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Abstract: The Gini index, a widely used economic inequality measure, is computed using data
whose designs involve clustering and stratification, generally known as complex household surveys.
Under complex household survey, we develop two novel procedures for estimating Gini index with
a pre-specified error bound and confidence level. The two proposed approaches are based on the
concept of sequential analysis which is known to be economical in the sense of obtaining an optimal
cluster size which reduces project cost (that is total sampling cost) thereby achieving the pre-specified
error bound and the confidence level under reasonable assumptions. Some large sample properties
of the proposed procedures are examined without assuming any specific distribution. Empirical
illustrations of both procedures are provided using the consumption expenditure data obtained by
National Sample Survey (NSS) Organization in India.

Keywords: complex household survey; confidence interval; income distribution; inequality;
sequential analysis

1. Introduction

Economic measures based on income levels of the residents of a specific region play an important
role in social, economic and socio-economic sciences. They are used to quantify both the actual balance
of the economy as well as the wealthiness and poverty of the people. One of the most prominent
candidates is the (normalized) Gini index,

GF = GF(X) =
2
µ

∫ ∞

0
xF(x) dF(x)− 1, µ = E(X), (1)

which quantifies the economic inequality of a region, state, country or the world. Here, the random
variable X denotes the income level, F(x) its cumulative distribution function, and µ = E(X) its
expected value. If GF = 0, then the economic system has maximal equality (e.g., everyone has the
same income), while GF = 1 represents perfect inequality (e.g., one individual has everything while
the rest have nothing). For example, according to the Organization for Economic Cooperation and
Development (2017), the Gini indices of the USA, Germany and South Africa were GF = 0.39, 0.29, 0.62
in 2017, respectively. These values suggest income inequality in these regions. Therefore, Gini index
serves as a measure of economic balance that allows comparison across regions. Roughly speaking,
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income levels were more balanced (equal) in Germany than they were in the USA and in Brazil,
respectively. Thus, the Gini index serves as an important measure in economics, social and political
sciences. The estimation of the Gini index GF of a country or a region, however, is a rather challenging
task, because income is usually measured on household levels and thus in a clustered and stratified
way. In most countries (e.g., United States, European Union, India and others), complex household
surveys are conducted annually, the data of which can be used for the estimation of the Gini index as
given in (1) see (Bhattacharya 2005, 2007).

The single computation of a point estimator of GF as being reported in most available resources
is, however, rather unsatisfactory, because neither the variability in the sample nor sample/cluster
sizes visualize the estimator in an informative manner. Therefore, computing 100(1− α)% confidence
intervals for GF as point estimators are much more informative for making both descriptive as well
as comparative conclusions. Binder and Kovacevic (1995) and Bhattacharya (2007) proposed point
estimators of the Gini index as well as of their standard errors in such complex survey designs (see
Section 2 for details), which can be used for the computation of 100(1− α)% confidence intervals
for GF. Furthermore, Peng (2011) proposed an empirical likelihood-based approach to construct
such confidence intervals (as well as the confidence interval for the difference of two Gini indices).
Clearly, for a desired confidence level, a narrower confidence interval will be more accurate about the
parameter of interest. Therefore, it is the aim of the present article to develop confidence intervals for
the Gini index GF in complex survey designs that both control the nominal confidence level (1− α)

and the confidence interval width. To guarantee that these criteria will be fulfilled, the optimal number
of clusters will be computed using an innovative ‘learn-as-you-go’ or sequential procedure. We refer
the readers to Ghosh and Sen (1991); Ghosh et al. (1997); Chattopadhyay and Kelley (2017); Kelley et al.
(2018) and others for more on sequential analysis literature.

The first known application of sequential analysis in surveys was done by Mahalanobis (1940),
who described the design and implementation of the method (in a different context) for estimating
acreage of jute crop in the whole state of Bengal in undivided India. This was even before the seminal
works of Stein (1945, 1949) on sequential analysis area. Kanninen (1993); Greene (1998); Arcidiacono
and Jones (2003); Aguirregabiria and Mira (2007) and many others contributed to application of
sequential analysis in the field of economics, data analysis, medicine, and other areas. Recently,
Chattopadhyay and De (2016) and De and Chattopadhyay (2017) developed a sequential procedure
for inference problems related to the Gini index under independent and identically distributed (i.i.d.)
conditions, but the proposed methodology cannot be used for finding a sufficiently narrow 100(1−
α)% confidence interval for the population Gini index under a complex household survey design.
We propose a two stage procedure and a purely sequential procedure to find an estimate of the
minimum number of clusters which is required to find a sufficiently narrow confidence interval under
a distribution-free scenario. Both the two-stage and purely sequential procedures are applied to the
64th round of household survey data collected in India. Further, a simulation study is carried out on
observations collected in the Indian household survey data and from known income distributions to
explore the properties of the procedures.

The remainder of this paper is organized as follows: Section 2 describes the sampling framework
of the complex survey design that is considered in this work. In Section 3, we formulate the problem of
finding a sufficiently narrow confidence interval for the Gini index and the reason for non-applicability
of a procedure with fixed cluster size. In Section 4, we develop the purely sequential, as well as the
two-stage, procedure followed by a discussion on the characteristics of our procedure in Section 5.
Furthermore, an application of both of our procedures to real and synthetic data sets can be found
in Section 6, while Section 7 describes an extension of the problem to the multivariate setup. We
discuss the advantage and drawbacks of the proposed procedures in Section 8, and provide concluding
comments in Section 9.
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2. Survey Design and Point Estimation

In this section, the complex household survey design along with the used notations will be
described: Assume that the population is divided into s = 1, 2, . . . , S strata, whereas the sth stratum
is divided into cs = 1, . . . , Hs clusters. Under the cth

s cluster in stratum s, there is a group of Mscs

households with νscsh individuals or members, h = 1, 2, ..., Mscs . Therefore, the total number of clusters
in the population is H = ∑S

s=1 Hs. The number of households in a stratum will be Ms = ∑Hs
cs=1 Mscs

and the total number of households in the population is denoted by M = ∑S
s=1 Ms = ∑S

s=1 ∑Hs
cs=1 Mscs .

For estimation purpose in such complex survey designs, a sample of ns clusters is selected from the
sth stratum by simple random sampling with replacement. A simple random sample of k households
is then considered (without replacement) from each of the selected clusters. Let the total number of
clusters being selected from the population be denoted by

n =
S

∑
s=1

ns with ns = asn and as =
Hs

H
. (2)

Thus, the total number of households in the sample will be kn = k ∑S
s=1 ns. For the hth household in

the cth
s cluster from the sth stratum, the observed data (that is, the household monthly income, monthly

expenditure, per capita income or others) are denoted as xscsh. With the presence of stratification and
clustering, the households are assigned different weights Wscsh as the probability of inclusion in the
sample will vary. The assigned weight to the selected household is computed as the inverse of the
probability of inclusion of the household in the sample (see Binder and Kovacevic 1995; Horvitz and
Thompson 1952; Lee and Forthofer 2006). If researchers wish to increase (or decrease) the representation
of a subgroup of the population that is of interest, they can employ oversampling (or undersampling)
procedures and use appropriate weighting techniques. Wells (1998) discussed several weighting
methods for such cases. For our survey framework, weights are assigned to the data (xscsh) with
respect to the number of observations in the population. The attached weight for all the νscsh members
of the hth household belonging to the cth

s sampled cluster from the sth stratum as given by Bhattacharya
(2007) is

Wscsh =
MscshHs

kns
νscsh.

It should be noted that the computation of the sampling weights will change depending on
the sampling design and also on whether the analysis is being done at the district-, household- or
individual level (Bhattacharya 2007). If the cluster size is large, sampling with or without replacement
will result in similar values for the weights. Moreover, Bhattacharya (2005, 2007) noted that using
sampling with or without replacement does not affect the asymptotic results of this work as in most
practical situations the number of clusters per stratum are usually large.

Under the above framework, let

W =
S

∑
s=1

ns

∑
cs=1

k

∑
h=1

Wscsh

denote the total of per-household weights associated with the survey and define

wscsh = W−1Wscsh

the normalized weights, which will be used in the estimation of the average income µ = E(X) and its
cumulative distribution function F(x) by

µ̂ =
S

∑
s=1

ns

∑
cs=1

k

∑
h=1

wscshxscsh
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and

F̂ (x) =
S

∑
i=1

ns

∑
j=1

k

∑
l=1

wijl1
(

xijl ≤ x
)

,

in order to take the relative household sizes into account. Then, under fairly mild conditions on the
numbers of clusters, a consistent estimator of the Gini index GF given in (1) is given by

Ĝn = 1− 2
µ̂

S

∑
s=1

ns

∑
cs=1

k

∑
h=1

wscshxscsh
(
1− F̂ (xscsh)

)
. (3)

It follows that, the estimated Gini index basically is a ratio of two weighted averages of the income
levels, respectively (see Bhattacharya 2007). In the next section, we discuss the idea towards the
construction of confidence intervals with bounded width.

3. Bounded Width Confidence Intervals

In order to derive bounded width confidence intervals, the (asymptotic) distribution of the
empirical Gini index Ĝn must be tackled. It has been shown by Bhattacharya (2007), that if E

(
|X|
∣∣s) <

∞, and if ns → ∞ for each stratum s = 1, . . . , S at the same rate, then

√
n
(
Ĝn − GF

) D−→ N
(

0, ξ2
)

. (4)

Here, ξ2 denotes the (asymptotic) variance of
√

nĜn. Due to its quite involved representation, we refer
to Bhattacharya (2007) for the specific variance formula. The asymptotic distribution, however, can
now be used for the computation of 100(1− α)% confidence intervals for the population Gini index
the width of which does not exceed a pre-specified value ω, that is

Pr
(

Ĝn − zα/2
ξ√
n
< GF < Ĝn + zα/2

ξ√
n

)
≥ 1− α,

and
L = 2zα/2

ξ√
n
≤ ω.

Here, zα/2 is the 100(1− α/2)th percentile of the standard normal distribution N(0, 1). Thus, the actual
arising task is the computation of n that will guarantee that the width of the confidence interval is
bounded by ω, i.e.,

ω
√

n
2ξ
≥ zα/2 =⇒ n ≥

4z2
α/2ξ2

ω2 = C. (5)

Hence, C denotes the optimal total number of clusters from all strata needed such that L ≤ ω.
Therefore, the optimal number of clusters that will be required to be sampled from the sth stratum
(s = 1, 2, . . . , S) will be Cs = Cas. Here, the term optimal is used in the sense of minimum number of
clusters to meet the requirements and not as in the sense of optimal allocation used in sample survey
methods (see Cochran 1997). If C is known, one can find the sufficiently narrow confidence interval(

ĜC − zα/z
ξ√
C

, ĜC + zα/z
ξ√
C

)
,

that satisfies (5). However without knowing the underlying distribution of the income (or assets or
expenditure), the value of ξ2 is unknown in practical scenarios. Thus, the optimal cluster size from all
the S strata, C, is also unknown. We note that supposed value (or previous survey estimate) of ξ2 may
be used to obtain the value of C. However, a potential problem that may arise is that the supposed
value of ξ2 may be different from the actual value. Moreover, using previous survey estimates in many
situations is not advised as that may not be applicable in the current population. This is because of
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a possible change in socio-economic conditions that may arise due to the change in distribution of
income or expenditure as a result of change in economic policies or situations. Due to all these factors,
the value of C may widely differ from what it would have been if ξ2 is known and will not guarantee
that (5) is satisfied. The (asymptotic) variance ξ2 of the estimated Gini index is, however, unknown in
practical applications and must be estimated in an appropriate way. Consistent estimators will now be
discussed below.

Estimation of ξ2

Several articles published in statistics and economics journals have proposed different estimators
of the asymptotic variance parameter of the estimator of the Gini index under different sampling
schemes. Zitikis and Gastwirth (2002) proposed explicit formulas for the asymptotic variance of a
general class of the Gini index (i.e., the S-Gini index) for simple random sampling with observations
coming from the Exponential and Pareto distributions. We refer to Langel and Tillé (2013) for a
discussion on several techniques used in estimating the asymptotic variance of the Gini index for
various sampling designs. Under the current framework, Binder and Kovacevic (1995) proposed an
estimator of ξ2 using the empirical variance

V2
n,1 =

S

∑
s=1

ns

ns − 1

ns

∑
cs=1

(uscs − ūs)
2 (6)

of the values

uscs =
2
µ̂

k

∑
h=1

wscsh

[
A(xscsh)xscsh + B(xscsh)−

µ̂

2
(
Ĝn + 1

)]
.

Here, ūs = n−1
s ∑ns

cs=1 uscs denote the empirical mean of uscs and

A(xscsh) = F̂(xscsh)−
Ĝn + 1

2
, and

B(xscsh) =
S

∑
a=1

ns

∑
b=1

k

∑
c=1

wabcxabc1(xabc ≥ xscsh),

are weighted placements and averages of the income values obtained from n clusters, respectively.
It should be noted that Bhattacharya (2007) proposed an alternative estimator of ξ2 which is given by

V2
n,2 =

S

∑
s=1

ns

∑
cs=1

k

∑
h=1

w2
scshψ̂2

scsh +
S

∑
s=1

ns

∑
cs=1

k

∑
h=1

∑
h′ 6=h

wscshψ̂scshwscsh′ ψ̂scsh′

−
S

∑
s=1

1
ns

(
ns

∑
cs=1

k

∑
h=1

wscshψ̂scsh

)2

,

(7)

where

ψ̂scsh = − 2
µ

kn

∑
g=1

wg

[
xscsh1(xscsh ≤ x(g)) + x(g)

(
F̂(x(g))− 1(xscsh ≤ x(g))

)]
+

2
µ̂2

kn

∑
g=1

[{
S

∑
a=1

ns

∑
b=1

k

∑
c=1

wabcxabc1(xabc ≤ x(g))

}
xscsh

]
,

kn = k
S

∑
s=1

ns is the total number of observations, and

x(g) is the gth ordered observation (among all xscsh).
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However, Hoque and Clarke (2015) showed that the estimators in (6) and (7) are numerically the same,
i.e., V2

n,1 = V2
n,2. We therefore chose V2

n,1 as a consistent estimator of ξ2 and drop the second subscript,
without loss of generality (i.e., we use V2

n as the estimator of ξ2). Having found a consistent estimator
of the (asymptotic) variance ξ2, it follows that the optimal number of clusters C defined in (5) that
lead to the bounded width confidence interval can now be estimated from the data. In order to do so,
different sequential methodologies will be discussed in the next section.

4. Sequential Methodology

In this section, different sequential methodologies including two-stage and purely sequential
approaches will be discussed to find the sufficiently narrow confidence interval. First, purely sequential
methods will be introduced.

4.1. Purely Sequential Procedure

The purely sequential confidence interval computation is based on consecutive sampling until a
certain stopping rule is met which ensured that the width of the confidence interval is smaller than or
equal to the given bound. This sampling process begins with a pilot sample the sizes of which will be
specified in Section 4.3. However, recall that computing a bounded width confidence interval requires
at least Cs clusters from the sth stratum (s = 1, 2, . . . , S). Therefore, choose a pilot cluster size of ts from
each stratum s, which results in a total number of clusters in the pilot stage of t = ∑S

s=1 ts. Within each
selected cluster, there are k randomly selected households (without replacement). Now, collect pilot
observations xs11, . . . , xs1k, . . . , xsts1, . . . , xstsk on each stratum s = 1, . . . , S. Now, the estimator V2

n of ξ2

is computed to examine the following stopping rule

N = Nω(≤ H) is the smallest integer n(≥ t) such that

n ≥
4z2

α/2

ω2

(
V2

n +
1
n

)
= Ĉ and ns ≥ Ĉs = Ĉas, for all s. (8)

If the condition in the stopping rule is not satisfied, the surveyor collects data from additional
m′(≥ 1) clusters, with k randomly chosen households, from each stratum that has ns ≤ Ĉs. Then ξ2

is estimated based on all the observations collected up to that stage and the stopping condition is
checked. This process is repeated until the condition in the stopping rule is satisfied. It should be
noted that m′(≥ 1) can be any integer that is appropriate, suitable or feasible for the survey.

The term 1/n in (8) is a correction term incorporated to avoid early stopping of the sequential
procedure as V2

n (the estimator of ξ2) may be very small in the early stages. Without this term, the
stopping rule in (8) can be satisfied for very small sample sizes due to sampling error. In general, any
null-sequence, e.g., 1/nγ, where γ(> 0) is a fixed number, can be used as a correction term, because it
does not affect the the consistency of the variance estimator (see Mukhopadhyay and De Silva 2009,
p. 260, for more details). The use of a correction term can be seen in several articles, e.g., Chattopadhyay
and De (2016), Chattopadhyay and Kelley (2017), and Kelley et al. (2019). The final cluster size N
constitutes Ns clusters from each stratum s where

Ns = Nas, for s = 1, 2, . . . , S.

Based on the sampled data xscsh and their corresponding standardized weights wscsh, where s =

1, . . . , S, cs = 1, . . . , Ns, and h = 1, . . . , k, the 100(1− α)% bounded width confidence interval for the
Gini index GF is given by (

ĜN − zα/2
VN√

N
, ĜN + zα/2

VN√
N

)
. (9)
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The purely sequential procedure may be numerically cumbersome due to the consecutive sampling and
repeated computations of the variance estimators. Therefore, a less numerically intensive method—a
two-stage procedure—will be examined in the next section.

4.2. Two-Stage Procedure

Unlike the purely sequential procedure, the two-stage procedure comprises of two stages. The
first stage is called the pilot stage, wherein a sample is drawn from the population. That is, first a pilot
sample of clusters, ts (with ∑S

s=1 ts = t), is selected from each stratum s. Based on the sample from the
pilot stage, ξ2 is estimated as in (6). Then, the total final cluster size from all strata can be estimated as

Q = min

{
H, max

{
t,

⌈
4z2

α/2

ω2 V2
t

⌉}}
= min {H, Q∗} (10)

where Q∗ is the (unbounded) optimal cluster size and d·e is the ceiling function, that is, dxe is the
smallest integer that is greater than or equal to x. Thus, the estimated number of clusters to be sampled
from the sth stratum is given by

Qs = min{Hs, [Qas]},

with as as defined in (2) and [·] being the nearest integer function. So, in the second stage, observations
from k households will be collected from Qs − ts clusters from each stratum s. Using the combined
data from the two stages, the estimator of ξ2 is updated and the approximate 100(1− α)% confidence
interval for the Gini index is given by(

ĜQ − zα/2
VQ√

Q
, ĜQ + zα/2

VQ√
Q

)
. (11)

We note that the final cluster size using either the two-stage procedure or the purely sequential
procedure can be shown to be always finite. In addition, the number of clusters per stratum are
mutually dependent as they all depend on the same stopping rule. In the next subsection, we derive
the pilot cluster size formula.

4.3. Pilot Cluster Size

Using (8) and proceeding along the lines of Chattopadhyay and De (2016), we have

n ≥
4z2

α/2

ω2

(
V2

n +
1
n

)
≥

4z2
α/2

ω2
1
n

=⇒ n ≥ 2zα/2

ω
. (12)

Thus the total number of sampled clusters is at least 2zα/2/ω. The maximum number of clusters from
the sth stratum is Hs and also the minimum number of clusters to estimate ξ2 is 2. Considering all the
constraints in (8), the number of clusters recommended to be sampled from the sth stratum at the pilot
stage is

ts = min
{

Hs, max
{

2,
⌈

2aszα/2

ω

⌉}}
. (13)

We note that this ensures that the minimum cluster size is met as well as the total possible cluster size
is not exceeded.

5. Characteristics of the Procedures and Simulation Study

The purely sequential procedure and the two-stage procedure for constructing a sufficiently
narrow confidence interval for the Gini index—unlike fixed cluster size procedures—require cluster
sizes which are obtained from data. So, the respective cluster sizes N and Q are random in nature. In
the following subsection, we will look at the characteristics of the random cluster sizes viz. N and Q.
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5.1. Characteristics

The following theorem provides some asymptotic properties (as ω → 0) of the final cluster sizes
of the above procedures with sufficiently large H.

Theorem 1. If the parent distribution(s) is(are) such that E[V2
n ] exists and Hs (fixed) are sufficiently large for

all s ∈ S, then as ω → 0,

(i)
N
C
→ 1 in probability,

(ii)
Q
C
→ 1 in probability, and

(iii)
2zα/2VN√

N
≤ ω.

Proof of Theorem 1. (i) The definition of stopping rule N associated with the purely sequential
procedure in (8) yields(

2zα/2

ω

)2
V2

N ≤ N ≤ t1(N = t) +

(
2zα/2

ω

)2 (
V2

N−1 +
1

N − 1

)
. (14)

Since N → ∞ as ω ↓ 0 and V2
n → ξ2 in probability as n → ∞, by applying Theorem 2.1 of Gut

(2009), V2
N → ξ2 in probability.

Furthermore, t Pr(N = t)/C ≤ t/C → 0 as ω ↓ 0. Hence, dividing all sides of (14) by C and
letting ω ↓ 0, we prove N/C → 1 in probability as ω ↓ 0.

(ii) The definition of final cluster size Q related to the two-stage procedure in (10) yields(
2zα/2

ω

)2
V2

t ≤ Q ≤ t1(Q = t) +

(
2zα/2

ω

)2 (
V2

t +
1
t

)
. (15)

Furthermore, t Pr(Q = t)/C ≤ t/C → 0 as ω ↓ 0. Now, V2
t → ξ2 in probability as ω ↓ 0. Hence,

dividing all sides of (15) by C and letting ω ↓ 0, we prove Q/C → 1 in probability as ω ↓ 0.
(iii) Using stopping rule N in (8) we have, for all N,(

2zα/2

ω

)2
V2

N ≤ N =⇒
4z2

α/2

N
V2

N ≤ ω2

=⇒ 2zα/2
VN√

N
≤ ω

Parts (i) and (ii) of the theorem show that the final cluster size as obtained from the purely
sequential and the two-stage procedure is a consistent estimator of the cluster size provided ξ2 is
known. Part (iii) of the theorem shows that the sufficiently narrow confidence interval (that is length
less than or equal to ω) will be obtained by the purely sequential procedure. The same result cannot be
proven for the two-stage procedure.

5.2. Simulation Study

We now use a detailed simulation study, presented in the Supplement, to illustrate and compare
the properties of our purely sequential and the two stage procedures in constructing a 100(1− α)%
confidence interval for the Gini index under a complex survey whose width is less than ω. We
presented two different simulation studies with 5000 simulation runs—(a) simulation using the NSS
survey data as the population and (b) a Monte Carlo simulation in which the observations are drawn
from three different populations, each of which has been drawn using three different distributions,
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namely; Pareto, Gamma and Lognormal distributions. The two simulation studies were performed in
RStudio (RStudio Team 2018, version 1.2.1335) and codes are available upon request.

To begin with, we describe the simulation procedure for the purely sequential methodology.
From the given populations, ts(s = 1, 2, ..., S) clusters are randomly sampled from the sth stratum
without replacement. From there, four households are selected from each cluster using simple random
sampling without replacement and these households from all t clusters will constitute the pilot sample.
From the collected pilot sample, the asymptotic variance of the Gini index ξ2 is estimated using (6),
and from (8), the optimal number of clusters C is estimated. The stopping rule is checked and if it is
satisfied, sampling is terminated. On the other hand, if the stopping rule is not satisfied, the strata
whose number of clusters selected are less than the expected number, that is {s : ts < Ĉs}, are identified
and additional m′ number of clusters are randomly selected without replacement. Here, m′ is chosen
to be either 1, 10 or 20. In each of the selected m′ clusters, four households are randomly selected
without replacement. At this stage, with the total number of sampled clusters being n (say), the value
of V2

n is updated and the stopping rule is checked. If the rule is met, sampling is stopped, otherwise
the strata without enough clusters are identified again and additional m′ clusters are collected from
each of them. This process is continued until and unless the stopping rule is met. At that point, based
on N (say) numbers of clusters sampled from all strata, the 100(1− α)% confidence interval for the
Gini index is constructed as given in (9).

Unlike the purely sequential procedure described above, the two-stage procedure has only two
stages. The simulation algorithm for the two-stage is as follows. From a given population, ts number
of clusters are randomly selected without replacement from the sth stratum and four households are
randomly sampled from each of the selected clusters without replacement. The per monthly capita
expenditure xscsh from the selected households, with their respective weight Wscsh, are used to estimate
the asymptotic variance of the Gini index (from (6)). This is followed by using (10) to obtain the
optimal number of clusters Q needed to achieve the desired confidence level and width. If Q > t,
additional Qs − ts number of clusters are randomly selected without replacement from each stratum s.
In each of the additional clusters, four households are also randomly selected without replacement.
Finally, per capita monthly expenditure of all households from the Q number of clusters are used to
construct the 100(1− α)% confidence interval for the Gini index as stated in (11).

From the simulations, we find that the coverage probability for the confidence intervals for both
purely sequential procedure and the two-stage procedure are approximately close to the desired
confidence level provided that the cluster size (in all strata) is large, which is also a basic criterion
while proving the asymptotic normality in (4). However, the width of the confidence intervals for
the two stage procedure, unlike the purely sequential procedure, may result in confidence intervals
of width larger than the pre-specified value of ω. For details, one may look at Tables S21–S24 of the
supplementary material. This outcome is not surprising since the two-stage procedure is based on
only the pilot sample which is usually taken to be small. So, the variability of the variance estimator
V2

n is higher. The optimal cluster sizes obtained by the purely sequential procedure is less than the one
obtained by the two-stage procedure. The newly developed methods can now be applied using real
data. This will be explained in the next section.

6. Gini Index Estimation in India

We now apply the sequential procedures to construct bounded width confidence intervals for the
Gini index in India using the per capita monthly expenditures obtained via the 64th Round National
Sample Survey (NSS) (a stratified multi-staged survey design between July 2007 and June 2008). In
2008, the country was divided into 28 states and seven union territories thereof each was subdivided
into districts. Within each district, two basic sectors were formed; all rural areas constituted the rural
sector while all urban areas constituted the urban sector. Nonetheless, for the urban areas in a district,
separate basic strata were formed for each town that had at least a population of 10 lakhs (1 lakh is
100,000). The remaining areas were grouped as another basic stratum (National Sample Survey Office
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2007). For the rural sector, the sampling frame was made up of villages while for the urban sector, it
was towns/blocks.1

Census villages and the Urban Frame Survey blocks were the first stage units (FSU) in the rural and
urban sectors respectively. From each strata, FSUs are selected from the rural sector with probability
proportional to size with replacement and from the urban sector by using simple random sampling
without replacement. Within the FSU, the households in each sector were considered as the smallest
unit of grouping, which is also referred to as the ultimate stage units. Households were selected
by simple random sampling without replacement and various information about the households
were recorded during the survey. Some of the information include the demographics, household size,
expenditure on education, food, clothing, corresponding weights etc. A detailed description of the
NSS Data can be found online at National Sample Survey Office (2015).

The “Stratum” variable in the 64th NSS data set will be used to stratify the states/sectors while
“FSUno” (First Stage Unit Number) variable will be used to cluster the households under each stratum.
We discuss the results obtained from applying the proposed sequential methodologies which were
applied to the data collected from two of the most populous states in India, namely Uttar Pradesh
and West Bengal. Additionally, the report includes the results for the whole state as well as rural
and urban sectors of the state. Here, all the households in each cluster were considered since we are
sampling from a survey that already has few number of households per cluster. However, the weight
per household is adjusted at each sampling stage to reflect the actual weight that would be used during
a survey.

In applying the sequential methodologies, the pilot cluster sizes ts for each stratum s are computed
using (13). At the outset, ts number of clusters are selected from stratum s for s = 1, . . . , S. Where ts is
same for both the purely sequential procedure and the two-stage methodology. We apply each of the
procedures considering the survey data as our population.

6.1. Application of Purely Sequential Procedure (PSP)

The proposed purely sequential procedure, with observations from one cluster collected at each
stage after the pilot stage, is applied to the NSS 64th round data. The results for different combinations
of pre-specified width (ω ∈ {0.020, 0.025}) and confidence level (1− α, α ∈ {0.05, 0.10}) can be found
in Tables 1–4. The first column of the tables indicates the region on which we applied our procedure.
The PSP was applied on the entire data from Uttar Pradesh (denoted as All) and then separately
applied on the rural and urban sectors of Utter Pradesh (denoted as Rural and Urban respectively).
The same process was also repeated for West Bengal. The second column of the tables shows the
estimated Gini index (ĜH) and its standard error (se

(
ĜH
)
) using the entire number of clusters (H)

available in the data set for that region (i.e., all of the state, rural sector of the state, or the urban sector
of the state). In the third column is the total number of clusters (H) available in the data set for that
region. The fourth column shows the value of Ĉ when the procedure ended, Ĉ being the estimated
optimal cluster size as in (8). The fifth column of the tables shows the collected cluster size N using
the stopping rule in (8) and the pilot cluster size t. The values of ĜN and se(ĜN) in the sixth column
are the estimated Gini index and its standard error respectively based on N clusters. The next two
columns are respectively the lower and upper limits of the confidence intervals obtained with the
stopping rule in (8). The ninth column is wN which is the estimated width of the confidence interval.
The last column Pr(Ns < Ĉs) shows the proportion of strata that had their collected cluster size Ns

from the purely sequential procedure being less than their estimated optimal cluster size Ĉs (Ns is the

1 The survey excluded “(i) Leh (Ladakh) and Kargil districts of Jammu and Kashmir (for central sample), (ii) interior villages of
Nagaland situated beyond 5 km of the bus route and (ii) villages of Andaman and Nicobar Islands which remain inaccessible
throughout the year.” (National Sample Survey Office 2007).
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final number of clusters selected from stratum s while Ĉs is the estimated optimal number of clusters
to be sampled from stratum s).

Table 1. Application results for PSP on NSS 64th round data for α = 0.1, ω = 0.02.

Region ĜH H Ĉ N ĜN Lower CI Upper CI wN Pr(Ns < Ĉs)
se(ĜH) (t) se(ĜN)

Uttar Pradesh
All 0.2163 1262 622 672 0.2116 0.2023 0.2209 0.0186 0.2138

(0.0042) (321) (0.0057)

Rural 0.1997 903 505 523 0.2024 0.1931 0.2117 0.0186 0.4
(0.0041) (198) (0.0057)

Urban 0.2229 359 903 359 0.2229 0.2077 0.2381 0.0304 1.0
(0.0092) (180) (0.0092)

West Bengal
All 0.2320 878 587 593 0.2334 0.2239 0.2430 0.0191 0.1282

(0.0051) (190) (0.0058)

Rural 0.1812 551 450 450 0.1816 0.1723 0.1909 0.0186 0.2353
(0.0048) (172) (0.0057)

Urban 0.2609 327 612 327 0.2609 0.2482 0.2736 0.0254 1.0
(0.0077) (185) (0.0077)

Table 2. Application results for PSP on NSS 64th round data for α = 0.05, ω = 0.02.

Region ĜH H Ĉ N ĜN Lower CI Upper CI wN Pr(Ns < Ĉs)
se(ĜH) (t) se(ĜN)

Uttar Pradesh
All 0.2163 1262 834 878 0.2117 0.2022 0.2212 0.0190 0.2138

(0.0042) (333) (0.0048)

Rural 0.1997 903 643 667 0.2024 0.1930 0.2117 0.0187 0.4
(0.0041) (226) (0.0048)

Urban 0.2229 359 1282 359 0.2229 0.2048 0.2410 0.0362 1.0
(0.0092) (254) (0.0092)

West Bengal
All 0.2320 878 906 878 0.2320 0.2221 0.2419 0.0198 1.0

(0.0051) (223) (0.0051)

Rural 0.181 551 552 551 0.1812 0.1719 0.1906 0.01871 1.0
(0.0048) (203) (0.0048)

Urban 0.2609 327 869 327 0.2609 0.2458 0.2761 0.0303 1.0
(0.0077) (207) (0.0077)
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Table 3. Application results for PSP on NSS 64th round data for α = 0.1, ω = 0.025.

Region ĜH H Ĉ N ĜN Lower CI Upper CI wN Pr(Ns < Ĉs)
se(ĜH) (t) se(ĜN)

Uttar Pradesh
All 0.2163 1262 401 540 0.2138 0.2035 0.2242 0.0207 0.0

(0.0042) (302) (0.0063)

Rural 0.1997 903 386 400 0.2014 0.1899 0.2130 0.0231 0.1714
(0.0041) (168) (0.0070)

Urban 0.2229 359 578 359 0.2229 0.2077 0.2381 0.0304 1.0
(0.0092) (168) (0.0092)

West Bengal
All 0.2320 878 324 319 0.2288 0.2175 0.2401 0.0226 0.1795

(0.0051) (158) (0.0069)

Rural 0.1812 551 276 289 0.1829 0.1721 0.1937 0.0216 0.2353
(0.00477) (138) (0.0066)

Urban 0.2609 327 392 327 0.2609 0.2482 0.2736 0.0254 1.0
(0.0077) (142) (0.0077)

Table 4. Application results for PSP on NSS 64th round data for α = 0.05, ω = 0.025.

Region ĜH H Ĉ N ĜN Lower CI Upper CI wN Pr(Ns < Ĉs)
se(ĜH) (t) se(ĜN)

Uttar Pradesh
All 0.2163 1262 572 653 0.2123 0.2010 0.2236 0.0226 0.2138

(0.0042) (728) (0.0058)

Rural 0.1997 903 496 510 0.2010 0.1893 0.2128 0.0234 0.1714
(0.0041) (197) (0.0060)

Urban 0.2229 359 821 359 0.2229 0.2048 0.2410 0.0362 1.0
(0.0092) (717) (0.0092)

West Bengal
All 0.2320 878 517 519 0.2318 0.2199 0.2437 0.0238 0.1538

(0.0051) (186) (0.0061)

Rural 0.1812 551 351 352 0.1815 0.1703 0.1927 0.0223 0.2353
(0.0048) (163) (0.0057)

Urban 0.2609 327 556 327 0.2609 0.2458 0.2761 0.0303 1.0
(0.0077) (162) (0.0077)

In Tables 1–4, it can be seen that, when the maximum available (to be drawn from) cluster size
(Hs) per stratum are large, the purely sequential procedure is able to achieve desired precision, i.e.,
a narrow confidence interval, (wN ≤ ω) for the Gini index with relatively fewer number of clusters
sampled while maintaining the desired confidence level. This is shown in the results where N < H
for all of Uttar Pradesh and West Bengal, as well as their individual rural sectors. The same cannot
be said about their urban sectors as they do not have enough maximum available clusters from the
onset. Thus, the procedure did not reach the optimal cluster size but stopped when there were no
more clusters remaining to be sampled.

The results also show that, aside the fact that the entire urban regions did not have enough
clusters (N = H < C), each of the strata in the regions also do not have enough clusters (that is,
Pr(Ns < Ĉs) = 1) to obtain a narrow confidence interval width. However, in the other regions (i.e.,
All and Rural for Uttar Pradesh and West Bengal), even though Ĉ < N < H, some strata had Ns < Ĉs.
This is because some strata have more than enough clusters while others do not and that offsets each
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other at the end. For example, it can be seen from Table 1 that in the rural sector of Uttar Pradesh, 40%
of the strata did not have enough clusters even though, at the end, the confidence interval was 0.0186
wide which was less than the desired width of 0.02.

Next, the the results will be compared with the two-stage procedure as discussed in Section 4.2.

6.2. Application of Two-Stage Procedure

First, the estimator V2
n of ξ2 is obtained from the pilot stage and then the final cluster size Q∗

is computed. Q∗ is then adjusted to account for the limited availability of clusters per stratum in
the NSS data to obtain the possible number of clusters Q that can be sampled (see (10)). Here, Q
is distributed over S strata as Qs for stratum s; rounding off where Qs is not an integer. The sum
of Qs gives the actual number of clusters, Q̃ = ∑S

s=1 Qs, that are sampled from all strata. Using Q̃
clusters, the Gini index and ξ2 are re-estimated (or updated) and a 100(1− α)% confidence interval is
constructed according to (11).

Similar to the application of the purely sequential procedure, the two-stage procedure is applied
to the NSS 64th round data for different combinations of pre-specified precision (ω) and accuracy
(1− α) with the results shown in Tables 5–8. The second column of the tables indicates the total number
of clusters H in the unit (i.e., the whole state, rural sector, or urban sector) of the NSS data. The third
column displays estimated optimal number of cluster (Q∗) that are required in order to achieve the
desired precision and accuracy. Below Q∗ is the pilot number of clusters t. The next column shows the
estimated optimal cluster sizes Q taking into account the total number of clusters available in the data,
because the number of clusters are finite and limited. Furthermore, Q̃ is the actual number of clusters
that can be sampled from all strata considering the fact that we can only sample integer number of
clusters from each strata (i.e., rounding off where there are decimals in the number of clusters to be
sampled from a stratum). Using (3) and (6), the Gini index estimate, ĜH , for the unit is computed
using all H clusters with its standard error as se(ĜH) and these are shown in the fifth column. The
selected clusters are used to estimate the Gini index and it is denoted as ĜQ̃, with its standard error
as se(ĜQ̃), in the sixth column. In the seventh and eighth columns, Lower CI and Upper CI are the
lower and upper limits of the 100(1− α)% confidence interval of the Gini index using Q̃ clusters,
respectively. The last column shows the length of the confidence interval, wQ̃. It must be noted that
Q∗ is unbounded while on the other hand, Q and Q̃ cannot exceed H. Q̃ can be less than, equal to, or
greater than Q depending on the rounding off. Q∗ will be equal to Q if and only if Q∗ is less than or
equal to H.

Table 5. Application results for the two-stage procedure on NSS 64th round data for α = 0.1 and
ω = 0.02.

Region H Q∗ Q̃ ĜH ĜQ̃ Lower CI Upper CI wQ̃
(t) (Q) (se(ĜH)) (se(ĜQ̃))

Uttar Pradesh
All 1262 1146 1171 0.2163 0.2137 0.2072 0.2202 0.0131

(321) (1146) (0.0042) (0.0040)

Rural 903 398 406 0.1997 0.2027 0.1940 0.2114 0.0174
(198) (398) (0.0041) (0.0053)

Urban 359 1177 359 0.2229 0.2229 0.2077 0.2381 0.0304
(180) (359) (0.0092) (0.0092)

West Bengal
All 878 624 626 0.2320 0.2307 0.2216 0.2398 0.0182

(190) (624) (0.0051) (0.0055)

Rural 551 422 420 0.1812 0.1785 0.1707 0.1862 0.0155
(173) (422) (0.0048) (0.0047)

Urban 327 857 327 0.2609 0.2609 0.2482 0.2736 0.0254
(185) (327) (0.0077) (0.0077)
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Table 6. Application results for the two-stage procedure on NSS 64th round data for α = 0.05 and
ω = 0.02.

Region H Q∗ Q̃ ĜH ĜQ̃ Lower CI Upper CI wQ̃
(t) (Q) (se(ĜH)) (se(ĜQ̃))

Uttar Pradesh
All 1262 1665 1262 0.2163 0.2163 0.2081 0.2245 0.0164

(333) (1262) (0.0042) (0.0042)

Rural 903 593 595 0.2000 0.2000 0.1914 0.2085 0.0171
(226) (593) (0.0041) (0.0044)

Urban 359 1712 359 0.2229 0.2229 0.2048 0.2410 0.0362
(254) (359) (0.0092) (0.0092)

West Bengal
All 878 874 878 0.2320 0.2320 0.2221 0.2419 0.0198

(223) (874) (0.0051) (0.0051)

Rural 551 535 534 0.1812 0.1814 0.1719 0.1910 0.0191
(203) (535) (0.0048) (0.0049)

Urban 327 1110 327 0.2609 0.2609 0.2458 0.2761 0.0303
(207) (327) (0.0077) (0.0077)

Table 7. Application results for the two-stage procedure on NSS 64th round data for α = 0.1 and
ω = 0.025.

Region H Q∗ Q̃ ĜH ĜQ̃ Lower CI Upper CI wQ̃
(t) (Q) (se(ĜH)) (se(ĜQ̃))

Uttar Pradesh
All 1262 688 680 0.2163 0.2104 0.2023 0.2185 0.0162

(302) (688) (0.0042) (0.0049)

Rural 903 299 308 0.1997 0.2026 0.1927 0.2126 0.0199
(168) (299) (0.0041) (0.0061)

Urban 359 1087 359 0.2229 0.2229 0.2077 0.2381 0.0304
(168) (359) (0.0092) (0.0092)

West Bengal
All 878 396 396 0.2320 0.2293 0.2171 0.2414 0.0243

(158) (396) (0.0051) (0.0074)

Rural 551 275 275 0.1812 0.1750 0.1660 0.1840 0.0180
(138) (275) (0.0048) (0.0055)

Urban 327 582 327 0.2609 0.2609 0.2482 0.2736 0.0254
(142) (327) (0.0077) (0.0077)

From Tables 5–8, it can be observed that in all cases, except the urban sectors for both states, the
confidence interval widths were less than ω. These results were achieved because the optimal number
of clusters required (Q∗), according to the two-stage procedure, were less than the number available
(H). On the other hand, in both Uttar Pradesh and West Bengal, the estimated optimal cluster sizes Q∗

for the urban sector exceeded the available number of clusters H in the data. As a consequence of this,
the confidence interval widths for the Gini index in the urban sectors were larger than the pre-specified
bound, that is wQ̃ > ω.
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Table 8. Application results for the two-stage procedure on NSS 64th round data for α = 0.05 and
ω = 0.025.

Region H Q∗ Q̃ ĜH ĜQ̃ Lower CI Upper CI wQ̃
(t) (Q) (se(ĜH)) (se(ĜQ̃))

Uttar Pradesh
All 1262 976 947 0.2163 0.2124 0.2041 0.2207 0.0166

(302) (946) (0.0042) (0.0042)

Rural 903 364 353 0.1997 0.2032 0.1922 0.2142 0.0220
(197) (364) (0.0041) (0.0056)

Urban 359 1081 359 0.2229 0.2229 0.2048 0.2410 0.0362
(177) (359) (0.0092) (0.0092)

West Bengal
All 878 607 608 0.2320 0.2315 0.2204 0.2427 0.0224

(186) (607) (0.0051) (0.0057)

Rural 551 391 392 0.1812 0.1759 0.1670 0.1849 0.0178
(163) (391) (0.0048) (0.0045)

Urban 327 754 327 0.2609 0.2609 0.2458 0.2761 0.0303
(162) (327) (0.0077) (0.0077)

7. Extension: Narrow Confidence Region

The methodology presented in this article for the Gini Index parameter can be extended to a
multi-parameter setup in which we would like to make an inference about a vector of parameters θ =

(θ1, θ2, . . . , θp)> for p ≥ 2. This situation arises when we are interested in making joint inference related
to a number of welfare related measures computed from socio-economic survey data (e.g., household
consumer expenditure survey conducted by National Sample Survey, India). Thus, instead of a
sufficiently narrow confidence interval, we would like to construct a narrow confidence region for a
vector of parameters. Let the vector of estimators be defined as Tn = (T1n, . . . , Tpn)> based on the data
on n households collected using a complex household survey. We extend our proposed methodology
for constructing the narrow confidence region in the spirit of Mukhopadhyay and De Silva (2009,
pp. 284–89). We propose the following confidence region for θF:

<n =
{

θ ∈ Rp : (Tn − θ)>(Tn − θ) ≤ ω2
}

.

Using the regularity conditions by Bhattacharya (2005), we have,

√
n (Tn − θ)

D−→ N(0, Σ), i.e., n(Tn − θ)>Σ−1(Tn − θ)
a∼ χ2

p,

with Σ being a positive definite matrix and χ2
p being a chi-squared distribution with p degrees of

freedom. If Σ is a positive definite matrix then there exist an orthogonal matrix P and a diagonal matrix
∆ such that P>ΣP = ∆. The diagonal elements of ∆ contains the eigen values of Σ. If the positive eigen
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values of Σ be λ1, . . . , λp then ∆ = diag(λ1, . . . , λp). Furthermore, let (PTn − Pθ) = (Y1, . . . , Yp)> and
λ(p) is the maximum of the p eigen values of Σ. So, we have

(Tn − θ)> Σ−1 (Tn − θ) = (Tn − θ)> P>∆−1P (Tn − θ)

= (PTn − Pθ)> ∆−1 (PTn − Pθ) =
p

∑
i=1

Y2
i

λi

λ(p) (Tn − θ)> Σ−1 (Tn − θ) ≥
p

∑
i=1

Y2
i = (PTn − Pθ)> (PTn − Pθ)

= (Tn − θ)> (Tn − θ) . (16)

Thus, using (16), we say,

Pr (θ ∈ <n) = Pr
[
(Tn − θ)> (Tn − θ) ≤ ω2

]
≥ Pr

[
λ(p) (Tn − θ)> Σ−1 (Tn − θ) ≤ ω2

]
= Pr

[
(Tn − θ)> Σ−1 (Tn − θ) ≤ ω2

λ(p)

]
.

Provided χ2
α;p being the 100(1− α)th percentile of χ2

p, we claim that the coverage probability of the
confidence region <n is more than (1− α) if

nω2

λ(p)
≥ χ2

α;p, i.e., n ≥
χ2

α;pλ(p)

ω2 = C.

Here, C is the required optimal cluster size that should be used provided the covariance matrix (Σ)
is known. If the parameter Σ is known in advance, one could simply collect observations belonging
to cluster Cs, s = 1, . . . , S of the each of the S Strata. Since Σ is not known in practice, we can
estimate Σ, using a consistent estimator (Vn, say) which can be obtained using the jackknife method.
The consistency result of the jackknife estimator follows from Sen (1988). Thus using the jackknife
estimator, we may propose either a two-stage or a sequential procedure. Similar results associated
with the procedures described earlier is expected to hold under appropriate regularity conditions.

8. Discussion

At the outset, we would like to caution readers not to confuse two-stage sampling with the
two-stage procedure discussed in Section 4.2, in the sequential sampling literature. For two-stage
procedure, we refer Chattopadhyay and Mukhopadhyay (2013); Stein (1945) and others. A two-stage
sampling (e.g., see Fuller (2009)) is a sampling technique in which a sample of clusters is selected and
within those selected clusters, a sample of units are selected assuming the units to be independent
of one another, and the selection rule depends only on the cluster. Under this two-stage sampling,
Fuller (2009) discussed the use of Horvitz-Thompson estimator to estimate the total number and mean
of the population and their respective variances. In addition, Fuller (2009) elaborated on the use of
Horvitz–Thompson estimators and their (asymptotic) variances for functions of means and complex
estimators, in general, under the assumption that the population distribution has a finite fourth
moment. However, in the asymptotic framework of Fuller (2009), it was assumed that observations are
independently and identically distributed (iid) which is a stronger assumption when compared to the
framework of Bhattacharya (2007), also used in this work. Furthermore, Fuller (2009) also discussed
the classical optimal sample allocation problem under the two-stage sampling technique for estimating
the mean per element in a population. In his discussion, he assumed an equal number of units to be
sampled from each cluster as well as an equal total number of units in each cluster and also known
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population variances of the cluster size and the sampling units. Under these assumptions, Fuller (2009)
obtained the optimal number of units to be sampled per cluster by minimizing the variance of the
mean per element subject to a cost constraint.

Our work is different from the survey procedures discussed in Fuller (2009). Our work, as
indicated earlier, is based on the survey framework used in Bhattacharya (2007). In order to get such a
confidence interval for Gini index, we are interested in estimating the unknown optimum number of
clusters in each of the stratum, prefixing the number of strata. Apart from the survey framework, in
our work, optimal cluster size depends on the data unlike the procedures discussed in Fuller (2009).
The total cluster size (as well as the cluster size per each stratum) is a random variable that depends on
a stopping criterion. This procedure also makes the estimated cluster sizes mutually dependent as
they are all estimated based on the same stopping rule. Thus, the method discussed in Fuller (2009) or
any other existing work can not be applied to find such a confidence interval.

We believe, this is the first work to make developments on having sufficiently narrow confidence
interval of economic inequality index based on complex household survey. Now we discuss some
issues or limitations of our proposed procedures because our proposed (a) procedures depend on the
pre-specified number of households in each cluster (b) sequential procedure depends on pre-specified
m′ (c) procedures consider large cluster size scenario (d) procedures do not consider the sampling cost
and/or a fixed budget.

To begin with, the purely sequential procedure requires observations from additional m′ clusters,
after the first stage, every time the condition in the stopping rule is not met. Thus, there is a need to fix
the value of m′. In some situations, it is as easy to collect observations from more than one cluster as
it is to collect observations from a single cluster at every stage. So, as per convenience, the value of
m′ should be accordingly decided based on economic considerations. In fact, the purely sequential
procedure is not affected by the choice of m′, the larger the value of m′, the fewer number of stages,
and the higher the chances of overestimating the optimal number of clusters. On the other hand, the
smaller the value of m′, the more number of stages and the higher the chances of accurately stopping
at the optimal number of clusters. Thus, there is a trade off between the number of stages and stopping
accurately at the optimal cluster size when choosing m′.

Furthermore, our proposed procedures are based on the central limit theorem (when the cluster
sizes per stratum are large). If the number of clusters is small, the confidence interval for Gini
index cannot be constructed using Bhattacharya (2005, 2007) (fixed-cluster size method) and narrow
confidence interval for Gini index using our proposed procedures. For smaller number of available
clusters (Hs) for few strata, the sequence of the sampling distributions of the empirical Gini indices
may not reach asymptotic limiting normal distribution. In a situation when limiting normality cannot
be reached, our proposed procedures should not be applied. If one of our proposed procedures are
applied, because of not having enough clusters in a few strata, one may not achieve desired confidence
interval for the population Gini Index. This scenario was encountered in the application section of this
work, for both the purely sequential and two-stage procedures, when there were not enough available
clusters in the urban sectors, and as such, resulted in confidence intervals that were wider than desired.

Lastly, a very important question raised by the Bhattacharya (2005) was about developing a survey
design taking the economic factors into account. Both our proposed procedures can be extended to
include cost factors whereby optimization will be done at several levels for construction of a narrow
confidence interval or confidence region under cost constraints. However, we do not explore that
possibility in this article. A related issue is the fact that usually a budget is allocated by a country
to its survey agency to carry out the survey. Under such budget constraints, the funding agency is
not likely to willingly hand out more money if stopping rule is not met with the available amount.
Without question, issue of budget constraint is important. Here, we do not discuss the estimation of
cluster sizes under a fixed budget. We feel that our current work is a first step towards addressing the
important issue in the sense of achieving a sufficiently narrow confidence interval or region and may
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yield different outcomes under cost constraints. We believe our work will lead to further research on
this topic.

9. Conclusions

Working within the asymptotic purview for complex survey data, developed by Bhattacharya
(2005, 2007), we have developed purely sequential and two-stage procedures for constructing
sufficiently narrow confidence intervals for the Gini index which is one of the most popular measure
of economic inequality. Our procedure may be applied for surveys when stratified clustered sample
data are drawn from a large number of clusters per stratum, which is a reasonable assumption to make.
More so, our procedure may also be applied to special cases of multi-stage survey designs including
cases without stratification (i.e., S = 1), and those that have independent observations within clusters
(interclass correlation is zero).

It is with no doubt that the two-stage procedure is practically more feasible under this survey
design than the purely sequential procedure. The confidence intervals of both procedures yielded
a coverage probability closer to the desired confidence coefficient, however, the purely sequential
procedure produces confidence intervals whose width are always less than the desired bound ω.
The two-stage procedure is also known to over-estimate the optimal cluster size as compared to the
purely sequential procedure Mukhopadhyay and De Silva (2009) and this property can be seen in
results from the simulation (in the supplementary material) and the application to the NSS data.
Furthermore, the estimated optimal cluster sizes have smaller standard errors under purely sequential
procedure as compared to two-stage procedure.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1146/8/2/26/s1.
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