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Abstract: In economic applications, model averaging has found principal use in examining
the validity of various theories related to observed heterogeneity in outcomes such as growth,
development, and trade. Though often easy to articulate, these theories are imperfectly captured
quantitatively. A number of different proxies are often collected for a given theory and the uneven
nature of this collection requires care when employing model averaging. Furthermore, if valid,
these theories ought to be relevant outside of any single narrowly focused outcome equation.
We propose a methodology which treats theories as represented by latent indices, these latent
processes controlled by model averaging on the proxy level. To achieve generalizability of the
theory index our framework assumes a collection of outcome equations. We accommodate a flexible
set of generalized additive models, enabling non-Gaussian outcomes to be included. Furthermore,
selection of relevant theories also occurs on the outcome level, allowing for theories to be differentially
valid. Our focus is on creating a set of theory-based indices directed at understanding a country’s
potential risk of macroeconomic collapse. These Sovereign Risk Indices are calibrated across a set
of different “collapse” criteria, including default on sovereign debt, heightened potential for high
unemployment or inflation and dramatic swings in foreign exchange values. The goal of this exercise
is to render a portable set of country/year theory indices which can find more general use in the
research community.

Keywords: Bayesian model averaging; conditional Bayes factors; sovereign debt default;
macroeconomic forecasting

1. Introduction

In economic applications, Bayesian Model Averaging (BMA) has proven a useful tool to assess
theories related to the potentials and risks of economic expansion, see Steel (2019) for a comprehensive
review. All economic theories are in some sense qualitative and no single empirical observation
can encapsulate the theory’s essence perfectly. To address this, a group of variables–self-evidently
correlated–are often collected to proxy each theory. Not accounting for the uneven manner by which
different variables may be available for each theory can lead to inappropriate conclusions regarding
overall theory validity. Standard approaches to BMA can be modified, especially through the model
prior, to account for these characteristics, but still consider the direct effect of the collected variables on
the single response in question. One example is Chen et al. (2017), which consider the determinants of
the 2008 crisis. They use a hierarchical formulation that allows for a simultaneous selection of both
theories and relevant variables.

We propose an entirely separate approach to testing theories, both with regards to standard BMA
and also to Chen et al. (2017), through a new model averaging approach. We assume each observation
has a number of latent features encoding values for these theories. This requires the researcher
to pre-specify which theory a given empirical observation is meant to proxy, a task which is often
straightforward and frequently performed in practice. The outcome of this modeling exercise is a set of
theory indices associated with each observation, as well as the model parameters necessary to derive
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these indices for observations not included in training. Our second innovation is to link the embedding
of empirical factors to theory indices across a number of correlated outcome variables. This is driven
by a motivation for theory index consistency. Ideally, an index which assesses the strength of a
government’s institutions should be roughly the same when using the index to predict the potentials
of economic growth and the susceptibility to economic collapse, for example. Indeed an ideal encoding
would allow the theory index to be trained on one set of outcome variables and be immediately useful
as a standalone feature in modeling separate but related economic activity. We therefore construct
a framework by which theory-level modeling occurs on a latent level and is tuned to addressing a
theory’s role in explaining the variability of a number of economic outcome variables simultaneously.
Brock et al. (2003) recommend considering both theory uncertainty (many theories can explain a
phenomena) and variable (which empirical proxies should be used to explain each theory) uncertainty.
Following this recommendation, model averaging in our Bayesian Theory Averaging (BTA) approach
occurs on two separate levels. On the theory-level, a standard BMA formulation is used to determine
which proxies for a given theory have the greatest relevance. Our modeling is across multiple different
outcome variables and a given theory may only be relevant for a subset of these outcomes. Thus,
we also perform theory averaging on the outcome level, allowing theories to selectively enter into each
outcome under consideration.

Outcomes in economics can be quantified in a variety of manners and thus our framework
is formulated to entertain a broader family of outcome sampling distributions than the Gaussian
context to which most economic BMA applications have adhered (Steel 2019). Indeed, our framework
is organized to accommodate all generalized additive models (GAMs) (see for example, Hastie
and Tibshirani (1990) or Wood (2017)) and quantile GAMS (qgams) (Fasiolo et al. 2017).
Operationally, the posterior model space is explored via Markov Chain Monte Carlo (MCMC), see for
example, Gamerman and Lopes (2006) or Robert and Casella (2013), and model moves are efficiently
performed via Conditional Bayes Factors (CBFs), (Karl and Lenkoski 2012), which have been shown to
be highly useful in related model averaging exercises (Dyrrdal et al. 2015; Lenkoski 2013).

Our motivating example concerns developing useful theory-based indices for quantifying the
potential for significant negative economic outcomes in macroeconomies, which we term Sovereign
Risk Indices (SRIs). These outcomes range across default on Sovereign debt, the potential for high
levels of inflation or unemployment, and heightened risks instability in foreign exchange. Useful
introductions to sovereign default are found in Roubini and Manasse (2005) and Savona and Vezzoli
(2015). Each of these outcomes have a number of theories which explain their variability. These theories
encapsulate institutional and financial characteristics of each country and overall aspects of the global
economy at the time and are proxied by a large number of potential variables. By modeling these
outcomes jointly, we can construct a set of theory indices that are relevant for general research into
macroeconomic extremes. Our goal is to create a broad database of SRIs that can then be made available
to the general research population, where each index has a clearly defined construction and encodes a
well-articulated theory regarding economic well-being. Our data combines the data in Savona and
Vezzoli (2015) with new data sources, as explained in Section 3.1.

The structure of the article is as follows—Section 2 outlines BTA. The specifics of the algorithm
that performs posterior inference for BTA is rather involved and relegated to Appendix A. Section 3
contains our analysis of the data which constructs the SRIs while Section 4 concludes.

2. Bayesian Theory Averaging

In this section we discuss our modeling framework. Our final modeling framework has multiple
response variables and non-standard response likelihoods. However, the basic concepts behind BTA
can be explained via a partitioning of a standard BMA problem and the addition of an intermediate
random effects process. Therefore, Section 2.1 shows how standard BMA exercises can be grouped
by similar variables, from which the indices that are our main focus naturally arise. Section 2.2 then
develops the general joint modeling framework.
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2.1. BTA and Linear Gaussian Regression

We start with a standard Gaussian regression exercise. Let Y be a length n univariate response
with Yi ∈ R and X be a n× p matrix of covariates. Furthermore let M ⊂ {1, . . . , p} be a model over a
subset of the p potential covariates and X M the sub-matrix of columns associated with the model M.
The standard BMA regression with known variance is then

Y = α + X MβM + ε (1)

εi ∼ N (0, 1). (2)

We note that fixing the variance εi to 1 in (2) is done for expositional convenience. It is not important to
the developments of Section 2.2 to consider the general case of unknown variance. Under the g-prior
(Zellner 1962)

βM ∼ N (0, g(X ′MX M)−1),

we have that the integrated likelihood of this model is

pr(M|Y , X) ∝ |ΞM|1/2 exp
(

1
2

β̂
′
MΞ−1

M β̂M

)
, (3)

where

ΞM =
g + 1

g
X ′MX M

β̂M = Ξ−1
M X ′MY .

Now suppose that there is a natural partition of the p covariates into two groups, that is, the first p1

columns of X belong to group 1 and the final p2 columns (p1 + p2 = p) belong to group 2. Then instead
of considering a single model M ⊂ {1, . . . , p}, we could imagine there is a collection (M1, M2) of
models with M1 ⊂ {1, . . . , p1} and M2 ⊂ {p1 + 1, . . . , p1 + p2}. In many cases in BMA-driven studies,
such a partition is natural since various concepts are proxied by collecting several features which are
meant to encapsulate a given concept quantitatively. We therefore find it natural to discuss the model
M1 as the “theory one” model and the model M2 as the “theory two” model.

We note that at this point, the integrated likelihood of pr(M1, M2|Y , X) can be evaluated jointly
and efficiently by (3). However, while there is no reason to do so, one could instead elect to update the
models M1 and M2 separately.

In particular suppose that M1 and β1 are given. Then

pr(M2|β1, M1, Y , X) ∝ |ΞM2 |
1/2 exp

(
1
2

β̂
′
M2|M1

Ξ−1
M2

β̂M2|M1

)
, (4)

where

ΞM2 =
g + 1

g
X ′M2

X M2

β̂M2|M1
= Ξ−1

M2
X ′M2

E1 (5)

E1 = Y − I1

and

I1 = X M1 β1. (6)
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Thus, we have effectively “separated” the response Y from the update of M2 by replacing it with the
residual calculation E1 given the theory 1 parameter set. This leads to the alternative representation

Y = α + I1 + I2 + ε.

Thus, again while there is no need to do so, an MCMC for the overall BMA exercise could be conducted
by alternating between updating model M1 and thereby I1, then updating model M2 and I2. These two
summary variables I1 and I2 can then be referred to as the theory one and two indices respectively.

In the Bayesian paradigm is it often natural to now incorporate a notion of over-dispersion.
In particular, we can imagine that while X M1 β1 represents the “mean” theory one index given the
features X M1 , a random process adds a source of randomness to this mean level. It is therefore common
to replace (3) with

I1 = X1β1 + η1

η1i ∼ N (0, ν−1
1 ),

where the overdispersion parameter ν1 can then be given a prior distribution, for example Γ(a1/2, b1/2).
A similar formulation can be made for I2. In the context of econometric BMA exercises we feel such a
random effects representation is imminently sensible as it implicitly admits that the features X1 can
only ever be imperfect encapsulations of a theory’s essence.

At this junction, the joint marginal likelihood (3) is no longer directly applicable.
However, the conditional strategy of alternating between models M1 and M2 using (4) can still be
used with an important modification. In particular, we note that given β2, I1, ν2 we have

pr(I2|Y , I1, ν2) ∼ N ((1 + νt)
−1(E1 + νtX2β2), (1 + νt)

−1).

Furthermore, given I2 we may replace (5) with

β̂M2|M1
= Ξ−1

M2
X ′M2

I2.

Subsequent to the sampling of the latent factors I2 we may resample the random effects precision
parameters νt via a standard Gibbs step.

Indeed, we could then consider one final embellishment where

Y = α + γ1 I1 + γ2 I2 + ε,

with γt ∈ {0, 1} with for example, prior probability that γt = 1 set to 1/2 (or any other value in (0, 1)).
Then when γ2 = 0 the update of I2 would simply be

pr(I2|Y , I1, ν2, γ2 = 0) ∼ N (X2β2, ν−1
t ),

that is, a sample from the prior conditional on β2. Updating the parameter γ2 conditional on all other
factors would then involve a straightforward Metropolis-Hastings step. If the models M1 and M2

indicate which variables are included in the theory one and theory two models, the γ1 and γ2 act as a
wholesale inclusion parameter which dictates the overall relevance of the respective theory.

This partitioning and random effects strategy forms the basis of our development in Section 2.2.
We note that the inclusion of the random effects component has the effect of keeping model evaluations
conditionally Gaussian, which enables the use of conditional Bayes factors to efficiently resample
model parameters.
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2.2. Multivariate BTA and Generalized Regression Models

We now generalize to the case where we have R responses from a general response family. Let Y i
be an R dimensional response vector for observation i and D = {Y1, . . . , Yn} be a collection of n such
observations. Each variate Yir in the vector Y i is assumed to belong to a general field Fr. In this
paper we consider examples where Fr is {0, 1}, R and R+, though others such as N, could easily be
entertained. We associate Yir with an outcome distribution as

Yir ∼ gr(αr, µir),

where gr is a general probability density or mass function, αr is a set of global parameters and µir is an
observation i dependent mean value. We note that the assumption that only the mean parameter µir
varies according to the observation i could be relaxed in future work.

The parameter µir is then assumed to have the form

µir =
T

∑
t=1

γrt Iit.

In the above formulation γrt can either be 0 or γrt ∈ R. We assign a prior probability of 1/2 to these
two possibilities, clearly other prior probabilities could be entertained. By convention if several γrt

are non-zero for a given index t then one of these non-zero γrt is set to 1 to avoid issues related to
identification. This matter is discussed subsequently.

The variable Iit is then referred to as the theory-t index for observation i. We further assume that
the Iit depends on a set of pt theory proxies X it according to the linear model

Iit = X ′itβt + εit,

where εit ∼ N (0, ν−1
t ) independently. The precision term νt is assigned a Γ(at/2, bt/2) prior. We note

that this prior actually is forced to adapt throughout the procedure (by adjusting the at, bt parameters)
to control for issues of identification, we discuss this aspect below. We typically begin the inference
procedure setting at and bt to 1.

Associated with the parameter βt is a model Mt ⊂ {1, . . . , pt} such that βit = 0 when i 6∈ Mt,
a standard BMA formulation. As the “null” model can be controlled by the γrt parameter, we exclude
Mt = ∅ from our consideration, see Kourtellos et al. (2019) for a motivation of this structure. Writing
βMt

to represent the subvector of βt not constrained to zero we assume

βMt
∼ N (0, ν−1

t gt(X′Mt
XMt)

−1),

where pMt is the size of model Mt and independent across t. As with the prior parameters at, bt,
the g-prior parameter gt adapts throughout the procedure, we begin with gt = 1/n. Alternative priors
for this model could have been considered, see our discussion in the Conclusions section.

Finally, the model Mt can have a number of priors, see Ley and Steel (2009) for an overview of
potential issues to consider when selecting this prior. For the time being we choose the uniform prior

pr(Mt) ∝ 1.

When γrt ∈ R we assign the prior probability γrt ∼ N (0, 1). This has the effect of imposing
a uniform model prior on the inclusion of theories in the outcome equation. Alternatively, joint
priors for the γ factors could be considered which would control for the size of the included theories.
However, since the number of theories is meant to be modest (roughly five to ten), we have avoided
such aspects in the current framework.
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The system outlined above then serves as the core latent process which drives the subsequent
outcome variables. Thus we see that the models Mt investigate which proxies best encode a theory
quantitatively while also accounting for the obvious model uncertainty in this formulation and
incorporating a notion of over-dispersion. The γrt terms serve two purposes. First, by examining
their non-zero elements we see for which response equations a given theory is relevant. Secondly,
by requiring the first non-zero γrt to be equal to 1 and all others to be in R the γr term scales the latent
indices to allow them to enter into model parameters differentially and indeed in opposite directions.

Finally, the latent theory indices Iit are potentially of greatest interest, as they are meant to
encapsulate the way that the theory proxies affect the outcome equations of interest. Again, as outlined
in the Appendix, these terms suffer from potential identification issues when combined with the
restrictions placed on a given γr. The hyperparameters at, bt ultimately control this aspect and
therefore, final interest focuses on the scale-free term Ĩit = (at/bt)Iit.

This concern regarding identification requires a modicum of bookkeeping when conducting
posterior inference. If, for example all non-zero γ values were allowed to be in R then the final
outcome equation could have a variety of γrt and βt combinations that would yield the same posterior
probability. This is the justification for our restriction that the γrt with the smallest r be constrained
to 1.

However, this constraint yields its own issues, primarily due to its effects on the priors for the
β and ν parameters. If, for example, γ11 = 1 and γ21 = 0.5 and our chain sets γ11 to 0, γ21 will
suddenly double. This would imply that γ21 I1 will suddenly have twice the effect on the mean value
of outcome Equation (2). The obvious answer is to simultaneously halve I1, or equivalently, halve β1.
However, it would no longer be appropriate to keep the priors for βt and νt fixed and therefore their
priors are also adjusted by this factor. Technical details are given in Appendix A.

To review, our full modeling framework therefore takes the form

Yr ∼ gr(αr, µir)

µir =
T

∑
t=1

γrt Iit

pr(γrt = 0) =
1
2

pr(γrt|γrt 6= 0) ∼ N (0, 1) unless γrt = 1

Iit ∼ N (X ′itβMt
, ν−1

t )

βMt
∼ N (0, gt(X ′Mt

X Mt)
−1)

pr(Mt) ∝ 1

pr(νt) ∼ Γ(at/2, bt/2).

Choices for families gr that control the outcome variables are considerable. In our application,
we focus on three models. The first is logistic regression. In this case Yir ∈ {0, 1}, αr is univariate and

pr(Yir = 1) =
exp(αr + µir)

1 + exp(αr + µir)
.

We use this logistic regression to model the probability that a country will default on its sovereign debt
based on theory-indices.

The second family considered corresponds to the non-central asymmetric Laplace variates. In this
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case αr is two dimensional with αr1 denoting the intercept and αr2 the log-precision parameter.
In particular, we write

pr(Yir|αr, µirτ) = τ(1− τ) exp {αr2 − eαr2 ρτ(Yir − αr1 − µir)}
ρτ(x) = x(τ − 1{x < 0}),

where τ is the quantile under consideration. This model is often referred to as the Bayesian Quantile
Regression since its posterior mode is related to the quantile regression estimate under the so-called
pin-ball loss ρτ . We employ this model for two separate variates, the inflation and unemployment rates
and set τ = 0.9 for both, thus focusing on the 90th percentile of the respective distributions.

Finally, we consider the Generalized Extreme Value (GEV) model with αr = (αr1, αr2, αr3)

parameterized by

pr(Yir|αr, µir) = eαr2 h(Yir)
−(αr3+1)/αr3 exp

(
− h(Yir)

−α−1
r3

)
,

for h(Yir) > 0 with

h(Yir) = 1 + αr3eαr2(Yir − αr1 − µir).

The GEV model is used to model block maxima and hence understand the nature of extreme behavior.
In our case we use it to model the largest daily percentage jump in a country’s exchange rate (relative
to USD) seen over the course of a year. The global parameters αr2 and αr3 are the log precision and
shape respectively while αr1 again serves as the global intercept.

Based on D we then conduct posterior interference on the full parameter set, which includes
global parameters αr, the theory-level models Mt, theory-inclusion and scaling parameters γrt and
linear model parameters βt as well as the latent indices It and their random effect variances νt.
Posterior inference is performed via Markov Chain Monte Carlo (MCMC). Given the involved and
nested nature of the MCMC, several different approaches are employed at different stages of the
hierarchy and the full details are provided in Appendix A.

However, the main themes of the MCMC involve conditional Bayes Factors (CBFs) to change
models Mt and update proxy regression parameters βt. Standard block Metropolis-Hastings proposals
using local Laplacian calculations of the log posterior density are used to update latent theory indices
Iit as well as any global parameters in θr. Finally, reversible jump methods (Green 1995) alternate γrt

between being 0 or in R, with a modicum of book keeping to ensure that at least one γrt is set to 1
when theory t is represented in more than one dependent equation r, again to ensure identification of
the system. When conducting this bookkeeping exercise, prior distributions are adjusted accordingly
to ensure that log-posterior density values are not affected by mere changes in variate representations.

3. Using BTA to Construct Sovereign Risk Indices

3.1. Data Outline

Our dataset for constructing SRIs originated from the dataset in Savona and Vezzoli (2015). Savona
and Vezzoli (2015) track 70 countries between the years of 1975 and 2010. We have extended these
original data to 2018 and are primarily focused on whether a country defaults on its sovereign debt
in a given year. Some country year combinations are not present and thus n = 2032. To model this
default probability, Savona and Vezzoli (2015) collect 27 covariates. These covariates are meant to
proxy 5 different theories related to sovereign debt default. In particular, they entertain the concepts of
Insolvency, Illiquidity, Macroeconomic Factors, Political Factors and Global Systemic factors. Table 1
provides an overview of the 27 covariates considered and to which theory Savona and Vezzoli (2015)
associate them. For a given year, most covariates are “lagged”(except for contagion, dummy for oil and
dummy for international capital markets), in that these values would be available at the start of a given
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year, as opposed to co-occurring with the default event. Covariate missingness is prevalent, we derive
imputed values using the semi-parametric Gaussian copula of Hoff (2007) within each theory-group.

Table 1. Overview of variables considered in the SRI dataset.

Theory Short Variable Name Description

Insolvency MAC Market access to capital markets, dummy
Insolvency IMF IMF lending dummy
Insolvency CAY Current account balance, in % of GDP
Insolvency ResG Reserves growth/change in %
Insolvency XG Export growth in %
Insolvency WX Export in USD billions
Insolvency TEDX Total external debt to exports, in %
Insolvency MG Import growth, in %
Insolvency FDIY Foreign direct investment to GDP, in %
Insolvency FDIG Change in % of foreign direct investment inflows
Insolvency TEDY Total external debt to GDP, in %
Insolvency SEDY Short term external debt to GDP, in %
Insolvency PEDY Public external debt to GDP, in %
Insolvency OPEN Exports and imports over GDP, in %
Illiquidity STDR Short term debt to reserves
Illiquidity M2R M2 to reserves
Illiquidity DSER Debt service on long term debt to reserves
Macroeconomic DOil Oil producing dummy
Macroeconomic RGRWT Real (inflation adjusted) GDP change in %
Macroeconomic OVER Exchange rate residual over liner trend
Macroeconomic UST US treasury bill
Political PR Index of political rights, 1 (most free) to 7 (least free)
Political History Number of past defaults
Systemic Cont_tot Number of defaults in the world
Systemic Cont_area Number of defaults in the region the country is part of

Savona and Vezzoli (2015) is concerned with predictive models of sovereign default and therefore
solely focus on this binary outcome. We augment the default binary with three other measures that
can also indicate a macroeconomy in a state of collapse. First, the country’s lagged (i.e., one-year
behind) inflation rate was originally included in the Macroeconomic factors group of covariates
in Savona and Vezzoli (2015). We instead treat (non-lagged) inflation as another dependent variable
and note that doing so has no effect on the Default outcome; a run of BTA solely on Default with
inflation included in the Macroeconomic factors gave this variable 0 inclusion probability. In addition,
we collected unemployment data from the IMF website. These data were only available for a subset
(897 country/year pairs) of the total data. We note that this dependent variable missingness poses no
substantive problem in terms of the derivation of SRIs. The BTA approach simply ignores the missing
likelihood contributions necessary to update the associated latent theory indices.

Finally, we collected foreign exchange rate data from the website of the IMF. For each country/year
pair, we first computed the log rate change relative to the US dollar and then used the annual maximum
of these log changes. This variable therefore shows the largest single-day weakening of a currency
relative to the US dollar in the course of a year. We avoided commercial sources of foreign exchange
data and therefore only had these values for 272 country/year pairs. See our discussion in the
conclusions section regarding expanding these data.

A country is in default if it is classified so by Standard & Poor’s (SP) or if it receives a large
nonconcessional loan by the IMF. A nonconcessional loan is a loan that has the standard IMF’s
market-related interest rate, while a concessional loan has a lower interest rate. The type of loans
we consider from IMF must be in excess of 100 percent of quota. Each member country has a
quota, where the initial quota is set when a country joins IMF. The quota determines, by other things,
the country’s access to IMF loans and for instance its voting power. By augmenting the data from
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SP with data from IMF, we also capture near-defaults or debt restructurings avoided through loan
packages from IMF. We consider Stand By Agreements (SBA) and Extended Fund Facility (EFF).

Our posterior inference is performed after running the BTA algorithm for 400 thousand iterations
over these data. In order to verify convergence, 30 separate runs of the algorithm were run
simultaneously and the resulting output was inspected to verify posterior inference for each individual
chain was nearly identical. Runtime on a 32 core machine (dual 8-core 3.4 GHz AMD Ryzen processors
with hyperthreading capabilities) with 128 GB of RAM was roughly 7.5 h. Runtime of a single chain
(as opposed to all 30) on a Macbook with 8 GB RAM and a 2.4 GHz dual-core processor is roughly
similar, indicating that specialized hardware is not necessary.

3.2. Results

We begin our discussion of the SRI results by investigating outcomes on the theory level. Table 2
shows the theory inclusion probability (i.e., the proportion of time that γrt was not constrained to
zero in the chain) for each theory, across the four outcome variables. Given that the original dataset
was constructed to model the default variable, it is unsurprising that all theories achieve inclusion
probabilities of one for this outcome. We note, however, that this does not indicate that all theories
are equally strong in explaining default, simply that none of them can be considered irrelevant.
The inflation outcome is interesting in that it suggests that proxies measuring a country’s political
stability, macroeconomic and system factors have the best explanation for the upper tails of the inflation
distribution. Insolvency and Illiquidity theories are also relevant to inflation, achieving probabilities
between 0.64 and 0.367. The results for unemployment in Table 2 finds little inclusion for the Insolvency
index, while all others achieve inclusion of 1. Finally, we achieve relatively low inclusion probabilities
for all theories for the devaluation outcome. This is likely due in part to the relatively small amount of
data that was available using public sources, see our discussion in Section 4. However, we feel this
result highlights a useful feature of BTA, namely that including this outcome variable and having
the system set theory-inclusion probabilities to zero meant there was no subsequent effect on the
calculation of theory indices.

Table 2. Theory Inclusion Probabilities by Dependent Variable.

Default Inflation Unemployment Devaluation

Insolvency 1 0.643 0.006 0.036
Illiquidity 1 0.367 1 0.061

Macroeconomic 1 1 1 0.114
Political 1 1 1 0.052
Systemic 1 0.996 1 0.036

Table 3 shows the mean value (conditional on inclusion) of the parameter γrt for each theory and
outcome pair. Since Default was ordered first in our system and achieves inclusion probabilities of 1
for all theories, this system serves to orientate the rest of the outcomes. In particular, a positive γrt

for the outcomes indicates that the directionality of this theory on the outcome is similar to that of
default. The conditional means even more clearly the importance of the Macroeconomic, Political and
Systemic theories relative to the remaining two. The value of their condition means (between 1.4 and
2.5) is substantially higher than 0.451 and 0.124 for Insolvency and Illiquidity respectively. Since these
three theories achieved substantially higher inclusion probabilities in Table 2 this implies that their
unconditional effect is the main driver of the upper tail of inflation.

Recalling again from Table 2 that the unemployment outcome was driven by the Illiqudity,
Macroeconomic, Political factors and Systemic Factors, the results in Table 3 are interesting. They show
that Macroeconomic and Systemic have a strong, positive effect on the unemployment outcome.
We note that “positive” is in the sense of working in the same direction as Default. The Illiquidity and
Political factors then balance this behavior; they are negatively orientated to the impact these factors
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have on Default. Finally, as noted in Table 2 there appears to be negligible effect of the theory indices
on the devaluation outcome.

Table 3. Mean value of γrt conditional on inclusion.

Default Inflation Unemployment Devaluation

Insolvency 1 0.451 0 0
Illiquidity 1 0.124 −0.598 −0.002
Macroeconomic 1 2.24 1.775 0.007
Political 1 2.499 −1.644 −0.002
Systemic 1 1.422 0.946 0

Table 4 shows the inclusion probabilities and conditional posterior mean for each proxy contained
in the Insolvency theory group. Five factors achieve probabilities above 0.98. These include one factor
that measures the strength of the country’s balance sheet (ResG), two factors describing the country’s
trade balance dynamics (XG and MG) and finally two factors describing the state of foreign direct
investment (FDIY and FDIG). Interestingly, features that assess the country’s debt load are included in
the posterior to an appreciable degree.

Table 4. Proxy Level Results for the Insolvency Theory.

Probability Conditional Mean

IMF 0.037 −0.024
CAY 0.04 0.025
ResG 0.991 0.082
XG 0.985 0.099
WX 0.023 0.003

TEDX 0.084 −0.043
MG 1 −0.397

FDIY 0.994 −0.103
FDIG 1 −0.249
TEDY 0.087 −0.052
SEDY 0.1 0.06
PEDY 0.084 −0.039
OPEN 0.268 −0.054

Table 5 shows the inclusion probabilities for the Illiquidity theory. In contrast to the balanced
view offered in the Insolvency results of Table 4, Table 5 puts almost all weight on a single feature,
a measure of a country’s shot-term cash and cash equivalents to reserves (M2R).

Table 5. Proxy Level Results for the Illiquidity Theory.

Probability Conditional Mean

STDR 0.045 −0.026
M2R 0.971 0.082
DSER 0.054 0.04

Table 6 shows the inclusion probabilities for the proxies in the Macroeconomic grouping. We see
that measures related to inflation dynamics (RGRWT) and the rate on US treasuries (UST) are given
inclusion probabilities of one while the other factors are given low inclusion probabilities.
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Table 6. Proxy Level Results for the Macroeconomic Theory.

Probability Conditional Mean

DOil 0.05 0.028
RGRWT 1 −0.466
OVERN 0.022 0.011

UST 1 0.175

Tables 7 and 8 show the inclusion probabilities for proxies of the Political and Systemic theories
respectively. In each theory there are only two features and all four receive inclusion probabilities of 1.
We see that the Political theory is thus a blend of the Political rights index (PR) and a measure of past
susceptibility to default (History). Likewise, a measure of global contagion (Cont_tot) as well as local
factors (Cont_area) combine to form the Systemic theory.

Table 7. Proxy Level Results for the Political Theory.

Probability Conditional Mean

PR 1 0.095
History 1 0.213

Table 8. Proxy Level Results for the Systemic Theory.

Probability Conditional Mean

Cont_tot 1 0.529
Cont_area 1 0.215

Our results echo many of the main themes in Savona and Vezzoli (2015), in that variables from
the Illiqudity, Insolvency and Systemic theories are included in both cases. However, Savona and
Vezzoli (2015) find no inclusion of variables from the macroeconomic or political theories, while these
theories are included with probability one in our results. We note that this is likely to partially due
to overall model size; Savona and Vezzoli (2015) only include 6 of the 26 variables in their tree-based
approach. In contrast, the average total model size using BTA was 12.8 variables, with all iterations
having between 11 and 17 variables included.

We conclude by investigating detailed results for two of the theories, namely Insolvency and
Illiquidity. Table 9 shows the country/year pairs with the five lowest and five highest posterior
mean values of Iit for the insolvency theory. The lowest five country/year pairs listed represent the
countries whose Insolvency index indicates the lowest probabilities of default. Interestingly, Gabon is
represented twice amongst these five countries (for the years 1981 and 1995), which is unsurprising
given the country’s oil wealth and relative aggregate prosperity amongst African nations. Amongst the
five country/year pairs with the highest Insolvency index scores we see a mix of African (Tunisia 1988;
Niger 1983) Caribbean (Trinidad and Tobago 1987; Haiti 1979) and Southeast Asian (Sri Lanka 2009)
countries. Two of the five (i.e., 40%) of these pairs experience a default, which is substantially higher
than the 6% average over all the data, showing the degree to which this feature is positively associated
with default.

Table 10 shows the five highest and lowest country year pairs according to the Illiquidity index.
Burundi in 1991 (i.e., two years before the start of the civil war that ran between 1993 and 2005) receives
the lowest Illiqudity index, otherwise followed by countries in South Asia. On the highest end, we see
both Jamaica and Lesotho represented twice. In addition, Gabon in 2002 is present, a year in which the
country defaulted on its sovereign debt. This contrast to Table 9 is illuminating, as it shows the trade
off between potential for insolvency and risks of illiquidity in precipitating sovereign default. We note
again that two of the top five country year pairs record a default, similar to the results of Table 9.
However, when inspecting the unemployment result, we also see high levels of unemployment for four
of the five top countries (and a missing value for Gabon 2002, the remaining country). Simultaneously
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the countries with the lowest illiquidity indices have negligible unemployment rates. This lines up
with the results presented in Table 4, where the insolvency index had a large, positive effect on the
unemployment outcome equation.

Table 9. Highest and Lowest Five Country/Year Pairs for the Insolvency Theory.

Year Insolvency Default Inflation Unemployment Devaluation

Gabon 1995 −13.683 0 36.116 NA NA
Moldova 1994 −6.704 0 35.749 NA NA

Korea, Rep. 2009 −6.157 0 4.704 3.2 0.071
Portugal 1995 −5.664 0 5.214 6.713 0.018
Gabon 1981 −5.543 0 12.34 NA NA

Trinidad and Tobago 1987 4.407 0 7.694 9.37 NA
Tunisia 1988 4.437 1 8.226 NA NA

Sri Lanka 2009 4.448 0 22.564 5.22 0.012
Niger 1983 4.703 1 11.642 NA NA
Haiti 1979 4.864 0 −2.674 NA NA

Table 10. Highest and Lowest Five Country/Year Pairs for the Illiquidity Theory.

Year Illiquidity Default Inflation Unemployment Devaluation

Burundi 1991 −5.391 0 7.002 0.48 NA
Pakistan 1976 −5.223 0 20.905 1.7 NA

Bangladesh 1997 −5.154 0 2.377 2.51 NA
Malaysia 2007 −5.079 0 3.609 3.32 0.012
Indonesia 1977 −5.07 0 19.859 1.92 NA
Jamaica 1986 7.266 0 25.673 33.39 NA
Lesotho 2009 7.311 0 10.721 35.46 NA
Lesotho 1998 7.329 0 −100 37.94 NA
Gabon 2002 8.162 1 2.138 NA NA

Jamaica 1981 9.208 1 27.308 35.51 NA

Finally, we address an issue related to theory index portability. In the theoretical construction
of these indices we specified an independence structure between indices. However, there has been
nothing enforcing this condition in posterior estimation. If theory indices were correlated in the
posterior, this would be acceptable, however it would imply that these indices would need to be
included as a set when attempting to model other phenomena. Table 11 suggests such considerations
are likely unnecessary. In Table 11 we show the posterior correlation matrix of the theory indices,
estimated over all samples and country/year pairs. We see in general a low degree of correlation (the
entry −0.161 between the Macroeconomic and Political theories being the highest in absolute value).
This feature is desirable, since it suggests that the theory indices can be used on an individual basis for
subsequent modeling of other issues related to economic collapse.

Table 11. Posterior correlation matrix of theory indices. This table mainly shows that the indices have
the desirable property of low dependence between one another.

Insolvency Illiquidity Macroeconomic Political Systemic

Insolvency 1 −0.015 0.024 −0.012 0.002
Illiquidity −0.015 1 −0.061 0.066 −0.021

Macroeconomic 0.024 −0.061 1 −0.161 0.081
Political −0.012 0.066 −0.161 1 −0.095
Systemic 0.002 −0.021 0.081 −0.095 1
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3.3. Investigating the Multiple Response Framework

One of the innovations of the BTA framework has been the use of multiple responses to jointly
determine the parameters βt and implicitly the theory indices Ii. This section investigates the
advantages of this joint modeling in the context of an out of sample prediction exercise. In this
study we conduct a leave-one-country-out cross validation. For each country we create a training
dataset which excludes all observations from that country. We then fit five models. The first is the full
specification described above with all four responses contained in the framework. We then fit versions
of BTA including each of the responses individually.

For the country that has been left out, we then derive the fitted values, based on their features
for each of the four responses from the joint model as well as each model individually. These fitted
values are then scored relative to the observed value by appropriate proper scoring rules, namely
the brier score for the binary response (default), the quantile score for the two quantile regressions
(unemployment, inflation) and the likelihood score for the GEV regression. A permutation test (see
e.g., a similar procedure in Möller et al. (2013)) assesses the significance of these results.

Table 12 shows the mean scores across all countries in the joint and single model cases for each of
the four response variables. The results for the default variable are nearly identical. While multiple
variables did not aid predictive performance, this result is still positive as it indicates that performance
was not hampered by their inclusion. However, for the two quantile regressions we see a substantial
improvement in predictive performance when using the model output from the joint model with
the GEV regression on devaluation substantially improved when using the joint model. We feel the
results of Table 12 provide a strong indication of the usefulness of jointly modeling several response
variables together.

Table 12. Comparison of out of sample scores for each dependent variable. This table shows that,
with the exception the default variable, there is significant reduction in predictive loss when using a
joint modeling framework. Asterisks indicate greater than 99% significance of differences based on a
permutation test.

Variable Joint Model Single Model Ratio Joint to Single

Default 0.046 0.046 1.003
Unemployment 19.992 22.765 0.878 *

Inflation 2.362 2.658 0.889 *
Devaluation 3.528 5.464 0.646 *

4. Conclusions

We have constructed a system whose purpose is to create indices representing various theories
which are believed to drive heterogeneity in economic outcomes. When constructing an index,
interpretability is an important feature to retain. This is primarily because through interpretability
additional proxies can be found when deficiencies become apparent, and specific results can be
explained directly. Our BTA approach then forms a natural means of incorporating and resolving
the obvious model uncertainty present in such a specification. Furthermore, our focus on modeling
multiple outcomes coupled with the ability to entertain a broad set of outcome sampling distributions
lends our system both generalizability and flexibility.

There is considerable additional work to be done, both on the technical, algorithmic sides of BTA
and also related to the specific goal of modeling an economy’s potential for collapse. One key point
has been the assumption that the multiple outcome variables are conditionally independent from one
another given the indices. In practice, this did not seem to be overly critical, as seen by the fact that the
inflation outcome was not present in the posterior when BTA was run on default using this feature
alongside the others shown above. However, incorporating outcome variable dependence should be
relatively straightforward using the Gaussian copula approach of Hoff (2007). Indeed uncertainty over
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these conditional independence assumptions could also be model averaged using the copula Gaussian
graphical model approach of Dobra and Lenkoski (2011).

Another matter that was avoided was country and year effects. Initial investigations using
country-level fixed effects suggested little residual country-level correlation once other features were
accounted for. Furthermore, since our goal is ultimately the use of indices for forecasting, it is desirable
that latent factors such as random effects (which would not be internally estimated for countries or
years not in the dataset) do not need to be supplied when forecasting. It our view that evidence of
result clustering along year or country lines is primarily an indication of feature inadequacy. As we
continue to build the SRI dataset we will monitor for clustering in results that are not captured in the
feature set and use these to continue building out our collected features.

In this current system, outcome equations had a linear dependence on theory indices. While it
will always be necessary to orientate the indices for reasons of identification (i.e., the assumption that
γrt = 1 for at least one non-zero r), expanded linear forms such as spline models (Wood (2017)) are
entirely feasible. Indeed a third layer of model selection would be to test between linearity and the
expanded linearity offered by spline modeling.

The MCMC algorithm necessary to resolve BTA was neither trivial nor the most complex.
As outlined as early as Rue (2001), block updates of parameters in hierarchical generalized models is
often advantageous. We have in general avoided block updates at present, but such a sampling regime
could speed up convergence and also algorithm run-time.

One difficulty we experience when implementing the quantile regression was the null second
derivative in the asymmetric Laplace distribution. This in turn, makes intelligent updates of parameters
for this distribution somewhat harder, since there is less information regarding posterior curvature
and thus proposals have a tendency to move too far along the posterior density surface. This feature
has already been investigated in some detail in related contexts. One potential for improved mixing
would be to follow Fasiolo et al. (2017), who propose a smooth version of the pinball loss to aid the
fitting of qgam models.

Finally, our reversible jump proposals were in some sense the least inspired part of the current
system. Though mixing appeared acceptable, more focused jumps could have been constructed,
by following much the same Laplacian formulations as the other model parameters.

With the onset of a global pandemic in the form of the COVID-19 virus, the great expansionary
period following the global financial crisis appears to have finally halted. It is clear that we can expect
to enter a retractionary phase of the global business cycle. Our applied interest has been to begin
building a monitoring, forecasting and inferential toolset that can prepare us for this period. While we
believe the current version of the SRI estimation system is encouraging, considerable work remains to
be done.

Fresh data will be paramount to this effort. We intend to continue building this system to include
all available years. We are broadly happy with the proxies collected to model insolvency and illiquidity
in an economy. Macroeconomic and Systemic features could likely be expanded in a number of
obvious ways. For instance including information on global financial markets or personal or industrial
bankruptcy information could expand the Systemic theory proxies.

However, we are convinced that the Political risk proxies can be expanded in several important
manners. Aspects related to political regimes are likely to affect potential for economic collapse.
Merging our data with the regime change dataset of Reich (2002) could be one avenue to account for
the effect of differing regimes and overall regime uncertainty.

Finally, it has been our hope to use only publicly available data sources to aid in the reproducability
of our index construction. While we are convinced that devaluation matters should be included in
our set of outcome equations, the necessary currency data has been hard to find publicly. We will
continue to investigate open and public sources of currency exchange data to increase the coverage of
this variable. In doing so, we hope the relative inconclusivity related to theories and their effect on
sudden devaluations can be resolved.
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Appendix A. Full Algorithm Details

Based on data D we use MCMC to obtain a sample {ς[1], . . . , ς[S]} of the posterior distribution,
where each ς[i] contains

• M1, . . . , MT the models associated with theories 1 through T
• β1, . . . , βT , the coefficient vectors associated with each theory. Note that by construction β jt = 0

when j 6∈ Mt
• γ1, . . . , γR the theory-scaling vectors for each outcome equation r. A γtr can be set to zero,

indicating that theory-t is not currently relevant for outcome equation r. For purposes of
identification if multiple γtr are non-zero for a given t, we set γtr = 1 for whichever r is smallest.

• I1, . . . , IT the latent theory index vectors (each of length n) where Iit is the current state of the
theory t index for observation i. By convention if γtr = 0 for all r then Iit = 0 for all i.

• ν1, . . . , νT , the random effect precision terms
• Global parameters αr in the R outcome equations

When moving from ς[s] to ς[s+1] we utilize four different MCMC strategies, all of which are now
relatively standard in the MCMC literature. These are

• Gibbs sampling, relevant for updating βt and νt
• Conditional Bayes Factors, which are used to update the theory-level models Mt
• Metropolis-Hastings via Laplacian calculations of the log posterior density which are used, in turn,

to update theory indices It, global parameters αr and those theory-scaling parameters γtr which
are neither constrained to zero or one.

• Reversible Jump Methods for alternating γtr between being 0 or in R. Note that the moves here
become especially detailed–though primarily in the sense of bookkeeping–when γtr is currently
set to 1, or if γtr is currently zero and r is smaller than all other non-zero γtr′ . Finally, this becomes
a joint reversible jump move when the model move will either turn-on or shut-off the theory
entirely, as both γtr and Ir will be affected.

The sections below detail each of these approaches individually.

Appendix A.1. Gibbs Sampling Updates

To resample βt we note that its posterior distribution

pr(βt|·) ∝ pr(βt |Mt, It, X t, νt)

where βMt
and X Mt indicate the restriction to those elements and columns of βt and X t, respectively,

associated with the variables in model Mt. We then have that

pr(βMt
|It, X Mt , νt) ∝ pr(It|βMt

, X Mt , νt)pr(βMt
|νt).
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Via standard results this yields

pr(βMt
|It, X Mt , νt) = N (β̂Mt

, Ξ−1
Mt

)

ΞMt = νt
g + 1

g
X ′Mt

X Mt

β̂Mt
= Ξ−1

Mt
X ′Mt

It.

Given It, βt we have that

νt ∼ Γ
(

at + n
2

,
bt + St

2

)
St = (It − X tβt)

′(It − X tβt)

Appendix A.2. Conditional Bayes Factors to Update Mt

Conditional Bayes Factors compare integrated likelihoods for models Mt and a new proposal
model M′t, conditioning on the latent indices It. This conditioning then separates the Gaussian
regression components on which the models operate from the larger non-Gaussian components in
the response equations, leading to an efficient sampling regime. This efficiency is present both in
the availability of closed form calculations to compare models and the relative parsimony of the
approach’s exposition.

In particular, note that
pr(Mt|D, ·) ∝ pr(It|Mt)pr(Mt)

where it is implicit that we have conditioned on the fixed regressors. This implies that the latent theory
indices It separate the conditional posterior of the model Mt from the data D and the associated
non-integrable likelihoods. This term can the be represented by

pr(It|Mt)pr(Mt) =
∫

βMr

pr(It|βMr
)pr(βMr

|Mr)dβMr
pr(Mt)

The integrand above is then

∫
βMr

pr(It|βMr
)pr(βMr

|Mr)dβMr
∝ |ΞMt |

1/2 exp
(

1
2

β̂
′
Mt

ΞMt β̂Mt

)

where β̂Mt
and ΞMt are defined as above. Similar to the classic MC3 algorithm, models Mt and M′t are

compared via Metropolis-Hastings.

Appendix A.3. Metropolis-Hastings Updates via Laplacian Expansions

The two sections above dealt with parameters that could effectively be “conditioned” away from
the sampling model of the dependent variables, in both cases by conditioning on the latent variables
It. This, in turn, led to updates that were straightforward to calculate as in both cases they relied on
well-known results for integrals over the Gaussian distribution. However, when conditional posterior
distributions do not have a form amenable to integration or Gibbs sampling, Metropolis-Hastings
algorithms provide an obvious alternative. This section therefore details all proposal distributions and
acceptance ratios necessary to update these parameters.

In all cases, we follow a standard approach to creating Gaussian proposals which requires no
pre-specified tuning parameters and instead adapts proposals to the local curvature of the log posterior
density, see for example, chp. 4 of Rue and Held (2005) for a detailed discussion of this approach



Econometrics 2020, 8, 22 17 of 24

and Dyrrdal et al. (2015) for a similar algorithmic design. More involved methods, such as Hamiltonian
MCMC, Manifold MCMC and so forth, which build on these concepts could have been entertained
but mixing was already sufficiently acceptable that these more sophisticated methodologies seemed
unnecessary. See our discussion the Section 4. Suppose, in general, that we would like to update
a parameter τ and write log pr(τ|·) = f (τ) to represent the log posterior density of this parameter
with respect to the observations and all other parameters. For designing the proposal distribution,
we employ a Gaussian approximation of this posterior density. A quadratic Taylor expansion of the
log-posterior f (τ) around the value τ gives

f (τ′) ≈ f (τ) + f ′(τ)(τ′ − τ) +
1
2

f ′′(τ)(τ′ − τ)2

= a + bτ′ − 1
2

c(τ′)2,

where b = f ′(τ) − f ′′(τ)τ and c = − f ′′(τ). The posterior distribution pr(τ|·) can therefore be
approximated by

p̃r(τ|·) ∝ exp
(
− 1

2
c(τ′)2 + bτ′

)
,

the density of the Gaussian distribution N (b/c, c−1). Using this relationship, we choose N (b/c, c−1)

as our proposal distribution, where τ is the current state in the MCMC chain. This formulation
alleviates the user from specifying a large number of sampling tuning parameters and achieves high
acceptance proportions.

The following subsections outline the specific forms of f , f ′, and f ′′ for all variates that are updated
in this manner. Since the Iit depend on all r equations they are handled in a final, separate subsection.

Appendix A.3.1. Logistic Regression

If equation r is a logistic model then it has the form

pr(Yir|·) =
(

exp(µir)

1 + exp(µir)

)Yir
(

1
1 + exp(µir)

)1−Yir

where

µir = αr +
T

∑
t=1

γrt Iit

The formulas for αr, γrt require derivation (as noted above we leave Iit to a final subsection). First, note

log pr(Yir) = Yirµir − log(1 + exp(µir))

Then for the global parameter αr with prior distribution αr ∼ N (0, 1) we have that

f (αr) =
n

∑
i=1
{Yirµir − log(1 + exp(µir))} −

α2
r

2

f ′(αr) =
n

∑
i=1

{
Yir −

exp(µir)

(1 + exp(µir))

}
− αr

f ′′(αr) = −
n

∑
i=1

{
µir

(1 + µir)2

}
− 1



Econometrics 2020, 8, 22 18 of 24

Similarly, for γrt not constrained to be 0 or 1 we assume γrt ∼ N (0, 1) and have

f (γrt) =
n

∑
i=1
{Yirµir − log(1 + exp(µir))} −

γ2
rt
2

f ′(γrt) =
n

∑
i=1

{
Yir Iit − Iit

exp(µir)

(1 + exp(µir))

}
− Iit

f ′′(γrt) = −
n

∑
i=1

I2
it

{
exp(µir)

(1 + exp(µir))2

}
− 1

Finally, as it will be important in derivations for the updates of Iit we write

lr(Yir, Iit) = Yirµir − log(1 + exp(µir))

l̇r(Yir, Iit) = γirYir − γir
exp(µir)

1 + exp(µir)

l̈r(Yir, Iit) = −γ2
ir

exp(µir)

1 + exp(µir)2

Appendix A.3.2. Bayesian Quantile Regression

Let

pr(Yir|µir, κ, q) ∝ exp
{

κ − eκρq(Yir − µir)
}

ρq(Yir − µir) = (Yir − µir)(q− 1{Yir < µir})

be a Bayesian Quantile Regression, that is, Yir is considered asymmetric Laplace distributed with
log-precision parameter κ and

µir = αir +
T

∑
t=1

γrt Iit.

We therefore need to derive the relevant formulas for αir, γrt and likelihood derivatives for Iit. We note

log pr(Yir|µir, κ, q) = κ − eκρq(Yir − µir)

and thus,

∂ log pr(Yi|·)
∂µi

= eκ(q− 1{Yi < µi})

∂2 log pr(Yi|·)
(∂µi)2 = 0.
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Therefore, for αr with N (0, 1) prior we have

f (αr) = κ − eκ
n

∑
i=1

ρq(Yir − µir)−
α2

r
2

f ′(αr) = eκ
n

∑
i=1

(q− 1{Yi < µi})− αr

f ′′(αr) = −1.

Similarly when γrt is not constrained to 0 or 1 we set γrt ∼ N (0, 1) and have

f (γrt) =
n

∑
i=1

{
κ − eκρq(Yir − µir)

}
− γ2

r
2

f ′(γrt) =
n

∑
i=1
{Iiteκ(q− 1{Yi < µi})} − γr

f ′′(γrt) = −1.

Likewise, we note that

∂ log pr(Yi|·)
∂κ

= 1− eκ(q− 1{Yi < µi})

∂2 log pr(Yi|·)
(∂κ)2 = −eκ(q− 1{Yi < µi}).

and thus if κ ∼ N (0, 1) in the prior, then

f (κ|·) = nκ − eκ
n

∑
i=1

ρq(Yi − µi)−
1
2

κ2

f ′(κ|·) = n− eκ
n

∑
i=1

ρq(Yi − µi)− κ

f ′′(κ|·) = −eκ
n

∑
i=1

ρq(Yi − µi)− 1.

Finally, for Iit we have

l(Yir, Iit) = κ − eκρq(Yir − µir)

l̇(Yir, Iit) = γrteκ(q− 1{Yi < µi})
l̈(Yir, Iit) = 0

Appendix A.3.3. GEV Regression

When Yir has the form of a GEV Regression with global log-precision κ and shape ξ we have

pr(Yir|µir, κ, ξ) = eκh(Yir)
−(ξ+1)/ξ exp

(
− h(Yir)

−ξ−1
)

h(Yir) = 1 + ξeκ(Yir − µir)

µir = αr +
T

∑
t=1

γrt Iit.
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with the additional restriction that h(·) > 0. Calculations for this density have a tendency to become
somewhat involved. We first note

a(Yir) ≡ log pr(Yir|µir, κ, ξ) = κ − ξ + 1
ξ

log h(Yir)− h(Yir)
−ξ−1

Since ∂h(Yir)/∂µir = −eκξ we have that

ȧ(Yir) ≡
∂

∂µir
log pr(Yir|·) = (ξ + 1)eκh(Yir)

−1 − eκh(Yir)
−ξ−1−1

ä(Yir) ≡
∂2

(∂µir)2 log pr(Yir|·) = ξ(ξ + 1)e2κh(Yir)
−2 − (ξ + 1)e2κh(Yir)

−ξ−1−2.

Therefore, to update αr ∼ N (0, 1) we have

f (αr) =
n

∑
i=1

a(Yir)−
α2

r
2

f ′(αr) =
n

∑
i=1

ȧ(Yir)− α

f ′′(αr) =
n

∑
i=1

ä(Yir)− 1.

Likewise, to update any γrt not constrained to 0 or 1 we have

f (γrt) =
n

∑
i=1

a(Yir)−
γ2

rt
2

f ′(γrt) =
n

∑
i=1

ȧ(Yir)Irt − γrt

f ′′(γrt) =
n

∑
i=1

ä(Yir)I2
rt − 1.

For the term Irt we note

l(Yir, Iit) = a(Yir)

l̇(Yir, Iit) = ȧ(Yir)γrt

l̈(Yir, Iit) = ä(Yir)γ
2
rt.

Now focus on the global log precision term κ ∼ N (0, 1) we have

f (κ) =
n

∑
i=1

a(Yir)−
κ2

2

f ′(κ) =
n

∑
i=1
{1− eκ(ξ + 1)(Yir − µir) + b1(Yir)} − κ

f ′′(κ) =
n

∑
i=1
{−eκ(ξ + 1)(Yir − µir) + b1(Yir)− b2(Yir)} − 1
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where

b1 = eκ(Yir − µir)h(Yir)
−ξ−1−1

b2 = (ξ + 1)e2κ(Yir − µir)
2h(Yir)

−ξ−1−2.

The calculations for the shape parameter ξ are somewhat more involved. Let

g1(Yir) =
ξ + 1

ξ
log h(Yir)

g2(Yir) = exp
{
−(ξ−1 + 1) log h(Yir)

}
We then obtain

ġ1(Yir) =
∂g1(Yir)

∂ξ
= − log h(yts)

ξ2 +
ξ + 1

ξ
h(Yir)

−1eκ(Yir − µir)

ġ2(Yir) =
∂g2(Yir)

∂ξ
= g2

[
log h(Yir)

ξ2 − (ξ−1 + 1)h(Yir)
−1eκ(Yir − µir)

]
,

from which it follows that
∂

∂ξ
log pr(Yir|·) = −ġ1 − ġ2.

For the second derivative, similar calculations return

∂2

(∂ξ)2 log pr(Yir|·) =
∂

∂ξ

(
− ġ1 − ġ2

)
= d1 + d2 − d3 + d4,

where

d1 = −2ξ−3 log h(Yir) + ξ−2h(Yir)
−1eκ(Yir − µir)

d2 =
h(Yir)

−1(Yir − µir)eκ

ξ2 +
ξ + 1

ξ
h−2(Yir)(Yir − µir)

2e2κ

d3 = ġ2(Yir)

[
log h(Yir)

ξ2

]
+ g2(Yi)

[
−2 log h(Yir)

ξ3 +
h(Yir)

−1eκ(Yir − µir)

ξ2

]
d4 = ġ2(Yir)

[
h(Yir)

−1eκ(Yir − µir)

ξ

]
− g2(Yi)(Yir − µir)eκ

[
h(Yir)

−1

ξ2 +
h(Yir)

−2(Yir − µir)eκ

ξ

]
.

Hence, for updating ξ ∼ N (0, 1) we have

f (ξ|·) =
n

∑
i=1
{κ − g1(Yir)− g2(Yir)} −

ξ2

2

f ′(ξ|·) =
n

∑
i=1
{−ġ1(Yir)− ġ2(Yir)} − ξ

f ′′(ξ|·) =
n

∑
i=1
{d1 + d2 − d3 + d4} − 1.
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Appendix A.3.4. Updating Theory Indices

We now consider updating of theory indices Iit. Noting that

Iit = X ′rtβt + εit, ε ∼ N (0, ν−1
t )

We have the formulas

f (Iit|·) =
R

∑
r=1

lr(Iit|·)−
νt

2
(Iit − X ′rtβt)

2

f ′(Iit|·) =
R

∑
r=1

l̇r(Iit|·)− νt(Iit − X ′rtβt)

f ′′(Iit|·) =
R

∑
r=1

l̈r(Iit|·)− νt

Were the lr, l̇r and l̈r terms are those discussed in the sections above for each respective outcome
equation r in the system.

Appendix A.4. Updating Theory Inclusion Parameters via Reversible Jump

Suppose now that γrt = 0 in the current state of the chain. In the relatively straightforward
case in which there is an r′ < r for which γrt = 1 – and thus the inclusion of the γrt will not affect
identification matters–we may attempt to make γrt non zero by proposing γ′rt ∼ N (0, 1). We thus
transition from (γr, γrt), where γrt = 0 to γ′t with (γ′t)r = γrt and (γ′t)s = (γt)s for all other s 6= r,
a transformation with Jacobian 1. Letting

µir = αr +
T

∑
t=1

γrt Iit

and

µ′ir = αr +
T

∑
t=1

γ′rt Iit

Since our prior sets all γrs ∼ N (0, 1), the auxiliary density cancels with the larger prior we thus
have that

log pr(γr, γ′rt|·) ∝
n

∑
i=1

lr(Yit|µit)

log pr(γ′r|·) ∝
n

∑
i=1

lr(Yit|µ′it)

where lr is the associated log-likelihood for equation r. This gives the necessary log densities for
comparing γrt ∈ R and γrt = 0. See our discussion in the Conclusions section regarding more focused
proposals of γrt which could aid in mixing and would also make the expressions above slightly
more involved.

When γrt = 0 and γst = 1 for s > r, some bookkeeping is necessary to adjust the system.
In particular, we sample u ∼ N (0, 1). We then create a new vector γt where

γst =

{
1, if s = r

uγ′st, otherwise
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And similarly we move from Iit to I′it by setting I′it = Iit/u, β′t = β/u, g′t = gt/u and ν′t = uνt,
b′t = bt/u. We therefore note that while we have changed all γst values and the associated theory
indices Iit, only the likelihood for the dependent variable r is affected and comparisons can then be
performed as discussed above.
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