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Abstract: This paper focuses on the Bayesian model average (BMA) using the power–expected–
posterior prior in objective Bayesian variable selection under normal linear models. We derive
a BMA point estimate of a predicted value, and present computation and evaluation strategies of the
prediction accuracy. We compare the performance of our method with that of similar approaches in
a simulated and a real data example from economics.

Keywords: Bayesian model averaging; Bayesian variable selection; expected–posterior priors;
imaginary training samples; power–expected–posterior priors

1. Introduction

We consider the variable–selection problem for normal regression models. Let us denote the
model space by M, consisting of all combinations of available covariates. Then, for every model
M` ∈ M, the likelihood is specified by

Y |X`, β`, σ2
` ∼ Nn(X` β` , σ2

` In)

where Y = (Y1, . . . , Yn) is a multivariate random variable expressing the response for each subject,
X` is a n× k` design/data matrix containing the values of the explanatory variables in its columns,
In is the n × n identity matrix, β` is a vector of length k` with the effects of each covariate on the
response data Y , and σ2

` is the error variance of the model.
Under the Bayesian model choice perspective, we need to introduce priors on the model space and

on the parameters of each competing model. With respect to the prior distribution on the parameters
in each model, because we are not confident about any given set of regressors as explanatory variables,
little prior information on their regression coefficients can be expected. This argument alone justifies
the need for an objective model choice approach in which vague prior information is assumed.
Hence, within each model, we consider default prior distributions on the regression coefficients and
error variance. Default priors for normal regression parameters are improper and thus cannot be used,
since they lead to an indeterminate Bayes factor (Berger and Pericchi 2001). This has urged the objective
Bayesian community to develop various methodologies to overcome the problem of prior specification
in model–selection problems. One of the proposed approaches is the expected–posterior prior (EPP)
of Pérez and Berger (2002). Starting from a baseline (typically improper) prior πN

` (θ`) of parameters
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θ` = (β`, σ`) of model M`, the approach relies on the utilization of the device of “imaginary training
samples". If we denote by y∗ the imaginary training sample of size n∗, the EPP is defined as

πEPP
` (θ`) =

∫
πN
` (θ`|y

∗)m∗(y∗) dy∗ , (1)

where πN
` (θ`|y

∗) is the posterior distribution of θ` for model M` using the baseline prior πN
` (θ`) and

data y∗. A usual choice of m∗ is m∗(y∗) = mN
0 (y∗) ≡ f (y∗|M0), i.e., the marginal likelihood, evaluated

at y∗, for a reference model M0 under the baseline prior πN
0 (θ0). Then, for ` = 0, it is straightforward to

show that πEPP
0 (θ0) = πN

0 (θ0). Under the variable–selection problem, the usual choice is to consider
M0 to be the “null" model with only the intercept; this is the choice considered in this paper in the
last two experimental sections. In a more general setting, we can assume that the response variable
is known to be explained by k0 variables (including the intercept) that form the reference model M0,
and, by some subset of p, other explanatory variables that form models under comparison. Thus, in the
rest of the paper, we assume that M0 is nested to all other models under comparison. Under this
more general case, we denote by θ0 = (β0, σ0) the parameters of M0, and by X0, its design matrix
(assumed to be of full rank). Since M0 is nested in every other competing model M1, with parameters
θ1 = (β1, σ1) and design matrix X1 (again assumed to be of full rank), we can henceforth assume that

X1 = [X0|Xe1 ] and β1 =
(

βT
0 , βT

e1

)T
, so that β0 is a “common” parameter between the two models,

and βe1
is a model–specific. The use of a “common” parameter β0 in nested model comparison is

often made to justify the employment of the same, potentially improper, prior on β0 across models.
This usage is becoming standard–see, for example, Bayarri et al. (2012); Consonni et al. (2018). It can be
justified if, without essential loss of generality, we assume that the model has been parametrized
in an orthogonal fashion, so that XT

0 X1 = 0. When M0 is the “null" model, the above assumption
can be easily justified, if we assume that, again without loss of generality, the columns of design
matrix X of the full model, containing all p available explanatory variables, have been centred on their
corresponding means, this makes the covariates orthogonal to the intercept, and gives the intercept
an interpretation that is “common” to all models.

When comparing models M0 and M1, under the EPP methodology, imaginary design matrices
X∗, with n∗ rows, should also be introduced; k1 + 1 ≤ n∗ ≤ n. In what follows, we denote by X∗0 and
X∗1 =

[
X∗0 |X∗e1

]
those imaginary design matrices under models M0 and M1 respectively. As before,

we assume that those matrices are of full rank. Furthermore we denote by P∗0 = X∗0
(

X0
∗T

X∗0
)−1

X∗0
T .

The selection of minimal training sample size n∗ was proposed by Berger and Pericchi (2004) to make
information content of the prior as small as possible, and this is an appealing idea. Then, X∗ can be
extracted from original design matrix X by randomly selecting n∗ from the n rows.

To diminish the effect of training samples, Fouskakis et al. (2015) generalized the EPP
approach by introducing the power–expected–posterior (PEP) priors, combining ideas from the
power–prior approach of Ibrahim and Chen (2000) and the unit–information–prior approach of
Kass and Wasserman (1995). As a first step, the likelihoods involved in the EPP formula are raised to
the 1/δ (δ ≥ 1) power and are then density–normalized. This power parameter δ could be then set equal
to the size of training sample n∗ to represent information equal to one data point. Fouskakis et al. (2015)
further set n∗ = n; this choice gives rise to significant advantages, for example, when covariates are
available, it results in automatic choice X∗ = X; therefore, the selection of a training sample and its
effects on the posterior model comparison are avoided while still holding prior information content at
one data point. In the last two sections of this paper, this recommended setup (δ = n∗ = n) was used.

Specifically, the PEP prior under model M1 is defined as

πPEP
1 (θ1|δ) ≡ πPEP

1 (θ1) =
∫

πN
1 (θ1|y∗, δ)m∗(y∗|δ)dy∗, (2)
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with

πN
1 (θ1|y∗, δ) ∝ f (y∗|θ1, δ, M1)π

N
1 (θ1)

f (y∗|θ1, δ, M1) =
f (y∗|θ1, M1)

1/δ∫
f (y∗|θ1, M1)1/δdy∗

.

As before, we choose

m∗(y∗|δ) = mN
0 (y∗|δ) =

∫
f (y∗|θ0, δ, M0)π

N
0 (θ0)dθ0 ,

where

f (y∗|θ0, δ, M0) =
f (y∗|θ0, M0)

1/δ∫
f (y∗|θ0, M0)1/δdy∗

.

Regarding the baseline prior, under model M1, we use

πN
1 (β1, σ1) = c1πU

1 (β1, σ1) = c1σ
−(1+d1)
1 ,

while under model M0 we use

πN
0 (β0, σ0) = c0πU

0 (β0, σ0) = c0σ
−(1+d0)
0 ,

where c0 and c1 are the unknown normalizing constants of πU
0 (β0, σ0) and πU

1 (β1, σ1) respectively.
Usual choices for d0 and d1 are d0 = d1 = 0 (resulting to the reference prior) or d0 = k0 and
d1 = k1 (resulting in the dependence Jeffreys prior). In the last two experimental sections of this paper,
the former case was used. Under the above setup, the PEP prior of the reference model is equal to the
corresponding baseline prior, that is, πPEP

0 (β0, σ0) = πN
0 (β0, σ0).

One of the advantages of using PEP priors (or EPPs for δ = 1) is that the impropriety of baseline
priors causes no indeterminacy of the Bayes factor. More specifically, the resulting Bayes factor for
comparing model M1 to M0 takes the form of

B10 =

∫ ∫
f (y|β1, σ1, M1)π

PEP
1 (β1, σ1)dβ1dσ1∫ ∫

f (y|β0, σ0, M0)π
PEP
0 (β0, σ0)dβ0dσ0

=

∫ ∫
f (y|β1, σ1, M1)

[∫ f (y∗ |β1,σ1,δ,M1)π
N
1 (β1,σ1)

mN
1 (y∗ |δ) mN

0 (y∗|δ)dy∗
]

dβ1dσ1∫ ∫
f (y|β0, σ0, M0)π

N
0 (β0, σ0)dβ0dσ0

(3)

where, for ` = 0, 1,

mN
` (y

∗|δ) =
∫ ∫

f (y∗|β`, σ`, δ, M`)π
N
` (β`, σ`)dβ`dσ`

= c`
∫ ∫

f (y∗|β`, σ`, δ, M`)π
U
` (β`, σ`)dβ`dσ`.

= c`mU
` (β`, σ`).

Therefore, returning back to Equation (3), we have that

B10 =

∫ ∫ ∫
f (y|β1, σ1, M1) f (y∗|β1, σ1, δ, M1)c1πU

1 (β1, σ1)
c0mU

0 (y
∗ |δ)

c1mU
1 (y∗ |δ)

dy∗dβ1dσ1∫ ∫
f (y|β0, σ0, M0)c0πU

0 (β0, σ0)dβ0dσ0
. (4)

As is obvious from Equation (4), normalizing constants c0 and c1 are cancelled out; thus, there are no
issues of indeterminacy of the Bayes factor.
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Under the above setup, Fouskakis and Ntzoufras (2020) proved that PEP priors (or EPPs for δ = 1)
for comparing model M0 to M1 are given by{

πPEP
0 (β0, σ0) = πN

0 (β0, σ0), πPEP
1 (β1, σ1)

}
,

with

πPEP
1 (β1, σ1) = πPEP

1 (β0, σ1)
∫ 1

0
πPEP

1

(
βe1

, t|σ1, β0

)
dt

∝ σ
−(d0+1)
1

∫ 1

0
fN

(
βe1

; 0, δσ2
1

t Σe1

)
fB

(
t; n∗+d0−k1

2 , n∗+d1−d0−k1
2

)
dt, (5)

where Σ−1
e1

= X∗
T

e1
(In∗ − P∗0)X

∗
e1

. In the above expression,

πPEP
1

(
βe1

, t|σ1, β0

)
= πPEP

1

(
βe1
|t, σ1, β0

)
πPEP

1 (t)

is proper and πPEP
1 (β0, σ1) ∝ σ

−(d0+1)
1 ; i.e., the reference prior for the baseline model M0.

Using Equation (5), if g = δ
t , following the results of Fouskakis and Ntzoufras (2020), the PEP

prior under model M1 can be represented as normal scale mixture distribution:

πPEP
1 (βe1

, β0, σ1) = σ
−(d0+1)
1

∫ +∞

0
fNk1−k0

(
βe1

; 0, gσ2
1 Σe1

)
π1(g)dg, (6)

where fNd (y; µ, Σ) denotes the density of d-dimensional normal distribution with mean µ and
covariance matrix Σ, evaluated at y, and π1(g) denotes the prior distribution of parameter g under
model M1. The hyper–prior π1(g) for g is given by

f (g; a, b, δ) =

(
g−δ

δ

)b−1 (
1 + g−δ

δ

)−a−b

δB(a, b)
, g ≥ δ, (7)

with a = n∗+d0−k1
2 and b = n∗+d1−d0−k1

2 .
The above form of the PEP prior offers great advantages; given g, posterior distributions and

marginal likelihoods can be easily derived in closed-form expressions. However, even without
conditioning on g, those distributions can be written in terms of Appell hypergeometric functions,
and therefore again be derived. Detailed formulas that are also used in the next two sections can be
found in Fouskakis and Ntzoufras (2020). In the following, a parameter of importance is also the
shrinkage w that, under the PEP prior, is equal to g

g+1 = δ
δ+t ; its posterior mean, used in the following

sections, was analytically derived in Fouskakis and Ntzoufras (2020).
Bayesian model averaging (BMA) is a standard Bayesian approach that combines predictions

or estimates of a quantity of interest over different models that are weighted according to their
posterior model probabilities. BMA efficiently incorporates model uncertainty that naturally exists in
all statistical problems. By handling model uncertainty via BMA, we obtain posterior distributions
and posterior credible intervals that are more realistic, and we avoid single model inference that can
be severely biased or overconfident in terms of uncertainty. Moreover, several authors empirically
showed BMA results lead to better predictive procedures (see for example Fernandez et al. 2001a; Ley
and Steel 2009 2012; Raftery et al. 1997). For more details on BMA, also see Hoeting et al. (1999), Steel
(2016, 2019) for BMA implementation in economics.

In this work, we derive Bayesian model averaging estimates under the PEP prior. Furthermore,
we present different computational solutions for deriving the Bayes factor and performing the Bayesian
model average, which are applied in a simulated and a real-life dataset.
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2. BMA Point Prediction Estimates

Let us consider a set of models M` ∈ M, with design matrices X`, where the covariates of the
design matrix X0 (of the reference model M0) are included in all models. Thus. we assume as before that

X` = [X0|Xe` ] and β` =
(

βT
0 , βT

e`

)T
. We are interested in quantifying uncertainty about the inclusion or

exclusion of additional columns/covariates Xe` of model M`. Under this setup, for any model M` ∈ M,

given a set of new values of explanatory variables Xnew
` =

[
Xnew

0 |Xnew
e`

]
, we are interested in estimating

the corresponding posterior predictive distribution f (ynew|y, Xnew
` , M`). Following Liang et al. (2008),

for each model M`, we consider the BMA prediction–point estimator, which is the optimal under
squared error loss and is given by

ŷnew
BMA = E(ynew|y, Xnew) = ∑

M`∈M
E(ynew|y, Xnew

` , M`)π(M`|y)

= ∑
M`∈M

Xnew
` E(β`|y, M`)π(M`|y)

= ∑
M`∈M

{
Xnew

0 E(β0|y, M`) + Xnew
e` E(βe`

|y, M`)
}

π(M`|y),

where Xnew is the given set of new values of all explanatory variables. Detailed derivations of posterior
means E(β0|y, M`) and E(βe`

|y, M`) are provided in Section 4.1 of Fouskakis and Ntzoufras (2020).
If we now further assume that XT

0 X` = 0, then the posterior means of the coefficients are considerably
simplified to

E(β0|y, M`) = β̂0 and E(βe`
|y, M`) = E

(
g

g+1

∣∣∣y, M`

)
β̂e`

,

where β̂0 = (XT
0 X0)

−1XT
0 y and β̂e`

= (XT
e`Xe`)

−1XT
e`y. Hence, assuming in a similar fashion that

(Xnew
0 )TXnew

` = 0, the posterior predictive mean, under model M`, is now reduced to

ŷnew
M`

= E(ynew|y, Xnew
` , M`) = Xnew

0 β̂0 + Xnew
e` E

(
g

g+1

∣∣∣y, M`

)
β̂e`

(8)

and the corresponding BMA point prediction estimate is now given by

ŷnew
BMA = Xnew

0 β̂0 + ∑
M`∈M

Xnew
e` E

(
g

g+1

∣∣∣y, M`

)
β̂e`

π(M`|y). (9)

The expected value of the posterior distribution of w = g/(g + 1) in Equation (9) is given by

E(w|y, M`) =
δ

δ + 1
×

F1

(
b, n+d0−k0

2 , − n+d0−k`
2 + 1, k`−k0

2 + a + b; 1
1+δR`0

, 1
δ+1

)
F1

(
b, n+d0−k0

2 , − n+d0−k`
2 , k`−k0

2 + a + b; 1
1+δR`0

, 1
δ+1

) , (10)

while posterior model probabilities π(M`|y) ∝ f (y|M`)π(M`) in Equation (9) can be calculated using
the closed–form expression of the marginal likelihood

f (y|M`) = f (y|M0)×
B
(

k`−k0
2 + a, b

)
B (a, b)

× (δ + 1)
n+d0−k`

2 (1 + δR`0)
− n+d0−k0

2

×F1

(
b, n+d0−k0

2 , − n+d0−k`
2 , k`−k0

2 + a + b; 1
1+δR`0

, 1
δ+1

)
, (11)

where F1(a′, b′1, b′2, c′; x, y) is the hypergeometric function of two variables or Appell hypergeometric

function, a = n∗+d0−k`
2 , b = n∗+d1−d0−k`

2 and R`0 =
1−R2

`

1−R2
0
, with R2

` and R2
0 being the coefficients
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of determination of models M` and M0, respectively. For the detailed derivation of Equations (10)
and (11), see Fouskakis and Ntzoufras (2020, Sections 4.2 and 5.2, respectively).

3. Computation and Evaluation of BMA Prediction

For small–to–moderate sample spaces, it is straightforward to implement full enumeration of
the model space and calculate the marginal likelihoods by using Equation (11) and the Appell
hypergeometric function. This function is available, for example, in the R package tolerance;
see Function F1. Alternatively, it can be calculated using standard methods for the computation
of one–dimensional integrals.

In our applications of Sections 4 and 5, we did not observe any “precision” problems with the
calculation of the Appell hypergeometric function. Nevertheless, in the case of overflow issues in the
implementation of this approach (e.g., for large n), using a simple Laplace approximation (preferably
on log(g)) can be an effective and relatively precise alternative.

Another way to estimate each marginal likelihood is by using simple Monte Carlo schemes.
For example, we can simply generate values of g from its posterior distribution (see Fouskakis and
Ntzoufras 2020), or some good approximations of the posterior distribution of g, and then calculate
the final marginal likelihood as the mean of the conditional marginal likelihoods, which can be easily
derived in closed-form expressions over all sampled values of g.

In the case of large model space, when full enumeration is not computationally feasible, we can
implement a Markov chain Monte Carlo (MCMC) algorithm that could be considered as a simple
extension of MC3 (Madigan and York 1995) with two steps, since all needed quantities are analytically
available given g. In the first step, we update the model indicator by using a simple Metropolis step
where acceptance probability is a simple function of the posterior model odds; in the second step,
we generate g from the marginal posterior distribution of g.

Using any of the above computational approaches, and assuming that M0 is the “null”
model, we can obtain a BMA prediction estimate by using Equation (9) and implementing the
following procedure:

1. For every model M` ∈ M:

(a) Obtain the least-squares estimates β̂` = (β̂0, β̂e`
) of the regression coefficients using

centered covariates.
(b) Calculate the posterior expected value of w from Equation (10).
(c) Calculate ŷnew

M`
from Equation (8).

2. Implement Equation (9) to calculate ŷnew
BMA, as the weighted average of ŷnew

M`
over all models

M` ∈ M using posterior model probabilities as weights.

Evaluation of prediction accuracy or goodness of fit can be achieved by the square root of the mean
of the squares (RMSE) between the observed and the fitted/predicted values or the corresponding
mean absolute deviation (MAD) given by

RMSE(M`) =

√
1
n

n

∑
i=1

(
yi − ŷnew

i,M`

)2
and MAD(M`) =

1
n

n

∑
i=1

∣∣∣yi − ŷnew
i,M`

∣∣∣,
respectively. In the illustrated example of Section 4, we present the RMSE and the MAD for the
maximum–a–posteriori (MAP) model and the median–probability (MP) model, as well as for the full
BMA (with all models), the BMA for the 10 highest a–posteriori models, and for the models with
posterior odds versus the MAP model of at least 1/3.

In addition, in Section 5, we compare the predictive performance of PEP with that of other
mixtures of g-priors. For the application considered in Section 5, we randomly partition the sample
B times in modelling and validation subsamples of a fixed size. Then, we calculate the BMA–log
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predictive score (BMA–LPS); see, for example, Fernandez et al. (2001b). Specifically, for each partition,
we denote by M = {yM, XM} the modelling subsample of size nM, and by V = {yV, XV} the validation
subsample of size nV, where n = nM + nV. The BMA–LPS then is given by

BMA–LPS = − 1
nV

nV

∑
i=1

log f (yVi |yM, XV), (12)

where

f (yVi |yM, XV) = ∑
M`∈M

f (yVi |yM, XV, M`)π(M`|yM)

= ∑
M`∈M

f (yVi , yM|M`)

f (yM|M`)
π(M`|yM)

=
∑M`∈M f (yVi , yM|M`)π(M`)

∑M`∈M f (yM|M`)π(M`)
, (13)

with π(M`|yM) and π(M`) denoting the posterior (given the data in the modelling subsample) and
prior probabilities of model M`, respectively. Smaller values of BMA-LPS indicate better performance.

Concerning the computation of Equation (12), it is obvious that, when full enumeration is feasible,
we can calculate the BMA–LPS by using Equation (13) for all models under consideration; for the
evaluation of marginal likelihoods in the numerator and denominator, we use Equation (11). In the
case where the number of predictors (and thus the number of induced models) does not allow full
enumeration, there are three direct computational approaches that we may use:

1. Model search using MC3 algorithm (Madigan and York 1995): this approach can be used since
the marginal likelihood is readily available, but it is not very efficient, especially for large model
spaces, since both the numerator and the denominator in Equation (13) are greatly affected by
the number of visited models, and hence by the number of iterations of the algorithm.

2. g–conditional MC3 algorithm: hyper–parameter g is generated by its marginal posterior
distribution; then, we use the conditional on g marginal likelihood to move through the model
space; this is the approach used by Ley and Steel (2012). Under this setup, f (yVi |yM, XV) is
estimated by

f̂ (yVi |yM, XV) =
1
T

T

∑
t=1

f (yVi , yM|g(t), M(t))

f (yM|g(t), M(t))
,

where T is the total number of MCMC iterations, g(t) is the generated value of g at iteration t,
and M(t) is the visited model at iteration t.

3. Fully Bayesian variable–selection MCMC: density f (yVi |yM, XV) is estimated by the MCMC
average of the sampling–density function of each visited model M(t), evaluated at yVi , for each
generated set of the model parameters. This is the approach we used in Section 5. More specifically,
we implemented the Gibbs variable–selection approach of Dellaportas et al. (2002).

4. Simulation Study

In this section, we illustrate the proposed methodology in simulated data. We compare the
performance of the PEP prior and the intrinsic prior, the latest as presented in Fouskakis and Ntzoufras
(2020) and in Womack et al. (2014), by calculating the RMSE and the MAD under different BMA setups,
as explained in Section 3.
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We considered 100 datasets of n = 50 observations with k = 15 covariates. We ran two different
scenarios. Under Scenario 1 (independence), all covariates were generated from multivariate normal
distribution with mean vector 0 and covariance matrix I15, while the response is generated from

Yi ∼ N
(
4 + 2Xi,1 − Xi,5 + 1.5Xi,7 + Xi,11 + 0.5Xi,13 , 2.52), (14)

for i = 1, . . . , 50. Under Scenario 2 (collinearity), the response was again generated from Equation (14),
but this time, only the first 10 covariates were generated from multivariate normal distribution with
mean vector 0 and covariance matrix I10, while

Xij ∼ N
(
0.3Xi,1 + 0.5Xi,2 + 0.7Xi,3 + 0.9Xi,4 + 1.1Xi,5 , 1

)
, (15)

for j = 11, . . . , 15; i = 1, . . . , 50.
With k = 15 covariates, there are only 32,768 models to compare; we were able to conduct full

enumeration of the model space, obviating the need for a model–search algorithm in this example.
Regarding the prior on the model space, we considered the uniform prior on the model space

(uni), as well as the uniform prior on model size (BB), as a special case of the beta–binomial prior
(Scott and Berger 2010); thus, in what follows, we compare the following methods: PEP–BB, PEP–Uni,
I–BB and I–Uni; the first two names denote the PEP prior under the uniform prior on the model space
and the uniform prior on model size, respectively; the last two names denote the intrinsic prior under
the uniform prior on the model space and the uniform prior on model size, respectively.

Figure 1 presents the RMSE and the MAD under Scenario 1. The uniform prior on the model
space (PEP–Uni and I–Uni) supported MAP models with better predictive abilities. Similar was the
picture when we implemented BMA with any of the three approaches. PEP–BB behaved slightly worse
than the rest of the methods, suggesting that the BB prior is possibly undesirable for PEP, since it
over–shrank effects to zero.

Figure 1. Simulation scenario 1. Predictive measures for maximum–a–posteriori (MAP) and
median–probability (MP) models and Bayesian model averaging (BMA) using all models (full) and
highest a–posteriori models [best 10 models and models with posterior odds (PO) versus the MAP
model of at least > 1/3].

In Figure 2, we present the RMSE and the MAD under Scenario 2. The pattern was the same as
that under the independence case scenario.
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Figure 2. Simulation scenario 2. Predictive measures for maximum–a–posteriori (MAP) and
median–probability (MP) models and Bayesian model averaging (BMA) using all models (full) and
highest a–posteriori models [best 10 models and models with posterior odds (PO) versus the MAP
model of at least > 1/3].

5. FLS Dataset: Cross-Country Growth GDP Study

In this section, we consider the dataset of Fernandez et al. (2001b) (also known as the FLS dataset)
that contains k = 41 potential regressors for modelling average per capita growth over the period
of 1960–1992 for a sample of n = 72 countries. More details on the dataset can be found in
Fernandez et al. (2001b).

Emphasis was given to the posterior mean model size, to the posterior distributions of g and w,
and to the comparison of the predictive performance of PEP with that of other mixtures of g–priors
using the BMA–LPS as presented in Section 3. To calculate the BMA–LPS, we randomly partitioned
the sample B = 50 times in modelling and validation subsamples of fixed sizes nM = 62 and nV = 10,
respectively, as in Ley and Steel (2012).

Regarding the prior on the model space, we considered the uniform prior on model space (uni),
the uniform prior on model size (BB), and the beta–binomial prior with elicitation (BBE) using the
recommended value of m = 7, as in Ley and Steel (2009); Ley and Steel (2012).

Results under the PEP prior were compared to the ones obtained under (a) the hyper–g/n prior,
with the recommended value of ah = 3, as in Liang et al. (2008); and (b) the benchmark prior, with
the recommended value of cb = 0.01, as in Ley and Steel (2012). Further comparisons with other
mixtures of g–priors could be made using the results of Section 8.1 in Ley and Steel (2012). Thus, in what
follows, we make 9 comparisons in total; we use labels PEP–uni, PEP–BB, PEP–BBE, Hyper–g/n–uni,
Hyper–g/n–BB, Hyper–g/n–BBE, Benchmark–uni, Benchmark–BB, and Benchmark–BBE to denote
the PEP, the hyper–g/n, and the benchmark priors (under the recommended values of their
hyper–parameters), respectively, combined with the different priors on the model space, i.e., the uniform
on model space, the uniform on model size, and the beta–binomial with elicitation (m = 7), respectively.

A fully Bayesian variable selection MCMC algorithm was used, as described in Section 3; we used
MCMC chains of 10,000 length after a burn-in of 1,000, which was found to be sufficient for the
convergence of the quantities of interest here.

In Figure 3 we present box plots of BMA–LPS values over the 50 validation subsamples.
Hyper–g/n and benchmark priors seemed to perform slightly better, but in general, we could infer that
no noticeable differences were observed regarding the predictive performance of each combination of
priors on the model parameters and model space.
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Figure 3. FLS dataset: box plots of BMA log predictive scores over 50 prediction subsamples.

In Figure 4, we present box plots of the posterior mean model size of visited models over the
50 modelling subsamples. When all three priors (PEP, hyper–g/n and benchmark) were combined
with the beta–binomial prior (with and without elicitation) on model space we end up visiting models,
with considerably lower, on average, size. The pattern is the same under all three priors used for the
model parameters; the size, on average, of the visiting models is higher under the uniform prior on
model space, followed by the beta–binomial without elicitation and the beta–binomial with elicitation.
Regarding the sampling variability of the posterior mean model size, this is higher (for all three
priors used on model parameters) when the beta–binomial without elicitation is used, followed by the
beta–binomial with elicitation and the uniform prior on model space. The hyper–g/n and benchmark
priors produced results that almost coincide when combined with the same prior on the model space.
On the other hand, the PEP prior, seems to result in an approach that is more parsimonious, in contrast
to the approaches resulting under the hyper–g/n and the benchmark priors when comparisons are
made under the same prior on model space; the differences are sharper when the beta–binomial
(with and without elicitation) prior on model space is used.

Box plots of the posterior medians of g (on a log scale) over the 50 modelling subsamples are
provided in Figure 5. For all three priors used on model parameters, posterior medians of g are
slightly smaller under the uniform prior on model space, followed by the beta–binomial prior without
elicitation and the beta–binomial prior with elicitation. Additionally, posterior medians of g are smallest
for the hyper–g/n and benchmark priors and largest under the PEP prior using any of the three priors
on model space. Furthermore, we observe that the sampling variability of posterior medians across
the 50 subsamples under the PEP prior was very small.

This behavior was expected, since the PEP prior induced a lower bound on g that was equal to
n. In addition, in Figure 6, we present box plots of the posterior medians of the shrinkage factor w
over the 50 modelling subsamples. Findings, as expected, were similar as the ones from Figure 5;
a–posteriori, the median of the global shrinkage factor w under the PEP prior was close to the value
of 1, implying that the induced method was more parsimonious across models, and the prior was
generally noninformative (and less informative compared to the hyper–g/n and benchmark priors)
within each model, since most of the information was taken from the data.
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Figure 4. FLS dataset: box plots of posterior mean model size of visited models over 50 prediction
subsamples.

Figure 5. FLS dataset: box plots of log posterior medians of g over 50 prediction subsamples.
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Figure 6. FLS dataset: box plots of posterior medians of the shrinkage factor w over 50 prediction
subsamples.

Following the comment of a referee stating that the posterior values of g under the PEP prior are
concentrated at the lower bound (which is equal to n), thus implying that the PEP prior degenerates to
a fixed prior choice of g, we further present the histograms of the posterior medians and the posterior
standard deviations of g for the FLS data; see Figures 7 and 8, respectively. From these histograms,
it is obvious that the posterior medians were not concentrated at the left bound.

The range of posterior medians of g (across the 50 modelling subsamples of size nM = 62) was
actually from 122 to 128 for PEP–Uni and slightly higher for PEP–BB and PEP–BBE; see Figure 7.
Moreover, posterior standard deviations were in the range of 17.5–21 for PEP–Uni and slightly higher
for PEP–BB and PEP–BBE; see Figure 8. Clearly, PEP priors were not concentrated at the lower bound
(which was equal to nM = 62), and standard deviations were large enough to allow for posterior
uncertainty on g. On the other hand, both hyper–g/n and benchmark priors supported posterior
medians of g in the range of 20–55 that, in some subsamples, was much lower than that of the
sample size of nM = 62. This raised the question of whether all model parameters are over–shrunk
toward the prior mean for specific subsamples. Moreover, posterior standard deviations under both
hyper–g/n and benchmark priors for g fell in the range of 10–30 under the Uni and BB priors on
model space, and even higher under the BB prior (10–80 and 10–90 for hyper–g/n and benchmark
priors respectively) and under the BBE prior (15–50 and 10–110 for hyper–g/n and benchmark priors
respectively). We raise two points for discussion here. First, the variability of the posterior distribution
of g across the 50 modelling subsamples was high, although all datasets were subsamples from the
same larger dataset. Second, for some modelling subsamples, standard deviation was very high
(compared to the subsample size) that, in combination with the low posterior medians, may result in
a “waste” of valuable posterior probability in informative prior choices (within each model), and to
the inflation of the posterior probability of irrelevant models with low practical usefulness.
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Figure 7. Histograms of posterior medians of g for all methods under comparison for the FLS data.

Figure 8. Histograms of posterior standard deviations of g for all methods under comparison for the
FLS data.
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6. Discussion

In this article, we derived a Bayesian model average (BMA) estimate of a predicted value on
a variable–selection problem in normal linear models using the power–expected–posterior (PEP)
prior. Furthermore, we presented computation and evaluation strategies of the prediction accuracy,
and compared the performance of our method with that of similar approaches in a simulated and
a real data example from economics.

An interesting point of discussion is the fact that the lower bound imposed on g seemed to drive
the final results under the PEP prior. Of course, we could still specify the PEP prior with smaller values
of δ in order to consider different weighting of the imaginary data. By this way, the bound (via the choice
of δ) could be lower; thus, we might leave g to take values in a wider range. Nevertheless, under the
recommended PEP prior specification, detailed analysis with the FLS data did demonstrate that the
posterior medians of g across the 50 modelling subsamples were far away from the lower bound.
Furthermore, posterior standard deviations were high enough to allow for satisfactorily posterior
uncertainty for g. On the other hand, using other hyper–priors for g, like the hyper–g or the hyper–g/n,
which do not restrict the range of values for g, resulted in high posterior standard deviations of g that,
in combination with low posterior medians, may result in a “waste” of valuable posterior probability
in informative prior choices (within each model), and to the inflation of the posterior probability of
irrelevant models with low practical usefulness. This behavior has two side effects: (a) the posterior
probability of the MAP model was considerably lower than the one obtained by methods with fixed
prior choices for g, and (b) the posterior inclusion probabilities for the nonimportant covariates would
be inflated towards 0.5; see Dellaportas et al. (2012) for an empirical illustration within the hyper–g
prior setup.

Our results implied that the PEP prior was more parsimonious than its competitors. We do not
claim that this property is always the best practice in variable–selection problems. The choice of
parsimony or sparsity depends on the problem at hand. When we have a sparse dataset where
important covariates are very few, then the PEP prior probably acts in a better way than other
competitors that may spend a large portion of the posterior probability to models that are impractical
in terms of dimension and sparsity.
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