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Abstract: The serial dependence of categorical data is commonly described using Markovian models.
Such models are very flexible, but they can suffer from a huge number of parameters if the state space
or the model order becomes large. To address the problem of a large number of model parameters,
the class of (new) discrete autoregressive moving-average (NDARMA) models has been proposed as a
parsimonious alternative to Markov models. However, NDARMA models do not allow any negative
model parameters, which might be a severe drawback in practical applications. In particular, this model
class cannot capture any negative serial correlation. For the special case of binary data, we propose
an extension of the NDARMA model class that allows for negative model parameters, and, hence,
autocorrelations leading to the considerably larger and more flexible model class of generalized binary
ARMA (gbARMA) processes. We provide stationary conditions, give the stationary solution, and derive
stochastic properties of gbARMA processes. For the purely autoregressive case, classical Yule–Walker
equations hold that facilitate parameter estimation of gbAR models. Yule–Walker type equations are also
derived for gbARMA processes.

Keywords: binary time series; autoregressive-moving average; autocovariance structure; Yule–Walker
equations; stationarity

1. Introduction

Categorical time series data are collected in many fields of applications and the statistical research
focusing on such data structures evolved considerably over the last years. As an important special case,
binary time series that correspond to categorical data with two categories, occur in many different contexts.
Often, binary time series are obtained from binarization of observed real-valued data. Such processes are
considered, e.g., in Kedem and Fokianos (2002). In Figure 1, we show three real data examples of binary
time series from different fields of research. For example, in Figure 1a, the eruption duration of the Old
Faithful Geyser in the Yellowstone National Park is binarized using a threshold. It is coded with a value
of one if an eruption lasts for longer than three minutes and zero if it is shorter. In economics, the two
states of recessions and economic growth are of interest, as discussed, e.g., in Bellégo (2009). One example
of a recession/no-recession time series is shown in Figure 1b, where for every quarter it is shown if Italy
is in a recession, indicated by zero, or not, indicated by one. Recently, there is great interest in the air
pollution in European cities, where an exceedance of the threshold of 50 µg/m3 PM10 (fine dust) causes a
fine dust alarm. The resulting sequence of states of no exceedance corresponding to zero and exceedance
corresponding to one is shown in Figure 1c. Further examples can be found, e.g., in geography, where
sequences with the two states of dry and wet days are considered, e.g., in Buishand (1978). In biomedical
studies, binary time series occur in the case, where the participants keep daily diaries of their disease.
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For example, in clinical trials, as in Fitzmaurice et al. (1995), the binary self assessment of participants of
their arthritis is collected, where poor is indicated by zero and good by one. In natural language processing,
the occurrence of vowels as a sequence can be of interest, as considered in Weiß (2009b), where a text is
binarized by detecting a consonant or no consonant/vowel as the two states. The binarization of a time
series by a threshold, as, e.g., in the PM10 example, or by categorizing the time series into two states, as,
e.g., in dry and wet days, indeed simplifies the real valued time series to a binary version. As mentioned
in Kedem (1980), nevertheless, the transformation keeps the random mechanism from which the data are
generated. For the example of PM10 data, it might often be of more interest, whether a certain threshold
is crossed (or not) instead of the actual amount. In general, the rhythm within the binarized time series
contains a great amount of information of the original data.

(a)

(b)

(c)

Figure 1. Three real data examples of binary time series: (a) binarized eruption duration of the Old Faithful
Geyser over 299 eruptions; (b) quarterly detected binarized recession/no-recession time series of Italy
from Quarter 1 in 1960 to Quarter 1 in 2017 (229 time points); and (c) binarized fine dust (PM10) data from
Stuttgart, Germany recorded daily from 3 March 2016 to 31 July 2018 over 881 days.

As discussed in Kedem (1980), binary Markov chains are typically used for modelling the dependence
structure due to their great flexibility. However, the number of parameters to estimate from the data
grows exponentially with the order of the Markov model leading to over-parametrization (see, e.g.,
McKenzie (2003)).

To avoid the estimation of a large number of parameters, Jacobs and Lewis (1983) proposed the class
of (new) discrete autoregressive moving-average (NDARMA) models for categorical time series. More
precisely, for processes with discrete and finite state space, a parsimonious model is suggested. The idea is
to choose the current value for Xt randomly either from the past values of the time series Xt−1, . . . , Xt−p or
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from one of the innovations et, et−1, . . . , et−q with certain probabilities, respectively. This random selection
mechanism is described by independent and identically distributed (i.i.d) random vectors (Pt, t ∈ Z) with

Pt :=
[

a(1)t , . . . , a(p)
t , b(0)t , . . . , b(q)t

]
∼ Mult (1; P) ,

where Mult (1; P) denotes the multinomial distribution with parameter 1 and probability vector P :=[
α(1), . . . , α(p), β(0), . . . , β(q)

]
with α(1), . . . , α(p) ∈ [0, 1), β(0) ∈ (0, 1] and β(1), . . . , β(q) ∈ [0, 1) such that

∑
p
i=1 α(i) + ∑

q
j=0 β(j) = 1. Then, the NDARMA(p,q) model equation is given by

Xt =
p

∑
i=1

a(i)t Xt−i +
q

∑
j=0

b(j)
t et−j, t ∈ Z, (1)

where (et)t∈Z is an i.i.d. process taking values in a discrete and finite state space S . Since for each time
point t only one entry in the random vector Pt is realized to be one while all others become zero, the
value of Xt takes either one of the values of Xs for s ∈ {t− 1, . . . , t− p} or one of the error terms es for
s ∈ {t, . . . , t− q}. This sampling mechanism assures that the time series takes values in the state space
S , such that, e.g., for a binary time series with S = {0, 1}, the process stays binary. In contrast to the
real-valued ARMA model, the lagged time series values and errors are not weighted according to the
model coefficients and summed-up since only one of them is actually multiplied with one and all the
others with zero based on the realization of Pt.

The model parameters are the probabilities of the multinomial distribution, summarized in the
parameter vector P, where all entries of P lie in the unit interval and sum-up to one. In comparison to
Markov Chains, NDARMA models maintain the nice interpretable ARMA-type structure and have
a parsimonious parameterization. Furthermore, NDARMA models fulfill certain Yule–Walker-type
equations, as shown in Weiß and Göb (2008).

In Figure 2, one realization of an NDARMA(1,0) process, denoted by NDAR(1),

Xt = atXt−1 + btet, [at, bt] ∼ Mult (1; α, β) , β = 1− α (2)

with binary state space is shown. NDAR(1) models are probably the simplest members of the NDARMA
class, but Figure 2 nicely illustrates the limited flexibility of the whole NDARMA class. The sampling
mechanism of choosing the predecessor with some probability α tends to generate long runs of the same
value in particular when the parameter α ∈ (0, 1) is large. A switching from one state to the other, e.g., from
Xt−1 = 0 to Xt = 1, can only occur, e.g., if the error term et is selected (with probability 1− α) and the
error term takes the value et = 1. Hence, the NDARMA class does not allow systematically selecting the
opposite value of Xt−1 for Xt.

Figure 2. Realization of an NDAR(1) process (Equation (2)) with parameter vector P = [0.7, 0.3] and error
distribution P (et = 1) = 0.5 and corresponding autocorrelation function (ACF).
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As for the NDARMA class all model parameters are restricted to be non-negative, which explains
in particular why the NDARMA class can model exclusively non-negative autocorrelations in the data.
For the example of a NDAR(1) process, the autocorrelation at lag one is equal to α ∈ [0, 1), such that any
alternating pattern that corresponds to negative model parameters as, e.g., observed in Figure 1a, cannot
be captured. For a more detailed discussion of the properties of NDARMA models, we refer also to Jacobs
and Lewis (1983) or Weiß (2009a). To increase its flexibility, Gouveia et al. (2018) proposed an extension
of the NDARMA model class by using a variation function, but the resulting models do also not allow
for negative model parameters and, hence, no negative dependence structure. Hence, whenever negative
dependence structure is present in binary time series data, the NDARMA model is not suitable. In fact, in
all three data examples of Figure 1, a straightforward estimation based on Yule–Walker estimators leads to
at least some negative coefficients, such that NDAR models turn out to be not applicable.

To address this lacking flexibility of the NDARMA model class, we propose a simple and
straightforward extension of the original idea of Jacobs and Lewis (1983) that allows also negative
serial dependence. The resulting generalized binary ARMA (gbARMA) model class maintains the
nicely interpretable model structure. Furthermore, no additional parameters are required to handle
the negative dependence, preserving the parsimonious parameterization as well. In Figure 3, a realization
of a gbARMA(1,0) process, denoted as gbAR(1), is shown. As a straightforward extension of an NDAR(1)
model in Figure 2, gbAR(1) models allow for negative serial dependence. In fact, the range of the
autocorrelation at lag one is extended from [0, 1) for NDAR(1) to (−1, 1) for gbAR(1) models.

Figure 3. Realization of a gbAR(1) process (Equation (4)) with parameter vector P = [−0.7, 0.3] and error
distribution P (et = 1) = 0.5 and the corresponding autocorrelation function (ACF).

To allow for negative autocorrelation up to some limited extend, Kanter (1975) proposed the binary
ARMA model class, where he applied the modulo 2 operator in an ARMA-type model equation. Using the
modulo operation assures to stay in the binary state space, but the nice interpretability of the dependence
structure in the model is lost since the past values of the time series are summed up prior to the modulo
operation, see also McKenzie (1981). We follow a different path in this paper and propose a much simpler
operation that enables modeling a systematic change of the state from one time point to the other.

The idea of allowing for negative serial dependence resulting in the gbARMA class is as follows:
a negative model parameter α ∈ (−1, 0) (and hence a negative autocorrelation α ∈ (−1, 0)) in binary
time series data corresponds to the time series systematically changing from one state to the other over
time. Hence, the natural idea to incorporate negative serial dependence in the binary NDAR(1) Model
(Equation (2)) is to replace Xt−1 by 1− Xt−1 as

(1− Xt−1) =

{
1 for Xt−1 = 0

0 for Xt−1 = 1
(3)
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holds. This leads to the model equation

Xt = at (1− Xt−1) + btet, [at, bt] ∼ Mult (1; |α|, β) .

This process has negative autocorrelation α at lag one. Note that, in comparison to Equation (2), as
α ∈ (−1, 0) here, we have to use its absolute value |α| as the probability to select the 1− Xt−1. Altogether,
for α ∈ (−1, 1), we can define the generalized binary AR(1) (gbAR(1)) process by the model equation

Xt =

{
atXt−1 + btet, [at, bt] ∼ Mult (1; α, β) , α ∈ [0, 1)

at (1− Xt−1) + btet, [at, bt] ∼ Mult (1; |α|, β) , α ∈ (−1, 0)
. (4)

Note that Equation (4) extends the parameter space from α ∈ [0, 1) for NDAR(1) models to α ∈ (−1, 1) for
gbAR(1) models. Further, note that, for identification of the model, we have to assume β(0) = β ∈ (0, 1].
Using indicator variables, Equation (4) can be compactly written as

Xt = at

(
1{α≥0}Xt−1 + 1{α<0} (1− Xt−1)

)
+ btet (5)

=
[

a(+)
t Xt−1 + a(−)t

]
+ btet (6)

with [at, bt] ∼ Mult (1; |α|, β), β = 1− |α|, a(+)
t := at

(
1{α≥0} − 1{α<0}

)
and a(−)t := at1{α<0}.

In Figure 3, a realization of a gbAR(1) process with negative parameter α = −0.7 is shown, where
the time series tends to take systematically the opposite state of the predecessor. The corresponding
autocorrelation plot reflects the negative serial dependence leading to an alternating pattern. Runs of the
same state can only occur, when the error term et is selected (with probability 1− |α|) and the error term et

takes the same value as Xt−1, that is, et = Xt−1. The empirical autocorrelations for the Old Faithful Geyser
data can be found in Figure 4a, where the pronounced alternating behavior clearly indicates negative
linear dependence to be present in the data.

The idea of allowing for a negative model coefficient by replacing Xt−1 by 1 − Xt−1 in gbAR(1)
processes (Equation (5)) can be also employed for each parameter in pth order gbAR processes, where
each Xt−i, i = 1, . . . , p may be replaced by 1− Xt−i in the model equation.

The paper is organized as follows. In Section 2, generalized binary AR processes of order p ∈ N are
defined, where we also give stationarity conditions and state the stationary solution. Further, stochastic
properties are derived that include formulas for the transition probabilities, the marginal distribution,
and Yule–Walker equations. As a real data example, we illustrate the applicability of our model class
to the geyser eruption data in Section 1. In Section 3, we present several simulation experiments. First,
in Section 3.1, for the example of a gbAR(2) model, we illustrate the generality of the resulting gbAR
model class in comparison to natural competitors including AR, NDAR, and Markov models of order two,
respectively. In Section 3.2, we examine the estimation performance of Yule–Walker estimators in the gbAR
models in Section 3.2.1. In Section 3.2.2, we investigate the benefit of using the parsimonious gbAR models
in comparison to Markov models and their robustness in cases where the model is mis-specified. By adding
a moving-average part to gbAR models in Section 4, ARMA-type extensions of gbAR models leading to
gbARMA processes are discussed. We conclude in Section 5. All proofs are deferred to Appendix A.

2. The Generalized Binary Autoregressive (gbAR) Model Class

We define now generalized binary AR(p) (gbAR(p)) models for binary data based on the notation
of NDAR(p) models by adopting the idea of replacing Xt−1 by 1− Xt−1 for a negative parameter α as in
Equations (5) and (6) separately for all or some of the lagged values Xt−1, . . . , Xt−p. To be most flexible,
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each parameter α(i) corresponding to the lagged value Xt−i, i = 1, . . . , p is allowed to be either positive or
negative, that is, α(i) ∈ (−1, 1), respectively.

2.1. gbAR Models

The parameter vector P :=
[
α(1), . . . , α(p), β(0)

]
contains the probabilities of the multinomial

distribution that controls the selection mechanism of NDAR models. As we allow now for α(i) ∈ (−1, 1),
i = 1, . . . , p, i.e., the parameters can be negative, P has to be modified to serve again as a parameter vector
of probabilities. This is achieved by taking entry-wise absolute values and we define

P|·| :=
[
|α(1)|, . . . , |α(p)|, β(0)

]
, (7)

where β(0) ∈ (0, 1] such that ∑
p
i=1 |α

(i)|+ β(0) = 1. This enables us to give the definition of the generalized
binary AR model of arbitrary order p ∈ N.

Definition 1 (Generalized binary AR processes). Let (Xt)t∈Z be a stationary process taking values in {0, 1}.
Let (et)t∈Z be a binary error process such that et is independent of (Xs)s<t with mean µe = E(et) = P(et = 1) and

variance σ2
e = Var(et) = P(et = 1)(1− P(et = 1)) > 0. Let P :=

[
α(1), . . . , α(p), β(0)

]
be the parameter vector

with P|·| as in Equation (7) such that P|·|1p+1 = 1 with 1p+1 the one vector of length p + 1. Further, let

Pt :=
(

a(1)t , . . . , a(p)
t , b(0)t

)
∼ Mult

(
1; P|·|

)
, t ∈ Z,

be iid random vectors, which are independent of (et)t∈Z and (Xt)s<t. Then, the process (Xt)t∈Z is said to be a
generalized binary AR process of order p (gbAR(p)), if it follows the recursion

Xt =
p

∑
i=1

[
a(+,i)

t Xt−i + a(−,i)
t

]
+ b(0)t et (8)

with a(+,i)
t := a(i)t

(
1{α(i)≥0} − 1{α(i)<0}

)
and a(−,i)

t := a(i)t 1{α(i)<0} for i = 1, . . . , p.

By rewriting the random variables a(·,i)t , · ∈ {−,+} in the defining model (Equation (8)), the model
can be represented in the spirit of Equation (5). However, the benefit of the representation in Equation (8)
is that only one random variable is multiplied with the lagged value Xt−i, whereas a(−,i)

t is an additional
random variable that accounts for the switching that leads to negative model coefficients.

2.2. Stochastic Properties of gbAR Models

Before calculating moments of the binary time series process (Xt)t∈Z itself, we first consider the
expectation of the random variables related to the multinomial selection mechanism. Noting that E(a(i)t ) =

|α(i)|, we have

E
(

a(−,i)
t

)
= |α(i)|1{α(i)<0} =: α(−,i),

E
(

a(+,i)
t

)
= α(i).
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This enables us to compute the stationary mean µX = E(Xt) of the process, directly leading to

µX =
∑

p
i=1 α(−,i) + β(0)µe

1−∑
p
i=1 α(i)

. (9)

If all parameters α(1), . . . , α(p) are non-negative, the above formula becomes µX = µe due to ∑
p
i=1 α(−,i) = 0

and 1− ∑
p
i=1 α(i) = β(0), leading then to the well-known formula for the mean of NDAR(p) models.

Otherwise, we have µX 6= µe for gbAR(p) models in contrast to NDAR(p) models (see, e.g., Weiß (2009a)).
For the familiar stationary condition imposed on the model parameters α(1), . . . , α(p) that all roots of

the characteristic polynomial lie outside the unit circle, i.e., if(
1− α(1)z− . . .− α(p)zp

)
6= 0 ∀z ≤ 1 (10)

holds, the stationary solution of the gbAR(p) model can be derived. Note that the condition in (10) is
equivalent to ∑

p
i=1 |α

(i)| < 1, such that the error has to be selected with strictly positive probability β(0) > 0
by the multinomial distribution. If the stationarity condition in Equation (10) holds, a moving-average
representation of the gbAR(p) process can be derived.

For constructing the stationary solution of the gbAR time series, we follow the common approach
based on a multivariate representation of the model, as in (Lütkepohl 2005, Chap. 11.3.2). Precisely, the
gbAR(p) model can be written as a p-dimensional gbVAR(1) process (Yt, t ∈ Z) with the following matrices
and vectors, such that the first entry of (Yt, t ∈ Z) is equal to the gbAR(p) process. We define

Yt :=

 Xt
...

Xt−p+1

 (p× 1) and Ut :=


et

0
...
0

 (p× 1) .

To obtain a vector autoregressive representation for Yt, we have to define several matrices that contain the
random variables of the multinomial distribution. Precisely, for · = {−,+}, let

Ã(·)
t :=


a(·,1)t . . . a(·,p−1)

t a(·,p)t
1 0 0

. . .
...

0 . . . 1 0

 and B̃(1)
t :=

(
b(0)t 0 . . . 0

0p−1×1 0p−1×1 . . . 0p−1×1

)

be p × p matrices, where 0r×s denotes the (r × s)-dimensional zero matrix. Based on the notation
introduced above, gbVAR(p) processes can be represented as a vector-valued gbAR model of first order
(gbVAR(1)) as follows

Yt = Ã(+)
t Yt−1 + Ã(−)

t 1p + B̃(1)
t Ut, (11)

where 1p is the one vector of length p. The above notation enables us to state a moving-average
representation of gbAR(p) processes as follows.
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Theorem 1 (Moving-average representation of gbAR processes). Let (Xt)t∈Z be a stationary gbAR(p) process,
that is (Xt)t∈Z fulfills Equation (10). Then, we have

(i) For p = 1, the gbAR(1) model has a gbMA(∞)-type representation (in L2-sense), that is,

Xt =
∞

∑
i=0

ζia
(−)
t−i +

∞

∑
i=0

ζib
(0)
t−iet−i, t ∈ Z, (12)

where ζ0 := IK and ζi := ∏i−1
j=0 a(+)

t−j since limk→∞ ∏k−1
i=0 a(+)

t−i = 0 in L2.
(ii) For p ∈ N, the gbAR(p) model has a gbMA(∞)-type representation (in L1-sense), that is,

Xt = eT
1

(
∞

∑
i=0

i−1

∏
j=0

Ã(+)
t−j Ã(−)

t−i 1p +
∞

∑
i=0

i−1

∏
j=0

Ã(+)
t−j B̃(1)

t−iUt−i

)
, t ∈ Z, (13)

since limk→∞ ∏k
i=0 Ã(+)

t−i = 0p×p in L1. Here, e1 is the first unit vector and 1p is the one vector of length p.
The notation used here is obtained from that used in Section 4.2 for the special case of q = 0.

Hence, the process can be represented as an infinite weighted sum of the error terms. However, in
comparison to classical AR or NDAR processes, an additional term appears that takes control of potential
negative parameters and, consequently, allows for negative dependence to be modeled. This term vanishes
if all parameters α1, . . . , αp are positive.

The second-order dependence structure of gbAR processes coincides with that of AR or NDAR
processes in the sense that the same Yule–Walker equations for h 6= 0 hold. However, note again that the
parameter space for gbAR models is considerably larger than for NDAR models allowing for negative
parameters leading to more flexibility. The Yule–Walker equations link the model parameters to the
autocovariances of the process. Hence, they can be used for estimating the model parameters by the same
well-known Yule–Walker estimators. A link between the autocovariances, the model coefficients, and the
mean and variance of the error terms is established by the Yule–Walker equation for h = 0, respectively.

Theorem 2 (Yule Walker Equations). Let (Xt)t∈Z be a stationary gbAR(p) process.

(i) For all h ∈ N, we have

γ (h) =
p

∑
i=1

α(i)γ (|h− i|) . (14)

(ii) For h = 0, we have

γ (0) = σ2
e +

(1− 2µX)∑
p
i=1 α(−,i) +

(
∑

p
i=1 |α

(i)| − 1
)

µ2
X + β(0)µ2

e(
1−∑

p
i=1 |α(i)|

) . (15)

The next Lemma states some basic properties of the marginal distribution of gbAR processes and
their transition probabilities. Since the time series has a binary state space, these conditional probabilities
allow quantifying the probability to reach a certain state from the past values. In their derivation, the
multinomial selection mechanism plays a crucial role and, in the stated formulas, the Kronecker delta δij
indicates if a past value has actually impact on the outcome of the time series or not.
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Lemma 1 (Marginal, joint and transition probabilities of gbAR processes). Let (Xt)t∈Z be a stationary
gbAR(p) model and set pi := P (et = i). Then, the following properties hold:

(i) P (Xt = i0|Xt−1 = i1, . . . , et = j0)

= ∑
p
l=1 |α

(l)|
[
1{α(l)≥0}δi0il + 1{α(l)<0}δi0(1−il)

]
+ β(0)δi0 j0

(ii) P (Xt = i0|Xt−1 = i1, . . .)

= ∑
p
l=1 |α

(l)|
[
1{α(l)≥0}δi0il + 1{α(l)<0}δi0(1−il)

]
+ β(0)pi0

(iii) P (Xt = j) = β(0)

(1−∑
p
i=1 α(i))

pj +
∑

p
i=1 |α

(i) |1
{α(i)<0}

(1−[∑p
i=1 α(i)])

(iv) P (Xt = i0, et = j0) = β(0)δi0 j0 + ∑
p
i=1 |α

(i)|1{α(i)<0}

1− pj0 +
pj0

1−∑
p
i=1 |α(i) |

[
1
{α(i)≥0}

−1
{α(i)<0}

]


Comparing the results in Lemma 1 with (Weiß 2009a, Lemma 11.2.1.3) established for NDARMA(p,q)
processes, the main difference is in Part (iii). The marginal distribution of the NDARMA process is equal
to the marginal distribution of the error term process, but this does not hold for gbAR processes. Instead,
the marginal distribution of gbAR processes depends on an additional term that results from the absolute
values of the negative parameters.

In the following example, let us conclude this section with a more detailed look at the gbAR(1) model
and a real data example.

Example 1 (gbAR(1) process). Let (Xt, t ∈ Z) be a gbAR(1) process with parameter vector P :=
[
α(1), β(0)

]
,

α(1) ∈ (−1, 1) and β(0) = 1− |α(1)|. The iid error term process (et, t ∈ Z) follows the distribution P (et = 1) =
p1 ∈ (0, 1) such that µe = p1 and σ2

e = p1(1− p1) > 0. Then, the model equation equals

Xt = a(1)t

[
1{α(1)≥0}Xt−1 + 1{α(1)<0} (1− Xt−1)

]
+ b(0)t et,[

a(1)t , b(0)t

]
∼ Mult

(
1;
[
|α(1)|, β(0)

])
.

At each time point t, if α(1) ≥ 0, either the predecessor Xt−1 with probability α(1) or the error term et with probability
β(0) is selected by a multinomial distributed random variable to determine Xt. In the case of α(1) < 0, either 1−Xt−1

with probability |α(1)| or the error term et with probability β(0) is selected. That is, as for each t, either at or bt is
equal to one and the other is zero, it holds

Xt =


Xt−1 if a(1)t = 1 for α(1) ≥ 0

1− Xt−1 if a(1)t = 1 for α(1) < 0

et if b(0)t = 1

.

For positive values of α(1), the gbAR(1) model coincides with the NDAR(1) model. A corresponding realization is
shown in Figure 2, where for large values of α(1) mainly the predecessor Xt−1 is chosen and long runs of the same
value occur. Figure 3 shows one realization of a gbAR(1) process with negative value of α(1). The time series switches
its states from zero to one and vice versa at most time points.

The transition probability to move from state i1 at time t− 1 to state i0 at time t is given by

P (Xt = i0|Xt−1 = i1) = |α(1)|
[
1{α(1)≥0}δi0i1 + 1{α(1)<0}δi0(1−i1)

]
+
(

1− |α(1)|
)

pi0 . (16)



Econometrics 2019, 7, 47 10 of 26

The probability of the process taking the value i0 = 1 depends on two terms. First, the probability of choosing the
error term is multiplied by the probability of the error term taking the same value as Xt, e.g., P (et = i0) = pi0 with
i0 = 1. If the probability of choosing the predecessor is added, it depends on its value and the sign of α. If, for example
α < 0, then the probability of choosing Xt−1 is just added if its value is the contrary of i0, such that the Kronecker
delta is equal to one. This leads to the representation of Equation (16) as

P (Xt = i0|Xt−1 = i1) =

|α
(1)|δi0i1 +

(
1− |α(1)|

)
pi0 if α ≥ 0

|α(1)|δi0(1−i1) +
(

1− |α(1)|
)

pi0 if α < 0
.

Example 2 (Eruption duration of the Old Faithful Geyser). The binarized eruption duration of the Old Faithful
Geyser is illustrated in Figure 1a. Its empirical autocorrelation, as shown in Figure 4a, clearly indicates that there
is negative serial dependence present in the data such that a gbAR(p) process appears to be appropriate. The order
selection using the AIC criterion leads to a model of order p = 2 with AIC = 159.83. This selection is confirmed
by an inspection of the partial autocorrelation in Figure 4b. Parameter estimation is based on the Yule–Walker
Equation (14) leading to the estimated parameter vector P̂ = [−0.3949, 0.2659, 0.3393] and the fitted model

Xt =
2

∑
i=1

[
a(+,i)

t Xt−i + a(−,i)
t

]
+ b(0)t et,

Pt ∼ Mult (1; [| − 0.3949|, 0.2659, 0.3393]) .

The sample mean of the binary time series is equal to µ̂X = 0.6488 since long eruptions of the geyser arise more
often than short eruption duration. The first parameter α̂1 is indeed estimated to be negative and the second one α̂2

to be positive. From β̂(0) = 1−∑2
i=1 |α̂(i)|, an error term is chosen with probability β̂(0) = 0.3393. In Figure 1a,

a change from zero to one or vice versa can be observed in many time steps, whereas the run of ones in the time series
correspond in most cases to choosing an error term. The error term distribution is calculated by Equation (9) with
µ̂e = P (et = 1) = 0.9953.

(a) ACF (b) pACF

Figure 4. Autocorrelation (ACF) and partial autocorrelation (pACF) of the Old Faithful Geyser data

To measure the predictive power of the estimated model, we use ROC curves and the corresponding area under
the curve (AUC). The ROC concept indicates a good predictive performance whenever the resulting curve is “far
away” above the diagonal leading to an AUC larger than 0.5. Note that the diagonal corresponds to the case of
independent observations, where no prediction based on past values is meaningful. For the one step ahead prediction,
the transition probability of Lemma 1 (ii) is used by plugging in the estimated probabilities.

Comparing the predictor to the realized values in the sample leads to the ROC curve shown in Figure 5, where
the corresponding AUC becomes 0.8317. Hence, as the ROC curve is “far away” above the diagonal and the AUC
is larger than 0.5, the prediction performance of the gbAR model turns out to be considerably better than that of a
model that relies on independent observations. By allowing for negative model parameters, gbAR models appear to be
suitable for this real data example that shows negative serial dependence.
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Figure 5. ROC curves based on Yule–Walker estimation (black) and MLE (red) of a gbAR(2) model fitted to
the binarized Old Faithful Geyser eruption duration leading to an AUC = 0.8317 in both cases.

For further improvement, the Yule–Walker estimates might serve as starting values for a maximum likelihood
estimation (MLE) based on the conditional log-likelihood function

`
(
θ|xp, . . . , x1

)
=

T

∑
t=p+1

log p
(
xt|xt−1, . . . , xt−p

)
, (17)

where p
(

xt|xt−1, . . . , xt−p
)

:= P
(
Xt = xt|Xt−1 = xt−1, . . . , Xt−p = xt−p

)
(see also (Weiß 2018, (B.6))).

However, the resulting parameter estimates P̂MLE = [−0.3935, 0.2711, 0.3353] differ only slightly from the
Yule–Walker estimates P̂ = [−0.3949, 0.2659, 0.3393], leading to virtually the same ROC and AUC.

To shed some light on the potential improvement of MLE in comparison to Yule–Walker estimation, we fit a
gbAR(2) model to subsamples of length T = 50, 100, 150, 200, 250 of the binarized Old Faithful Geyser data. The
parameter estimates for Yule–Walker estimates and MLE are shown in Table 1. The results differ only slightly and
decrease with increasing subsample sizes.
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Table 1. Comparison of (a) Yule–Walker and (b) MLE parameter estimates based on subsamples of length
T = 50, 100, 150, 200, 250 of the binarized Old Faithful Geyser data.

(a) Yule–Walker

T α̂(1) α̂(2) β̂(0)

50 −0.5819 0.1444 0.2738
100 −0.4610 0.2675 0.2715
150 −0.3748 0.3382 0.2871
200 −0.3738 0.3440 0.2822
250 −0.4048 0.2625 0.3328
299 −0.3949 0.2659 0.3393

(b) MLE

T α̂(1) α̂(2) β̂(0)

50 −0.5556 0.1812 0.2632
100 −0.4546 0.2822 0.2632
150 −0.3658 0.3511 0.2830
200 −0.3706 0.3514 0.2780
250 −0.4004 0.2723 0.3259
299 −0.3935 0.2711 0.3353

3. Generality of the gbAR Model Class and Estimation Performance

In this section, we investigate the generality of the gbAR model class in comparison to obvious
competitors in Section 3.1 and address the estimation performance in different setups and in comparison
to parameter-intensive Markovian models in Section 3.2.

3.1. Illustration of the Generality of gbAR Models

By construction of the gbAR model and in contrast to NDAR models, negative parameters α(i) ∈
(−1, 1) , i = 1, . . . , p are allowed such that negative autocorrelation is possible. Hence, the proposed gbAR
model class clearly generalizes the NDAR model class. In this section, we aim to shed some light on the
question how much more general the gbAR model actually is in comparison to other AR-type models such
as AR, NDAR, and binAR models, as well as Markov models. For this purpose, we consider such models
of order p = 2 and study their generality. That is, we compare the parameter ranges of these four model
classes as well as the possible ranges of pairs of autocorrelation (ρ (1) , ρ (2)). Precisely, we compare the
flexibility of gbAR(2), NDAR(2), binAR(2), and AR(2) processes (even if they model continuous data) and
second-order Markov chains. For all four autoregressive-type models, the autocorrelations depend on the
model parameters as follows

ρ (1) =
(1− 2µ)α(1)

1− (1− 2µ)α(2)
,

ρ (2) = (1− 2µ)
(1− 2µ)(α(1))2

1− (1− 2µ)α(2)
+ (1− 2µ)α(2).

For the gbAR(2), AR(2), and NDAR(2) processes, it holds µ = 0.
For a stationary AR(2) process, the range of possible coefficients is restricted to α(1) ∈ (−2, 2) and

α(2) ∈ [−1, 1] such that α(1) + α(2) < 1 and α(2) − α(1) < 1. For a stationary NDAR(2) and binAR(2)
process, the parameter range is restricted by α(1), α(2) ∈ [0, 1] with α(1) + α(2) < 1 and in the binAR(2)
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process P (et = 1) = µ ∈ (0, 1) (for further details, see Weiß (2009b)). For a gbAR(2) model, the restrictions
read |α(1)|+ |α(2)| < 1 with α(1), α(2) ∈ (−1, 1).

The parameter ranges of AR, NDAR, binAR and gbAR models of order two, respectively, are
illustrated and compared in Figure 6a and the corresponding range of pairs of autocorrelations (ρ (1) , ρ (2))
is shown in Figure 6b.
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(a) Parameter ranges
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(b) Pairs of Autocorrelations

Figure 6. Comparison of (a) parameter ranges of (α(1), α(2)) and (b) pairs of autocorrelations (ρ (1) , ρ (2))
for AR(2) (black), gbAR(2) (red), binAR(2) (blue), and NDAR(2) (green) models.

The parameter range as well as the range of autocorrelation pairs for the gbAR(2) model is
considerably larger than those of an NDAR(2) model. The range of the classical AR model is again
larger, but this is an unfair comparison as the AR model has been proposed for continuous data and is
not suitable for binary data at all. In Figure 6b, the areas of AR(2), NDAR(2), and binAR(2) models are
hyperboloid-shaped and, as shown in Jacobs and Lewis (1983), the autocorrelations of the NDAR(2) model
take just positive values. In contrast to NDAR(2) processes, the binAR(2) process captures an additional
area that corresponds to negative serial dependence. The range of autocorrelation pairs for the gbAR(2) is
not hyperboloid-shaped, but forms a triangle. The range of this triangle comes actually close to the range
of the AR(2) model, although the comparison with the AR(2) model is indeed unfair as the latter has been
proposed for continuous data and the gbAR(2) for binary data. Compared to NDAR(2) processes, the
extension allowing also for negative parameters leads to a much larger range of possible autocorrelation
pairs than just the mirrored half parable. This is explained by the four times larger possible range for
the model parameters of gbAR(2) processes in comparison to NDAR(2) processes, as shown in Figure 6a.
In summary, by allowing for negative model parameters in gbAR models, we can get a considerably
more flexible model class in comparison to NDAR models that is suitable to capture a wider range of
dependence structures of binary time series data. In Figure 7, the possible range of autocorrelation pairs of
gbAR(2) processes and Markov chains of order two are shown together. Recall that the gbAR(2) model is a
parsimonious member of the class of Markov chains of order two and hence less flexible. Interestingly,
with respect to pairs of autocorrelations of lags one and two, the possible range for the gbAR(2) model
is only slightly smaller than that of a Markov chain of order two. Moreover, the largest range shown for
the (continuous) AR(2) models in Figure 6b (in black) cannot be attained by Markov chains of order two.
Hence, gbAR(2) models can to cover a large portion of the possible range of autocorrelation pairs of lags
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one and two of second-order Markov chains. However, keep in mind that for a pth-order Markov chain,
2p parameter have to be estimated. For example, 22 = 4 parameters need to be specified for a second-order
Markov chain, whereas gbAR(2) processes only require three parameters.
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Figure 7. Autocorrelation pairs of the gbAR(2) process (red) compared to the pairs of autocorrelation of a
second-order Markov chain (blue).

3.2. Simulations

In this simulation study, we addressed two things. First, as shown in Section 3.2.1, we investigated
the estimation performance of Yule–Walker estimators for gbAR models of different orders and sample
sizes. Second, as shown in Section 3.2.2, we studied the flexibility of the gbAR model class and compared
the prediction performance to Markovian models in the case where the estimated model was correctly
specified as a gbAR model and in the case where the underlying model was a Markovian model that does
not belong to the class of gbAR models.

3.2.1. Estimation Performance

To study the estimation performance of Yule–Walker estimators in gbAR models, we considered three
different specifications of gbAR(p) processes with p = 1, 2, 3 and sample sizes T = 100, 200, 500, 1000.
Precisely, we considered the following gbAR data generating processes (DGPs):

(DGP1) gbAR(1) with α(1) = −0.85, mue = 0.3, β(0) = 0.15 and µX = 0.48378.
(DGP2) gbAR(2) with α(1) = 0.42, α(2) = −0.38, mue = 0.3, β(0) = 0.2 and µX = 0.45833.
(DGP3) gbAR(3) with α(1) = 0.− 0.294, α(2) = 0.382, α(3) = −0.2393, mue = 0.67, β(0) = 0.0847 and

µX = 0.52140.

The model parameters summarized in P were estimated based on Yule–Walker Equation (14) and
the error term distribution using Equation (9). Note that, in all setups, we considered gbAR models
that make use of the extended parameter space by including negative parameters α(i) in the model.
For each DGP, we simulated 1000 replications to calculate the mean squared error (MSE) to measure the
estimation performance.

Table 2 summarizes the simulation results for all DGPs and all considered sample sizes. The estimation
performance is generally good, as confirmed by rather small MSEs. It turns out that, as expected, in all
considered setups, the estimation performance improves with increasing the sample size. It is interesting
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to note that, relative to the estimation of the other quantities, the estimation of the mean of the error terms
µe is generally less precise. This can be explained by the fact that the error terms et do enter the time
series only in the case when it is actually selected which happens only with probabilities β

(0)
DGP1 = 0.15,

β
(0)
DGP2 = 0.2 and β

(0)
DGP3 = 0.0874 for the three DGPs, respectively. A comparison of the estimation

performance of the gbAR models of different orders shows that the estimation performance declines with
increasing order, which is of course plausible as the number of parameters gets larger, leading to more
estimation uncertainty.

Table 2. Estimation performance for several Yule–Walker parameter estimates with respect to mean squared
errors for three different DGPs over 1000 Monte Carlo replications.

T MSE of α̂(1) MSE of α̂(2) MSE of α̂(3) MSE of µ̂X MSE of µ̂e MSE of β̂(0)

DGP1 100 0.00271 0.00022 0.03140 0.00271
200 0.00133 0.00011 0.01464 0.00133
500 0.00051 0.00004 0.00543 0.00051

1000 0.00025 0.00002 0.00262 0.00025

DGP2 100 0.00684 0.00588 0.00191 0.04877 0.01007
200 0.00338 0.00314 0.00107 0.02689 0.00521
500 0.00136 0.00124 0.00044 0.01169 0.00219

1000 0.00068 0.00064 0.00020 0.00555 0.00108

DGP3 100 0.01079 0.01253 0.00900 0.00416 0.10187 0.02212
200 0.00502 0.00525 0.00386 0.00200 0.08931 0.01044
500 0.00194 0.00198 0.00143 0.00082 0.05859 0.00374

1000 0.00097 0.00087 0.00065 0.00040 0.03913 0.000178

3.2.2. Robustness of gbAR Model Class

The class of gbAR(p) models form a parsimoniously parametrized subclass in the class of Markovian
models of order p. To study the benefit of this newly proposed class of binary models, we wanted to
compare the gbAR(p) model to Markov chains which are mostly used for binary data.

First, let us consider the case of an underlying gbAR model. Since gbAR(p) processes have a
Markov chain representation, a comparison in terms of the transition probabilities becomes suitable. From
Lemma 1 (ii), the transition probabilities of gbAR models compute to

P
(
Xt = i0|Xt−1 = i1, . . . , Xt−p = ip

)
=

p

∑
l=1
|α(l)|

[
1{α(l)≥0}δi0il + 1{α(l)<0}δi0(1−il)

]
+ β(0)P (et = i0) . (18)

First, for p = 1, 2, 3, we simulated from the gbAR(p) models defined for DGP1-3 in Section 3.2.1 realizations
of different sample sizes to estimate the transition probabilities of: (a) a pth-order Markov chain and (b)
a gbAR(p) process. For gbAR models, the true transition probabilities are given by Equation (18) and
can be estimated by replacing the model parameters by the corresponding estimators. Then, the MSE is
calculated model-wise and over all transition probabilities. For all three DGPs with model orders p = 1, 2, 3,
the simulation results are stated in Table 3. By “MSE gbAR(p)”, we denote the mean squared error by
evaluating the difference between the estimated transition probability and the truth over all possible
transition probabilities from a gbAR(p) process. Equivalently, “MSE MC” denotes the corresponding
difference between the estimated transition probability and the truth of a Markov model over all possible
transition probabilities.
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The MSEs are calculated over 1000 replications and show clearly that the estimated gbAR(p) transition
probabilities have smaller MSEs for all sample sizes and orders in comparison to the MSEs of the
Markov chain fits. This indicates that, in the case of an underlying gbAR(p) process, fitting the the
more parsimonious model to the data leads to better estimation performance than fitting a Markov chain.

Next, we considered the situation where the underlying model is a Markov chain of order p that does
not belong to the subclass of gbAR(p) models. In general, the 2p × 2-dimensional transition probability
matrix Q of a Markov chain of order p is defined by

Q =
(

pi0
i1i2 ...ip

)
ij=0,1,j=0,...,p

, (19)

where

P
(
Xt = i0|Xt−1 = i1, . . . , Xt−p = ip

)
=: pi0

i1i2 ...ip
. (20)

For the simulations, we had to make sure that the used specifications of Q are such that the resulting
model is not a member of the gbAR class. For a set of specified transition probabilities, it is actually easy
to check whether the resulting model is a gbAR model, by checking whether Equation (18) hold true.

It turns out that the class of gbAR(1) models and the class of binary Markov chains of order 1 coincide.
Hence, for the simulations study, we chose transition probabilities such that Equation (18) does not hold
for p = 2, 3. Precisely, we set

Q =

(
0.46 0.54
0.56 0.44

)
, Q =


p0

00 p1
00

p0
01 p1

01
p0

10 p1
10

p0
11 p1

11

 =


0.21 0.79
0.69 0.31
0.32 0.68
0.89 0.11

 , Q =



p0
000 p1

000
p0

001 p1
001

p0
010 p1

010
p0

100 p1
100

p0
011 p1

011
p0

101 p1
101

p0
110 p1

110
p0

111 p1
111


=



0.16 0.84
0.26 0.74
0.42 0.58
0.21 0.79
0.75 0.25
0.64 0.36
0.57 0.43
0.94 0.06


.

Using such transition probabilities summarized in Q, binary time series were generated. Again, a
gbAR(p) process and a pth order Markov chain were fitted. In Table 4, the MSE estimation performance
for the different DGPs is summarized. Interestingly, although the corresponding gbAR fits (for p = 2, 3) do
actually estimate the wrong models, with respect to MSE over all transition probabilities, their estimation
performances for small sample sizes are superior to those of Markov chains that estimate the correct
models. However, for large sample sizes, the estimated Markov models outperform the mis-specified
gbAR model fits. As it is estimating the true model, this pattern was expected. In summary, for time series
with small sample size, where the true underlying DGP is indeed a Markov chain and not a gbAR(p)
process, the parsimonious gbAR model might be a good approximation, leading potentially to more
precise estimates of the transition probabilities although the model is mis-specified.
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Table 3. Comparison of the estimation performance of gbAR(p) model fits and Markov chain fits of order p
for p = 1, 2, 3 for three different gbAR-DGP1-3 with respect to the mean squared difference of estimated
transition probabilities to the truth over 1000 Monte Carlo replications.

T MSE gbAR(1) MSE MC p = 1 MSE gbAR(2) MSE MC p = 2 MSE gbAR(3) MSE MC p = 3

100 0.01887 0.02690 0.02647 0.02674 0.03302 0.06942
200 0.01288 0.02399 0.01889 0.01904 0.02333 0.04935
500 0.00788 0.02256 0.01125 0.01191 0.01536 0.02940
1000 0.00529 0.02168 0.00775 0.00852 0.01074 0.02024

Table 4. Comparison of a gbAR Model and Markov chain by its difference of the transition probabilities to
the truth from an underlying Markov Process.

T MSE gbAR(1) MSE MC p = 1 MSE gbAR(2) MSE MC p = 2 MSE gbAR(3) MSE MC p = 3

100 0.03183 0.03310 0.02563 0.02784 0.02771 0.03216
200 0.02219 0.02365 0.01894 0.01951 0.02276 0.02202
500 0.01420 0.01610 0.01371 0.01242 0.01960 0.01380
1000 0.00980 0.01216 0.01132 0.00882 0.01838 0.00977

4. Further Extension: The Generalized Binary ARMA Class

In this section, we extend the gbAR model class and give a definition of generalized binary ARMA
(gbARMA) models that additionally contain a moving average part in their model equations. In the spirit
of the gbAR model as an extension of the NDAR model class, we allow also for negative parameters in the
moving-average part of the model.

First, we provide the definition of the gbARMA(p,q) model, derive its stationary solution, and
state some basic properties of marginal, joint, and transition probabilities of gbARMA(p,q) processes.
We conclude this section with an example of a gbARMA(1,1) process.

4.1. gbARMA Models

To be most flexible, the gbARMA model class allows additionally for negative parameters to capture
negative dependence structure also in the moving average part. As before, we assume β(0) ∈ (0, 1] for
identification reasons. In the gbARMA(p,q) model class, the parameters α(i) and β(j) are allowed to
be either positive or negative, e.g., α(i), β(j) ∈ (−1, 1) for i = 1, . . . , p and j = 1, . . . , q. To modify the
parameter vector P :=

[
α(1), . . . , α(p), β(0), . . . , β(q)

]
, again such that it contains the probabilities, we define

P|·| :=
[
|α(1)|, . . . , |α(p)|, β(0), |β(1)| . . . , |β(q)|

]
. (21)

Definition 2 (Generalized binary ARMA processes). Let (Xt)t∈Z be a stationary process which takes values
in {0, 1}. Let (et)t∈Z be a binary error process such that et is independent of (Xs)s<t with mean µe and variance

σ2
e = Var (et) > 0. Let P :=

[
α(1), . . . , α(p), β(0), . . . , β(q)

]
be the parameter vector with P|·| as in Equation (21)

such that P|·|1p+q+1 = 1. Further, let

Pt :=
(

a(1)t , . . . , a(p)
t , b(0)t , . . . , b(q)t

)
∼ Mult

(
1; P|·|

)
, t ∈ Z
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be iid random vectors, which are independent of (et)t∈Z and (Xt)s<t. Then, the process (Xt)t∈Z is said to be a
generalized binary ARMA(p,q) process, if it follows the recursion

Xt =
p

∑
i=1

[
a(+,i)

t Xt−i + a(−,i)
t

]
+ b(0)t et +

q

∑
j=1

[
b(+,j)

t et−j + b(−,j)
t

]
(22)

with a(+,i)
t := a(i)t

(
1{α(i)≥0} − 1{α(i)<0}

)
, a(−,i)

t := a(i)t 1{α(i)<0} and analogous definitions for b(+,·)
t and b(−,·)

t .

The model parameters are contained in the vector P with entries α(i) ∈ (−1, 1) for i = 1, . . . , p,
β(0) ∈ (0, 1] and β(j) ∈ (−1, 1) for j = 1, . . . , q. Note that, as β(0) > 0 holds, no random variable b(−,0)

t is
contained in the model equation.

With probability ∑
p
i=1 |α

(i)|, a predecessor Xs, s ∈ {t − 1, . . . , t − p} is chosen, whereas, with
probability ∑

q
j=0 |β

(j)|,the process takes the value of an error term es, s ∈ {t, . . . , t− q}, where it follows

that ∑
p
i=1 |α

(i)|+ ∑
q
j=0 |β

(j)| = 1.

4.2. Stochastic Properties of gbARMA Models

When dealing with possibly negative parameters also in the moving-average part of gbARMA models,
the idea of Equation (4) is employed also for the lagged error terms. Hence, this allows modeling negative
dependence in the moving average part as well. In the multinomial distribution, all values of the parameter
vector P have to be considered in absolute value, thus we have to use P|·| as defined in Equation (21).
For the expectation of gbARMA processes, two additional sums show up in comparison to the NDARMA
case. Precisely, we have

µX =
∑

p
i=1 α(−,i) + ∑

q
j=1 β(−,j) + ∑

q
j=0 β(j)µe

1−∑
p
i=1 α(i)

.

The construction of the stationary solution of the gbARMA time series is similar to the construction
of the gbAR(p) process introduced in Section 2.1 and (Lütkepohl 2005, Chap. 11.3.2). The vector
representation of the process (Yt, t ∈ Z) is equipped with a moving average part and thus the dimension
of the corresponding random matrices becomes p + q× p + q. Precisely, the gbARMA(p,q) model can be
written as a (p + q)-dimensional gbVAR(1) process (Yt, t ∈ Z) with the following matrices and vectors,
such that the first entry of (Yt, t ∈ Z) is equal to the gbARMA(p,q) process. We define

Yt :=



Xt
...

Xt−p+1

et
...

et−q+1


((p + q)× 1) and Ut :=



et

0
...
0
et

0
...
0


((p + q)× 1) .
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To obtain a vector autoregressive representation for Yt, we define directly matrices that contain the random
variables of the multinomial distribution. Precisely, for · = {−,+}, let

Ã(·)
t :=

(
A(·)

t,11 A(·)
t,12

A(·)
t,21 A(·)

t,22

)
and B̃(1)

t :=


b(0)t 0 . . . 0

0p−1×1 0p−1×1 . . . 0p−1×1

1 0
. . .

...
0q−1×1 . . . 0q−1×1


be (p + q)× (p + q) matrices, where

A(·)
t,11 :=


a(·,1)t . . . a(·,p−1)

t a(·,p)t
1 0 0

. . .
...

0 . . . 1 0

 , A(·)
t,12 :=


b(·,1)t . . . b(·,q)t

0 . . . 0
...

...
0 . . . 0

 ,

A(·)
t,22 :=


0 . . . 0 0
1 0 0

. . .
...

0 . . . 1 0


are p× p, p× q and q× q matrices, respectively, and At,21 := 0q×p. Based on the notation introduced above,
gbARMA(p,q) processes can be represented as a vector-valued gbAR model of first order (gbVAR(1))
as follows

Yt = Ã(+)
t Yt−1 + Ã(−)

t 1p+q + B̃(1)
t Ut (23)

with 1p+q being the one vector of length p + q.
To derive a suitable stationarity condition for the process, we know from Lütkepohl (2005) that it

corresponds to the characteristic polynomial of the parameter matrix Ã := E
(

Ã(+)
t

)
.

det
(

IK(p+q) − Ãz
)
6= 0 ∀ |z| ≤ 1.

From the block structure of Ã, the polynomial can be reduced to the determinant of the block matrices
A(+)

11 := E
(

A(+)
t,11

)
and A(+)

22 := E
(

A(+)
t,22

)
. Hence, a gbARMA(p,q) process is stationary if the roots of the

characteristic polynomial of the autoregressive part lie outside the unit circle, that is, if(
1− α(1)z− . . .− α(p)zp

)
6= 0 ∀ |z| ≤ 1

holds. The assumption is fulfilled whenever an error term has a positive probability, such that there exists
a |β(j)| > 0 for some j ∈ {0, . . . , q}. Therefore, the sum over all probabilities of choosing a predecessor
fulfills ∑

p
i=1 |α

(i)| < 1. Without any restriction, we assume that β(0) is strictly positive for a stationary
gbARMA process, i.e., β(0) ∈ (0, 1].

For a stationary gbARMA(p,q) process, a moving average representation can be derived using the
above defined vectors and matrices.
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Theorem 3 (Moving Average representation of gbARMA processes). Let (Xt)t∈Z be a stationary
gbARMA(p,q) process with gbVAR(1) representation (Equation (23) ). Then, it follows that

Xt = eT
1

(
∞

∑
i=0

i−1

∏
j=0

Ã(+)
t−j Ã(−)

t−i 1p+q +
∞

∑
i=0

i−1

∏
j=0

Ã(+)
t−j B̃(1)

t−iUt−i

)
,

where limk→∞ ∏k
i=0 Ã(+)

t−i = 0(p+q)×(p+q) in L1 and e1 is the first unit vector.

The univariate moving average representation is obtained from the multivariate formula by
multiplying it with the first unit vector because of Xt = eT

1 Yt.
Considering the autocorrelation structure, Jacobs and Lewis (1983) and Weiß (2011) showed that

the NDARMA(p,q) model fulfils a set of Yule–Walker type equations which was also derived by Möller
and Weiß (2018) for the GenDARMA class of categorical processes. The following result shows that this
property is maintained for the gbARMA class.

Theorem 4 (Yule–Walker-type equations). Let (Xt)t∈Z be a stationary gbARMA(p,q) process. Set β(k) := 0 for
k > q. Define coefficients (φk)k∈Z recursively by

φk = 0 for k < 0, φ0 = β(0), φk =
p

∑
i=1

α(i)φk−i + β(k) for k > 0.

Then, the autocovariance function for lags k > 0 is obtained by

γ (k)−
p

∑
i=1

α(i)γ (|k− i|) = σ2
e

q

∑
j=k

β(j)φj−k

The autocovariances of the NDARMA and GenDARMA processes can only be positive, whereas
the Yule–Walker type equations of gbARMA processes allow for possibly negative model parameters
α(i), β(j) ∈ (−1, 1) for i = 1, . . . , p and j = 1, . . . , q.

For the generalized binary ARMA model, formulas for the marginal, joint and transition probabilities
can be calculated, extending the results from Lemma 1.

Lemma 2 (Marginal, joint, and transition probability of gbARMA processes). Let (Xt)t∈Z be a stationary
gbARMA(p,q) process. Then, the following properties hold:

(i) P (Xt = i0|Xt−1 = i1, . . . , et = j0. . . .)

= ∑
p
l=1 |α

(l)|
[
1{α(l)≥0}δi0il + 1{α(l)<0}δi0(1−il)

]
+ β(0)δi0 j0

+∑
q
k=1 |β

(k)|
[
1{β(k)≥0}δi0 jk + 1{β(k)<0}δi0(1−jk)

]
(ii) Defining pi := P (et = i) then it follows

P (Xt = i0|Xt−1 = i1, . . . , et−1 = j1. . . .)
= ∑

p
l=1 |α

(l)|
[
1{α(l)≥0}δi0il + 1{α(l)<0}δi0(1−il)

]
+∑

q
k=1 |β

(k)|
[
1{β(k)≥0}δi0 jk + 1{β(k)<0}δi0(1−jk)

]
+ β(0)pi0

(iii) P (Xt = j) =

[
∑

q
l=1 |β

(l) |
(
1
{β(l)≥0}

−1
{β(l)<0}

)]
+β(0)

(1−∑
p
i=1 α(i))

pj +
∑

p
i=1 |α

(i) |1
{α(i)<0}

+∑
q
l=1 |β

(l) |1
{β(l)<0}

(1−∑
p
i=1 α(i))
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(iv) P (Xt = i0, et = j0) =

pi0 pj0

 ∑
q
l=1 |β

(l)|1{β(l)<0}

1−∑
p
i=1 |α(i)|

[
1{α(i)≥0} − 1{α(i)<0}

] − q

∑
l=1
|β(l)|1{β<0}

+ β(0)δi0 j0

+
q

∑
l=1
|β(l)|1{β(l)<0}

1− pj0 +
pj0

1−∑
p
i=1 |α(i)|

[
1{α(i)≥0} − 1{α(i)<0}

]


+
p

∑
i=1
|α(i)|1{α(i)<0}

1− pj0 +
pj0

1−∑
p
i=1 |α(i)|

[
1{α(i)≥0} − 1{α(i)<0}

]


The flexibility of gbARMA models obtained by allowing for negative parameters shows also in the
transition probabilities and in the joint and marginal distributions. Hence, more complex structures can be
captured since systematic changes in the error terms are allowed as well.

We conclude this section with an example of a gbARMA(1,1) model.

Example 3 (gbARMA(1,1) process). Let (Xt)t∈Z be a stationary gbARMA(1,1) process. Then, the process follows
the recursion

Xt = a(+,1)
t Xt−1 + a(−,1)

t + b(0)t et + b(+,1)
t et−1 + b(−,1)

t

Four sign combinations of parameter pairs are possible and the corresponding model equations are given as follows:

Xt =


a(1)t Xt−1 + b(0)t et + b(1)t et−1 for α(1) ≥ 0, β(1) ≥ 0

a(1)t (1− Xt−1) + b(0)t et + b(1)t et−1 for α(1) < 0, β(1) ≥ 0

a(1)t Xt−1 + b(0)t et + b(1)t (1− et−1) for α(1) ≥ 0, β(1) < 0

a(1)t (1− Xt−1) + b(0)t et + b(1)t (1− et−1) for α(1) < 0, β(1) < 0

.

Whereas for identification purposes β(0) only takes positive values, the predecessors Xt−1 and et−1 are systematically
switched if the corresponding model parameters are negative, respectively.

For a stationary gbARMA(1,1) process, the moving average representation fulfills the following equation:

Xt =
∞

∑
j=0

j−1

∏
i=0

a(+,1)
t−i a(−,1)

t−j +
∞

∑
j=0

j−1

∏
i=0

a(+,1)
t−i b(0)t−jet−j +

∞

∑
j=0

j−1

∏
i=0

a(+,1)
t−i

[
b(+,1)

t−j et−(j+1) + b(−,1)
t−j

]
.

From the stationarity assumption, we have |α(1)| < 1, β(0) ∈ (0, 1] and |β(1)| ∈ [0, 1).
The moving average representation consists of three parts. There first is a sum over all terms a(−,1)

t−j for the

potential case of α(1) < 0. This part accounts for the choosing a predecessor and its switching. Since β(0) is strictly
positive, the second is a sum over all error terms without any modification occurs. In the third sum, the random
variable b(−,1)

t appears for controlling the case of β(1) < 0.

5. Conclusions

By extending the NDARMA model class of Jacobs and Lewis (1983) to allow for negative parameters
in the binary state space, the generalized binary ARMA model remains parsimonious, but it becomes
more flexible to allow for negative model parameters and, hence, negative dependence structure in the
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data. The extension of the model to a more general parameter space enables the application to real data
without having that many restrictions as in the NDARMA model class. Although the extension leads to
additional terms in the model equation, the Yule–Walker equations still provide a direct way to estimate
the model parameters.

We discuss stationarity conditions for gbARMA models and derive the stationary solution.
The resulting moving average representation shows an additional term, compared to most MA(∞)-type
representations. These additional terms control for the switching of the states.

An illustration of autocorrelation pairs (ρ (1) , ρ (2)) of four different models of order 2 shows a
comparison of the captured dependence structure of the time series models. It reveals that the proposed
gbARMA model can capture a wide range of negative and positive dependence structures. A second-order
Markov chain is shown to capture only a slightly larger range of negative dependence structure that
gbAR(2) models. Hence, by allowing for negative parameters, the proposed extension of the NDARMA
model class leads to a new model class that allows capturing a wide range of dependence structures in
binary time series data, while maintaining a parsimonious parametrization. Moreover, in small sample
sizes, parsimonious gbAR models might turn out to be beneficial in cases where the model is actually
mis-specified as they may provide a sufficient approximation to the true model.
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Appendix A

Appendix A.1. Proof of Theorem 1

Proof. (i) By recursively inserting the model equation, the process can be expressed as

Xt =
k−1

∏
i=0

a(+)
t−i Xt−k +

k−1

∑
i=0

i−1

∏
j=0

a(+)
t−j a(−)t−i +

k−1

∑
i=0

i−1

∏
j=0

a(+)
t−j b(0)t−iet−i.

Since the random variables a(+)
t take values in {−1, 0, 1} and the process is also binary with mean

µX ∈ (0, 1), the convergence of the first part follows directly in quadratic mean (in L2 sense), that is,

E

(
|

k−1

∏
i=0

(
a(+)

t−i

)
Xt−k|2

)
= E

(
k−1

∏
i=0
|at−i|2|Xt−k|2

)
= E

(
k−1

∏
i=0

at−iXt−k

)
= αkE (Xt−k) −→k→∞ 0 for α ∈ (−1, 1) .

Part (ii) follows from Theorem 3 by setting q = 0. Its proof can be found in Section A.2.

Appendix A.2. Proof of Theorem 3

Proof. The convergence is shown by using the p-norm ‖A‖p for a matrix A, which is induced by the
vector norm, that is,
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‖A‖p =

(
K

∑
j=1

K

∑
i=1
|aij|p

) 1
p

.

For p = 1, we get

lim
k→∞

E

∥∥∥∥∥k−1

∏
l=0

Ã(+)
t−l

∥∥∥∥∥
1

= lim
k→∞

E

(
p+q

∑
i=1

p+q

∑
j=1
|
(

k−1

∏
l=0

Ã(+)
t−l

)
|ij

)

= lim
k→∞

E

(1 . . . 1
) (
|

k−1

∏
l=0

Ã(+)
t−l |

)1
...
1


 = lim

k→∞

(
1 . . . 1

) k−1

∏
l=0

E
[
|Ã(+)

t−l |
]1

...
1



= lim
k→∞

(
1 . . . 1

) k−1

∏
l=0

E
[

Ãt−i

]1
...
1

 = lim
k→∞

(
1 . . . 1

) k−1

∏
l=0
Ã|·|

1
...
1



= lim
k→∞

(
1 . . . 1

)
Ãk
|·|

1
...
1

 k→∞−→ 0(p+q)×(p+q) f or|αij| ∈ [0, 1) .

Since the entries of Ã(+)
t−l lie in {−1, 0, 1}, it follows that |Ã(+)

t−l | := Ãt−l ∈ {0, 1} and the expectation is

given by E
(

Ãt−l

)
=: Ã|·| with only positive values in (0, 1). Consequently, the term vanishes for k→ ∞

and as result we get the gbVMA(∞) representation.

Appendix A.3. Proof of Theorem 2 and 4

Proof. For a stationary gbARMA process, it follows

γ (k) = Cov (Xt, Xt−k)

= Cov

(
p

∑
i=1

a(i)t

[
1{α(i)≥0}Xt−i + 1{α(i)<0} (1− Xt−i)

]
+

q

∑
j=0

b(j)
t

[
1{β(j)≥0}et−j + 1{β(j)<0}

(
1− et−j

)]
, Xt−k

)

=
p

∑
i=1

α(i)Cov (Xt−i, Xt−k) +
q

∑
j=0

β(j)Cov
(
et−j, Xt−k

)
The above equation leads in the Yule–Walker equations of Theorem 2 (i) since q = 0 and Cov (et, Xt−k) = 0
for k > 0.

We now have to consider the covariance of the error terms and the time series. Therefore, we define
the variable ϕk := Cov (Xt, et−k). For k < 0, it follows ϕk = 0 and, for k = 0, we have

ϕ0 = Cov (Xt, et) =
p

∑
i=1

α(i)Cov (Xt−i, et) +
q

∑
j=0

β(j)Cov
(
et−j, et

)
= σ2

e β(0).
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For k ≥ 1, we get

ϕk = Cov (Xt, et−k) =
p

∑
i=1

α(i)Cov (Xt−i, et−k) +
q

∑
j=0

β(j)Cov
(
et−j, et−k

)
=

p

∑
i=1

α(i)ϕk−i + β(k)σ2
e .

By defining φk := ϕk
σ2

e
, the recursion of Theorem 4 follows.

Part (ii) of Theorem 2 is directly obtained by inserting the model equation and by using the property
of multinomial choosing only one entry of Pt equal to one and all others to zero, such that

E
(
(a(+,i)

t )2
)
= |α(i)|, E

(
(a(−,i)

t )2
)
= |α(i)|1{α(i)<0}.

Appendix A.4. Proof of Lemma 1 and 2

Proof. (i) The conditional probability is an immediate consequence from the model equation and
multinomial distribution of the random variables at and bt.
(ii) With the independence assumption on the error terms and Part (i), the conditional probability without
conditioning on the current error term is:

P (Xt = i0|Xt−1 = i1, . . . , et−1 = j1. . . .)

=
1

∑
j0=0

P (Xt = i0|Xt−1 = i1, . . . , et = j0, . . .) P (et = j0|Xt−1 = i1, . . . , et−1 = j1, . . .)

=
p

∑
l=1
|α(l)|

[
1{α(l)≥0}δi0il + 1{α(l)<0}δi0(1−il)

]
+

q

∑
k=1
|β(k)|

[
1{β(k)≥0}δi0 jk + 1{β(k)<0}δi0(1−jk)

]
+ β(0)pi0 .

(iii) Consider the probability that the time series is in state j ∈ {0, 1} at time point t and note that
P (et = 1− j) = 1− P (et = j) , P (Xt = 1− j) = 1− P (Xt = j).

P (Xt = j) =
p

∑
i=1
|α(i)|

[
1{α(i)≥0}P (Xt−i = j) + 1{α(i)<0}P (Xt−i = 1− j)

]
+

q

∑
l=1
|β(l)|

[
1{β(l)≥0}P (et−l = j) + 1{β(l)<0}P (et−l = 1− j)

]
+ β(0)P (et = j)

=
p

∑
i=1
|α(i)|

[
1{α(i)≥0}P (Xt = j) + 1{α(i)<0}P (Xt = 1− j)

]
+

q

∑
l=1
|β(l)|

[
1{β(l)≥0}P (et = j) + 1{β(l)<0}P (et = 1− j)

]
+ β(0)P (et = j)

=

(
p

∑
i=1
|α(i)|

[
1{α(i)≥0} − 1{α(i)<0}

])
P (Xt = j) +

(
q

∑
l=1
|β(l)|

[
1{β(l)≥0} − 1{β(l)<0}

])
pj

+ β(0)pj +
p

∑
i=1
|α(i)|1{α(i)<0} +

q

∑
l=1
|β(l)|1{β(l)<0}.
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Then, by rearranging the terms on the last right side, we get

P (Xt = j)

=

[
∑

q
l=1 |β

(l)|
(
1{β(l)≥0} − 1{β(l)<0}

)]
+ β(0)(

1−∑
p
i=1 α(i)

) pj +
∑

p
i=1 |α

(i)|1{α(i)<0} + ∑
q
l=0 |β

(l)|1{β(l)<0}(
1−∑

p
i=1 α(i)

) .

(iv) Consider the joint probability of the error term and time series at time point t. We get

P (Xt = i0, et = j0)

=
p

∑
i=1
|α(i)|1{α(i)≥0}P (Xt−i = i0, et = j0) +

p

∑
i=1
|α(i)|1{α(i)<0}P (Xt−i = 1− i0, et = j0)

+
q

∑
l=1
|β(l)|1{β(l)≥0}P (et−l = i0, et = j0) +

q

∑
l=1
|β(l)|1{β(l)<0}P (et−l = i0, et = j0)

+ β(0)P (et = i0, et = j0)

=
p

∑
i=1
|α(i)|1{α(i)≥0}P (Xt−i = i0) pj0 +

p

∑
i=1
|α(i)|1{α(i)<0}P (Xt−i = 1− i0) pj0

+
q

∑
l=1
|β(l)|1{β(l)≥0}P (et−l = i0) pj0 +

q

∑
l=1
|β(l)|1{β(l)<0}P (et−l = 1− i0) pj0

+ β(0)P (et = i0, et = j0) .

By inserting Part (iii) into the equation above, we get

p

∑
i=1
|α(i)|pj0

[
1{α(i)≥0} − 1{α(i)<0}

] 1−∑
p
i=1 |α

(i)| −∑
q
l=0 |β

(l)|1{β(l)<0}(
1−

[
∑

p
i=1 |α(i)|

(
1{α(i)≥0} − 1{α(i)<0}

)]) pi0

+
∑

p
i=1 |α

(i)|1{α(i)<0} + ∑
q
l=0 |β

(l)|1{β(l)<0}(
1−

[
∑

p
i=1 |α(i)|

(
1{α(i)≥0} − 1{α(i)<0}

)])
+ β(0)pj0 δi0,j0

+
p

∑
i=1
|α(i)|1{α(i)<0} +

q

∑
l=1
|β(l)|pj0

[
1{β(l)≥0}pi0 + 1{β(l)<0}

(
1− pi0

)]
.

Using the properties of the parameters, the joint distribution of the time series and error term is given by

P (Xt = i0, et = j0)

= pi0 pj0

 ∑
q
l=1 |β

(l)|1{β(l)<0}

1−∑
p
i=1 |α(i)|

[
1{α(i)≥0} − 1{α(i)<0}

] − q

∑
l=1
|β(l)|1{β<0}

+ β(0)δi0 j0

+
q

∑
l=1
|β(l)|1{β(l)<0}

1− pj0 +
pj0

1−∑
p
i=1 |α(i)|

[
1{α(i)≥0} − 1{α(i)<0}

]


+
p

∑
i=1
|α(i)|1{α(i)<0}

1− pj0 +
pj0

1−∑
p
i=1 |α(i)|

[
1{α(i)≥0} − 1{α(i)<0}

]
 .
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