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Abstract: The paper is concerned with estimation and application of a special stationary integer
autoregressive model where multiple binomial thinnings are not independent of one another.
Parameter estimation in such models has hitherto been accomplished using method of moments,
or nonlinear least squares, but not maximum likelihood. We obtain the conditional distribution
needed to implement maximum likelihood. The sampling performance of the new estimator is
compared to extant ones by reporting the results of some simulation experiments. An application to a
stock-type data set of financial counts is provided and the conditional distribution is used to compare
two competing models and in forecasting.

Keywords: autoregression; counts; maximum-likelihood; binomial-thinning

1. Introduction

First-order integer autoregressive (INAR) models have been studied extensively in the literature
and applied in a wide range of fields. The models emerged following the work of McKenzie (1985)
and Al-Osh and Alzaid (1987). Higher-order models that make it possible to capture more complex
dependence structures in observed count time series are somewhat less well developed.

Various estimation methods for the parameters of these models, including method of moments and
conditional least squares, have been widely used. For efficency considerations, maximum-likelihood
estimation (MLE) may be desirable, when it is available. Al-Osh and Alzaid (1987) present details of
MLE in the first-order case. Bu et al. (2008) extend this to a particular higher-order model with Poisson
innovations using the construction of Du and Li (1991). Extensions to a semi-parametric MLE (where
no specific distributional assumption is made for the arrivals) is provided in Drost et al. (2009) and
Martin et al. (2011). Jung and Tremayne (2011) discuss MLE in a second order model using the random
operator of Joe (see e.g., Joe 1996).

In their elegant paper, Bu et al. (2008) provide the necessary conditional distribution for the
higher-order case when the thinning operations are performed independently of one another in their
expression (9) and explicitly apply it to the second-order case in their expression (13) and subsequent
computations. The parallel expression for a conditional distribution in the case of a pth-order model
considered by Alzaid and Al-Osh (1990) has not been given. Indeed, Alzaid and Al-Osh (1990, sec. 6)
were of the opinion that “... the MLE for the general model seems intractable”, probably because
of the unavailability of a required conditional distribution. In this paper we show that the relevant
conditional distribution needed for the likelihood is available, making MLE feasible. We focus on the
second-order specification here.

The model of Alzaid and Al-Osh (1990) has been found useful for practical applications, see
e.g., Jung and Tremayne (2006), in the context of stock-type counts exhibiting a pronounced positive
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autocorrelation. A specific feature of the specification is that it invokes closure under convolution to
determine the discrete distribution theory needed for MLE. This also makes the model attractive from
a theoretical point of view, as may the fact that the time reversibility applying to the first-order model
continuous to hold in higher-order cases (Schweer 2015).

In this short paper we provide the MLE for the second-order model, examine its finite sample
performance and offer an application. We compare the performance of the second-order specification
to the widely used first-order model by means of goodness-of-fit techniques and show that the former
is preferred to the latter for the data set considered.

The paper is structured as follows. Section 2 provides some background material for deriving the
conditional distributions needed to formulate a MLE and probabilistic forecasting. Then, in Section 3
we focus on the INAR model of order two of Alzaid and Al-Osh (1990) and provide its MLE.
The methodology can be extended to higher-order models, though this would be cumbersome.
Section 4 contains the results of simulation experiments to assess the small sample performance
of the proposed estimator. Section 5 illustrates the model’s application to a time series of iceberg order
data. The final short section provides concluding remarks.

2. Preliminaries

This section describes means for obtaining discrete conditional, or predictive, distributions for
thinning-based first order INAR models. Our approach to using the relevant (multivariate) distribution
theory below is to employ the following familiar relationship

P(Xt = x|Xt−1 = y) ≡ p(x|y) = p(x, y)
p(y)

, (1)

where p(x, y) = P(Xt = x, Xt−1 = y) denotes an unconditional bivariate probability mass function
(pmf) and p(y) = P(Xt−1 = y) a corresponding univariate pmf.

To frame the argument, consider the simplest case of a Poisson first-order INAR model, henceforth
PAR(1). The model can be written as

Xt = Rt(Ft−1) + Wt , (2)

for t = 0± 1,±2, . . ., where Rt(·) denotes a random operator, which, in this case, is the well-known
binomial thinning operator of Steutel and van Harn (1979)

α ◦ Xt−i =
Xt−i

∑
j=1

Yj,t−i ,

and the Yj,t−i are assumed to be iid Bernoulli random variables with P(Yj,t−i = 1) = α and
P(Yj,t−i = 0) = 1− α (α ∈ [0, 1)). In the PAR(1) model Wt is an iid discrete Poisson innovation with
parameter λ and Wt and Ft−1 are presumed to be stochastically independent for all points in time.
The conditional distribution of the number of ‘survivors’, R, given the past Xt−1 = y, g(r|y), is well
known to be binomial with parameters given by the dependence parameter α and y. The desired
predictive pmf is then the convolution of the binomial pmf g(r|y), determining the number of
‘survivors’, with a Poisson pmf pW(·), determining the number of innovations, i.e.,

p(x|y) = ∑
r=0

g(r|y) · pW(x− r) (3)

and yields (2) of McKenzie (1988).
Alternatively, one can seek to obtain the bivariate pmf p(x, y) and the higher dimensional pmf’s in

subsequent sections directly. Following Joe (1996) (specifically, the Appendix) the trivariate reduction
method (see, Mardia 1970) and its generalization will be used here. Suppose Z1, Z2, Z12 are independent



Econometrics 2020, 8, 24 3 of 15

random variables in the convolution-closed infinitely divisible family F(·), appropriately indexed by
some parameter(s). Then a stochastic representation of the dependent random variables X and Y from
the same family is given by

X = Z1 + Z12 and Y = Z2 + Z12 , (4)

compare Joe (1996), Equation (A2). It is straightforward to show that Cov(X, Y) = Var(Z12)

(Mardia 1970, eq. 9.1.9).
Define the following independent Poisson random variables: Z1, Z2 ∼ iidPo(λ); and Z12 ∼

iidPo(αλU), where U = (1− α)−1. By independence, the joint distribution of the Poisson random
variables Z1, Z2, Z12 is the product of their marginal distributions

p(z1, z2, z12) = p(z1)p(z2)p(z12) . (5)

The joint distribution of the dependent variables X and Y can be obtained from (5) by writing
the {Zj} (where here and below j is used as generic subscript(s) for the relevant independent random
variables) in terms of X and Y. Introduce the ‘dummy’ argument A = Z12. Then (4) can be written in
convenient form as X

Y
A

 =

1 0 1
0 1 1
0 0 1


 Z1

Z2

Z12

 . (6)

The linear system (6) can now be solved for the {Zj} variables by inverting the transformation
defining matrix, T, to give

(Z1, Z2, Z12)
′ = T−1(X, Y, A)′ .

Since the joint distribution of the {Zj} is readily available from (5), p(x, y) can be obtained by
summing across the ‘dummy’ argument a to give

p(x, y) = ∑
a=0

pλ(x− a)pλ(y− a)pαλU(a). (7)

Although not explicitly indicated, the upper summation limit here is in fact min(x, y) and is
typically quite small because we envisage modelling low order counts. Using (7) with the case of
Poisson innovations gives

p(x, y) = exp [λU(α− 2)] ∑
a=0

λx+y−2a(αλU)α

(x− a)! (y− a)! a!
.

This result corresponds to that given as (3) by McKenzie (1988) and dividing by p(y) the resulting
conditional pmf is that given as (2) in McKenzie (1988).

Model (2) still applies with Wt ∼ iidGP(λ, η), see, e.g., Consul (1989) and Jung and Tremayne
(2011) for more details of the associated pmf, interpretation of the parameter η and so forth.
Such a model will facilitate the handling of overdispersed count data. If closure under convolution is
still to apply, it is no longer appropriate to use the binomial thinning operator as Rt(.). However, the
approach due to Joe (1996) can still be employed with an alternative random operator. This leads to
the conditional distribution of the survivors, given Xt−1 = y, following a quasi-binomial distribution
of the form

g(r|y) =
(

y
r

)
α(1− α)(α + ψr)r−1[1− α + ψ(y− r)]y−r−1

(1 + ψy)y−1 , r = 0, 1, ..., y,
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where ψ = η(1− α)/λ (Consul 1989, p. 195), rather than a binomial distribution. The convolution of
this distribution with that of Wt being GP gives the transition distribution required for MLE and the
joint bivariate pmf of two consecutive observations is GP, thereby preserving closure under convolution.
With this modification, a parallel argument following (1) down to (7) remains applicable though, of
course, the p(·) random variables of, say, (5) are now GP.

3. The INAR model of Alzaid and Al-Osh

The model specification to be discussed here in detail follows the work of Alzaid and Al-Osh
(1990). It is based on a second order difference equation, where the thinning operations are applied in
a different way from Du and Li (1991). The innovation process is assumed to be Wt ∼ Po(λ), so

Xt = α1 ◦ Xt−1 + α2 ◦ Xt−2 + Wt . (8)

The resulting process will henceforth be denoted the PAR(2)-AA model. Process (8) is stationary
provided α1 + α2 < 1. The special character of the PAR(2)-AA process stems from the fact that
the two thinning operations in (8) are not performed independently of one another. The bivariate
random variable (α1 ◦ Xt, α2 ◦ Xt), with the thinnings otherwise independent of the past history,
is structured so as to follow a trinomial conditional distribution with parameters (α1, α2, Xt).
See e.g., Jung and Tremayne (2006) for details.

The particular nature of this construction has various important consequences. First, the process
has a physical interpretation as a special branching process with immigration (see e.g., Alzaid and
Al-Osh 1990). Second, the autocorrelation structure of the model is more complicated than that of a
standard Gaussian AR(2) model (compare Du and Li 1991), for the specific random thinning operations
introduce a moving average component into the autocorrelation structure. This is, in fact, of the form
generally associated with a continuous ARMA(2,1) model and arises from the mutual dependence
structure between the components of Xt. In particular, the first and second order autocorrelations are
Corr(Xt, Xt−1) = α1 and Corr(Xt, Xt−2) = α2

1 + α2 (see, e.g., Jung and Tremayne 2003).
Note that the PAR(2)-AA model outlined above embodies closure under convolution so that the

marginal distribution of Xt is Poisson with parameter λ/(1− α1 − α2) = λU, thereby redefining U
as used in Section 2. Using an extension of the technique outlined in Section 2, we now proceed to
obtain the necessary predictive distribution for maximum likelihood estimation of the parameters of
this model.

For this purpose we derive the trivariate Poisson distribution P(Xt = x, Xt−1 = y, Xt−2 =

v) = p(x, y, v) and introduce seven independent Poisson random variables: Z1, Z3 ∼ iidPo(λ); Z2 ∼
iidPo(τ), where τ = (1− α1)

2λU; Z12, Z23 ∼ iidPo(φ), where φ = α1(1− α1)λU; Z13 ∼ iidPo(α2λU);
and Z123 ∼ iidPo(α2

1λU).
The (dependent) random variables X, Y, V can be written in terms of the independent {Zj} random

variables as follows:

X = Z1 + Z12 + Z13 + Z123

Y = Z2 + Z12 + Z23 + Z123

V = Z3 + Z23 + Z13 + Z123,

where, as in (4), the ‘=’ means ‘equivalent in distribution to’. Such an extension of the trivariate
reduction method has been used, inter alia, by Mahamunulu (1967), Loukas and Kemp (1983) and
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Karlis (2003). Introducing the following ‘dummy’ arguments: A = Z12; B = Z13; C = Z23; and
D = Z123, we then have, in compact form,

X
Y
V
A
B
C
D


=



1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





Z1

Z2

Z3

Z12

Z13

Z23

Z123


. (9)

Solving the linear system (9) in terms of the {Zj} random variables by inverting the transformation
defining matrix, T, gives

(Z1, . . . , Z123)
′ = T−1(X, Y, V, A, B, C, D)′.

Proceeding as in Section 2, we obtain the joint distribution p(x, y, v) by summing across the
‘dummy’ arguments, i.e.,

p(x, y, v) = ∑
a=0

∑
b=0

∑
c=0

∑
d=0

pφ(a) pα2λU(b) pφ(c) p
α2

1λU(d)×

pλ(x− a− b− d) · pτ(y− a− c− d)× (10)

pλ(v− b− c− d) .

Note that the first order autocorrelation of the PAR(2)-AA model is α1 and remember that U has
been redefined in this section. Define Z∗1 = Z2 + Z12, Z∗2 = Z3 + Z13 and Z∗12 = Z23 + Z123, then the
argument above from (5) to (7) in these newly defined independent random variables still applies and
the bivariate pmf p(y, v) for the PAR(2)-AA model is easily seen to be

p(y, v) ≡ P(Xt−1 = y, Xt−2 = v) = exp [(α1 − 2)λU]× (11)

∑
a=0

[(1− α1)λU]y+v−2a (α1λU)α

(y− a)! (v− a)! a!
.

Using (10) and (11) the required conditional distribution is

p(x|y, v) = ∑
a

∑
b

∑
c

∑
d

exp{−λ[(1 + α2)U + 2]} λx+v+y−a−b−c−2d×

Uy+bαa+c+2d
1 αb

2(1− α1)
2y−2d−a−c× (12)

[a!b!c!d!(x− a− b− d)!(y− a− c− d)!(v− b− c− d)!]−1×
[p(y, v)]−1.

The unwieldy conditional distribution (12) can now be used for all purposes where predictive
distributions are needed, including MLE, probabilistic forecasting and predictive model assessment.
As the PAR(2)-AA model is a stationary Markov chain (see Alzaid and Al-Osh 1990), conditional MLE
(ignoring end effects) based on the logarithm of (12) can be implemented on the basis of observed
counts x1, . . . , xT using the conditional log-likelihood

LT(θ) =
T

∑
t=3

log p(xt|xt−1, xt−2; θ) , (13)
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where θ = (α1, α2, λ)′ is the parameter vector of interest. Despite the quadruple summation, the
log-likelihood is not too burdensome to calculate, because the upper summation limits are typically
quite small. Maximizing (13) yields MLEs that have the usual desirable asymptotic properties.

We now provide the conditional mean E(Xt|Xt−1, Xt−2) for this model. It can be derived from
(12) or, alternatively, using the method described in Alzaid and Al-Osh (1990). Utilizing results from
Mahamunulu (1967) we find, after some tedious algebra (details available on request), the conditional
mean to be

E(Xt|Xt−1 = y, Xt−2 = v) ≡ µX|F |(θ) = λ

[
1 +

(
α1 + α1α2U

) p(y− 1, v)
p(y, v)

(14)

+ α2U
p(y, v− 1)

p(y, v)
+ α2

1U
p(y− 1, v− 1)

p(y, v)

]
,

which is clearly nonlinear. This is a distinctive feature of the PAR(2)-AA model relative to the one of
Du and Li (1991) with its linear regression function. The shorthand notation F in the middle part of
(14) indicates the relevant past history (Xt−1, Xt−2). Finally, note that Equation (5.4) given in Alzaid
and Al-Osh (1990, p. 323) differs slightly from (14); after careful checking, we believe our result to be
correct.

The argument between (8) and (12) can be extended in principle to deal with a p-th order model
of Alzaid and Al-Osh (1990, sec. 2). Full details are not provided, because the argument is laborious
and e.g., for p = 3 fifteen independent Z variables would be needed.

4. Finite Sample Performance of Parameter Estimators

In this Section, the results of a series of Monte Carlo experiments to assess the finite sample
properties of estimators in the PAR(2)-AA model are discussed. Specifically, the performance of the
MLE of this paper is assessed relative to three competing estimators. Consistent estimates for the
starting values for the MLE procedure can either be based on method of moments (MM) estimators, or
obtained from a conditional, or nonlinear, least-squares (NLS) procedure. Parameter estimates may also
be obtained using the ubiquitous generalized method of moments (GMM) principle, first introduced
into the econometrics literature by Hansen (1982).

Here and in what follows, all quantities based on Xt are, of course, computed using sample
analogues. Method of moments estimators can be obtained from moment conditions based on
the marginal mean of the counts and on the first and second order sample autocorrelations
(see e.g., (Jung and Tremayne 2006)). An important quantity in the construction of both NLS and
GMM estimators is the one-step ahead prediction error, or residual, defined as et = Xt − µX|F |(θ).
Conditional or non-linear least squares estimators can be based on the criterion function

S(θ) = ∑
[

Xt − µX|F |(θ)
]2

,

which is to be minimized with respect to the parameter vector θ.
GMM has been used in the context of count data modelling using binomial thinning in at least

two contexts previously. In an early paper, Brännäs (1994) advocated its used in a univariate INAR(1)
context while, more recently, Silva et al. (2020) have employed it in a bivariate INMA(1) context where
no conditional, or predictive, distribution is available in closed form, thereby precluding the use of
MLE. Here we employ an extension of the approach adopted by Brännäs (1994) to GMM; see that paper
for full details. As there, we entertain only a conditional estimation problem. Based upon the residuals
et, which should themselves have zero mean, a suitable set of moment condition follows readily.
Since θ is comprised of three elements, we employ four moment conditions to give an overidentified
GMM problem.
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Introduce the notation σ2
X|F |(θ) to denote the (conditional) variance of the random variable with

pmf given in (12) and noting that, conditionally, E[e2
t ] = σ2

X|F |(θ), m2 follows. Further, the residuals et

should be serially uncorrelated (conditionally as well as unconditionally), so we may also use E[etet−1]

and E[etet−2]. These two conditions are denoted as m3 and m4 below. Hence, the conditions used are:

m1 = et

m2 = e2
t − σ2

X|F |(θ)

m3 = etet−1

m4 = etet−2

Since we have no closed form for the (conditional) variance, we use

Var[Xt|Xt−1, Xt−2] ≡ σ2
X|F |(θ) = ∑ x2 p(x|y, v)− µX|F |(θ)

2 .

These moment conditions can all be thought of as conditional moment restrictions. Summing
over all available observations, dividing by the (adjusted) sample size and collecting them in a vector
gives m(θ), the vector of moment conditions. The GMM criterion function to be minimized is

Q(θ) = m(θ)′W−1
4 m(θ) ,

where W4 is a positive definite weighting matrix. Since Brännäs (1994) finds limited benefit to
calculating two-step GMM estimates in the context of the INAR(1) model, we base our results on
one-step GMM estimation, where an identity matrix serves as the weighting matrix.

The simulations are designed to resemble situations typically encountered in empirical research
and to cover a range of different points in the relevant parameter space. Moreover, one set of
parameters is chosen such that it mimics the situation found in the application presented in Section 5.
Series of low counts of length T = 125, 250, and 500 are generated. The design parameters for the
simulations are chosen as follows. The level of the generated processes E(Xt) varies between 0.6
and 4 in order to ensure low level counts. We experimented with other (low) values for the mean
of the process and found qualitatively similar results. The dependence structure of the generated
processes is governed by a combination of α1 and α2, where α1 + α2 < 1. In an extension of Figure 1
in Jung and Tremayne (2003) the α1/α2 parameter space, along with some informative partitions, is
depicted in Figure 1 here. Combinations of α1 and α2 are taken from each of the three areas labelled
A, B and C. All combinations from area A exhibit exponentially decaying autocorrelation functions
(ACFs), while those from area B exhibit an exponential decaying behaviour for lags higher than two
but Corr(Xt, Xt−1) < Corr(Xt, Xt−2). Parameter combinations from area C exhibit more complex
dependence patterns, where the ACF is oscillating at least for the first four lags before decaying
exponentially to zero. The innovations Wt are generated as independent Poisson random variables
with parameter λ. The simulations are carried out using programs written in GAUSS Version 19.

Of course, due to the restricted parameter space and the unconstrained estimation procedures
employed in this study, the problem of inadmissible parameter estimates has to be dealt with.
The number of simulations runs is chosen such that the statistics displayed in the tables below are
based on a minimum of 5000 replications. Simulated data series which lead to inadmissible parameter
estimates are discarded. A Referee has indicated that it is helpful to expand on this feature of the
results (full details in tabular form are available on request). Overwhelmingly, such replications stem
from negative estimates of α̂2 at the lowest sample size T = 125 and are predominantly infrequent,
though they never exceed 16%. Simulation results from four points in the parameter space are reported
below. When T > 125, inadmissible parameter estimates never arise with the second parameterization;
at most 0.3% of replications are discarded with the third; and at most 5% with the fourth (and then only
ever because of inadmissible α̂2). Parametrizations one and four lead to more inadmissible replications,
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probably stemming from the small value used for α2 in data generation. The results of simulation
experiments are exposited by means of tables whose entries summarize the outcomes through the bias,
percentage bias and mean squared error (MSE) for the MM, NLS, GMM and ML estimators.

Figure 1. Partition of the α1/α2 parameter space in the PAR(2)-AA model.

For the first set of simulation experiments we specify a dependence structure with an exponentially
decaying ACF. Here α1 = 0.3 and α2 = 0.1 are chosen to represent a point in area A in Figure 1.
By setting λ to 1.8, the mean of the process is 3. The basic results are displayed in Table 1;
we subsequently display the results from the other three experimants in Tables 2–4 and then provide
some general discussion.

Table 1. Bias, percentage bias and MSE for the MM, NLS, GMM and ML parameter estimates for the
first set of simulation experiments.

T = 125 T = 250 T = 500

Bias % Bias MSE Bias % Bias MSE Bias % Bias MSE

α1|MM −0.0184 −6.1295 0.0095 −0.0082 −2.7190 0.0048 −0.0031 −1.0299 0.0024
α2|MM 0.0060 6.0003 0.0045 −0.0026 −2.5795 0.0027 −0.0045 −4.5395 0.0016
λMM 0.0381 2.1182 0.1259 0.0306 1.7013 0.0665 0.0239 1.3274 0.0357

α1|NLS −0.0181 −6.0494 0.0097 −0.0081 −2.6876 0.0048 −0.0030 −0.9976 0.0024
α2|NLS 0.0059 5.9088 0.0044 −0.0022 −2.2255 0.0026 −0.0043 −4.3151 0.0015
λNLS 0.0374 2.0780 0.1288 0.0294 1.6359 0.0663 0.0227 1.2613 0.0350

α1|GMM 0.0017 0.5772 0.0081 0.0008 0.2833 0.0042 0.0012 0.4130 0.0020
α2|GMM 0.0163 16.2588 0.0052 0.0034 3.4103 0.0029 −0.0020 −2.0000 0.0017
λGMM −0.0760 −4.2202 0.1463 −0.0269 −1.4919 0.0743 −0.0037 −0.2059 0.0382

α1|ML −0.0091 −3.0481 0.0079 −0.0038 −1.2681 0.0039 −0.0009 −0.3133 0.0019
α2|ML 0.0092 9.1655 0.0046 −0.0006 −0.6137 0.0026 −0.0034 −3.3661 0.0015
λML 0.0004 0.0231 0.1095 0.0123 0.6835 0.0567 0.0138 0.7659 0.0350

In the next set of simulation experiments we select a more complex dependence structure.
Here α1 = 0.4 and α2 = 0.3 are chosen as representive of area B in Figure 1. By setting λ to 1.2,
the mean of the process is now 4.
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Table 2. Bias, percentage bias and MSE for the MM, NLS, GMM and ML parameter estimates for the
second set of simulation experiments.

T = 125 T = 250 T = 500

Bias % Bias MSE Bias % Bias MSE Bias % Bias MSE

α1|MM −0.0398 −9.9578 0.0161 −0.0234 −5.8488 0.0081 −0.0120 −3.0109 0.0041
α2|MM −0.0218 −7.2567 0.0067 −0.0096 −3.1834 0.0031 −0.0046 −1.5190 0.0015
λMM 0.2397 19.9773 0.3230 0.1295 10.7939 0.1453 0.0643 5.3613 0.0656

α1|NLS −0.0359 −8.9634 0.0158 −0.0202 −5.0405 0.0078 −0.0107 −2.6808 0.0036
α2|NLS −0.0196 −6.5475 0.0066 −0.0082 −2.7461 0.0031 −0.0039 −1.3010 0.0015
λNLS 0.2142 17.8467 0.3097 0.1101 9.1726 0.1347 0.0562 4.6809 0.0595

α1|GMM −0.0196 −4.8996 0.0114 −0.0177 −4.4334 0.0062 −0.0173 −4.3301 0.0032
α2|GMM −0.0125 −4.1821 0.0075 −0.0040 −1.3494 0.0037 −0.0018 −0.6145 0.0019
λGMM 0.0622 5.1825 0.1534 0.0481 4.0122 0.0765 0.0392 3.2707 0.0394

α1|ML −0.0102 −2.5588 0.0090 −0.0053 −1.3262 0.0044 −0.0026 −0.6381 0.0021
α2|ML −0.0124 −4.1226 0.0058 −0.0043 −1.4382 0.0028 −0.0016 −0.5326 0.0014
λML 0.0830 6.9171 0.1238 0.0351 2.9239 0.0525 0.0144 1.2041 0.0252

For the third set of simulation experiments, the dependence parametrs are α1 = 0.3 and α2 = 0.4
and chosen so as to stem area C in Figure 1. Choosing λ to be 1.2, the mean of the process is again 4.

Table 3. Bias, percentage bias and MSE for the MM, NLS, GMM and ML parameter estimates for the
third set of simulation experiments.

T = 125 T = 250 T = 500

Bias % Bias MSE Bias % Bias MSE Bias % Bias MSE

α1|MM −0.0337 −11.2201 0.0172 −0.0208 −6.9254 0.0100 −0.0128 −4.2741 0.0052
α2|MM −0.0303 −7.5864 0.0076 −0.0149 −3.7346 0.0035 −0.0065 −1.6159 0.0017
λMM 0.2490 20.7534 0.3556 0.1379 11.4933 0.1775 0.0756 6.3016 0.0839

α1|NLS −0.0299 −9.9535 0.0165 −0.0171 −5.7006 0.0093 −0.0103 −3.4362 0.0943
α2|NLS −0.0280 −7.0074 0.0074 −0.0135 −3.3785 0.0035 −0.0057 −1.4359 0.0017
λNLS 0.2218 18.4864 0.3319 0.1164 9.7004 0.1603 0.0621 5.1726 0.0728

α1|GMM −0.0322 10.7468 0.0158 −0.0188 −6.2515 0.0106 −0.0093 −3.1356 0.0897
α2|GMM −0.0189 4.7178 0.0077 −0.0038 −0.9412 0.0038 −0.0023 −0.5643 0.0017
λGMM −0.1098 0.1531 0.2068 0.1030 8.5847 0.1195 0.0432 3.5785 0.0410

α1|ML −0.0100 −3.3439 0.0121 −0.0053 −1.7654 0.0065 −0.0036 −1.2038 0.0032
α2|ML −0.0176 −4.4007 0.0062 −0.0071 −1.7631 0.0031 −0.0022 −0.5419 0.0015
λML 0.1001 8.344 0.1475 0.0436 3.6343 0.0694 0.0213 1.7727 0.0313

Finally, the fourth and last set of simulation experiments use a point in the parameter space that
is close to the estimated parameter values found for the data employed in Section 5. For this purpose
α1 = 0.5 and α2 = 0.1 and λ = 0.24, yielding a mean of 0.6.
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Table 4. Bias, percentage bias and MSE for the MM, NLS, GMM and ML parameter estimates for the
fourth set of simulation experiments.

T = 125 T = 250 T = 500

Bias % Bias MSE Bias % Bias MSE Bias % Bias MSE

α1|MM −0.0340 −6.8063 0.0181 −0.0181 −3.6114 0.0058 −0.0078 −1.5659 0.0029
α2|MM 0.0069 6.9004 0.0045 −0.0019 −1.8796 0.0026 −0.0033 −3.2875 0.0016
λMM 0.0140 5.8252 0.0059 0.0102 4.2585 0.0032 0.0052 2.1674 0.0015

α1|NLS −0.0321 −6.4257 0.0119 −0.0172 −3.4276 0.0057 −0.0077 −1.5303 0.0028
α2|NLS 0.0059 5.9070 0.0043 −0.0012 −1.1918 0.0023 −0.0020 −2.0464 0.0013
λNLS 0.0125 5.1238 0.0019 0.0087 3.6118 0.0029 0.0043 1.7753 0.0014

α1|GMM −0.0085 −1.7007 0.0118 −0.0032 −0.6340 0.0040 −0.0016 −0.3230 0.0020
α2|GMM 0.0168 16.8447 0.0045 0.0034 3.4105 0.0029 −0.0019 −1.8700 0.0017
λGMM −0.0079 −5.8751 0.0059 −0.0027 −1.1208 0.0025 0.0006 0.2445 0.0014

α1|ML −0.0144 −2.8759 0.0072 −0.0068 −1.2115 0.0034 −0.0032 −0.6359 0.0016
α2|ML 0.0041 4.0920 0.0035 −0.0009 −0.0728 0.0019 −0.0014 −1.4325 0.0010
λML 0.0026 1.0681 0.0035 0.0023 0.6756 0.0017 0.0012 0.4976 0.0009

Across all four experiments, the estimates for the α parameters tend to be downward biased,
while those for λ are upward biased. This stems from the negative correlation between the two
types of parameter estimators (dependence and location) and is equivalent to the findings reported in
Jung et al. (2005). While the downward bias for α1 can be observed over all four tables above, in those
cases where α2 is quite small (0.1), i.e., in the first and fourth experiments, an upward bias results
in particular for low sample sizes. This arises due to the fact that the sampling distribution of α̂2 is
truncated at zero as only non-negative estimates for that parameter are admissible.

The more complex the dependence structure of the data generating process is, the higher the
bias for all estimators tends to become. For instance, in the third experiment, stemming from data
generated using parameter values from area C in Figure 1, the bias for the λ parameter can be as large
as 20% for the MM estimation method in small sample sizes. In all cases considered in the simulation
experiments, it is seen that use of MLE to estimate the model parameters of the PAR(2)-AA model,
in terms of lower biases and smaller mean squared errors, is most efficacious.

With regard to the final set of simulations and the parameter constellation found in the application
in the next section, it is evident from Table 4 that biases in the estimated parameters are negligible,
in particular when MLE is employed.

5. Application

In this section we demonstrate the applicability of the PAR(2)-AA model to a real-world data set.
We consider iceberg order data from the ask side of the Lufthansa stock sampled from the XETRA trading
system at a frequency of 15 minutes during 15 consecutive trading days in the first quarter of 2004.
For some explanatory remarks about the nature of iceberg orders, see e.g., Jung and Tremayne (2011).
The sample consists of 510 (low) counts ranging from 0 to 4. The marginal distribution of the counts is
shown in Figure 2; the sample mean and variance of the data are, respectively, 0.616 and 0.673. A time
series plot and the sample (partial) autocorrelations (S(P)ACFs) are depicted in Figure 3.
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Figure 2. Marginal distribution of the iceberg order data.

Figure 3. Time series plot (panel (a)) and SACF and SPACF (panels (b,c)) of the iceberg order data.

The time series plot of the data shows no discernable trend, the sample mean and variance do
not suggest overdispersion and the SACF and SPACF of the data point toward a first or second order
autoregressive dynamic structure. Based on these findings we fit a PAR(1) and a PAR(2)-AA model to
the first 505 observations, with the last five reserved for an illustrative out-of-sample prediction exercise.

To compare the two model fits, we exploit goodness-of-fit techniques based on: (a) the predictive
distributions of the two models, in particular the PIT histogram and scoring rules; (b) the correlogram
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of the Pearson residuals computed as et/
√

σ2
X|F |(θ); and (c) a parametric resampling procedure based

on Tsay (1992). See Jung et al. (2016) and Czado et al. (2009) for more details. Figure 4 depicts the
results for the two fitted models.Version May 14, 2020 submitted to Econometrics 13 of 16

Figure 4. PAR(1) model fit: residual autocorrelations (panel (a)), PIT histogram (panel (b)) and
parametric resampling procedure (panel (c)); Panels (d) to (f) depict the corresponding information for
the PAR(2)-AA model fit.

It is evident from the panels in Figure 4 that the fit of the PAR(2)-AA model is superior to that of207

the PAR(1) model, certainly when it comes to capturing the serial dependence in the data. Further208

evidence favouring the PAR(2)-AA specification is provided by comparing the scoring rules provided209

in Table 5 for the two model fits. We, therefore, report parameter estimates and out-of-sample results210

for the preferred second order model only.211

212

Figure 4. PAR(1) model fit: residual autocorrelations (panel (a)), PIT histogram (panel (b)) and
parametric resampling procedure (panel (c)); Panels (d–f) depict the corresponding information for the
PAR(2)-AA model fit.

It is evident from the panels in Figure 4 that the fit of the PAR(2)-AA model is superior to that of
the PAR(1) model, certainly when it comes to capturing the serial dependence in the data. Further
evidence favouring the PAR(2)-AA specification is provided by comparing the scoring rules provided
in Table 5 for the two model fits. We, therefore, report parameter estimates and out-of-sample results
for the preferred second order model only.
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Table 5. Scoring rules for the PAR(1) and the PAR(2)-AA model fit.

Scoring Rule PAR(1) PAR(2)-AA

log score 0.9174 0.9058
quadratic score 0.5161 0.5081
ranked prob. score 0.3315 0.3258

Table 6 provides the parameter estimates for the three parameters of the PAR(2)-AA model
based on method of moments, NLS, GMM and ML estimation, respectively. Estimated standard
errors are provided for the ML estimates only. It is evident that the parameter estimate for the α2

parameter is statistically different from zero, providing further statistical evidence of a preference for
the PAR(2)-AA model over the PAR(1) one.

Table 6. Parameter estimates for the iceberg order data based on the PAR(2)-AA model.

Parameter MM Estimates NLS Estimates GMM Estimates ML Estimates ML Standard Errors

α1 0.4990 0.4954 0.4712 0.4668 0.0410
α2 0.1147 0.0924 0.0806 0.0999 0.0349
λ 0.2310 0.2485 0.2759 0.2614 0.0296

We now present an illustration of out-of-sample prediction for the PAR(2)-AA model. We employ
a fixed forecasting environment using only the fit to observations 1 to 505. Observations 504 to 510
are, in fact, (2,0,2,2,3,3,2); since a value 3 is only observed 2.4% of times in the entire realization,
these data represent a short epoch of values that will perforce be difficult to forecast. Using (12) we
select three predictive distributions with different Markovian histories (pairs of lagged counts) for
graphical presentation in Figure 5. Panel (a) in the Figure corresponds to the prediction of observation
number 506 (observed value 2, relevant past history 2,0); the predictive distribution has a mode of
zero with an estimated probability close to 0.5 so that the observed value of 2 is seen as unlikely,
having a predicted probability of around 0.1. In Panel (b) of the Figure, the predictive distribution
for observation number 508 is provided (observed value 3, relevant past history 2,2). The predictive
distribution for the one-step ahead forecast is now markedly different; the mode has shifted up to 1,
the probability of observing another 2 has risen to 0.3 and even the large value of 3 is forecast to occur
with estimated probability 0.08. Finally, Panel (c) portrays the predictive distribution for observation
510 (observed value 2 with relevant past history 3,3). Note that the estimated probability of observing
yet another 3 has risen to about 0.18 and the modal forecast is in fact the value observed. Overall, the
three panels of the Figure illustrate clearly how rapidly the predictive distribution responds to altering
relevant past history.

Figure 5. One-step ahead predictive distributions of the iceberg order data based on the PAR(2)-AA model.
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6. Concluding Remarks

This paper considers maximum likelihood estimation in an integer autoregressive model
for which such parameter estimators have not been available hithero. The basic techniques used
are reduction methods and change of variable techniques. The expressions that emerge for the
conditional (predictive) distributions are complicated involving, as they do, multiple summations.
We demonstrate that they can be fruitfully used for inferential purposes using a real-world data
set. Moreover, the predictive distributions derived can be employed in goodness-of-fit analyses and
out-of-sample predictions leading to probabilistic forecasts.
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