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Abstract: In this paper, we propose an efficient weighted average estimator in Seemingly
Unrelated Regressions. This average estimator shrinks a generalized least squares (GLS) estimator
towards a restricted GLS estimator, where the restrictions represent possible parameter homogeneity
specifications. The shrinkage weight is inversely proportional to a weighted quadratic loss function.
The approximate bias and second moment matrix of the average estimator using the large-sample
approximations are provided. We give the conditions under which the average estimator dominates
the GLS estimator on the basis of their mean squared errors. We illustrate our estimator by applying
it to a cost system for United States (U.S.) Commercial banks, over the period from 2000 to 2018. Our
results indicate that on average most of the banks have been operating under increasing returns to
scale. We find that over the recent years, scale economies are a plausible reason for the growth in
average size of banks and the tendency toward increasing scale is likely to continue

Keywords: Stein-type shrinkage estimator; asymptotic approximations; SUR; GLS

JEL Classification: C10, C12, C13, C30, C52

1. Introduction

Seemingly unrelated regressions (SUR) was introduced by (Zellner 1962) and is one of the
econometric developments that has been widely used in applied work. The relative ease of
estimation, applying a large class of modeling and testing problems, and the availability of data
representing a sample of cross section units observed over several time periods are related to the
popularity of this model. (Zellner 1962) proposed a generalized least squares (GLS) estimator for
estimating the coefficients of a set of SUR and established that it yields, at least asymptotically, to
more efficient estimators than those obtained by single-equation least squares. See the surveys by
(Srivastava and Dwivedi 1979; Fiebig 2001) and the book by (Srivastava and Giles 1987) for a concise
coverage of the literature in this area.

Shrinkage estimations in SUR was first introduced by (Zellner and Vandaele 1975), which extends
the results of (James and Stein 1961) and (Sclove 1968) to multivariate regression equations and
presents a technique of constructing an estimator whose risk is smaller than the risk of the GLS
estimator. However, the resulting estimator depends on some unknown matrices and is not practical.
(Srivastava 1973) investigates the properties of the estimator when consistent estimators are substituted
for these unknown matrices. (Maddala 1991) reviewed the shrinkage estimators and showed that these
estimators appear to perform better than both pooled and single-equation least squares estimators (see
also Maddala and Hu 1996; Maddala et al. 1997; Choi and Li 2000). Maddala et al. (2001) show the
superior properties of shrinkage estimators among single-equation estimators and various averaging
estimators in a heterogeneous panel data model under error homoscedasticity framework. In univariate
equation models, recently, (Hansen 2016) introduces shrinkage for general parametric models by
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shrinking maximum likelihood estimators (MLE) toward a restricted MLE. Hansen (2016) shows the
dominance of the shrinkage estimator over the MLE in terms of having lower asymptotic risk when
the shrinkage dimension exceeds two, using a local to zero asymptotic framework. Wang et al. (2019)
propose a Mallow pooling averaging estimator for heterogeneous panel data models and conclude that
the pooling averaging estimator is preferred when the panel is heterogenous and the signal-to-noise
ratio is moderate or large. For more on averaging estimators see (Ullah and Wang 2013).

In the analysis of SUR, a question that often practitioners are faced is whether to assume parameter
homogeneity or parameter heterogeneity. On one hand, the parameter heterogeneity assumption
results in consistent estimators and violation of this assumption causes misleading estimates (see,
for example, Robertson and Symons 1992; Pesaran and Smith 1995; Su and Chen 2013; Durlauf et
al. 2001; Browning and Carro 2007). On the other hand, the parameter homogeneity assumption
causes higher efficiency but could be at the cost of estimation bias and inconsistency of estimators,
which is supported by an increasing number of studies due to a better forecast performance of
the estimators under this assumption (see, for example, Maddala 1991; Maddala and Hu 1996;
Baltagi and Griffin 1984; Baltagi et al. 2000; Hoogstrate et al. 2000). This question and the results of
the mentioned research show the typical bias-variance trade-off that needs to be considered in choosing
the restrictions. While efficiency is important, robustness is also critical, since researchers prefer as few
ad hoc restrictions as possible. In the present scenario the efficient estimator depends on more stringent
condition of homogeneity and therefore is less robust to the heterogeneity restriction. Therefore, this
efficiency-robustness trade-off (bias-variance trade-off) calls for thorough examination. A natural
approach is to consider a pre-test estimator, but it is proven unable to solve the efficiency-robustness
issue (Leeb and Pötsche 2005).

A more useful approach considered here is an averaging estimator (Stein-type shrinkage), that is
a weighted average of the robust and efficient (the unrestricted GLS and the restricted GLS) estimators.
The weight is inversely related to a weighted quadratic loss function, which measures the weighted
distance between the unrestricted and the restricted GLS estimators. The first and second moments
of our proposed average estimator are derived using (Nagar 1959) large-sample approximations.
Furthermore, we show the dominance properties in terms of mean squared error (MSE) of the
estimators, which ensures that the proposed estimator is robust against arbitrary deviations from
the restrictions. This is an advantage of our method relative to the “local asymptotic” argument that
some previous studies rely on (see, for example, Hansen 2016). Our dominance property ensures that
the proposed averaging estimator is robust against arbitrary deviations from the restrictions, while
previous estimators in the literature consider mainly very small violations of the restrictions. Further
discussion in this area has been generally theoretical, but we present here, an important empirical
question and show the advantages of the averaging estimator over the previous estimators considered.
Essentially, we apply our estimator to estimate cost efficiency of United States (U.S.) Commercial
banks using a cost system method over the period from 2000 to 2018. Since bank size is an important
factor of production environment, following the literature, we use it to partition bank technologies.
However, these partitions are user-specified, and the estimates can be misleading because of false
parameter heterogeneity assumptions. Therefore, we use the average estimator introduced in the
paper to estimate the cost efficiency, as it optimally balances the trade-off between bias and variance
efficiency of the restricted and the unrestricted GLS estimators. We find that on average majority of
banks have been operating under increasing returns to scale over the sample period. We also find
more signs of cost efficiency for Large Banks (banks with asset size more than $500 Million dollars)
and Small Banks (banks with asset size less than $100 Million dollars) relative to Medium banks (banks
with asset size between $500 and $100 Million dollars). This finding is important for gauging costs and
benefits of any policy intervention to control the size of banks.

The paper is organized as follows. Section 2 describes the model and the assumptions. In Section 3,
we introduce the estimators. We give the bias, MSE matrix and the risk of the average estimator using
the large-sample approximations in Section 4. Section 5 reports some Monte Carlo simulations to
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evaluate the accuracy of the approximations. Results from our empirical example are presented in
Section 6. Finally, Section 7 contains some concluding remarks, and proofs are given in Appendix A.

2. The Model and Notation

Consider the following m seemingly unrelated linear regressions

yi = Xiβi + ui, i = 1, 2, . . . m, (1)

where yi = (yi1, yi2, . . . , yiT)
′ is a T × 1 vector of observations on the dependent variable yit,

with T being the number of observations, Xi is a T × k matrix of observations on the k vector of
regressors including the intercept (that is, xit,1 = 1)1, βi is a k× 1 vector of unknown coefficients and
ui = (ui1, ui2, . . . , uiT)

′ is a T× 1 vector of disturbances, for i = 1, 2, . . . , m. It is convenient to stack the
m equations above in the following form:


y1

y2
...

ym

 =


X1 0 . . . 0
0 X2
...

. . .
0 . . . 0 Xm




β1

β2
...

βm

+


u1

u2
...

um

 , (2)

or compactly as
y

mT×1
= X

mT×mk
β

mk×1
+ u

mT×1
. (3)

We assume,

Assumption 1. The mT × 1 vector of disturbances, u, has a zero conditional mean

E(u|X1, X2, . . . , Xm) = 0.

Assumption 2. The disturbances are uncorrelated across observations but correlated across equations,

E(uiu′j|X1, X2, . . . , Xm) = σij IT ,

or

E(uu′|X1, X2, . . . , Xm) = Ω =


σ11 IT σ12 IT . . . σ1m IT
σ21 IT σ22 IT . . . σ2m IT

...
σm1 IT σm2 IT . . . σmm IT

 = Σ ⊗ IT ,

where IT is the T × T identity matrix,

Σ
m×m

=


σ11 σ12 . . . σ1m
σ21 σ22 . . . σ2m

...
σm1 σm2 . . . σmm

 ,

and we assume Ω is positive definite.

1 Note that we do not assume that Xi’s are the same, nor do we assume they are different across equations. In other words,
our model supports complete heterogeneity, partial heterogeneity, and complete homogeneity of regressors.
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Assumption 3. The disturbances are normally distributed with mean zero and variance-covariance matrix Ω.

We define some notations below, which will be used in the following sections. So let

Q
mT×mT

= Ω−1
(

ImT −Ψ
)

, (4)

where
Ψ

mT×mT
= X(X ′Ω−1X)−1X ′Ω−1. (5)

If we partition Q in the sub-matrices of T × T as below

Q =


Q11 Q12 . . . Q1m
Q21 Q22 . . . Q2m

...
...

...
Qm1 Qm2 . . . Qmm

 , (6)

then we define

Π =


Q′11 Q′12 . . . Q′1m
Q′21 Q′22 . . . Q′2m

...
...

...
Q′m1 Q′m2 . . . Q′mm

 . (7)

Also, we define

Φ
T×T

=
m

∑
i=1

Ψii, (8)

where Ψii is the ith diagonal T × T sub-matrix of Ψ which is partitioned as below

Ψ =


Ψ11 Ψ12 . . . Ψ1m
Ψ21 Ψ22 . . . Ψ2m

...
...

...
Ψm1 Ψm2 . . . Ψmm

 . (9)

3. Estimators

Our goal is to estimate the vector of slope parameters, β, in Equation (3). We consider three
estimators of the slope parameters. The first estimator is the (Zellner 1962) GLS estimator (the
unrestricted GLS estimator), which is the standard estimator in SUR. The second estimator is a
restricted GLS estimator that ignores the slope parameters heterogeneity and estimates a pooled model.
The third estimator, called the average estimator, is a weighted average of the restricted and the
unrestricted GLS estimators where the weight is proportional to a weighted quadratic loss function.

3.1. Unrestricted Estimator

The typical estimator of the slope parameters in SUR is a feasible GLS estimator defined as

β̂ = (X ′Ω̂−1X)−1X ′Ω̂−1y = β + (X ′Ω̂−1X)−1X ′Ω̂−1u, (10)

where Ω̂ is an estimator of Ω, which can be calculated as

Ω̂ = Σ̂ ⊗ IT , (11)
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where Σ̂ is an estimator of Σ, such that its (i, j)th element, sij, estimates σij, using a
single-equation estimator of βi, defined as β̆i = (X ′i Xi)

−1X ′i yi, for i = 1, 2, . . . , m. Hence, sij is
equal to

sij = (yi − Xi β̆i)
′(yj − Xj β̆ j)/T = u′i Mi Mjuj/T, (12)

where Mi = IT − Xi(X ′i Xi)
−1X ′i is an idempotent projection matrix.

3.2. Restricted Estimator

The restricted estimator is defined under the parameter homogeneity assumption across equations,
which can be written as

β1 = β2 = · · · = βm = β̄,

where β̄ is a weighted average of the slope parameters, βi’s, defined as

β̄ = (J′X ′Ω−1X J)−1 J′X ′Ω−1Xβ, (13)

in which J′ = (Ik, Ik, . . . , Ik) is a k×mk matrix, where Ik denotes the k× k identity matrix.
Equivalently, the parameter homogeneity assumption can be formulated as a restriction matrix as

β1 − β̄

β2 − β̄
...

βm − β̄

 = β− Jβ̄ =
(

Imk − J(J′X ′Ω−1X J)−1 J′X ′Ω−1X
)

β = Rβ = 0, (14)

where R = Imk − J(J′X ′Ω−1X J)−1 J′X ′Ω−1X is an idempotent matrix.
Hence, we can derive the restricted estimator from the following minimization

Minimize
s.t. β

(y− Xβ)′Ω−1(y− Xβ), subject to Rβ = 0.

The solution to the above minimization can be formulated as a feasible restricted GLS estimator
in below

β̃ = β̂− (X ′Ω̂−1X)−1R̂′
[

R̂(X ′Ω̂−1X)−1R̂′
]−1

R̂β̂ = (Imk − R̂)β̂

= J(J′X ′Ω̂−1X J)−1 J′X ′Ω̂−1X β̂,
(15)

where2 R̂ = Imk − J(J′X ′Ω̂−1X J)−1 J′X ′Ω̂−1X is an estimate of R.

3.3. Average Estimator

We define the average estimator as below

β̂A = (1− τ

D
) β̂ +

τ

D
β̃, (16)

where D is a weighted quadratic loss function defined as

D = (β̂− β̃)′W(β̂− β̃), (17)

2 The second equality holds by using Equation (A.15).
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with W an arbitrary symmetric positive definite weight matrix with elements of order O(T), and τ is a
positive characterizing parameter. We will defer describing the optimal choice for this parameter in
the next section.3

The idea behind the average estimator defined above is that when the difference between the
restricted and the unrestricted GLS estimators is small (D is small), the average estimator gives a
higher weight to the restricted GLS estimator, as it is the most efficient estimator. However, when
the difference between the restricted and the unrestricted GLS estimators is substantial, the bias of
the restricted GLS estimator, resulting from ignoring the parameter heterogeneity, could be more
than its variance efficiency gain, so the average estimator assigns a higher weight to the unrestricted
GLS estimator.

4. Large-Sample Approximate Bias and MSE

We employ the large-sample approximations method developed by (Nagar 1959), to analyze the
bias, mean squared error matrix (MSEM) and risk of the average estimator.

Theorem 1. Under Assumptions 1–3, the bias of the average estimator up to order O(T−1) is

Bias(β̂A) = E(β̂A − β) = − τ

φ
Rβ, (18)

and the MSEM of the average estimator up to order O(T−2) is

MSEM(β̂A) = E
[
(β̂A − β)(β̂A − β)′

]
= MSEM(β̂) +

τ2

φ2 Rββ′R′ − 2τ

φ
R(X ′Ω−1X)−1R′

+ 2
τ

φ2

[
Rββ′R′W R(X ′Ω−1X)−1R′ + R(X ′Ω−1X)−1R′W Rββ′R′

]
, (19)

and for the symmetric positive definite weight matrix W of order O(T), the risk of the average estimator up to
order O(T−1) is

Risk (β̂A) = E
[
(β̂A − β)′W(β̂A − β)

]
= Risk (β̂) +

τ

φ

[
τ − 2

[
tr(P)− 2

φp

φ

]]
≤ Risk (β̂) +

τ

φ

[
τ − 2

[
tr(P)− 2λmax(P)

]]
,

(20)

where φ = β′R′W Rβ = O(T), φp = β′R′W1/2PW1/2Rβ = O(T), λmax(.) denotes the maximum
eigenvalue, and P = W1/2R(X ′Ω−1X)−1R′W1/2.

Proof. Appendix A.

We note that,

MSEM(β̂) = (1 +
m
T
)(X ′Ω−1X)−1 − 1

T
(X ′Ω−1X)−1H(X ′Ω−1X)−1 + o(T−2), (21)

see (Srivastava 1970) for a proof, hence

Risk (β̂) = (1 +
m
T
) tr
[
W(X ′Ω−1X)−1

]
− 1

T
tr
[
W(X ′Ω−1X)−1H(X ′Ω−1X)−1

]
+ o(T−1), (22)

3 The weight can be replaced by a positive part weight, that is, when τ/D < 0, we assign a zero weight to the restricted
estimator. It is easy to verify that the MSE of the positive part is smaller. However, it will not change the approximations,
so for simplicity we do not impose it at this stage. Nevertheless, the Monte Carlo and the application results are reported
using the positive part weights.
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where H = X ′(Σ−1 ⊗ Φ)X − X ′ΠX.
From Theorem 1, it follows that the average estimator dominates the unrestricted GLS estimator

in terms of having a smaller risk, when the second term on the right-hand side of Equation (20) is
negative, which will hold when

0 < τ < 2
[

tr(P)− 2
φp

φ

]
, (23)

given tr(P) > 2φp/φ. As the upper bound of the condition above depends on the slope parameters,
one could replace it with an infimum value. Let d be defined as

d =
tr(P)

λmax(P)
, (24)

which lies in the range d ∈ [0 , (m− 1)k], as P is a non-zero positive semi-definite matrix. Therefore,

when d > 2, an infimum value for the upper bound is 2
[

tr(P)− 2 λmax(P)
]
. 4 Therefore, given d > 2,

an equivalent condition for the condition in (23) can be written as

0 < τ ≤ 2
[

tr(P)− 2 λmax(P)
]
. (25)

In other words, when d > 2, and τ satisfies the condition in Equation (25), the risk of the average
estimator is less than the risk of the unrestricted GLS estimator up to the order of interest. In addition,
as the choice of the characteristic parameter is user-specified, its optimal value, τopt, that minimizes the
upper bound of the risk of the average estimator (the last term in Equation (20)), up to order O(T−1),
provided d > 2, is

τopt = tr(P)− 2λmax(P). (26)

Since the optimal τ depends on the unknown value of Ω, one could substitute it with its estimated
value, and use an estimate of τopt, as below

τ̂opt = tr(P̂)− 2λmax(P̂),

where P̂ = W1/2R̂(X ′Ω̂−1X)−1R̂′W1/2, is an estimate of P.

Corollary 1. Under Assumptions 1–3, when d > 2, then up to order O(T−1) we have

Risk ( ̂̂βA) ≤ Risk (β̂)−
τ2

opt

φ
< Risk (β̂), (27)

where ̂̂βA is the average estimator with τ̂opt.

Proof. Appendix A.

Two arbitrary choices of W are TImk, and X ′Ω−1X, where the former one in the risk gives the
mean squared error and the latter one, provides the (in-sample) mean squared forecast error (MSFE).

Corollary 2. Under Assumptions 1–3, when 0 < τ < 2
[
(m− 1)k− 2

]
, then up to order O(T−1), we have

MSFE (β̂A) = MSFE (β̂) +
τ

φ

[
τ − 2

[
(m− 1)k− 2

]]
< MSFE (β̂).

4 See Equation (A.19) in Appendix A.



Econometrics 2020, 8, 15 8 of 22

The optimal value of τ that minimizes the MSFE of the average estimator, provided (m− 1)k > 2, is

τopt,F = (m− 1)k− 2, (28)

and the associated optimal MSFE of the average estimator up to order O(T−1) is

MSFE opt(β̂A) = MSFE (β̂)−

[
(m− 1)k− 2

]2

φ
, (29)

where
MSFE (β̂) = (1 +

m
T
)mk− 1

T
tr
[

H(X ′Ω−1X)−1
]
.

Proof. Appendix A.

5. Monte Carlo Simulation

The results below are the simulation results of the model of Section 2, where xit,1 = 1 and the
remaining regressors are independently generated from the standard normal distribution. The sample
size varies from T = 100, m = 3, 6, and k = 3, 5, leading to four combinations of m, and k. u1t is
generated as I IDN(0, 1), while uit = c u1t + vit, for i = 2, . . . , m, where vit ∼ I IDN(0, 1) and c = 0.5.
We consider two DGPs for generating βi’s, the first one is under a complete heterogeneity in coefficients
where we assume that

DGP1: βi = β̄ + (i× δ)/m, i = 1, 2, . . . , m,

with β̄ = (1, 1, . . . , 1)′, and the second DGP is under a weak heterogeneity where we assume that

DGP2: βi1, βi2 =

{
1 + (i× δ)/m, if i = 1, . . . , [m/2]

1.2, if i = [m/2] + 1, . . . , m
, βil = 2, l ∈ {3, . . . , k},

where [m/2] denotes the largest integer value that is smaller than m/2, and δ takes values on a 10-point
grid on [0, 1].

The results of 1000 monte carlo simulations are given in Figures 1–4, where the vertical axes
measure the relative mean squared error (RMSE) of the unrestricted GLS estimator, the restricted
GLS estimator and the average estimator to the unrestricted GLS estimator. Hence, the RMSE of the
unrestricted GLS estimator is equal to one. The horizontal axes measure the degree of parameter
heterogeneity, δ, which is set between zero and one with 0.1 grid value.

(a) DGP1 (b) DGP2
Figure 1. RMSE of Unrestricted, Restricted and Average Estimators, for T = 100, m = 3, k = 3.
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(a) DGP1 (b) DGP2
Figure 2. RMSE of Unrestricted, Restricted and Average Estimators, for T = 100, m = 3, k = 5.

(a) DGP1 (b) DGP2
Figure 3. RMSE of Unrestricted, Restricted and Average Estimators, for T = 100, m = 6, k = 3.

(a) DGP1 (b) DGP2
Figure 4. RMSE of Unrestricted, Restricted and Average Estimators, for T = 100, m = 6, k = 5.

The Monte Carlo results support our theoretical findings of the previous section. The figures show
that the RMSE of the average estimator for the whole parameter heterogeneity is below that of the
unrestricted estimator. This shows the superiority of the average estimator relative to the unrestricted
GLS estimator.

The RMSE of the average estimator in DGP1 of a complete heterogeneous SUR, is smaller than
that of the restricted GLS estimator except for very small values of parameter heterogeneity (δ). This is
expected because as δ takes higher values, the bias of the restricted GLS estimator increases, which
then results in higher MSE. In DGP2 where the SUR is characterized by some degrees of homogeneity,
the RMSE of the restricted GLS estimator remains smaller than that of the unrestricted GLS estimator
for larger values of δ relative to DGP1. In this case, the unrestricted GLS estimator can be inferior to
the restricted GLS estimator even with the presence of weak degrees of heterogeneity. This is because
although the unrestricted GLS estimator is unbiased, it is inefficient, especially under small sample



Econometrics 2020, 8, 15 10 of 22

sizes, and a high number of regressors. In contrast, the restricted GLS estimator properly makes the
use of cross equation variations and thus provides a more accurate results.

In general, we find that the average estimator performs robustly well in SUR with various degrees
of heterogeneity. When there is a strong heterogeneity, the average estimator prevails. When there is
a relatively weak heterogeneity, the average estimator tends to gain more from the efficiency of the
restricted GLS estimator by assigning a high weight to this estimator and thus still remains one of the
best choices.

6. Application: Returns to Scale in US Banking Industry

In this section we apply the average estimator studied in the previous sections to regressions of
the cost system for U.S. commercial banks. We are interested in estimating the returns to scale (RTS)
for these banks over the past recent years.

Over the past few years, the number of U.S. commercial banks fell by almost 70%, where in 1984
the total number of U.S. commercial banks was 14,391 and dropped to 4773 in 2018. Over the same
period of time, the average asset value of U.S. banks (adjusted for inflation), which is also a measure
of bank size, increased by about ten times, from 140 million dollars in 1984 to 1400 million dollars
in 2018 (See Figure 5). To support this bank size expansion, bank executives and analysts claim that
due to the changes in regulation (such as the permission of interstate branching and combination of
banks) and because of technological and financial innovations (such as communication technologies,
the securitization and sale of bank loans) over the past few years, the cost of production for larger
banks has reduced and encouraged banks to grow larger and/or merge.

Figure 5. United States Commercial Banks, Number and Average Assets (source: Federal Reserve Bank
of St. Louis FRED database).

On the other hand, critics contend that this decrease in the number of operating banks, and
having banks with large assets not only impact the market competition, but also result in agency
problems and disproportionate benefits of government policies in favor of large banks. In particular, the
financial crisis of 2007 focused attention on large financial institutions considered as “too-big-to-fail”.
These together have brought attention of policy makers for regulatory limits on bank size. However,
any policy intervention needs to consider the potential efficiency benefits of operating at a large scale.
Therefore, estimation of scale economies and RTS is essential for analyzing the costs and benefits of
any policy intervention to control the size of banks.

The estimation of scale economies and RTS for U.S. banking industry has stimulated a substantial
body of studies. Older empirical studies that used data from the 1980s and 1990s did not find
scale economies in banking industry except for very small banks. But recent research that used
data from the 2000s, and more modern methods for estimating the banking models, has found
considerably more evidence of scale economies in banking. These studies include (Hughes et al.
1996, 2000, 2001; Berger and Mester 1997; Hughes and Mester 1998, 2013; Wheelock and Wilson 2001;
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Feng and Serletis 2009). Most of the studies in the literature partition banks based on their asset size
in groups and estimate each group independently from the other groups. However, not only there is
no reason to believe these categories are set based on banks underlying technology, at the same time, it
is hard to believe that these groups are not affected by some unknown factors that could have resulted
in correlations between groups. Therefore, there are two issues that need to be carefully considered by
researchers. First, estimating cost efficiency using all observations as one group has the advantage
of smaller variance but at the same time, it means ignoring the potential heterogeneity bias due to
difference in technology. Second, partitioning banks in different groups and using single-equation
estimators are inefficient compared to pooled estimators which ignore heterogeneity. Hence, there is a
trade-off between bias and variance efficiency between these two estimators. As the average estimator
introduced in the previous sections results in the optimal balance between bias and variance efficiency,
we recommend using this estimator in the estimation of the returns to scale for banking industry to
obtain robust and efficient estimators.

6.1. The Model

We follow the so called “intermediation approach” framework of (Sealey and Lindley 1977),
which is broadly employed in the literature. According to this approach, a bank’s balance sheet is
assumed to capture the essential structure of a bank’s core business. Inputs are considered to be
liabilities (core deposits and purchased funds), physical capital and labor. The inputs result in the
bank’s productions which are assets (other than the physical, includes loans and trading securities).

With regard to variable specification, we define five inputs and five outputs that are the ones
used in the literature. We define the following output quantities: consumer loans (y1), real estate
loans (y2), loans to business and other institutions (y3), federal funds sold and securities purchased
under agreements to resell (y4), and other assets (y5). The input variables are: labor quantities (x1),
premises and fixed assets (x2), purchased funds (x3), interest-bearing transaction accounts (x4), and
non-transaction accounts (x5). For each input xj, its price wj is obtained by dividing its total expenses
by the corresponding input quantities.

For modeling the cost of banking industry, we consider a translog cost function and normalize it,
so that the homogeneity (in input prices) property is automatically satisfied. We allow for individual
(fixed) effects by adding intercepts in each regression, to control for specific group characteristics,
heterogeneity in skills and so on. Hence, the cost equation for each group i = 1, 2, . . . , m, is
considered as

ln(Cit/w5,it) = β0,i +
4

∑
n=1

βn,i ln(wn,it/w5,it) +
5

∑
l=1

γl,i ln(yl,it) +
1
2

5

∑
n=1

5

∑
l=1

γnl,i ln(yn,it) ln(yl,it)

+
1
2

4

∑
n=1

4

∑
l=1

ηnl,i ln(wn,it/w5,it) ln(wl,it/w5,it) +
4

∑
l=1

5

∑
n=1

δln ln(wl,it/w5,it) ln(yn,it) + uit, t = 1, 2, . . . , Ti,

(30)

where Ti is the number of observations in group i (the number of banks operating within group i), and
Cit is the total cost of bank t, in group i, defined as

Cit = w1,it x1,it + w2,it x2,it + w3,it x3,it + w4,it x4,it + w5,it x5,it, t = 1, 2, . . . , Ti, and i = 1, . . . , m. (31)

The cost function is symmetric which requires the imposition of the following restrictions on the
parameters as below

ηjq,i = ηqj,i

γnl,i = γln,i.
(32)

RTS is defined as the inverse of the sum of cost elasticities. If we define the output elasticity of
the model for output j of bank t in group i, as Ecyj,it = ∂ ln(Cit)

∂ ln(yj,it)
and the sum of cost elasticities as
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Ecyit = ∑5
j=1

∂ ln(Cit)
∂ ln(yj,it)

, then RTS of bank t in group i is defined as RTSit = 1/Ecyit. Also, the RTS for

group i is a vector of Ti × 1 defined as

RTSi =


RTSi1
RTSi2

...
RTSiTi

 , (33)

which is used for calculating mean, quartiles, and deciles of RTS for group i with Ti banks, see
Section 6.3.

A bank with RTS > 1, has increasing returns to scale, that is for one percent increase in all
outputs, cost is increased by less than one percent, and the bank is operating below its efficient scale
size (RTS = 1) when RTS < 1.

6.2. The Data

The data we use is obtained from the Reports of Income and Condition (Call Reports)5, over the
period from 2000 to 2018. We omit observations where negative values for assets, equity, outputs, and
prices are reported. The summary of the data for years 2000 and 2018 is in Table 16.

Following (Feng and Serletis 2009) and others in the literature, we classify the banks into three
groups which is mainly based on the standard asset size categories that are used by the Federal
Financial Institutions Examination Council (FFIEC). Banks with over $500 million in total assets are
classified as Large banks, banks with assets between $100 million and $500 million are classified as
Medium banks, and banks with under $100 million in assets are classified as Small banks. In order
to have a consistent partitions over time, the asset size caps in each year are justified upward by
the growth in the CPI. Table 2 presents the number and share of banks in each group with their
corresponding asset ranges for years 2000 and 2018.

6.3. Estimation

We estimate model of Equation (30) using the average estimation method developed in the
previous sections for each year separately. Basically, our SUR at each year consists of three cost
equations representing Large, Medium, and Small bank groups, and the observations for each
regression are the operating banks data under each bank group. Since the sample size for each group is
different, we face a SUR with unequal number of observations and to estimate the variance-covariance
matrix (Ω), we consider the following procedures recommended in the literature (See Schmidt 1977;
Baltagi et al. 1989):

1. Ignore the extra observations in estimating Ω;
2. Use the extra observations to estimate variances. This procedure has the disadvantage of

producing estimates of Ω that are not positive definite;
3. Use the extra observations to estimate variances, and modifying the estimates of covariances

using the method of (Srivastava and Zaatar 1973);
4. Use all observations in estimation, following the method of (Hocking and Smith 1968).

5 The data from 2000–2010 is downloaded from the Federal Reserve Bank of Chicago website, and the rest of the data from
2011–2018 is downloaded from the FFIEC Central Data Repository’s Public Data Distribution website.

6 The summary of the data for other years are not reported to save the space, but it is available upon request.
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Table 1. Summary Statistics.

Variable
Min Max

2000 2018 2000 2018

C 136.49 151.78 18, 369, 359.04 26, 757, 643.39
w1 7015.14 15, 321.43 163, 358.47 261, 240.11
w2 6.75 9.61 12375.00 43, 469.79
w3 3.20 0.02 206.53 48.82
w4 0.26 0.02 265.36 153.96
w5 0.46 0.06 49.21 16.82
y1 1.25 1.00 42, 638, 250.00 173, 922, 000.00
y2 0.25 170.50 168, 465, 250.00 686, 161, 250.00
y3 45.75 125.50 178, 056, 500.00 457, 517, 750.00
y4 89.50 0.25 144, 188, 250.00 703, 099, 250.00
y5 39.00 42.50 86, 346, 000.00 704, 384, 250.00

Variable
Mean STD

2000 2018 2000 2018

C 24, 454.49 43, 803.47 331, 091.51 643, 872.50
w1 26, 175.32 49, 386.16 7084.42 15, 332.39
w2 230.31 265.78 351.89 920.70
w3 33.22 3.51 6.38 2.75
w4 14.79 2.43 9.01 3.87
w5 22.87 3.46 4.79 1.90
y1 57, 014.23 268, 717.11 754, 295.15 4, 722, 816.78
y2 175, 843.57 881, 915.93 2, 961, 928.59 15, 632, 429.24
y3 206, 836.22 929, 043.01 2, 423, 963.16 10, 526, 805.47
y4 192, 820.92 862, 701.61 2, 985, 314.66 16, 392, 980.08
y5 85, 019.93 842, 793.39 1, 554, 035.20 16, 868, 329.90

Note: All variables except w1–w5, are measured in thousands of dollars.

Table 2. Banks Asset Size Classes.

Bank Groups Asset Size
(in Millions of Dollars of the Year) Number of Banks Share of Banks

2000

Large Banks Assets ≥ 500 739 8.9
Medium Banks 100 ≤ Assets < 500 2946 35.5
Small Banks Assets < 100 4620 55.6

2018

Large Banks Assets ≥ 729 988 19.8
Medium Banks 146≤ Assets <729 2298 46.1
Small Banks Assets < 146 1704 34.1

It is known in the literature that the results of the above procedures are much the same. Likewise,
we find that the procedures above, generate similar results, so we only report the results of method 3.

After estimating Equation (30), we obtain the sum of cost elasticities for each bank by

Ecyit =
5

∑
j=1

∂ ln(Cit)

∂ ln(yj,it)
=

5

∑
j=1

γj,i +
5

∑
j=1

5

∑
n=1

γnj,i ln(yn,it) +
5

∑
j=1

4

∑
n=1

δnj ln(wn,it/w5,it), (34)

where Ecyit is the sum of cost elasticity of bank t in group i, and the parameters are replaced with their
estimated values. Then, the RTS is calculated following Equation (33). We also obtain the RTS using
the unrestricted GLS estimator, and the restricted GLS estimator.
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The results of years 2000, 2009 and 20187 are reported in Table 3, which presents the extreme
deciles, quartiles and means of our estimated RTS using the three estimation methods. The patterns
of mean, extreme deciles and quartiles for all years are plotted in Figure 6. The results base on the
restricted estimator over the most recent years suggest increasing RTS at each decile. However, these
results are not economically reasonable. On the other hand, we find evidence of decreasing RTS for
almost 50% of Small and Medium banks using the unrestricted estimator over the most recent years.
These contradicting results show the importance of the average estimator which is used to respond to
this model uncertainty.

Table 3. Summary of estimates of returns to scale.

Bank Size Estimator
Estimates of RTS

D10 Q25 Q50 Q75 D90 Mean

2000

Restricted 0.979 0.988 0.997 1.008 1.019 0.998

Large Banks
Unrestricted 0.971 0.985 0.998 1.009 1.021 0.996
Average Estimator 0.980 0.989 0.998 1.007 1.018 0.998

Medium Banks
Unrestricted 0.969 0.992 1.017 1.043 1.071 1.019
Average Estimator 0.995 1.002 1.011 1.020 1.028 1.011

Small Banks
Unrestricted 0.997 1.014 1.034 1.055 1.075 1.035
Average Estimator 1.006 1.014 1.024 1.034 1.044 1.025

2009

Restricted 1.007 1.016 1.026 1.038 1.051 1.028

Large Banks
Unrestricted 1.001 1.025 1.053 1.080 1.108 1.055
Average Estimator 1.004 1.026 1.051 1.075 1.101 1.052

Medium Banks
Unrestricted 0.956 0.990 1.032 1.079 1.125 1.038
Average Estimator 0.961 0.993 1.031 1.076 1.118 1.037

Small Banks
Unrestricted 0.979 1.013 1.049 1.085 1.124 1.050
Average Estimator 0.983 1.015 1.048 1.082 1.118 1.049

2018

Restricted 1.009 1.021 1.034 1.049 1.066 1.037

Large Banks
Unrestricted 1.009 1.052 1.100 1.140 1.184 1.098
Average Estimator 1.010 1.052 1.094 1.132 1.172 1.093

Medium Banks
Unrestricted 0.915 0.950 0.988 1.030 1.070 0.989
Average Estimator 0.919 0.953 0.989 1.029 1.068 0.990

Small Banks
Unrestricted 0.960 0.997 1.042 1.104 1.166 1.054
Average Estimator 0.962 0.998 1.040 1.098 1.158 1.051

Note: Decile, quartile and mean estimates of RTS for the restricted, unrestricted, and average estimators. D10,
D90, Q25, Q50, and Q75 are the lower decile, the upper decile, the lower quartile, median and upper quartile,
respectively.

Comparing the RTS of banks using the average estimator over the sample period shows that, on
average majority of banks have increasing returns to scale. In most recent years, the results exhibit
more signs of cost efficiency for Large and Small banks, such that all of Large banks have increasing
RTS and only less than 25% of Small banks have exhausted their cost efficiency. However, we find
that more than 50% of Medium banks are operating under decreasing returns to scale near the end
of the sample. The results are consistent with some recent studies (e.g., References Feng and Serletis

7 We only report the results for these three years to save the space. However, the results for other years are available
upon request.
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2009; Hughes and Mester 2013; Wheelock and Wilson 2001; Henderson et al. 2015; Mailkov et al. 2015)
although we are not aware of any study from 2011 to 2018.

(a) Mean (b) 10th Decile

(c) 25th Quartile (d) 50th Quartile

(e) 75th Quartile (f) 90th Decile

Figure 6. RTS Estimates Using The Restricted and The Average Estimator over period 2000–2018.
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7. Conclusions

In this paper, we introduce an averaging estimator for a SUR model. The introduced estimator
is a weighed average of an unrestricted GLS estimator which is the (Zellner 1962) estimator and a
restricted GLS estimator. The weight is inversely related to a quadratic loss function which measures
the weighted distance between the unrestricted and the restricted GLS estimators. The bias, MSE
matrix, and risk of the average estimator using the large-sample approximations of (Nagar 1959)
are derived. The superiority conditions of the average estimator in terms of the weighted mean
squared error is given for any user-specific symmetric positive definite weight matrix, and is not
limited to the case where the weight is the inverse of the variance-covariance matrix of the unrestricted
GLS estimator.

We also provide some Monte Carlo results which support our theoretical claims. Finally, as our
estimator is motivated by economic theory, we use U.S. Commercial banking data, and estimate a cost
system for the banking industry to show how our estimator can be used in the applied work. We also
estimate the cost system using single-equation least squares and a pooled estimator, and compare
them with our proposed average estimator. We found more reliable estimation results with the cost
system using our average estimator than the other estimators. We found that on average majority of
banks have been operating under increasing returns to scale over the sample period from 2000 to 2018.
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Appendix A

Lemma A1. Under Assumptions 1–3, we have the followings

Ω̂−1 = Ω−1︸︷︷︸
Op(1)

−Ω−1∆Ω−1︸ ︷︷ ︸
Op(T−1/2)

+Ω−1∆Ω−1∆Ω−1︸ ︷︷ ︸
Op(T−1)

−Ω−1∆Ω−1∆Ω−1∆Ω−1︸ ︷︷ ︸
Op(T−3/2)

+Op(T−2), (A.1)

(X ′Ω̂−1X)−1 = (X ′Ω−1X)−1︸ ︷︷ ︸
Op(T−1)

+ (X ′Ω−1X)−1X ′Ω−1∆Ω−1X(X ′Ω−1X)−1︸ ︷︷ ︸
Op(T−3/2)

+Op(T−2), (A.2)

X ′Ω̂−1u = X ′Ω−1u︸ ︷︷ ︸
Op(T1/2)

−X ′Ω−1∆Ω−1u︸ ︷︷ ︸
Op(1)

+ X ′Ω−1∆Ω−1∆Ω−1u︸ ︷︷ ︸
Op(T−1/2)

+Op(T−1), (A.3)

R̂ = R + R−1/2 + Op(T−1), (A.4)

where ∆ = Ω̂−Ω, and R−1/2 = J(J′X ′Ω−1X J)−1 J′X ′Ω−1∆ΘX = Op(T−1/2), with the suffix showing
the order of magnitude in probability, and Θ = Ω−1 −Ω−1X J(J′X ′Ω−1X J)−1 J′X ′Ω−1.

Proof. It can be easily verified that, under Assumptions 1–3, ∆ = Op(T−1/2). Employing this condition,
and using the standard geometric expansion for the inverse of a matrix8, for large T, we have the
followings

8 (I + A)−1 = I − A + A2 − A3 + . . . .



Econometrics 2020, 8, 15 17 of 22

Ω̂−1 = (Ω + ∆)−1 = Ω−1[ImT + ∆Ω−1]−1

= Ω−1
[

ImT − ∆Ω−1 + ∆Ω−1∆Ω−1 − ∆Ω−1∆Ω−1∆Ω−1 + . . .
]

= Ω−1︸︷︷︸
Op(1)

−Ω−1∆Ω−1︸ ︷︷ ︸
Op(T−1/2)

+Ω−1∆Ω−1∆Ω−1︸ ︷︷ ︸
Op(T−1)

−Ω−1∆Ω−1∆Ω−1∆Ω−1︸ ︷︷ ︸
Op(T−3/2)

+Op(T−2),

which gives the results in Equation (A.1). Now, by using Equation (A.1), we have

(X ′Ω̂−1X)−1 =
[

X ′Ω−1X − X ′Ω−1∆Ω−1X + . . .
]−1

= (X ′Ω−1X)−1
[

Imk − X ′Ω−1∆Ω−1X(X ′Ω−1X)−1 + . . .
]−1

= (X ′Ω−1X)−1︸ ︷︷ ︸
Op(T−1)

+ (X ′Ω−1X)−1X ′Ω−1∆Ω−1X(X ′Ω−1X)−1︸ ︷︷ ︸
Op(T−3/2)

+Op(T−2),

also we have

X ′Ω̂−1u = X ′Ω−1u︸ ︷︷ ︸
Op(T1/2)

−X ′Ω−1∆Ω−1u︸ ︷︷ ︸
Op(1)

+ X ′Ω−1∆Ω−1∆Ω−1u︸ ︷︷ ︸
Op(T−1/2)

+Op(T−1).

By using the above results, we have

R̂ = Imk − J(J′X ′Ω̂−1X J)−1 J′X ′Ω̂−1X

= Imk − J
[
(J′X ′Ω−1X J)−1︸ ︷︷ ︸

Op(T−1)

+ (J′X ′Ω−1X J)−1 J′X ′Ω−1∆Ω−1X J(J′X ′Ω−1X J)−1︸ ︷︷ ︸
Op(T−3/2)

+Op(T−2)
]
×

J′
[

X ′Ω−1X︸ ︷︷ ︸
Op(T)

−X ′Ω−1∆Ω−1X︸ ︷︷ ︸
Op(T1/2)

+Op(1)
]

= R + J(J′X ′Ω−1X J)−1 J′X ′Ω−1∆
[
Ω−1 −Ω−1X J(J′X ′Ω−1X J)−1 J′X ′Ω−1

]
X + Op(T−1)

= R + R−1/2 + Op(T−1).

Proof. Theorem 1:
Using the results of Lemma A1, in Equation (10), we have

β̂− β = (X ′Ω̂−1X)−1X ′Ω̂−1u = A−1/2 + A−1 + Op(T−3/2), (A.5)

where A−1/2 and A−1 are defined below, and the suffixes show the order of magnitude in probability,

A−1/2 = (X ′Ω−1X)−1X ′Ω−1u = Op(T−1/2),

A−1 = −(X ′Ω−1X)−1X ′Ω−1∆Qu = Op(T−1),

and Q = Ω−1 −Ω−1X(X ′Ω−1X)−1X ′Ω−1.
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Using Equation (A.5) in Equation (17), we have

1
D

=

(β̂− β̃)′W(β̂− β̃)

−1

=

β̂′ R̂′W R̂ β̂

−1

=

(β + A−1/2 + Op(T−1)
)′[

R + R−1/2 + Op(T−1)
]′

W
[

R + R−1/2 + Op(T−1)
](

β + A−1/2 + Op(T−1)
)−1

=

φ + 2β′R′W RA−1/2 + 2β′R′W R−1/2 β + Op(1)

−1

=
1
φ

1 +
2
φ

β′R′W RA−1/2 +
2
φ

β′R′W R−1/2 β + Op(T−1)

−1

=
1
φ

1− 2
φ

β′R′W RA−1/2 −
2
φ

β′R′W R−1/2 β

+ Op(T−2), (A.6)

where φ = β′R′W Rβ = O(T), and the last equality above holds by using the standard geometric
expansion. Also, the use has been made of Equations (A.1)–(A.4). The terms with order Op(T−2) and
smaller are dropped, because they will not enter in the calculation of the bias and MSE of the average
estimator up to the orders of interest.

Employing Equations (A.4) and (A.6) in Equation (16), we obtain

β̂A − β = (β̂− β)− τ

φ

[
1− 2

φ
β′R′W RA−1/2 −

2
φ

β′R′W R−1/2β
][

Rβ + RA−1/2 + R−1/2β
]
+ Op(T−2). (A.7)

The bias of the average estimator using the above equation up to order O(T−1) is

E(β̂A − β) = E(β̂− β)− τ

φ
Rβ + op(T−1) = − τ

φ
Rβ + op(T−1), (A.8)

where the use has been made of

E(β̂− β) = E(A−1/2) +E(A−1) + op(T−1) = 0 + op(T−1), (A.9)

because, both A−1/2 and A−1 are odd functions of the error term which has a normal distribution.
The MSE matrix up to order O(T−2) is

E
[
(β̂A − β)(β̂A − β)′

]
= E

(β̂− β)(β̂− β)′ + Ξ1 − Ξ2 − Ξ′2 + Ξ3 + Ξ′3 − Ξ4 − Ξ′4

+ op(T−2), (A.10)

where Ξ1 - Ξ4 are defined as below

Ξ1 =
τ2

φ2 Rββ′R′,

Ξ2 =
τ

φ
Rβ(β̂− β)′,

Ξ3 =
2τ

φ2 (β′R′W RA−1/2 + β′R′W R−1/2 β)Rβ(β̂− β)′,

Ξ4 =
τ

φ
(RA−1/2 + R−1/2 β)(β̂− β)′.
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Now, we obtain the expectations of Ξ1 - Ξ4.

E(Ξ1) =
τ2

φ2 Rββ′R′, (A.11)

E(Ξ2) =
τ

φ
RβE(β̂− β) = 0 + op(T−2), (A.12)

E(Ξ3) =
2τ

φ2 Rβ
[

β′R′W RE(A−1/2 A′−1/2) +E(β′R′W R−1/2 βA′−1/2)
]
+ op(T−2) (A.13)

=
2τ

φ2 Rββ′R′W R(X ′Ω−1X)−1R′ + op(T−2),

where the last equality holds by noting that the second term on the right-hand side of the first equality
in the above equation is an odd function of normal distributions, and utilizing the following two
equations below

E(A−1/2 A′−1/2) = (X ′Ω−1X)−1X ′Ω−1 E(uu′)Ω−1X(X ′Ω−1X)−1 = (X ′Ω−1X)−1, (A.14)

R(X ′Ω−1X)−1R′ =
[

Imk − J(J′X ′Ω−1X J)−1 J′X ′Ω−1X
]
(X ′Ω−1X)−1

[
Imk − J(J′X ′Ω−1X J)−1 J′X ′Ω−1X

]′
= (X ′Ω−1X)−1 − J(J′X ′Ω−1X J)−1 J′

= (X ′Ω−1X)−1R′ = R(X ′Ω−1X)−1.

(A.15)

Similarly, we have

E(Ξ′4) =
τ

φ

[
RE(A−1/2 A′−1/2) +E(R−1/2 βA−1/2)

]
+ op(T−2) =

τ

φ
R(X ′Ω−1X)−1R′ + op(T−2).

(A.16)
Employing the results of Equations (A.11)–(A.16), in Equation (A.10), we obtain the MSE matrix

of the average estimator up to order O(T−2), as below

MSEM(β̂A) = MSEM(β̂) +
τ2

φ2 Rββ′R′ − 2τ

φ
R(X ′Ω−1X)−1R′

+ 2
τ

φ2

[
Rββ′R′W R(X ′Ω−1X)−1R′ + R(X ′Ω−1X)−1R′W Rββ′R′

]
,

(A.17)

hence the risk of the average estimator up to order O(T−1), can be written as

Risk (β̂A) = E
[
(β̂A − β)′W β̂A − β)

]
= tr

[
W E

[
(β̂A − β)(β̂A − β)′

]]
= tr

[
W MSEM(β̂A)

]
= Risk (β̂) +

τ2

φ
− 2τ

φ
tr
[
W R(X ′Ω−1X)−1R′

]
+ 4

τ

φ2 β′R′W R(X ′Ω−1X)−1R′W Rβ

≤ Risk (β̂) +
τ2

φ
− 2τ

φ
tr
[
W R(X ′Ω−1X)−1R′

]
+ 4

τ

φ
λmax

[
W1/2R(X ′Ω−1X)−1R′W1/2

]
,

(A.18)

where the last inequality holds because W1/2R(X ′Ω−1X)−1R′W1/2 is symmetric, therefore

β′R′W R(X ′Ω−1X)−1R′W Rβ

β′R′W Rβ
≤ λmax(W1/2R(X ′Ω−1X)−1R′W1/2), (A.19)

see (Abadir and Magnus 2005, pp. 181–82).

Proof. Corollary 1:
Note that, using Lemma A1, we have

Ω̂−Ω = Op(T−1/2), (A.20)



Econometrics 2020, 8, 15 20 of 22

R̂− R = Op(T−1/2), (A.21)

and
P̂ = P + P−1/2 + Op(T−1), (A.22)

where

P−1/2 = W1/2R−1/2(X ′Ω−1X)−1R′W1/2 + W1/2R(X ′Ω−1X)−1R′−1/2W1/2

+ W1/2R(X ′Ω−1X)−1X ′Ω−1∆Ω−1X(X ′Ω−1X)−1R′W1/2.
(A.23)

Therefore, it is easy to see that τ̂opt − τ = Op(T−1/2), hence the consistency of τ̂ follows. Further,
by replacing τ̂opt by τ in Equation (A.10), the results in Equations (A.11), (A.13) and (A.16) remain
unchange, and for Equation (A.12) we have

E(Ξ̂2) = E
[ τ̂

φ
Rβ(β̂− β)

]
≥ E

[τopt

φ
Rβ(β̂− β)

]
+

1
φ
E
[[

tr(P−1/2)− 2λmax(P−1/2)
]

Rβ(β̂− β)

]
+ op(T−2) = 0 + op(T−2),

(A.24)

where the last equality holds using Equation (A.9) and noting that the terms on the right hand side of
the inequality are odd functions of the error term which has a normal distribution. Also, the inequality
above holds because P, and P−1/2 are symmetric, so we have

λmax(P̂) ≤ λmax(P) + λmax(P−1/2) + op(T−1/2), (A.25)

see (Abadir and Magnus 2005, p. 344).
Therefore, the result in Equation (27) follows.

Proof. Corollary 2:
Using the results in the first equality of Equation (A.18) when W = X ′Ω−1X, up to order O(T−1),

we have

MSFE (β̂A) = MSFE (β̂) +
τ

φ

[
τ − 2

[
(m− 1)k− 2

]]
, (A.26)

where the use has been made of Equation (A.15), and noting that tr(R) = (m− 1)k.
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