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Abstract: This paper discusses Bayesian model averaging (BMA) in Stochastic Frontier Analysis and
investigates inference sensitivity to prior assumptions made about the scale parameter of (in)efficiency.
We turn our attention to the “standard” prior specifications for the popular normal-half-normal
and normal-exponential models. To facilitate formal model comparison, we propose a model that
nests both sampling models and generalizes the symmetric term of the compound error. Within this
setup it is possible to develop coherent priors for model parameters in an explicit way. We analyze
sensitivity of different prior specifications on the aforementioned scale parameter with respect to
posterior characteristics of technology, stochastic parameters, latent variables and—especially—the
models’ posterior probabilities, which are crucial for adequate inference pooling. We find that using
incoherent priors on the scale parameter of inefficiency has (i) virtually no impact on the technology
parameters; (ii) some impact on inference about the stochastic parameters and latent variables and
(iii) substantial impact on marginal data densities, which are crucial in BMA.

Keywords: stochastic frontier analysis; Bayesian model averaging; Bayesian inference; model
uncertainty; efficiency analysis; public policy

JEL Classification: C11; C44; C52; C54

1. Introduction

Economics is an odd discipline of science. It is common to have multiple, sometimes contradicting
theories to explain observed phenomena. While this may not be too troubling for economic theorists,
for empirical researchers it poses a considerable challenge to integrate diverse economic theories
into one modelling framework. Moreover, not all aspects of econometric models can be derived
from economic theories—many assumptions regarding, e.g., distribution of error terms or functional
forms for conditional means are somewhat arbitrary. Since interpretable results are often sensitive to
specifications of econometric models consequences of these assumptions should not be neglected.

Many approaches have been put forward to mitigate the problem—see, e.g., (Steel 2019) and
references therein—but one approach has caught attention in recent years. Bayesian model averaging
(BMA hereafter), also known as Bayesian inference pooling, is a statistical method of pooling inference
from different models in order to explain the observed economic process. Although BMA has been
around for several decades, the reason it has been recently gaining popularity is not entirely due to its
sound foundations rooted in statistics and probability theory. Its increasing popularity is also likely
due to other reasons, e.g., (i) increased computation power; (ii), development of specific computation
algorithms and (iii) scarcity of alternatives in the frequentist approach.
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The core concept of BMA is to deal with model uncertainty by averaging the results from different
models using the concept of mixture, with weights interpreted as posterior model probabilities. In cases
where one model clearly dominates over others (which is more likely with increasing sample size)
it is practically equivalent to Bayesian model selection (BMS). This technique amounts to choosing
the model which is clearly favored by the data. In that sense, BMA/S can be viewed as tools for
empirical validation of economic theories. BMA is undoubtedly very helpful to address model
uncertainty, although some care needs to be taken when using it as it is sensitive to prior assumptions.
Fortunately, at least for standard regression models, this has been well addressed in the literature
(Ley and Steel 2009, 2012).

We emphasize that although BMA is most often used for covariate selection problems, the approach
is very general, and can be used to deal with uncertainty regarding all the aspects of model specification.
Steel (2019) lists three types of uncertainty that need to be addressed, and our interest is in “specification
uncertainty”. We focus on parametric models with known covariates, and the uncertainty here refers
to the choice of the sampling model (in particular, its stochastic structure). Note, however, that in
order for BMA to properly deal with this kind of uncertainty, certain conditions need to be met. The
core idea of BMA is in pooling over a number of Bayesian models (and each Bayesian model consists
of a likelihood and a prior). In order to be able to interpret the results of BMA as averaging over
competing sampling models (likelihoods), we need to make sure that all the priors used reflect the same
beliefs—this requirement is known as prior coherence. If prior coherence requirements are not met,
BMA is feasible, but its results are driven not only by different performance of the sampling models
under consideration, but also by differences in model-specific prior beliefs. In such cases, especially
when prior incoherence is not explicitly discussed and justified, results are likely to be misinterpreted.

Two important aspects need to be mentioned. First, prior coherence is relatively easy to define for
a class of nested sampling models. In such a framework, any sampling model under consideration is
defined by a set of parametric restrictions imposed on the general model. Consequently, coherence
requirement implies that it is necessary to set prior assumptions for the general sampling model only.
Model-reducing restrictions need to be imposed on the prior in order to derive priors in all nested
cases under consideration. Hence, in a nested family of sampling models prior elicitation is done
only once, in the most general case. Second, even if prior coherence is met, the results of BMA still
depend upon the chosen prior structure, and thus the prior needs to reflect reasonable (or justified)
beliefs. Consequently, prior coherence is necessary but not sufficient when BMA is used to deal with
model specification uncertainty. Note that prior incoherence is unlikely to be a problem in the usual
application of BMA when the purpose is covariate selection.

Another requirement of BMA is that the priors for model-specific parameters have to be proper
(hence ruling out many formal noninformative specifications), and even if prior coherence is met
it is necessary to analyze sensitivity of BMA results with respect to the prior. However, without
prior coherence, results of Bayesian model comparison or model averaging are difficult to interpret.
Unfortunately, in many practical applications of BMA, prior coherence problems are implicit.

The practical use of BMA has often been concerned with rather simple models in terms of their
stochastic structure. However, constant development in computational speed and algorithm design
has made it possible for BMA to be applied in the areas which involve more complex stochastic
model structures (e.g., complicated hierarchical priors). Still, two issues are of great importance here.
First, increased model complexity with, e.g., many layers of latent variables or high-dimensional
parameter spaces makes choice of priors more important (at least with fixed sample size). Obviously,
such high-dimensional prior structures are difficult to investigate—hence the actual consequences
of certain formally stated prior beliefs in terms of interpretable quantities are often unclear. Second,
considerations regarding prior specification are still in practice motivated mostly by computational
convenience. As priors are often restricted to certain parametric classes, the scope of sensitivity
analysis is limited to disturbing the choice of hyperparameters (and even this is often neglected in
empirical analyses), and then demonstrating some degree of robustness for selected characteristics
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of posterior distribution to changes in prior hyperparameters. However, it is well known that even
if essential characteristics of a posterior distribution are robust to the choice of priors, the posterior
model probabilities, crucial for BMA, are not; see, e.g., (Osiewalski and Steel 1993). Moreover, such
robustness is more likely to hold for model parameters and not necessarily for latent variables (as
the latter increase in dimensionality with the sample size). If latent variables are the quantities of
interest, prior assumptions might still have considerable influence upon the results. To summarize,
whenever BMA is used and the quantities of interest are latent variables, it is essential to use priors that
are coherent and well-specified (i.e., represent beliefs that are actually reasonable, given the problem
at hand).

One prominent example where latent variables are of great interest is Stochastic Frontier Analysis
(SFA hereafter). It is a method used to benchmark (in)efficiencies of decision-making units (DMUs)
and these (in)efficiencies are treated as latent variables. Depending on how we frame the objective
function, referred to as the frontier, the efficiency can be technical (pure analysis of production) or
economic. Economic efficiency in turn can be, e.g., cost, revenue or profit efficiency; depending on
the type of process we consider—cost, revenue or profit functions. The core difference between a
stochastic frontier (SF) model and a “standard” regression input(s)-output model is that the stochastic
component, usually denoted by ε, is compound in SFA. Traditionally to maintain identification we
assume additive structure of ε’s sub-components; e.g., ε = v− u. Subcomponent v, which represents a
random symmetric disturbance, is usually normally distributed, though new proposals emerge in this
field (see, e.g., Tchumtchoua and Dey 2007; Griffin and Steel 2007; Wheat et al. 2019; Stead et al. 2018,
2019; Horrace and Parmeter 2018; Florens et al. 2019). Subcomponent u represents inefficiency
(latent variable), a nonnegative disturbance that results in asymmetry of the compound error ε and
can only have a decreasing effect on the observed output. Given the traditional log-linear form of
the frontier a simple transformation, r = exp(−u), produces standardized measures of efficiency
r ∈ (0, 1]. Originally inefficiency has been assumed to follow either half-normal distribution in the
normal-half-normal model (Aigner et al. 1977) or exponential distribution in the normal-exponential
model (Meeusen and Broeck 1977). Many proposals about inefficiency distribution have been made
since the introduction of SFA—see, e.g., (Griffin and Steel 2008)—and SF models can currently have a
complex structure with as many as four stochastic components (Makieła 2017). However, the traditional
normal-half-normal and normal-exponential SF models still dominate the applied research.

Efficiency estimates in SFA can vary depending on the distributional assumptions made about the
compound error structure. The two most commonly used distributions of inefficiency—exponential
and half-normal—have been reported to produce substantially different estimates; with gamma and
truncated normal producing results somewhere “between” the two; see, e.g., (Greene 2008). Since we
do not know what the prior should look like it makes even more sense to “average” our results from
different specifications in respect to u. BMA seems like a natural way to do so. Accurate inference about
inefficiency is also important from the viewpoint of public policy (in the area of energy, education,
health care, agriculture or finance, to mention some examples). Rankings of DMUs with respect to
inefficiency are often used by public regulators. Moreover, extended stochastic frontier models might
provide insights into sources of inefficiency. Proper application of BMA in SFA provides an important
contribution into development of quantitative tools supporting policy-making.

Bayesian analysis of SF models was introduced in a seminal paper of (van den Broeck et al. 1994). Despite
limitations of computational power at the time, the authors clearly stated all the related inferential
problems and managed to conduct inference using Monte Carlo–Importance Sampling (MC–IS),
including inference pooling for latent variables. Moreover, van den Broeck et al. (1994) provided careful
discussion of their prior assumptions, extended in subsequent papers e.g., (Fernández et al. 1997).
However, the actual popularity of Bayesian SFA followed the development of automated numerical
methods, e.g., Gibbs sampling; see, e.g., (Osiewalski and Steel 1998). It is perhaps a paradox that a more
widespread use of Bayesian techniques was not accompanied by equally careful usage of Bayesian
reasoning developed by van den van den Broeck et al. (1994) (Griffin and Steel 2008). Consequently,
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large part of the applied literature on Bayesian SFA is based on practical solutions that neglect the issue
of model uncertainty or its linkage to prior elicitation. Thus, the purpose of this paper is to revisit the
fundamental perspective outlined by van den Broeck et al. (1994) and to provide detailed discussion
about the role of prior specification on model averaging in Bayesian SFA, using a somewhat more
general model framework and advanced numerical methods.

Despite the contribution of van den Broeck et al. (1994), BMA/S usage in SFA has been infrequent
at best. For example, (Makieła 2014) used posterior odds but only to choose a particular model
rather than average inference across inefficiency scores. Bayes factors have also been used, e.g.,
by (Griffin and Steel 2008), or (Tsionas and Kumbhakar 2014) to test alternative specifications. Probably
the first use of BMA in Bayesian SFA on a large scale can be found in (Makieła and Osiewalski 2018),
who use this technique to find the optimal model in the sense of optimal set of explanatory variables.
Although, Makieła and Osiewalski (2018) discuss the possibility of integrating different stochastic
assumptions as regards inefficiency distribution for BMA, they stick to the normal-exponential model
throughout the empirical study. One reason is that if we want to use different SFA specifications
(in terms of inefficiency distribution) in BMA we need to be sure that we maintain prior coherence
on inefficiency, and this may be a challenging task. In particular, Makieła (2014) reports substantial
differences between the two popular normal-half-normal and normal-exponential models, some of
which are likely due to incoherent priors. So this avenue is definitely worth exploring.

Our contribution to the literature is threefold. First, we propose a modelling framework that
nests the two most commonly used SF models, that is, normal-half-normal and normal-exponential,
so that formal comparative analysis is possible and effective. Second, we take the commonly used
priors on inefficiency in the two models and review their impact on BMA in two scenarios: when prior
coherence is neglected, and when it is accounted for. Third, we propose a prior which is intuitive and
coherent, and thus allows us to effectively perform BMA across models with different distributional
assumptions about inefficiency.

Griffin and Steel (2008) have considered a framework with a generalized inefficiency distribution
and prior coherence, but without explicit consideration of sensitivity to full range of alternative priors
suggested in the literature. Furthermore, we note that our usage of BMA is nonstandard because we
apply it to average results across different distributions of inefficiency within the aforementioned model
class. Traditionally BMA is used to decide which covariates should enter the model, and thus which
variables should be selected. We do not comment on the variable selection aspect of BMA in this paper.
We feel that for SF models this has been already well addressed in (Makieła and Osiewalski 2018).

The paper is structured as follows. Section 2 discusses methodology for the comparative analysis.
Section 3 discusses results of prior and posterior analysis with respect BMA based on two datasets.
Section 4 concludes with a discussion.

2. Methodology

In order to reconsider issues of Bayesian model specification and inference pooling we make
use of some of the results in (Makieła and Mazur 2020), who have recently proposed a generalized
framework for parametric analysis of stochastic frontier (SF) models based on generalizations discussed
by (Harvey and Lange 2017). van den Broeck et al. (1994) were the first to introduce Bayesian analysis
of SF models along with an in-depth discussion of model uncertainty and inference pooling problems.
However, some of their results reflect limitations of numerical methods available at the time. In the
subsequent years, Bayesian applications of SF models had flourished following the successful use of
the Gibbs sampling scheme (with full conditionals of the standard form, including the latent variables)
as in (Koop et al. 1999, 2000). Numerical convenience of the Gibbs algorithm resulted in abundance of
empirical studies using the method, with normal-exponential and normal-half-normal models serving
as the workhorse for the applied work. However, the convenience of the Gibbs sampling approach
comes at a cost. First, as conjugate-type results are used, the priors are restricted to specific classes. As
a result, the popular normal-exponential and normal-half-normal models have been used with priors
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that reflect beliefs which are not necessarily compatible. Second, the perspective of model averaging
or inference pooling, emphasized in the original paper of van den Broeck et al. (1994), has not been
pursued further in the mainstream applied work; exceptions include, e.g., (Griffin and Steel 2007, 2008
and Makieła and Osiewalski 2018). The two problems are related, as it is well-known that the results of
Bayesian model comparison are likely to be sensitive to prior specification. Therefore, careful prior
elicitation together with prior sensitivity analysis is essential for adequate Bayesian inference pooling.

The results in (Makieła and Mazur 2020) imply that the two popular sampling models mentioned
above are indeed nested within a broader model class, based on the Generalized Error Distribution
(GED). Consequently, it is feasible to develop inference methods that do not require any particular
form of priors, and thus to reconsider the original inference-pooling approach by van den Broeck et al.
(1994). This can be now achieved based on various classes of priors that are coherent across sampling
models and consequences for model comparison can be investigated.

Consider the counterpart of Equation (1) in van den Broeck et al. (1994), which defines the basic
SF production model:

yt = h(xt; β) + vt − ut, t = 1, . . . , T (1)

with vt representing the i.i.d. error term with symmetric and unimodal probability density function (pdf
hereafter), ut being an i.i.d. latent variable, taking strictly positive values, representing the inefficiency
term. Usually yt represents the log of output while h(xt; β) denotes technology. The majority of practical
applications assume that vt follows Gaussian distribution, while ut is half-normal or exponential.
Our approach to statistical inference outlined below does not require the log transformation for yt, nor
the linear form of h(xt; β) with respect to β. However, in the empirical part of the paper we make use
of the restrictions in order to compare our results to those reported in previous studies.

Statistical inference relies on properties of the compound error term εt = vt − ut, with sampling
distribution implied by properties of pε(.), defined in the general case by the convolution of densities
for vt and ut (denoted by pv(.) and pu(.) respectively):

pε(yt − h(xt; β)) =
∫
R+

pv(yt − h(xt; β) + ut)pu(ut)du. (2)

Since u’s are treated as latent variables, the likelihood function based on (2) is sometimes referred to
as integrated likelihood (emphasizing the fact that the latent variables are “integrated out”). Although
in the general case this integral has no exact analytical solution it can be evaluated (using numerical
methods) with arbitrary precision, at any point in the parameter space. One evaluation of the integrated
likelihood requires computation of T univariate integrals, which can be parallelized easily (as the
observations are assumed to be i.i.d.). In our view nonstochastic methods of numerical integration are
sufficient for this purpose, although some fine-tuning of the numerical procedure is indeed required.

We assume that vt follows the zero-mean GED distribution (Subbotin 1923) of the form:

fGED(z; σ,ψ) =
1
σ

ψ

2Γ(1/ψ)ψ1/ψ
exp

[
−

1
ψ

(
|z|
σ

)ψ]
, (3)

where Γ(.) denotes the Gamma function, σ denotes the scale parameter and ψ controls shape, with
special cases of ψ = 2 (Gaussian) and ψ = 1 (Laplace). For ut we assume that it follows the distribution
of |Z|, i.e., half-GED: fH−GED(z; σ,ψ) = 2 fGED(z; σ,ψ)Iz>0. The same special cases induce half-normal
and exponential distributions, respectively. The GED distribution is continuous, but not differentiable
at the mode for some values of ψ (as it is “spiked” at the mode). However, the sum of a GED variable
and a half-GED variable has smoother distribution, corresponding to a generalized four-parameter
form of ‘skew GED’ (although it differs from some cases considered in the literature; see, e.g.,
(Theodossiou et al. 2020); for a recent application). Hence the integrated likelihood function implied
by (2) and (3) is regular (given the parameter space considered here). Some theoretical problems might
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occur for boundary values of parameter, though in our view they are of little practical importance for
the Bayesian inference strategy outlined below.

Crucially, we assume that the shape parameters in the distributions of vt and ut are not the same.
This is reflected below by subscripts u or v: σv, σu, ψv, ψu denoting parameters of the distribution
of ut and that of vt. We assume that ψv, ψu ≥ 1 if the parameters are not fixed. Compared to
(Griffin and Steel 2008) we assume a more general distributional form of vt, although our assumption
about ut is somewhat more restrictive. The authors assume that ut is distributed as generalized gamma
following (Stacy 1962), which implies somewhat different parametrization of the scale parameter in
their restricted case corresponding to the half-GED distribution of ut. The difference in parametrization
leads to an observationally equivalent likelihood, but it might matter for prior specification, in particular
the dependence between ψu and σu. Our parametrization in (3) relies upon the fact that σu itself is a
scale parameter (Makieła and Mazur 2020; demonstrate linkages with a more general formulation,
which may also be of interest). This also means that our interpretation of the scale parameter of ut

does not change with ψu. Hence, the two approaches differ with respect to the assumptions regarding
the prior dependence between σu and ψu. We do not state that any of the two sets of assumptions is
superior, though we indicate that the prior dependence should be somehow justified within the most
general model used.

van den Broeck et al. (1994) assume vt to be Gaussian and ut to be truncated-normal or Erlang-type
(i.e., Gamma with the shape parameter equal to 1, 2 or 3). We prefer to restrict ourselves to cases where
the distribution of ut is characterized by a strictly decreasing pdf, therefore ruling out the Erlang-2
and Erlang-3 cases, as well as the truncated-normal one with truncation below 0. For the purpose
of simplicity, we also rule out the truncated-normal case with positive truncation. It is important
to note that it is possible to modify the above setup to encompass the fully general framework of
van den Broeck et al. (1994). In this paper, however, we are motivated to remove the aforementioned
cases for a number of reasons. First, we recognize that the SFA literature involving nonmonotonic
distributions of ut is quite large; see, e.g., (Stevenson 1980; van den Broeck et al. 1994; Greene 2003;
Griffin and Steel 2004, 2008; Tsionas 2006, 2007; Hajargasht 2015) among others. Many studies find
support for nonmonotonic densities of inefficiency. Unfortunately, these studies also assume vt to be
Gaussian. It may very well be that empirical evidence found in favor of nonmonotonic distributions is
simply driven by, e.g., outliers and the restrictive assumption about vt; see, e.g., (Wheat et al. 2019;
Stead et al. 2018, 2019) for a series of discussions about outliers in SFA. Once the symmetric term is
generalized to accommodate them the need for nonmonotonic distributions of inefficiency may no
longer be supported by the data. Second, there is a more practical reason of statistical identification.
Allowing for ut with distribution that does not satisfy the aforementioned monotonicity condition
provides very limited gain in terms of overall model flexibility at the cost of potentially leading to a
likelihood that is empirically very close to nonidentification (i.e., approximately flat in certain directions).
In other words, from the viewpoint of potential statistical fit (within the parametric approach), it is
sufficient to consider flexible distributional forms for ut and vt that satisfy the conditions outlined
above. Third, we wish to concentrate on the two most widely used SF models, i.e., normal-half-normal
and normal-exponential. Both of them have a strictly decreasing distribution of inefficiency.

To sum up, we rule out the Erlang-2, Erlang-3 and truncated normal cases of van den Broeck et al.
(1994), while encompass the two essential special cases (half-normal, exponential) and introduce extra
flexibility by allowing for ψv , 2 and ψu , 1, 2. Furthermore, since it is possible for the model to
encompass the fully general framework of van den Broeck et al. (1994) our main conclusions are likely
to remain valid anyway.

Within the general structure we consider the following SF sampling models:

(i) normal-exponential, labelled NEX, with ψv = 2, ψu = 1 and statistical parameters: β, σv, σu,
(ii) normal-half-normal, NHN, with ψv = 2, ψu = 2 and statistical parameters: β, σv, σu,
(iii) normal-half-GED, NHG, with ψv = 2 and statistical parameters: β, σv, σu, ψu,
(iv) GED-half-GED, GHG, with statistical parameters β, σv, σu, ψv, ψu.
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The reader should note that the term “statistical parameters” is used throughout the paper
to distinguish parameters from latent variables as well as strictly “statistical” parameters from
“interpretable” parameters.

The GHG model (iv) nests the NHG case (iii), whereas the latter nests the NEX and NHN
specifications. For the sequence of nested sampling models it is possible to develop a coherent Bayesian
prior structure. The priors in the special cases (i)–(iii) are obtained from the prior in the general case
(iv) by adequate conditioning, which reflects the model-reducing restrictions. Moreover, we also
consider a model without inefficiency, i.e., a regression with i.i.d. GED errors, where the only statistical
parameters are β, σv and ψv.

Crucially, our setup implies that σu is a common parameter in all SF models. This allows for a
direct comparison of priors that have been proposed in the literature for the NHN and NEX models.
For each of those models it is possible to analyze prior structures used in empirical applications by
inducing the resulting prior on σu in our framework. Moreover, a prior that has been suggested for the
NEX model can be used with NHN model and vice versa. This allows us to analyze consequences of
applying “the usual” priors for model comparison.

For the purpose of Bayesian estimation of the model class we suggest an approach that relies on
a generalization of the popular Gibbs sampling. Gibbs sampling is based on the data augmentation
technique, which requires drawing all statistical parameters and the latent variables (ut). However,
it is usually required that priors are restricted to certain classes (otherwise, it is less attractive from
the computational viewpoint). As the focus here is on prior sensitivity, we suggest a direct approach
using likelihood function with latent variables integrated out (we refer to it as “integrated likelihood”
throughout the paper) based on the implied density of the compound error term. Such integrated
likelihood can be used with any prior structure in order to analyze the posterior of the statistical
parameters (marginal with respect to latent variables). Within this approach, any general Bayesian
algorithm can be applied and we make use of the Metropolis-Hastings (MH hereafter) algorithm with
Random-Walk proposal (MH-RW hereafter). Furthermore, given the results from the full Markov
Chain Monte Carlo (MCMC) chain that approximates the posterior draws of the statistical parameters
(marginal with respect to latent variables), it is possible to draw the latent variables (inefficiencies
ut). The full conditional is nonstandard (as a product of two shifted densities of truncated-GED and
half-GED form), but it is possible to develop an efficient MH algorithm to sample them. Note that,
compared to the Gibbs sampling, the approach advocated here requires more computational power
due to numerical integration, though it imposes no restrictions upon the prior structure and is likely to
display better mixing properties. The latter is due to the fact that the parameters are drawn from the
posterior distribution marginalized with respect to the latent variables. The usual Gibbs sampler used
in a typical SF model draws parameters and latent variables jointly and relies upon conditioning on
draws for all the ut’s. This results in a potentially stronger dependence in the resulting Markov chain
(making it likely that the effective sample size from a given number of MCMC repetitions decreases).

We transform all the statistical parameters into an unrestricted space (taking the implied priors
into account), which allows for a smooth operation of the MH-RW sampler. In particular, we use
σ̌ = ln σ and ψ̌ = ln(ψ − 1). We have compared the output from this algorithm to results obtained
with Gibbs sampling (for special cases where the latter is available) and found practically identical
characteristics of posterior draws of statistical parameters as well as latent variables.

The Bayesian model averaging relies upon estimation of posterior model probabilities, which
in turn require the estimates of p(y), often referred to as marginal data density. The latter quantity
is particularly difficult to estimate in a reliable manner. As our method relies upon direct use of
the integrated likelihood, we rely on the Laplace approximation of the posterior for the statistical
parameters, within the unrestricted parametrization in order to make the underlying multivariate
Gaussian approximation more adequate. Laplace approximation has the advantage that the prior
structure is explicitly taken into account. Some alternative methods like the popular variant of the
harmonic mean estimator of (Newton and Raftery 1994), depend upon priors only implicitly and
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therefore are likely to underestimate sensitivity of p(y) to changes in prior specification, which is of
essential interest here. We are aware that a more advanced method could be used to estimate p(y); see,
e.g., (Pajor 2017). However we believe that the Laplace approximation is sufficient to demonstrate the
degree of prior sensitivity.

We assume that the priors for all the model parameters are proper, with prior independence
across all the parameters. We focus on model-specific parameters, which have to follow proper priors
in order to average models in the standard way, because improper priors would result in ill-defined
Bayes factors. As for prior independence, the general structure advocated here (the GHG form) allows
us to relax this assumption. If a reasonable dependent prior is developed, the model can allow for
a coherent prior specification of the nested cases as well. Nevertheless, the idea of prior coherence
applied here assumes prior independence. As mentioned, (Griffin and Steel 2008) have considered a
model with inefficiency distribution of the generalized gamma class with prior dependence across its
parameters. We do not adapt their prior structure here, although we note that it would be a feasible
task as our approach allows for very general formulation of priors.

We assume that the priors in the general model (iv) are p(θ) = p(β)p(σv)p(σu)p(ψv)p(ψu), where
p(β) is multivariate Gaussian (with zero mean and covariance matrix 1002Ik), p(ψv) and p(ψu) are of
the same form, implying that

(
ψ(.) − 1

)
∼ G(1, 1)—consequently, we rule out ψ(.) < 1, although this

assumption might be relaxed. For p(σv), we follow the suggestion of Koop et al. (2000), who elicit a
Gamma-type prior that is assumed to mimic the traditional Jeffrey’s prior for precision in linear models
(the latter is improper, so the interpretation is of course approximate). We take the prior σ−2

v ∼ G(0.5Q,
0.5Q) with Q = 10−4 and make use of it in order to maintain comparability with the aforementioned
papers. Though we leave the task to formulate adequate prior for σv for further research, we have
checked sensitivity with respect to changes in p(σv) and found our results to be quite robust.

3. Investigation Results

3.1. Prior Analysis

Although the focus of this paper is on NEX and NHN models—as these are the most likely to be
used for BMA in practice—the other two models have two important features that we wish explore.
First, NHG nests both NHN and NEX (GHG obviously does too). This allows us to meet the prior
coherence task raised in Section 2 and see the implications different priors on σu may have. Second,
GHG further generalizes NHG with respect to v, which gives us a unique opportunity to analyze the
interplay between shape and dispersion parameters of (more generalized) distributions of u and v.
In particular, we are interested to learn, which of the two models—NEX, NHN—is more adequate
given our data. We start the investigation by first exploring the general properties of the following
priors on σu and the implications they carry for the marginal prior distribution of efficiency (r):

1. σ−1
u ∼G(1,− ln r∗) based on van den Broeck et al. (1994), which we refer to as prior 1;

2. σ−2
u ∼G

(
5, 10 ln2 r∗

)
which is based on van den Broeck et al. (1994) for a = 0 (implying a half-normal

distribution on r; see van den Broeck et al. 1994, p. 286); we refer to it as prior 2;
3. σ−2

u ∼G(0.5N, 0.5Q) following (Tsionas 2002; Tsionas and Kumbhakar 2014); we refer to it as
prior 3.

Prior 1 (suggested originally for the NEX model) and prior 2 (formulated for the NHN model),
are used widely in the applied SFA. However, within our framework σu is a common parameter and it
is possible to apply prior 1 for any model (including NHN), and the same is true for prior 2. Clearly,
one might make an attempt to pool results from NEX model with prior 1 and NHN model with prior
2. We label this strategy as ‘naïve BMA’ because under the assumption of prior independence of ψu

and σu, such prior specification is clearly incoherent. Moreover, it is not that easy to provide any
justification for such a particular form of prior dependence between ψu and σu (it would require a joint
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prior on ψu and σu of such class that conditioning upon ψu = 1 would result in prior 1 for σu, while
conditioning on ψu = 2 would lead to prior 2 for σu).

Priors 1 and 2 require us to set r*, which is interpreted as the prior median of r in NEX and NHN,
respectively. van den Broeck et al. (1994) suggest that r* should reflect the researcher’s prior beliefs
about efficiency. Makieła (2014, 2017) investigates the influence of different values of r*. Since r* is
usually set around 0.5–0.875, we use r* = 0.75 in our applications throughout the paper, which is
roughly in the middle of this interval; the impact of different r* values is also explored below. As for
prior 3, following (Tsionas 2002; Tsionas and Kumbhakar 2014) we set N = 1 and Q = 10−4. Although,
Q = 10−6 is also sometimes used, we find that the results are virtually the same for both values and
that Q = 10−4 is somewhat less informative or restrictive. Thus, only results Q = 10−4 are presented,
with a note that they remain virtually unchanged for Q = 10−6.

To complete the investigation we propose the following prior σu∼G(1, 2), which is a simple and
intuitive prior to be used on a scale parameter for an additive inefficiency-related error term within an
equation specified for logs of economic quantities (implying moderate scale of inefficiency-related
percentage changes in outcome). We refer to it as prior 0.

Figure 1 presents densities of the four priors on σu while Figure 2 and Table 1 show the resulting
marginal priors on r given models (i–iv). One can easily notice that prior 3 is very restrictive.
Its interquartile range (IQR) is extremely narrow relative to other priors while also having the highest
median (0.99) and mean (0.96–0.97). This means that prior 3 assumes very high (almost full) efficiency
with very little room for variation. Changing N or Q to any of the values known in the literature does
not have much of an influence on this result. So, from the viewpoint of prior elicitation of r, prior 3
makes little sense in SFA. Moreover, although this is a very informative prior on σu—with most of its
prior mass near zero—the distribution is still separated from it. Such separation from zero poses a
dilemma as it can be viewed as penalization (through prior) of models which assume no inefficiency.
A similar concern can be raised for prior 1 and especially for prior 2. Although they are far less
restrictive and lead to reasonable marginal priors on r, both priors on σu are well separated from zero,
which again may favor SF models over non-SF ones in BMA. On the one hand, p(σu) under prior 2 is
positioned much further away from zero than in prior 1. On the other hand, prior 1 leads to marginal
prior on r with a rather significant amount of probability mass near zero; see Figure 2. That is, the
resulting distribution of r is somewhat U-shaped, which is not necessarily a desirable feature for an
efficiency distribution.
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Figure 2. Marginal prior distribution of efficiency (r).

Table 1. Location and dispersion characteristics for marginal prior of r.

Prior 0 Prior 1 Prior 2 Prior 3

NEX NHN NHG NEX NHN NHG NEX NHN NHG NEX NHN NHG

Me 0.821 0.828 0.826 0.750 0.767 0.766 0.745 0.750 0.753 0.989 0.990 0.990
IQR 0.380 0.335 0.340 0.488 0.425 0.434 0.338 0.267 0.276 0.025 0.020 0.020
Avg. 0.723 0.745 0.741 0.640 0.661 0.659 0.698 0.729 0.725 0.963 0.968 0.967
Std. 0.272 0.245 0.250 0.318 0.302 0.305 0.226 0.178 0.189 0.098 0.088 0.092

Note: results for GED-half-GED (GHG) are identical to normal-half-GED (NHG); thus only NHG model is reported.

Both prior 1 and 2 have a hyperparameter (r*, interpreted as prior median; van den Broeck et al. 1994),
which allows the researcher to “tune” them based on particular needs. Figure 3 presents quantiles of
marginal prior of r based on prior 1 and prior 2 in NHN and NEX models. We can clearly see that prior
2 is much more restrictive for high r*. An equal shift in r* has significantly different consequences for
other quantiles of p(r) under prior 1 and 2. Thus changes in r* can have a much different impact on
p(y) and provide different BMA results than one would anticipate when looking just at r* (as prior
median shifts the same). Indeed, this is also shown in Figure 4, which depicts Bayes factors for NHN
and NEX under different r* values.

Given the above, the proposed prior 0 has several features which make it particularly appealing
in BMA. First, the implied prior median is about 0.82 which is reasonable and around the middle
of the usually assumed interval. Second, the prior on σu is not separated from zero. In fact it has
zero mode and is strictly monotonic. Third, the tail of the distribution is not that fat, which leads to
a well-behaved marginal prior on r around zero (with only small prior mass around zero). For this
reason, we use it as our baseline prior in further posterior results analysis of priors 1–3.
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3.2. Posterior Analysis

We move on with our investigation to the posterior results. Naturally to acquire those one needs
data to be fed into the models. We are interested in learning (A) how the models behave in BMA in the
likely presence of (in)efficiency under priors 0–3 and (B) how they behave in BMA under full efficiency.
For this reason we consider the following two datasets:

A. A real-life dataset, labeled A, on aggregate production from (Makieła 2014). This is a
well-researched dataset covering 27 EU Member States, USA, Japan and Switzerland in 1996–2010
(450 observations). It contains information on GDP, capital stock and labor. BMA is used here to
average results over the four models mentioned in Section 2 (i–iv) based on different priors (0–3).

B. An artificial dataset generated under the assumption of no inefficiency in the production process,
labelled B (200 observations). This allows us to explore how popular SFA models (NHN, NEX)
with different prior structures react to an “efficient” process. In this context BMA is used to
confront non-SF models with NHN and NEX, again under different prior settings.

Prior model probability—p(Mi)—is calculated throughout the paper based on a preposition in
(Osiewalski and Steel 1993). That is, a priori we promote model simplicity (or, alternatively, penalize
complexity) by making p(Mi) a decreasing function of the model size: p(Mi) ∝ 2−li , where li is the
number of model-specific parameters.

3.2.1. Results Based on Dataset A

We consider the following aggregate production process described by a translog function:

yit = β0 + β1t + β2kit + β3lit + β3k2
it + β3l2it + β3kitlit + vit − uit (4)

where y, k and l are natural logs of GDP, capital stock and labor input; i and t are country and time
indices respectively. GDP and capital stock are given in Mrd PPS (millions of Purchasing Power
Standard) in 2000 constant prices. Labor input is defined as “total number of hours worked annually” in
a given country (in thousands). All variables have been mean-corrected, which means that parameters
of the first order approximation (β2, β3) are interpreted as elasticities at the sample mean; see, e.g.,
(Makieła et al. 2017).

Although this is a panel dataset we do not introduce any country-specific effects, nor treat
inefficiency as such (i.e., inefficiency as constant over time) due to a number of reasons. First and
foremost, we wish to maintain a clear focus of this example, which is BMA and prior sensitivity in the
popular NHN and NEX models. Further complication of the stochastic structure of these models (with
panel data “add-ons”) would greatly diminish this goal. Second, though introducing random effects
as in, e.g., true random-effects (TRE) model by (Greene 2005) would be relatively easy, it would also
mean that our inference is in fact about the transient component of inefficiency; see, e.g., (Makieła 2017,
for a discussion). Third, we note that treating inefficiency as an object-specific effect is quite common
in panel data SFA; see, e.g., “Model I” in (Pitt and Lee 1981). However, we have a relatively long panel
(15 years) and it would be difficult to justify a restriction to have inefficiency constant over time. Also,
we would be making inference on “mean” inefficiency of each country in the analyzed period, which
yields somewhat different results than, e.g., the TRE model mentioned earlier. All in all, the choice of
panel data treatment in (in)efficiency analysis matters and we do not wish to get into this debate here.

Table 2 and Figure 5 summarize BMA results based on standard models computed using popular
Gibbs sampling. Discrepancies between NHN and NEX specifications have been often reported,
especially with respect to estimated inefficiencies. In the applied work it is often concluded that
although individual inefficiency scores differ between NEX and NHN models, the point estimates
are highly correlated and the ranking is similar. These differences are largely attributed to different
sampling models. However, inefficiencies are latent variables, which are likely to be sensitive to prior
specification. It is therefore not clear whether the differences are driven by priors (which in Gibbs
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sampling are unlikely to be coherent) or likelihoods (or both). A natural solution would be to address
the issue using Bayesian inference pooling—BMA. Results of a naïve BMA, i.e., straightforward BMA
under priors proposed in (van den Broeck et al. 1994 and Tsionas 2002), are reported in the last two
columns of Table 2.

Table 2. Bayesian model averaging (BMA) results based on models available via Gibbs sampling.

NEX Prior 1 NHN Prior 2 NHN Prior 3 Naive BMA: E(.|y)

E(.|y) D(.|y) E(.|y) D(.|y) E(.|y) D(.|y) ver.1 ver.2

β0 0.0553 0.0191 0.1227 0.0168 0.1016 0.0183 0.0870 0.1015
β1 −0.0018 0.0013 −0.0005 0.0013 −0.0011 0.0012 −0.0011 −0.0011
β2 0.8546 0.0128 0.8468 0.0144 0.8552 0.0133 0.8318 0.8552
β3 0.1125 0.0140 0.1186 0.0149 0.1117 0.0142 0.1130 0.1117
β4 0.0351 0.0193 0.0008 0.0231 0.0237 0.0213 0.0176 0.0237
β5 0.1014 0.0222 0.0615 0.0272 0.0874 0.0242 0.0796 0.0875
β6 −0.1132 0.0404 −0.0407 0.0494 −0.0892 0.0445 −0.0753 −0.0893
σu 0.1001 0.0131 0.2060 0.0114 0.1797 0.0140 0.1497 0.1795
σv 0.0758 0.0094 0.0384 0.0090 0.0522 0.0098 0.0558 0.0522
r 0.9474 0.0398 0.8916 0.0365 0.9129 0.0418 0.8991 0.9129

ln p(y) 247.6 247.7 253.7
1: p(M) 0.5 0.5 1
p(M|y) 0.4889 0.5111 1
2: p(M) 0.5 0.5 1
p(M|y) 0.0023 0.9977 1

Note: r indicates efficiency of an average object; label “1” refers to BMA averaging over NEX-prior 1 and NHN-prior
2; label “2” refers to BMA averaging over NEX-prior 1 and NHN-prior 3; the results are obtained using the general
approach (using Metropolis-Hastings algorithm described in Section 2). The posterior characteristics have been
verified to be practically identical with those obtained using Gibbs sampling.
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The reader should note that proper model averaging requires two things: (i) proper priors for
model-specific parameters, which is not a serious practical limitation in our view; and (ii) prior
coherence, which is somewhat more challenging. As for the latter, one can of course use incoherent
priors, but this should be made explicit and the interpretation of BMA results under incoherent prior
may be somewhat cumbersome (as we would introduce different prior beliefs). Since this paper is about
model uncertainty we require the prior coherence assumption for proper comparison of competing
sampling models. Also, the results might depend heavily upon posterior model probabilities, which
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are very sensitive to prior assumptions (even if coherence requirements are met). The naïve strategy of
model pooling does not address these issues and such subtle aspects are often neglected by practitioners,
which may have an adverse effect on the relevance of empirical conclusions. Thus, we go beyond the
naïve strategy outlined above and demonstrate a more adequate way of dealing with model uncertainty
and prior specification for BMA in SF models.

Table 3 presents results based on prior 0, which conforms to the prior coherence agenda. We see that
though the estimated technology parameters are virtually unchanged, the results for σ’s, the intercept
and (in)efficiencies are noticeably different to each other (and different to what we report in Table 2).
Most importantly, estimates of p(y) are substantially affected, and these quantities are crucial when
calculating each model’s contribution (i.e., posterior probability) in BMA.

Table 3. BMA results under prior coherence—prior 0.

NEX NHN NHG GHG BMA BMA

E(.|y) D(.|y) E(.|y) D(.|y) E(.|y) D(.|y) E(.|y) D(.|y) All

β0 0.0548 0.0191 0.1030 0.0177 0.1248 0.0207 0.1207 0.0187 0.1030 0.1161
β1 −0.0019 0.0013 −0.0011 0.0013 −0.0007 0.0013 −0.0007 0.0013 −0.0011 −0.0008
β2 0.8551 0.0128 0.8544 0.0134 0.8561 0.0146 0.8561 0.0149 0.8544 0.8555
β3 0.1120 0.0140 0.1123 0.0143 0.1103 0.0155 0.1103 0.0156 0.1123 0.1110
β4 0.0353 0.0193 0.0222 0.0207 0.0161 0.0225 0.0205 0.0234 0.0222 0.0193
β5 0.1013 0.0222 0.0859 0.0239 0.0748 0.0259 0.0796 0.0265 0.0859 0.0798
β6 −0.1133 0.0404 −0.0861 0.0436 −0.0701 0.0471 −0.0792 0.0489 −0.0861 −0.0778
σu 0.0987 0.0131 0.1808 0.0133 0.2275 0.0264 0.2252 0.0251 0.1807 0.2103
σv 0.0763 0.0094 0.0518 0.0098 0.0384 0.0128 0.0458 0.0137 0.0518 0.0448
ψu (=1) - (=2) - 3.0169 0.6258 3.0316 0.6172 1.9996 26568
ψv (=2) - (=2) - (=2) - 3.3754 1.4389 2.0000 22968
r 0.9475 0.0398 0.9120 0.0422 0.8891 0.0380 0.8926 0.0389 0.9121 0.8981

ln p(y) 247.6 255.4 256.3 256.3
1: p(M) 0.5 0.5 1
p(M|y) 0.0004 0.9996 1
2: p(M) 0.3636 0.3636 0.1818 0.0909 1
p(M|y) 0.0001 0.3570 0.4271 0.2158 1

Additionally, Tables 4–6 show results for models (i)–(iv) under coherent priors (1–3). Given
Tables 3–6, we can conclude that different priors (0–3):

• have a negligible impact on technology parameters;
• have some impact on parameters of the stochastic structure (σ’s, ψ’s), the intercept (especially for

prior 2 and NEX model) as well as latent variables (efficiencies); i.e., changes can be observed in
terms of the “average” efficiency (“av. r” in the tables) and the relative location of object-specific
efficiency-scores; however, correlations between the point estimates remain very high (often
above 0.95);

• have a considerable impact on p(y); especially noticeable differences are for prior 2 and NEX model;
• differences in prior specifications have the least effect on NHG and GHG models, which give

consistently stable results in terms of parameters, efficiencies and p(y).

To sum up, more substantial differences can be found between models (i)–(iv) under a given
coherent prior structure than within a particular (sampling) model but under different priors (0–3),
which reflects the influence of different sampling specifications. Moreover, differences in p(y) between
sampling models are not the same under each prior (0–3), which can influence the results if models
with incoherent priors are mixed in BMA, as in the naïve case. This is compelling evidence that shows
that prior coherence should not be neglected in SFA, especially if model specification uncertainty is to
be addressed. For example, if we were to take the NHN model under prior 2 and pool it with NEX
model under prior 1 we would obtain approximately equal posterior probabilities and thus equal
weights. As a result, the estimate of σu in BMA would be significantly downplayed because NEX
model favors low σu values and would carry much higher weight in BMA than it should. This is clearly
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not the result we obtain under a coherent prior structure, which indicates that NEX specification is
clearly not favored by the data.

Table 4. BMA results under prior coherence—prior 1.

NEX NHN NHG GHG BMA BMA

E(.|y) D(.|y) E(.|y) D(.|y) E(.|y) D(.|y) E(.|y) D(.|y) All

β0 0.0553 0.0187 0.1032 0.0176 0.1239 0.0221 0.1210 0.0203 0.1032 0.1157
β1 −0.0018 0.0013 −0.0011 0.0013 −0.0007 0.0013 −0.0007 0.0013 −0.0011 −0.0008
β2 0.8546 0.0124 0.8544 0.0135 0.8554 0.0150 0.8567 0.0146 0.8544 0.8553
β3 0.1125 0.0139 0.1125 0.0145 0.1111 0.0159 0.1099 0.0157 0.1125 0.1113
β4 0.0351 0.0185 0.0229 0.0211 0.0172 0.0246 0.0212 0.0234 0.0229 0.0202
β5 0.1014 0.0216 0.0871 0.0246 0.0762 0.0274 0.0810 0.0261 0.0871 0.0812
β6 −0.1132 0.0389 −0.0880 0.0446 −0.0726 0.0508 −0.0813 0.0484 −0.0880 −0.0802
σu 0.1001 0.0128 0.1816 0.0133 0.2275 0.0274 0.2259 0.0262 0.1816 0.2102
σv 0.0758 0.0091 0.0514 0.0095 0.0391 0.0139 0.0453 0.0148 0.0515 0.0450
ψu (=1) - (=2) - 3.0634 0.5942 3.0362 0.5978 1.9997 2.6663
ψv (=2) - (=2) - (=2) - 3.3397 1.4463 2.0000 2.2870
r 0.9474 0.0396 0.9115 0.0419 0.8896 0.0385 0.8924 0.0389 0.9115 0.8983

ln p(y) 247.6 255.7 256.5 256.5
1: p(M) 0.5 0.5 1
p(M|y) 0.0003 0.9997 1
2: p(M) 0.3636 0.3636 0.1818 0.0909 1
p(M|y) 0.0001 0.3677 0.4179 0.2143 1

Table 5. BMA results under prior coherence—prior 2.

NEX NHN NHG GHG BMA BMA

E(.|y) D(.|y) E(.|y) D(.|y) E(.|y) D(.|y) E(.|y) D(.|y) All

β0 0.0935 0.0154 0.1227 0.0168 0.1400 0.0181 0.1379 0.0197 0.1227 0.1385
β1 −0.0008 0.0014 −0.0005 0.0013 −0.0001 0.0013 −0.0003 0.0013 −0.0005 −0.0002
β2 0.8480 0.0131 0.8468 0.0144 0.8558 0.0166 0.8568 0.0166 0.8468 0.8565
β3 0.1173 0.0139 0.1186 0.0149 0.1093 0.0179 0.1086 0.0178 0.1186 0.1088
β4 0.0099 0.0201 0.0008 0.0231 0.0101 0.0257 0.0124 0.0266 0.0008 0.0116
β5 0.0783 0.0244 0.0615 0.0272 0.0659 0.0275 0.0683 0.0279 0.0615 0.0675
β6 −0.0649 0.0436 −0.0407 0.0494 −0.0561 0.0522 −0.0608 0.0534 −0.0407 −0.0592
σu 0.1570 0.0090 0.2060 0.0114 0.2621 0.0193 0.2581 0.0194 0.2060 0.2591
σv 0.0524 0.0064 0.0384 0.0090 0.0259 0.0126 0.0304 0.0151 0.0384 0.0290
ψu (=1) - (=2) - 3.7537 0.6158 3.6747 0.5804 2.0000 3.6911
ψv (=2) - (=2) - (=2) - 2.9550 1.4703 2.0000 26469
r 0.9237 0.0413 0.8916 0.0365 0.8710 0.0291 0.8743 0.0309 0.8916 0.8733

ln p(y) 218.8 247.7 252.5 253.9
1: p(M) 0.5 0.5 1
p(M|y) 0.0000 1 1
2: p(M) 0.3636 0.3636 0.1818 0.0909 1
p(M|y) 0.0000 0.0052 0.3174 0.6774 1

Marginal data density values—p(y)—for NHN and NEX (obtained under coherent priors) already
give us compelling evidence as to which sampling model is more accurate given the data. However,
this can also be explored based on NHG model, as NHN and NEX are both its special cases; i.e.,
restriction ψu = 2 leads to NHN and ψu = 1 leads to NEX. Based on GHG model we can also explore
the assumption of normality of v; i.e., restriction ψv = 2 leads to v being normally distributed. Figure 6
shows bivariate marginal posteriors (as heatmaps) for ψ’s and σ’s. Based on that we can conclude
the following:

• ψu and ψv are close to posterior independence;
• ψu has a more concentrated distribution than ψv;
• restriction ψu = 2 (half-normality of u) is in the tail of p(ψu|data) and there is virtually no posterior

probability around restriction ψu = 1 (u being exponential); this reiterates our results based on p(y);
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• restriction ψv = 2 (normality of v) is within a region of high posterior density of p(ψv|data);
normality of v is thus likely;

• σu and ψu are positively correlated; this is not the case for σv and ψv, which do not seem to show
any particular dependence;

• σu and σv are negatively correlated (substitutability of variances) and positioned around quite
different values.

Table 6. BMA results under prior coherence—prior 3.

NEX NHN NHG GHG BMA BMA

E(.|y) D(.|y) E(.|y) D(.|y) E(.|y) D(.|y) E(.|y) D(.|y) All

β0 0.0471 0.0280 0.1016 0.0183 0.1208 0.0237 0.1176 0.0201 0.1016 0.1117
β1 −0.0019 0.0013 −0.0011 0.0012 −0.0010 0.0013 −0.0008 0.0013 −0.0011 −0.0010
β2 0.8554 0.0133 0.8552 0.0133 0.8555 0.0149 0.8564 0.0137 0.8552 0.8555
β3 0.1118 0.0148 0.1117 0.0142 0.1111 0.0157 0.1103 0.0149 0.1117 0.1112
β4 0.0368 0.0198 0.0237 0.0213 0.0179 0.0249 0.0212 0.0222 0.0237 0.0211
β5 0.1012 0.0220 0.0874 0.0242 0.0769 0.0282 0.0815 0.0254 0.0875 0.0824
β6 −0.1152 0.0407 −0.0892 0.0445 −0.0737 0.0519 −0.0815 0.0465 −0.0893 −0.0820
σu 0.0907 0.0231 0.1797 0.0140 0.2199 0.0303 0.2173 0.0272 0.1796 0.2017
σv 0.0803 0.0136 0.0522 0.0098 0.0421 0.0137 0.0478 0.0145 0.0522 0.0476
ψu (=1) - (=2) - 2.9212 0.6239 2.8674 0.5878 1.9987 2.5061
ψv (=2) - (=2) - (=2) - 3.3447 1.4549 2.0000 2.2504
r 0.9505 0.0394 0.9129 0.0418 0.8940 0.0397 0.8963 0.0000 0.9129 0.9027

ln p(y) 247.0 253.7 254.2 254.2
1: p(M) 0.5 0.5 1
p(M|y) 0.0013 0.9987 1
2: p(M) 0.3636 0.3636 0.1818 0.0909 1
p(M|y) 0.0005 0.4386 0.3746 0.1862 1

To sum up, there is a clear evidence against the assumption that u follows exponential distribution
and even some that it is half-normal. To illustrate the observational consequences of differences
induced by shape parameters, we compare the posterior-predictive type distribution in NEX (ψu = 1)
and NHG (ψu varying freely) models. Histograms in Figure 7 represent the posterior-predictive
density of ε+ β0 in NEX and NHG (prior 0). It can be noticed that the two densities, though centered
similarly, are indeed different. In particular, highly inefficient cases are more likely within NEX
model. The assumption that v is normal, however, is not without its merit. This result is in favor of a
more traditional view in the SFA literature to generalize (in)efficiency term rather than the symmetric
distribution, even though the latter has been gaining popularity in recent years (Stead et al. 2018, 2019).
Moreover, the positive relationship between σu and ψu is interesting. It seems that there is some sort
of complementarity between scale and shape parameters of the inefficiency distribution, which is
clearly not present in the symmetric term. This finding may provide some indirect justification to prior
dependence of σu and ψu see (Griffin and Steel 2008), which could be relevant to the discussion about
prior coherence.

Following Makieła and Osiewalski (2018) we could also use BMA to consider simpler non-SF
models, where ε = v and follows normal or GED distribution. However, the natural logs of marginal
data density, p(y), for the two non-SF models are about 244.3 and 245.8 respectively. Thus, the data
clearly suggest that there is inefficiency in this macro-scale production process and these models would
be marginalized in BMA anyway.
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3.2.2. Results Based on Dataset B

One of core issues in SFA is not only to quantify (in)efficiency but also to assess if the observed
DMUs are indeed inefficient at all. In order to address this one can use the so-called Zero-Inefficiency
Stochastic Frontier models (ZISF) proposed by (Kumbhakar et al. 2013); see also (Tran and Tsionas 2016).
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This is a proper course of action if a researcher is convinced that his sample is made up of a mix
of inefficient and fully efficient DMUs. However, if there is uncertainty as regards the existence of
inefficiency in the economic process as a whole, pooling SF and non-SF models seems like a more
reasonable approach.

To investigate the impact of priors 0–3 on BMA under a “no-inefficiency” process we use an artificial
dataset. This is a natural course of action, since we can never be sure if a real-life dataset contains some
information on inefficiency. We generate two hundred observations based on a simple model:

yi = β0 + β1xi,1 + β2xi,2 + vi (5)

where [xi,1, xi,2] ∼ N2([0, 0],
[

1 0
0 1

]
), vi ∼ N(0, σv), σv = 0.2 and β′ = [0, 0.6, 0.4] (i = 1, . . . , 200).

Table 7 shows four sets of BMA results—one for each prior case (0–3)—using three models: non-SF,
NEX and NHN. For almost all cases SFA models have turned out to be a posteriori significantly less
likely, which is to be expected. Only models based on prior 3 “keep” their posterior odds in relation to
the prior. Again, this is also to be expected because, as noted in Section 3.1, prior 3 produces a very
restrictive marginal prior on r, which is “squeezed” to one (full efficiency case). So, no wonder these
SF models look competitive to the “true” non-SF specification. Furthermore, posterior distributions of
efficiency in all SF models are much more distorted than in the example from previous section and their
locations do not seem to change much in relation to the priors (especially for prior 3; compare Table 1).
This result is quite common and may be used as a simple warning signal for practitioners: if your
model is either (i) significantly less likely compared to a non-SF counterpart; or (ii) has good posterior
odds but its posterior distribution of efficiency largely replicates the prior (in terms of location and
dispersion) then it is likely that information in the data does not warrant the use of SFA specification.

Table 7. BMA results for artificial data (no inefficiency).

Real
Non-SF

Prior 0 Prior 1 Prior 2 Prior 3 BMA

val. NEX NHN NEX NHN NEX NHN NEX NHN Prior0 Prior1 Prior2 Prior3

E(.|y) E(.|y) E(.|y) E(.|y) E(.|y) E(.|y) E(.|y) E(.|y) E(.|y) E(.|y) E(.|y) E(.|y) E(.|y)
β0 0 0.000 0.045 0.092 0.090 0.118 0.187 0.209 0.024 0.020 0.020 0.020 0.000 0.011
β1 0.6 0.609 0.607 0.609 0.608 0.609 0.606 0.607 0.609 0.609 0.609 0.609 0.609 0.609
β2 0.4 0.393 0.393 0.392 0.393 0.393 0.393 0.394 0.393 0.393 0.393 0.393 0.393 0.393
σu 0.000 0.045 0.116 0.092 0.149 0.216 0.267 0.023 0.025 0.024 0.025 0.001 0.013
σv 0.2 0.202 0.194 0.186 0.183 0.180 0.148 0.145 0.199 0.200 0.199 0.198 0.202 0.201

E(r|y) 1 1 0.900 0.841 0.775 0.787 0.612 0.633 0.958 0.972 0.962 0.961 0.999 0.982
D(r|y) - - 0.120 0.121 0.129 0.113 0.093 0.084 0.073 0.047

ln p(y) 0.581 −0.533 −0.193 −1.853 −0.434 −16.026 −4.644 0.623 0.667
p(M) 0.500 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250

p(M|y) 0.717 0.118 0.165 1
p(M|y) 0.816 0.036 0.148 1
p(M|y) 0.997 0.000 0.003 1
p(M|y) 0.484 0.252 0.264 1

4. Concluding Remarks

The paper discusses Bayesian model averaging, also known as Bayesian inference pooling,
in Stochastic Frontier Analysis by making use of a generalized model structure introduced in
(Makieła and Mazur 2020). It is important to note that the use of BMA in this paper differs from
standard applications which focus on covariate selection. We apply BMA to average over competing
sampling models that differ with respect to the stochastic structure (distribution of the compound
error term). We consider the two most popular SFA specifications, namely the normal-half-normal and
normal-exponential models, and demonstrate that it is possible to nest them within GED-half-GED
specification. We show that Bayesian model comparison or averaging can be used to deal with
specification uncertainty. However, there are two important reservations. First, in order to interpret
the results of BMA as averaging over competing sampling models, it is necessary to maintain prior
coherence. Otherwise, the comparison is affected by differences in prior beliefs across models. Second,



Econometrics 2020, 8, 13 19 of 22

even if prior coherence holds, posterior model probabilities are likely to be sensitive to prior specification.
Consequently, it is necessary to verify robustness to alternative priors. We introduce a framework that
allows to consider prior coherence for most popular SFA models and show how the popular priors
used in Bayesian SFA can affect the results of BMA.

Our approach to statistical inference within the new GED-half-GED model class is based on the
use of integrated likelihood with the latent variables integrated out (using non-stochastic numerical
integration). It is computationally more demanding, especially compared to traditional specifications
suitable for Gibbs sampling, but it offers considerable advantages:

• it allows for a formal model comparison within a broad, flexible parametric class;
• it allows for an in-depth analysis of prior sensitivity, as the numerical methods used do not impose

any particular class of priors (contrary to the Gibbs sampling approach).

We indicate that the issue of prior elicitation is essential for two reasons. First, posterior model
probabilities (crucial from the viewpoint of BMA) are likely to be sensitive to priors. Second, in SFA
the quantities of interest are latent variables, which are generally less robust to changes in priors, e.g.,
compared to statistical parameters, for which dimensionality is independent of the sample size. In
particular, we show that priors on σu, which are widely used in the applied Bayesian SFA, convey very
specific (and potentially conflicting) information in certain cases, and this may affect the results of
model comparison or inference pooling. We demonstrate that the two most popular models, NHN and
NEX, when used with well-known and widely applied prior structures may produce distorted results.
We suggest an alternative prior specification that is (informally) less informative. An in-depth analysis
leads to the following conclusions about the prior on σu:

• it has virtually no impact on the technology parameters;
• it has some impact in terms of inference on the latent variables (i.e., the posterior efficiency

estimates, especially in terms of “average” posterior mean and the relative spread of posterior
means of efficiency);

• it has substantial impact on posterior model probabilities, which are crucial in BMA.

So for the technology parameters the prior on σu does not really matter much in BMA. However,
adequate BMA for latent variables (inefficiencies) requires a prior, which is not only coherent but also
well thought through.

We indicate that the problem of adequate prior specification in the general model—the GHG
model in this paper, or a more general formulation as in (Makieła and Mazur 2020)—is still an open
research problem. In our view it is reasonable to use proper priors (having the economic context
in mind), though further research might lead to some form of relaxation of the prior independence
assumption used here, e.g., along the direction proposed in (Griffin and Steel 2008).

Models considered in this study fall into the so-called Common Efficiency Distribution (CED) class.
For further research, it would be interesting to take a step further and consider prior coherence within
the so called Varying Efficiency Distribution (VED) class, which allows us to introduce inefficiency
determinants (Koop et al. 1997, 2000). Although VED is traditionally used to extend the NEX it can
be relatively easily adapted in NHN specification as well. Makieła and Mazur (2020) introduce a
VED-type extension of a generalized CED model which nests the GHG specification. In principle it is
possible to analyze prior coherence and prior sensitivity within this framework.

Panel data modelling is a large field in SFA. As noted in Section 3.2.1, the lack of panel data context
in the empirical example was to maintain a clear focus of the paper. Of course, accounting for panel
structure of the data can bring some new insights as to the nature of inefficiency distribution, especially
with regard to its transient and persistent components; see, e.g., (Tsionas and Kumbhakar 2014;
Makieła 2017). For example, fixing u as constant over time and making it a “traditional” object-specific
effect has some advantages over the pooled estimator used here (italic is used on purpose; the exact
form of a pooled estimator in panel data literature does not account for inefficiency). Inefficiency
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is estimated based on t observations, which means there are more data points based on which the
posterior is evaluated. This, in turn, may allow for a more accurate identification of the functional
form of inefficiency distribution.

Although there is a considerable research that advocates non-monotonic (in)efficiency densities,
(in)efficiency pdf’s considered in this study are monotonic. We feel this is reasonable in the presence
of a generalized symmetric error (see discussion in Section 2). The modelling framework proposed
by (Makieła and Mazur 2020), however, does not require monotonicity assumption of (in)efficiency.
Hence, this avenue can be further researched based on the methodology presented here and in
(Makieła and Mazur 2020).

Last but not least, simulation-based analyses within this framework are compelling. The SFA
literature would benefit greatly from examples based on multiple artificial datasets generated based
on data generating processes (DGPs) that assume different (in)efficiency distributions. This way
one could compare how various sampling models and prior assumptions perform under different
DGPs. Moreover, it would be also beneficial to present results based on several hundred or even
thousand realizations of a given dataset. This way one would be certain that the results are not, at least
partially, due to the idiosyncrasies of a single artificial dataset. However, given that the estimation
procedure for the SFA framework proposed by (Makieła and Mazur 2020) is still at its infancy it would
be extremely time-consuming to try such an endeavor now. Thus, we leave this for further research
when the numerical procedures are fully developed (especially in terms of taking full advantage of
parallelization) and packaged.
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