984 0.4560 0.5250 0.538 0.585 0.595

True SR 0.3758 0.3904 0.407 0.489 0.5480 0.588 0.608 0.618

To analyze the statistical significance of the regularized portfolio over the other strate-
gies, we implement the following test procedure about the Sharpe ratio,

H0 : RSR ≤ SR0vsH1 : RSR > SR0

where RSR is the regularized Sharpe ratio and SR0 the Sharpe ratio of the portfolio under
comparison. This test is conducted using the same procedure as in Ao et al. (2019). For
more information about this test procedure see Jobson and Korkie (1981) and Memmel
(2003). The fundamental objective of this test procedure is to confirm the domination
of our method over the existing strategies with a statistic test. The p-values associated
with this test procedure for each of the regularized portfolios are given in Tables 4–6.
According to these results, our regularized portfolio dominates the other strategies in
terms of maximizing the Sharpe ratio at the significant level 5%. In particular, our method
outperforms the LW portfolio in the large financial market setting.

Table 4. The p-value associated with performance hypothesis testing with the Sharpe ratio from
Ridge regularized strategy using a three-factor model as a function of the number of assets in the
economy with the sample size n = 1000, over 1000 replications.

Strategies
Number of Risky Assets

150 250 400 550 700 850 950 999

SbDP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
XoNP 0.004 0.002 0.007 0.005 0.000 0.000 0.000 0.000
GMVP 0.008 0.004 0.006 0.007 0.000 0.000 0.000 0.000
MDP 0.003 0.001 0.002 0.000 0.000 0.000 0.000 0.000
TgP 0.009 0.003 0.008 0.004 0.001 0.000 0.008 0.000
LWP 0.089 0.013 0.001 0.012 0.035 0.003 0.043 0.008
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Table 5. The p-value associated with Performance hypothesis testing with the Sharpe ratio from
Landweber–Fridman regularized strategy using a three-factor model as a function of the number of
assets in the economy with the sample size n = 1000, over 1000 replications.

Strategies
Number of Risky Assets

150 250 400 550 700 850 950 999

SbDP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
XoNP 0.003 0.001 0.008 0.007 0.001 0.000 0.000 0.000
GMVP 0.010 0.003 0.007 0.002 0.001 0.000 0.000 0.000
MDP 0.005 0.001 0.004 0.000 0.000 0.000 0.000 0.000
TgP 0.008 0.004 0.005 0.004 0.002 0.000 0.008 0.000
LWP 0.090 0.014 0.003 0.009 0.040 0.007 0.001 0.007

Table 6. The p-value associated with performance hypothesis testing with the Sharpe ratio from
spectral cut-off regularized strategy using a three-factor model as a function of the number of assets
in the economy with the sample size n = 1000, over 1000 replications.

Strategies
Number of Risky Assets

150 250 400 550 700 850 950 999

SbDP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
XoNP 0.004 0.003 0.006 0.005 0.000 0.000 0.000 0.000
GMVP 0.020 0.003 0.005 0.001 0.000 0.000 0.000 0.000
MDP 0.003 0.002 0.003 0.002 0.001 0.000 0.000 0.000
TgP 0.003 0.002 0.004 0.002 0.001 0.000 0.001 0.000
LWP 0.104 0.043 0.002 0.008 0.032 0.004 0.002 0.006

We also compute in Table 7 the average monthly diversification ratio associated with
the selected portfolio. We obtain similar results to what has been obtained in Table 2. The
regularized portfolio performs well in terms of maximizing the diversification ratio and
dominated most of the existing methods in the large financial market. The diversification
ratio that we obtain with our method is very close to the true one. This implies that in
addition to the asymptotic results obtained in the Section 4, the regularized portfolio has
very good finite sample properties. This result shows that we do not need N/

√
T to be

close to zero to improve the finite sample performance of the selected portfolio.

Table 7. The average monthly Actual monthly diversification ratio from optimal strategies using a
three-factor model as a function of the number of assets in the economy with the sample size n = 120,
over 1000 replications. True DR is the true diversification ratio.

Strategies
Number of Risky Assets

10 20 40 60 80 90 100

SbDP 2.315 2.307 2.304 2.08 1.308 1.128 1.098
XoNP 3.103 3.140 3.180 3.184 3.325 3.288 3.154
GMVP 3.242 3.241 3.150 3.185 3.147 3.155 3.093
MDP 3.252 3.320 3.240 3.290 3.320 3.265 3.254
TgP 3.240 3.170 3.105 3.050 3.132 3.149 3.080
LWP 3.345 3.360 3.320 3.380 3.398 3.403 3.420

RdgDP 3.325 3.428 3.480 3.590 3.598 3.602 3.640
SCDP 3.347 3.435 3.446 3.570 3.589 3.615 3.625
LFDP 3.289 3.405 3.470 3.548 3.604 3.509 3.638

True DR 3.45 3.56 3.57 3.68 3.8 3.7 3.9

5.3. Empirical Study

In this empirical section, our objective is to use the real data (unlike in the simulation
part) to estimate the unknown parameters of the optimal portfolio and then to evaluate the
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performance of each estimation procedure based on the same statistics as in the simula-
tion section. Note that our purpose in this paper lies not in forecasting but proposing a
consistent way that allows us to correctly estimate the portfolio in Equation (4) in large
dimensional setting.

We apply our method to several sets of portfolios from Kenneth R. French’s website.
In particular, we apply our procedure to the following portfolios: the 30-industry portfolios
and the 100 portfolios formed on size and book-to-market. We allow investors to rebalance
their portfolios every month. This implies that the optimal portfolio is constructed at the
end of each month for a given estimation window M by maximizing the diversification
ratio. The investor holds this portfolio for one month, realizes gains and losses, updates
information, and then recomputes optimal portfolio weights for the next period using the
same estimation window. This procedure is repeated each month, generating a time series
of out-of-sample returns. This time series can then be used to analyze the out-of-sample
performance of each strategy based on several statistics such as the out-of-sample Sharpe
ratio. For this purpose, we use data from July 1980 to June 2018.

Table 8 contains some results of the out-of-sample analysis in terms of the Sharpe
ratio for two different data sets: the FF30 and the FF100. The empirical results in this
table confirm what we have obtained in the simulation part. According to this result, by
stabilizing the inverse of the covariance matrix in the maximum diversification portfolio,
we considerably improve the performance of the selected strategy in terms of maximizing
the Sharpe ratio. Moreover, our regularized strategies outperform the most diversified
strategy, the target portfolio, The LW portfolio, and the global minimum variance portfolio
for each data set. The most diversified strategy outperforms the global minimum variance
portfolio but is dominated by the Equal-Weight portfolio for each data set. These results of
the most diversified portfolio can essentially be explained by the fact that by imposing a
non-negative constraint in the investment process, one cannot fully diversify the optimal
portfolio. The LWP outperforms the other strategies, in particular, this method dominates
the most diversified strategy of Choueifaty et al. (2013). The return of the regularized
portfolio is less volatile than what we obtain with the most diversified portfolio, the target
one, and the LW strategy.

Table 8. Out-of-sample performance in terms of the Sharpe ratio applied on the 30 industry portfolios
(FF30) and the 100 portfolios formed on size and book-to-market (FF100) with a rolling window
of 120.

Strategies XoNP GMVP MDP TGP RdgP LFP SCP LWP

FF30
ER 0.0110 0.01134 0.0121 0.017 0.0149 0.014 0.014 0.014
V 0.0540 0.0630 0.058 0.076 0.063 0.057 0.061 0.067

SR 0.204 0.180 0.209 0.224 0.237 0.246 0.2295 0.209

FF100
ER 0.0103 0.0127 0.015 0.0173 0.0200 0.0201 0.0203 0.019
V 0.0485 0.075 0.088 0.091 0.0772 0.0770 0.078 0.082

SR 0.212 0.1693 0.1705 0.1901 0.2590 0.2610 0.2602 0.2317

We are also interested in how our procedure can perform in terms of minimizing
the rebalancing cost at a given period. The rebalancing cost at the time t can be naturally
measured by

Costt =
N

∑
j=1

∣∣ωt,j −ωt−1,j
∣∣.

This measure of the trading cost is, in fact, the turnover. The transaction cost can be
measured using the turnover in the sense that these costs are positively related to the
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turnover. Therefore, in the rest of the paper the turnover will be called transaction costs.
The average trading cost over the investment horizon is given by

TradingCost =
1
Q

Q

∑
t=1

Costt

where Q is the number of rebalancing periods. This quantity can be interpreted as the
average percentage of wealth traded at each period. The average monthly rebalancing costs
are given in Table 9. These results show that by stabilizing the inverse of the covariance
matrix by regularization, we help investors to select strategies that significantly reduce the
rebalancing cost. The regularized portfolio outperforms the other strategies in terms of
minimizing the trading costs faced by investors in their investment process.

Table 9. Out-of-sample performance in terms of rebalancing cost (turnover) applied on
the 30 industry portfolios (FF30) and the 100 portfolios formed on size and book-to-market
(FF100) for two different rolling windows.

P EW
Strategies

SbDP GMVP MDP TgP LWP RdgDP SCDP LFDP

FF30 60 6.890 4.329 2.809 4.209 1.0328 0.9952 0.989 0.9872
120 5.605 3.901 2.087 3.290 0.9892 0.7140 0.7203 0.6450

FF100 120 9.789 6.2390 5.978 6.309 1.7808 1.3267 1.3890 1.2078
240 7.089 4.297 3.879 4.2870 1.3065 1.0349 1.0398 1.096

The evolution of the share of the selected assets in the optimal portfolio in Figure 1
shows that by regularizing the covariance matrix, we considerably reduce extreme positions
in the selected strategy. Therefore, we significantly reduce the transaction costs faced by
investors when they decide to take positions in the financial market. Moreover, the return
on the selected portfolio becomes less volatile in such a situation.

Figure 1. The evolution of the selected assets in the optimal portfolio. We obtain this figure using the 30 industry portfolios
with an estimation window of n = 120.

Tables 10 and 11 contain the Fama–French monthly regression coefficients for the
100 portfolios formed on size and book-to-market and the 30-industry portfolios, respec-
tively. Monthly data are used from July 1990 to June 2018. According to the result in



Econometrics 2021, 9, 1 17 of 23

Table 10, only the return on the Equal-Weight portfolio can be explained by the Fama–
French three-factor model for the 100 portfolios formed on size and book-to-market. The
return obtained with the regularized portfolios and the most diversified portfolio can be
explained only with the return on the market portfolio (a one-factor model) through a
positive relation. However, the return of the most diversified portfolio and the global
minimum variance portfolio can be explained with a two factors model when using the
30-industry portfolios. The return of the other strategies such as the regularized portfolios,
the Equal-Weight portfolio, and the target portfolio can be explained by the Fama–French
three-factor model.

Table 10. Fama–French Monthly Regression Coefficients for the 100 portfolios formed on size and
book-to-market from July 1990 to June 2018.

Strategies Market HML SMB Intercept

Rdg-regularized Portfolio 0.9168
(0.000)

0.079
(0.531)

−0.139
(0.302)

0.0075
(0.057)

LF- regularized Portfolio 0.823
(0.000)

0.174
(0.153)

−0.1651
(0.204)

0.0125
(0.001)

SC-regularized Portfolio 1.02
(0.000)

−0.127
(0.177)

−0.133
(0.189)

0.0077
(0.010)

Most-Diversified Portfolio 0.72
(0.000)

0.13
(0.344)

0.098
(0.506)

0.007
(0.002)

Equal-Weight-Portfolio 1.002
(0.000)

0.5104
(0.000)

0.33
(0.000)

0.0001
(0.815)

Global-Minimum-Variance
Portfolio

0.416
(0.000)

−0.125
(0.319)

0.155
(0.247)

0.0094
(0.000)

Target-Portfolio 0.43
(0.000)

0.144
(0.367)

0,207
(0.226)

0.010
(0.000)

LW-Portfolio 0.802
(0.000)

0.074
(0.247)

0.207
(0.226)

0.0082
(0.067)

Table 11. Fama–French Monthly Regression Coefficients for the 30-industry portfolios from July 1990
to June 2018.

Strategies Market HML SMB Intercept

Rdg-regularized Portfolio 1.03
(0.000)

0.24
(0.003)

0.36
(0.000)

0.0007
(0.767)

LF- regularized Portfolio 0.93
(0.000)

0.22
(0.003)

0.25
(0.001)

0.0046
(0.042)

SC-regularized Portfolio 0.86
(0.000)

0.27
(0.000)

0.21
(0.031)

0.0054
(0.053)

Most-Diversified Portfolio 0.46
(0.000)

−0.285
(0.000)

0.070
(0.391)

0.002
(0.001)

Equal-Weight-Portfolio 0.983
(0.000)

0.061
(0.006)

0.265
(0.000)

0.0013
(0.050)

Global-Minimum-Variance
Portfolio

0.46
(0.000)

−0.146
(0.008)

0.077
(0.188)

0.0021
(0.017)

Target-Portfolio 0.54
(0.000)

−0.44
(0.000)

−0.21
(0.019)

0.013
(0.000)

LW-Portfolio 0.982
(0.000)

0.272
(0.0098)

0.4112
(0.0301)

0.0006
(0.429)

As the portfolio optimization is generally based on individual stocks instead of aggre-
gate portfolios as the Fama–French portfolio, we apply also our method to a subset of the
S&P500 index constituents to see how our method performs in such universe. We use for
this purpose monthly data from March 1986 to December 2019. At the beginning of this
empirical analysis, we randomly form pools of 100 or 150 stocks from the S&P500 index
constituents for which there are complete return data for the prior 120 or 240 months. The
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optimal portfolio will then be constructed using the same procedure as before. We then
compute the out-of-sample performance in terms of the Sharpe ratio and the turnover. The
results of this empirical analysis are given in Tables 12 and 13. We obtain similar results
as in the case of the Fama–French portfolios proving that our method also performs well
when the optimal portfolio is formed with individual stocks from S&P500.

Table 12. Out-of-sample performance in terms of Sharpe ratio applied on two subsets of S&P500
constituents for two different rolling windows.

P EW
Strategies

SbDP GMVP MDP TgP LWP RdgDP SCDP LFDP

100 A 120 0.0850 0.1506 0.2458 0.1983 0.3702 0.4382 0.4380 0.4397
240 0.0982 0.1604 0.260 0.2028 0.3809 0.4565 0.4567 0.4578

150 A 180 0.0750 0.1204 0.309 0.1407 0.4108 0.5353 0.5320 0.5462
240 0.0895 0.1750 0.320 0.1890 0.4208 0.5603 0.5609 0.5579

Table 13. Out-of-sample performance in terms of rebalancing cost (turnover) applied on two subsets
of S&P500 constituents for two different rolling windows.

Assets EW
Strategies

SbDP GMVP MDP TgP LWP RdgDP SCDP LFDP

100 Assets 120 9.450 6.786 4.675 6.679 3.348 2.1067 2.0801 2.0682
240 6.978 5.308 3.892 5.234 3.078 1.491 1.608 1.569

150 Assets 180 10.489 7.345 6.782 7.328 3.897 2.678 2.780 2.8960
240 8.0789 5.542 4.032 5.438 3.057 2.104 2.0978 2.0956

6. Conclusions

This paper addresses the estimation issue that exists in the maximum diversification
portfolio framework in the large financial market. We propose to stabilize the inverse of
the covariance matrix in the diversified portfolio using regularization techniques from
inverse problem literature. These regularization techniques, namely, the ridge, the spectral
cut-off, and Landweber–Fridman, involve a regularization parameter or penalty term
whose optimal value is selected to minimize the expected distance between the inverse
of the estimated covariance matrix and the inverse of the true covariance matrix. We
show, under appropriate regularity conditions, that the selected strategy by regularization
is asymptotically efficient with respect to the diversification ratio for a wise choice of
the tuning parameter. Meaning that, even if the diversified portfolio is unknown, there
exists a feasible portfolio obtained by regularization capable of reaching a similar level of
performance in terms of the diversification ratio.

To evaluate the performance of our procedures, we implement a simulation exercise
based on a three-factor model calibrated on real data from the US financial market. We
obtain by simulation that our procedure significantly improves the performance of the
selected strategy with respect to the Sharpe ratio. Moreover, the regularized rules are
compared to several strategies such as the most diversified portfolio, the target portfolio,
the global minimum variance portfolio, and the naive 1/N strategy in terms of in-sample
and out-of-sample Sharpe ratio, and it is shown that our method yields significant Sharpe
ratio improvements. To confirm our simulations, we do an empirical analysis using
Kenneth R. French’s 30-industry portfolios and 100 portfolios formed on size and book-
to-market. According to this empirical result, by stabilizing the inverse of the covariance
matrix in the maximum diversification portfolio, we considerably improve the performance
of the selected strategy in terms of maximizing the Sharpe ratio.
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Appendix A. Proof of Proposition 1

By definition we have that

DR(ω̂α) =
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′
ασ√

ω̂
′
αΣω̂α

.

Let us first look at ω̂
′
αΣω̂α

ω̂
′
αΣω̂α = [(ω̂α −ω) + ω]

′
Σ[(ω̂α −ω) + ω]

= ω
′
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′
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(a)

+2 (ω̂α −ω)
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(b)

.

Now we are going to look at the properties of (a) and (b). We know that
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σ̂
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By Assumption A
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Using those information combine with the fact that Σ̂α = Σ̂α − Σα + Σα, we have that

(c) = σ
′
Σασ + σ

′(
Σ̂α − Σα
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As T → ∞ we have that α→ 0⇒
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Using Assumption A combined with Theorem 4 of Carrasco and Florens (2000), we
have that ∥∥∥∥ Σ̂
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As α→ 0 as T → ∞, we have that

(d) = Σ−1σ +
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)
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we obtain that
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Under the assumption that 1
α
√

T
→ 0, we have that

ω̂α = ω + op(1). (A1)

By Assumption A we have that ‖Σ‖ = O(N). Therefore, using (A1), we obtain that

ω̂
′
αΣω̂α = ω

′
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if N
α
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T
→ 0. Therefore,

DR(ω̂α)→p DR(ωt).

Appendix B. Proof of Proposition 2
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′
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)]
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We also know that µ = µ̂ + (µ− µ̂), so
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which implies that
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References
Ao, Mengmeng, Li Yingying, and Xinghua Zheng. 2019. Approaching mean-variance efficiency for large portfolios. The Review of

Financial Studies 32: 2890–919. [CrossRef]
Arnott, Robert D., Jason Hsu, and Philip Moore. 2005. Fundamental indexation. Financial Analysts Journal 61: 83–99. [CrossRef]
Carrasco, Marine. 2012. A regularization approach to the many instruments problem. Journal of Econometrics 170: 383–98. [CrossRef]
Carrasco, Marine, and Jean-Pierre Florens. 2000. Generalization of gmm to a continuum of moment conditions. Econometric Theory 16:

797–834. [CrossRef]
Carrasco, Marine, Jean-Pierre Florens, and Eric Renault. 2007. Linear inverse problems in structural econometrics estimation based on

spectral decomposition and regularization. Handbook of Econometrics 6: 5633–751.
Carrasco, Marine, N’golo Koné, and Nérée Noumon. 2019. Optimal portfolio selection using regularization. Available online:

https://www.ngolokone.com/research (accessed on 15 January 2020).
Carrasco, Marine, and Guy Tchuente. 2015. Regularized liml for many instruments. Journal of Econometrics 186: 427–42. [CrossRef]
Chen, Jiaqin, and Ming Yuan. 2016. Efficient portfolio selection in a large market. Journal of Financial Econometrics 14: 496–524.

[CrossRef]
Choueifaty, Yves. 2011. Methods and Systems for Providing an Anti-Benchmark Portfolio. U.S. Patent 7,958,038, June 7.
Choueifaty, Yves, and Yves Coignard. 2008. Toward maximum diversification. The Journal of Portfolio Management 35: 40–51. [CrossRef]
Choueifaty, Yves, Tristan Froidure, and Julien Reynier. 2013. Properties of the most diversified portfolio. Journal of Investment

Strategies 2: 49–70. [CrossRef]
Clarke, Roger G., Harindra De Silva, and Steven Thorley. 2006. Minimum-variance portfolios in the us equity market. The Journal of

Portfolio Management 33: 10–24. [CrossRef]
Frost, Peter A., and James E. Savarino. 1986. An empirical bayes approach to efficient portfolio selection. Journal of Financial and

Quantitative Analysis 21: 293–305. [CrossRef]
Haugen, Robert A., and Nardin L. Baker. 1991. The efficient market inefficiency of capitalization–weighted stock portfolios. The Journal

of Portfolio Management 17: 35–40. [CrossRef]
Jobson, J. Dave, and Bob M. Korkie. 1981. Performance hypothesis testing with the sharpe and treynor measures. Journal of Finance,

889–908. [CrossRef]
Kempf, Alexander, and Christoph Memmel. 2006. Estimating the global minimum variance portfolio. Schmalenbach Business Review 58:

332–48. [CrossRef]
Kress, Rainer. 1999. Linear Integral Equations. Berlin/Heidelberg: Springer.
Ledoit, Olivier, and Michael Wolf. 2003. Improved estimation of the covariance matrix of stock returns with an application to portfolio

selection. Journal of Empirical Finance 10: 603–21. [CrossRef]
Lohre, Harald, Heiko Opfer, and Gabor Orszag. 2014. Diversifying risk parity. Journal of Risk 16: 53–79. [CrossRef]
Maguire, Phil, Philippe Moser, Kieran O’Reilly, Conor McMenamin, Robert Kelly, and Rebecca Maguire. 2014. Maximizing positive

porfolio diversification. Paper presented at the 2014 IEEE Conference on Computational Intelligence for Financial Engineering &
Economics (CIFEr), London, UK, March 27–28; pp. 174–81.

Maillard, Sébastien, Thierry Roncalli, and Jérôme Teïletche. 2010. The properties of equally weighted risk contribution portfolios. The
Journal of Portfolio Management 36: 60–70. [CrossRef]

Markowitz, Harry. 1952. Portfolio selection. The Journal of Finance 7: 77–91.
Memmel, Christoph. 2003. Performance Hypothesis Testing with the Sharpe Ratio. Finance Letters 1. Available online: https:

//ssrn.com/abstract=412588 (accessed on 15 August 2020).
Sharpe, William F. 1964. Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance 19: 425–42.
Theron, Ludan, and Gary Van Vuuren. 2018. The maximum diversification investment strategy: A portfolio performance comparison.

Cogent Economics & Finance 6: 1427533.

http://dx.doi.org/10.1093/rfs/hhy105
http://dx.doi.org/10.2469/faj.v61.n2.2718
http://dx.doi.org/10.1016/j.jeconom.2012.05.012
http://dx.doi.org/10.1017/S0266466600166010
https://www.ngolokone.com/research
http://dx.doi.org/10.1016/j.jeconom.2015.02.018
http://dx.doi.org/10.1093/jjfinec/nbw003
http://dx.doi.org/10.3905/JPM.2008.35.1.40
http://dx.doi.org/10.21314/JOIS.2013.033
http://dx.doi.org/10.3905/jpm.2006.661366
http://dx.doi.org/10.2307/2331043
http://dx.doi.org/10.3905/jpm.1991.409335
http://dx.doi.org/10.1111/j.1540-6261.1981.tb04891.x
http://dx.doi.org/10.1007/BF03396737
http://dx.doi.org/10.1016/S0927-5398(03)00007-0
http://dx.doi.org/10.21314/JOR.2014.284
http://dx.doi.org/10.3905/jpm.2010.36.4.060
https://ssrn.com/abstract=412588
https://ssrn.com/abstract=412588

	Introduction
	The Model
	The Regularized Portfolio
	Tikhonov Regularization (TH)
	The Spectral Cut-Off (SC)
	Landweber–Fridman Regularization (LF)

	Asymptotic Properties of the Selected Portfolio
	Efficiency of the Regularized Diversified Portfolio
	Data-Driven Method for Selecting the Tuning Parameter

	Simulations and Empirical Study
	Data
	Simulation
	Empirical Study

	Conclusions
	Proof of Proposition 1
	Proof of Proposition 2
	References

