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Abstract: We compare the finite sample performance of a number of Bayesian and classical procedures
for limited information simultaneous equations models with weak instruments by a Monte Carlo
study. We consider Bayesian approaches developed by Chao and Phillips, Geweke, Kleibergen and
van Dijk, and Zellner. Amongst the sampling theory methods, OLS, 2SLS, LIML, Fuller’s modified
LIML, and the jackknife instrumental variable estimator (JIVE) due to Angrist et al. and Blomquist and
Dahlberg are also considered. Since the posterior densities and their conditionals in Chao and Phillips
and Kleibergen and van Dijk are nonstandard, we use a novel “Gibbs within Metropolis–Hastings”
algorithm, which only requires the availability of the conditional densities from the candidate
generating density. Our results show that with very weak instruments, there is no single estimator
that is superior to others in all cases. When endogeneity is weak, Zellner’s MELO does the best.
When the endogeneity is not weak and ρω12 > 0, where ρ is the correlation coefficient between the
structural and reduced form errors, and ω12 is the covariance between the unrestricted reduced form
errors, the Bayesian method of moments (BMOM) outperforms all other estimators by a wide margin.
When the endogeneity is not weak and βρ < 0 (β being the structural parameter), the Kleibergen and
van Dijk approach seems to work very well. Surprisingly, the performance of JIVE was disappointing
in all our experiments.

Keywords: limited information estimation; weak instruments; Metropolis–Hastings algorithm; Gibbs
sampler; Monte Carlo method

JEL Classification: C30; C11; C13; C15

1. Introduction

Research on Bayesian analysis of the simultaneous equations models addresses a problem, raised
initially by Maddala (1976), and now recognized as related to the problem of local nonidentification
when diffuse/flat priors are used in traditional Bayesian analysis, e.g., Drèze (1976); Drèze and Morales
(1976), and Drèze and Richard (1983).1 In this paper, we examine the approaches developed by
Chao and Phillips (1998, hereafter CP), Geweke (1996), Kleibergen and van Dijk (1998, hereafter
KVD), and Zellner (1998). The idea in KVD was to treat an overidentified simultaneous equations

1 Zellner (1998) and Zellner et al. (2014) contain a comprehensive review of the finite sample properties of SEM estimators,
and emphasize the need for finite sample optimal estimation procedure for such models. Andrews and Stock (2005) reviews
recent developments in methods that deal with weak in IV regression models, and presents new testing results under
“many weak-IV asymptotics”.
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model (SEM) as a linear model with nonlinear parameter restrictions, and has been extended
further in Kleibergen and Zivot (2003). While KVD focused mainly on resolving the problem of
local nonidentification, CP explored further the consequences of using a Jeffreys prior. By deriving
the exact and (asymptotically) approximate representations for the posterior density of the structural
parameter, CP showed that the use of a Jeffreys prior brings Bayesian inference closer to classical
inference in the sense that this prior choice leads to posterior distributions which exhibit Cauchy-like
tail behavior akin to the LIML estimator. Geweke (1996), being aware of the potential problem of
local nonidentification, suggests a shrinkage prior such that the posterior density is properly defined
for each parameter. In another approach, Zellner (1998) suggested a finite sample Bayesian method
of moments (BMOM) procedure based on given data without specifying a likelihood function or
introducing any sampling assumptions.

For the Bayesian approaches considered, while Geweke (1996) proposed Gibbs sampling (GS) to
evaluate the posterior density with a shrinkage prior, the posterior densities as well as their conditional
densities resulting from CP and KVD are nonstandard and cannot be readily simulated. In the category
of “block-at-a-time” approach, we suggest a novel MCMC procedure, which we call a “Gibbs within
M–H” algorithm. The advantage of this algorithm is that it only requires the availability of the
conditional densities from the candidate generating density. These conditional densities are used in
a Gibbs sampler to simulate the candidate generating density, whose drawings on convergence are
then weighted to generate drawings from the target density in a Metropolis–Hastings (M–H) algorithm.
In this study, we will focus on weak instruments, where the classical approach has been particularly
problematic.2 Ni and Sun (2003) have studied similar issues in the context of vector autoregressive
models, see also Ni et al. (2007). Radchenko and Tsurumi (2006) used many of the procedures analyzed
in this paper to estimate a gasoline demand model using an MCMC algorithm.

The main objective of the present paper is to compare the small sample performance of
some Bayesian and classical approaches using Monte Carlo simulations. For the purpose of
comparison, a number of classical methods including OLS, 2SLS, LIML, Fuller’s modified LIML,
and a jackknife instrumental variables estimator (JIVE) originally due to Angrist et al. (1999) and
Blomquist and Dahlberg (1999) are also computed from the generated data. Our simulation results
from repeated sampling experiments provide some unambiguous guidelines for empirical practitioners.

The plan of the paper is as follows. In Section 2, we set up the model. Section 3 reviews in
limited details the recent Bayesian approaches and JIVE. Section 4 suggests a new MCMC procedure
for evaluating the posterior distributions for CP and KVD, and discusses the convergence diagnostics
implemented. Section 5 presents simulation results and some discussions. Section 6 contains the
main conclusions.

2. The Model

Consider the following limited information formulation of the m-equation simultaneous equations
model (LISEM):

y1 = Y2β+ Z1γ+ u (1)

Y2 = Z1Π1 + Z2Π2 + V2 (2)

where y1: (T × 1) and Y2: (T × (m − 1)) are the m included endogenous variables; Z1: (T × k1) is
an observation matrix of exogenous variables included in the structural Equation (1); Z2: (T × k2) is
an observation matrix of exogenous variables excluded from (1); and u and V2 are, respectively, a T × 1
vector and a T × (m − 1) matrix of random disturbances to the system. We assume that (u, V2) ∼ N

2 There has been a lot of interest in the estimation of LISEM with weak instruments. See Buse (1992); Bound et al. (1995);
Staiger and Stock (1997); Angrist et al. (1999); Blomquist and Dahlberg (1999), among others. More recently, Andrews et al.
(2019) review the literature on weak instruments in linear IV regression, and suggest that weak instruments remain
an important issue in empirical practice.
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(0, Σ ⊗ IT), where the m × m covariance matrix is positive definite symmetric (pds) and is partitioned
conformably with the rows of (u, V2) as follows

Σ =

(
σ11 σ′21
σ21 Σ22

)
The likelihood function for the model described by (1) and (2) can be written as

L(β,γ, Π1, Π2, Σ|Y, Z)
= (2π)−Tm/2

|Σ|−T/2exp
{
−

1
2 tr

[
Σ−1(u, V2)

′(u, V2)
]}

,
(3)

where Y = (y1, Y2) and Z = (Z1, Z2).
The structural model described by (1) and (2) can alternatively be written in its reduced form

(
y1 Y2

)
=

(
Z1 Z2

)( π1 Π1

Π2β Π2

)
+

(
ξ1 V2

)
(4)

where π1 = γ+ Π1β, ξ1 = u + V2β, (ξ1, V2) ∼ N(0, Ω ⊗ IT), and Σ = C′ΩC, C =

(
1 0
−β Im−1

)
.

The likelihood function corresponding to this alternative representation is:

L(β,γ, Π1, Π2, Ω|Y, Z) = (2π)−Tm/2
|Ω|−T/2exp{−

1
2

tr
[
Ω−1(ξ1, V2)

′(ξ1, V2)
]
} (5)

The likelihood functions (3) and (5) are equivalent since the Jacobian between Ω and Σ is unity.
Geweke (1996) considers the following reduced rank regression specification3

Y = Z1A + Z2Θ + E, (6)

where A = (Π1,π1), Θ = Π2Φ and Φ = (Im−1, β), E = (V2, ξ1) ~ N(0, Σ⊗ IT with Σ−1 =

(
Σ11 Σ12

Σ21 Σ22

)
partitioned conformably with the rows of (V2, ξ1). Obviously, (6) is equivalent to (4) and the
corresponding likelihood function is similar to (5).

Note that in the absence of restrictions on the covariance structure, (1) is fully identified if and
only if rank(Π1) = (m− 1) ≤ k2.

3. Review of Some Bayesian Formulations

Among the Bayesian approaches, Geweke (1996) used a shrinkage prior such that all parameters
are identified (in the sense that a proper posterior distribution exists) even when Π2 has reduced rank.
KVD treated overidentified SEMs as linear models with nonlinear parameter restrictions using the
singular value decomposition. A diffuse or natural conjugate prior for the parameters of the embedding
linear model results in the posterior for the parameters of the SEM having zero weight in the region of
parameter space where Π2 has reduced rank. This is a feature of the Jacobian of transformation from
the multivariate linear model to the SEM. CP used a prior by applying Jeffreys principle on the model
described by (1) and (2) and the assumptions regarding the disturbances. An important advantage of
the Jeffreys prior in the present context is that it places no weight in the region of the parameter space
where rank(Π2) < (m− 1) and relatively low weight in close neighborhoods of this region where the
model is nearly unidentified.

3 Geweke (1996) considered a more general specification. To facilitate comparison, for Geweke approach only, we have
denoted Y = (Y2, y1).
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3.1. Zellner’s Bayesian Method of Moments Approach (BMOM)

Among the various Bayesian treatments of SEM proposed by Zellner (1971, 1978, 1986, 1994, 1998),
the Bayesian method of moments approach applies the principle of maximum entropy and generates
optimal estimates which can be evaluated by double K-class estimators. Given the unrestricted reduced
form equation y1 = Zπ1 + ξ1, Zellner (1998) considered a balanced loss function,

Lb = ωLg + (1−ω)Lp

= ω
(
y1 −Xδ̂

)′(
y1 −Xδ̂

)
+ (1−ω)

(
Zπ1 −Xδ̂

)′(
Zπ1 −Xδ̂

)
, for 0 ≤ ω ≤ 1

where X = (Y2, Z1), δ = (β′,γ′), and δ̂ is an estimate of δ. The BMOM estimate that minimizes ELb,
where the expectation is taken with respect to a probability density function of the πmatrices of the
unrestricted reduced form equations, is given by(

β̂
γ̂

)
=

(
Y′2Y2 −K1V̂′2V̂2 Y′2Z1

Z′1Y2 Z′1Z1

)−1 (
Y2 −K2V̂2

)′
y1

Z′1y1

, (7)

where K1 = 1 − k / (T − k), K2 = 1− (1−ω)k/(T − k) with 0 ≤ ω ≤ 1 and V̂2 =
(
I −Z(Z′Z)−1Z′

)
Y2.

BMOM estimate will vary depending on the value of ω. When ω = 1, it is the optimal estimate
resulting from a “goodness of fit” loss function Lg. When ω = 0, it is the optimal estimate given by
a precision of estimation loss function Lp. Meanwhile, the well-known minimum expected loss (MELO)
estimator is derived using a precision of estimation loss function and may be evaluated as a K-class
estimator with

K1 = K2 = 1− k/(T − k−m− 1).

Similar to the BMOM method, Conley et al. (2008) developed a Bayesian semiparametric approach
to the instrumental variable problem assuming linear structural and reduced form equations, but with
unspecified error distributions.

3.2. The Geweke Approach

Geweke (1996) assumes the following reference prior

∣∣∣Σ∣∣∣−(m+v+1)/2
exp

[
−

1
2

trSΣ−1
]

exp
[
−
τ2

2

(
β′β+ trΠ′2Π2 + tr A′ A

)]
, (8)

which is the product of an independent inverted Wishart distribution for Σ with v degrees of freedom
and scale matrix S, and an independent N(0, τ2) shrinkage priors for each element of β and Π2. Geweke
derived the respective conditional posterior distributions, which may be used to generate drawings
through Gibbs sampling from the joint posterior distribution. Regarding the vector of parameters(
Σ−1, A, Π2, β

)
, we obtain the full conditional densities as follows:

(1) Conditional density of Σ−1

Σ−1
∣∣∣(Π2, β, A, Z, Y) ∼Wishart

(
T + v, G−1

)
, (9)

where G = S + (Y − Z1A − Z2Θ)′(Y − Z1A − Z2Θ).
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(2) Conditional density of A

vec(A)
∣∣∣∣(Π2, β, Σ−1, Z, Y

)
∼ N(

[
Σ−1
⊗Z′1Z1 + τ

2Imk1

]−1[
Σ−1
⊗Z1

′Z1
]
vec(Â),[

Σ−1
⊗Z′1Z1 + τ2Imk1

]−1
),

(10)

where Â =
(
Z′1Z1

)−1
Z′1(Y − Z2Θ).

(3) Conditional density of Π2
4

vec(Π2)
∣∣∣∣(β, Σ−1, A, Z, Y

)
∼ N(

[
Σ̃

11
⊗Z′2Z2 + τ

2Ik2(m−1)

]−1[
Σ̃

11
⊗Z′2Z2

]
vec(Π̂2),[

Σ̃
11
⊗Z′2Z2 + τ

2Ik2(m−1)

]−1
),

(11)

where Π̂2 = Θ̂
[
Φ+ + Φ0Σ̃

21
(
Σ̃

11
)−1

]
, Θ̂ =

(
Z′2Z2

)−1
Z′2(Y −Z1A). Φ+ is the Moore–Penrose

generalized inverse of Φ and the columns of Φ+ and Φ0 are orthogonal, and C ≡ (Φ+, Φ0)

is and m × m nonsingular matrix. Finally, Σ̃
i j

denotes the partitioning of Σ̃
−1

= ( C′ΣC)−1

conformably with Y = (Y2, y1).
(4) Conditional density of β

β
∣∣∣∣(Π2, Σ−1, A, Z, Y

)
∼ N

([
Σ22
⊗Π′2Z′2Z2Π2 + τ

2Im−1
]−1[

Σ22
⊗Π′2Z′2Z2Π2

]
β̂,

[
Σ22
⊗Π′2Z′2Z2Π2 + τ

2Im−1
]−1

)
, (12)

where

β̂=
(
Π′2Z′2Z2Π2

)−1
Π′2Z′2(Y2 −Z1Π1)Σ12

(
Σ22

)−1
− Σ12

(
Σ22

)−1
+

(
Π′2Z′2Z2Π2

)−1
Π′2Z′2(y1 −Z1π1)

3.3. The Chao and Phillips Approach

Using Jeffreys prior, CP obtains exact and approximate analytic expressions for the posterior
density of the structural coefficient β in the LISEM (1) and (2). Their formulas are found to exhibit
Cauchy-like tails analogous to comparable results in the classical literature on LIML estimation. For the
model (1) and (2) under normality assumption for the disturbances, a Jeffreys prior on the parameters,
θ = (β,γ, Π1, Π2, Σ), is of the form

p(β,γ, Π1, Π2, Σ)∝

∣∣∣∣∣∣−E
{

∂2

∂θ∂ θ′
ln L(θ|Y, Z)

}∣∣∣∣∣∣1/2

∝ |σ11|
(k2−m+1)/2

|Σ|−(k+m+1)/2
∣∣∣Π′2Z′2QZ1Z2Π2

∣∣∣1/2
(13)

where ln L(θ
∣∣∣Y, Z) is the log-likelihood function as specified in (3), and QX = IT − PX, PX =

X(X′X)−1X′. As first noted by Poirier (1996), the prior in (13) places no weight where rank(Π2) < (m− 1)

through the factor
∣∣∣Π′2Z′2QZ1Z2Π2

∣∣∣1/2
.

4 The expressions for the conditional densities of Π2 and β given in (Geweke 1996, expressions (11) and (13)) contain some
typographical errors and are corrected here in (11) and (12).
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The joint posterior of the parameters of LISEM (1) and (2) is constructed as proportional to the
product of the prior (13) and the likelihood function (3),

p(β,γ, Π1, Π2, Σ
∣∣∣Y, Z) ∝ p(β,γ, Π1, Π2, Σ)L(β,γ, Π1, Π2, Σ|Y, Z)

∝ |σ11|
(k2−m+1)/2

|Σ|−(T+k+m+1)/2
∣∣∣Π′2Z′2QZ1Z2Π2

∣∣∣1/2
× exp {−

1
2

tr
[
Σ−1(u, V2)

′(u, V2)
]
} (14)

where (u, V2) is defined in (1) and (2). Note that (14) or its conditionals do not belong to any standard
class of probability density functions.

3.4. The Kleibergen and van Dijk Approach

To solve the problem of local nonidentification and to avoid the so-called Borel–Kolmogorov
paradox, see Billingsley (1986) and Poirier (1995), KVD considered (4) as a multivariate linear model
with nonlinear parameter restrictions:

(
y1 Y2

)
=

(
Z1 Z2

)( π1 Π1

φ2 Φ2

)
+

(
ξ1 V2

)
, (15)

where φ1 is a k2 × 1 vector, Φ2 is a k2 × (m− 1) matrix. Denote Φ = (φ1, Φ2). The reduced form
model (4) is obtained if a reduced rank restriction is imposed on the linear model (15) such that
rank(Φ) = (m− 1) instead of m.

Using a singular value decomposition (SVD) of Φ, they show that (15) is identical to the so-called
unrestricted reduced form (URF) model,5(

y1 Y2
)
= Z1

(
π1 Π1

)
+ Z2Π2B + Z2Π2⊥λB⊥ +

(
ξ1 V2

)
, (16)

where B =
(
β Im−1

)
, λ is a (k2 −m− 1) × 1 vector. Π2⊥ and B⊥ are the orthogonal complements of

Π2 and B, respectively, such that Π′2Π2⊥ ≡ 0, BB′⊥ ≡ 0, and Π′2⊥Π2⊥ ≡ Ik2− m−1, B⊥B′⊥ ≡ 1 (i.e., Π2⊥ =(
−Π22Π−1

21 Ik2−m−1

)′(
Ik2−m−1 + Π22Π−1

21 Π−1′
21 Π22

)− 1/2
, where Π2 =

(
Π′21 Π′22

)′
, Π21 : (m− 1)× (m− 1),

Π22 : (k2 −m− 1) × (m− 1), and B⊥ = (1 + β′β)1/2(1− β′)).
There is one-to-one correspondence between the parameters in (15) and (16). The SVD of Φ is,

Φ = USV′, (17)

where U : k2 × k2, U′U = Ik2 ; V : m×m; V′V = Im; and S : k2 × m is a rectangular matrix containing the
(nonnegative) singular values (in decreasing order) on its main diagonal (i.e., (s11, s11, . . . , smm)). Rewrite

U =

(
U11 U12

U21 U22

)
,=

(
S1 0
0 S2

)
, and V =

(
v11 v12

v21 v22

)
, (18)

where U11, S1, v21 : (m− 1) × (m− 1); v12 : 1 × 1; v′11, v22 : (m− 1) × 1; U12 : (m− 1) × (k2 −m + 1) ×
(m− 1); U21 : (k2 −m− 1) × (m− 1); U22 : (k2 − m− 1) × (k2 −m + 1); S2 : (k2 − m− 1) × 1, then the

following relationship between (Π2, β, λ) and (U, S, V) results, Π2 =

(
U11

U12

)
S1V′21, β = V′−1

21 v′11 , and

λ =
(
U22U′22

)−1/2
U22S2v′12

(
v12v′12

)−1/2
. (19)

5 Note that this formulation or the singular value decomposition does not change the identification status of the LISEM
specified by (1) and (2). If rank(Π2) < (m− 1), β is locally nonidentified.
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Note that λ is obtained through pre- and postmultiplication of s2 by orthogonal matrices while s2

contains the smallest singular values of Φ and is invariant with respect to the ordering of variables
contained in Y and Z2.

According to KVD, the above shows that the model described by (1) and (2) can be considered as
equivalent to the linear model (16) with a nonlinear (reduced rank) restriction λ = 0 on the parameters.
Therefore, the priors and posteriors of the parameters of the LISEM (1) and (2) may be constructed as
proportional to the priors and posteriors of the parameters of the linear model (16) evaluated at λ = 0.

A diffuse (Jeffreys) prior for the parameters (π1, Π1, Φ, Ω) of the linear model6

p(π1, Π1, Φ, Ω)∝ |Ω|−(k+m+1)/2
∝ |Ω|−(m+1)/2

∣∣∣Ω−1
⊗Z′Z

∣∣∣1/2
(20)

where k = k1 + k2, implies the prior for the parameters (β, π1, Π1, Π2, Ω) of the LISEM (4) as

p(β, π1, Π1, Π2, Ω) ∝ p(π1, Π1Φ(Π2, β,λ), Ω) |λ=0| J(Φ, (Π2, β,λ))
∣∣∣λ=0

∣∣∣
∝ |Ω|−(m+1)/2

∣∣∣Ω−1
⊗Z′Z

∣∣∣1/2 ∣∣∣ J(Φ, (Π2, β,λ))
∣∣∣
λ=0

∣∣∣
∝ |Ω|−(m+1)/2

∣∣∣Ω−1
⊗Z′Z

∣∣∣1/2

×

∣∣∣∣(B′ ⊗ Ik2 e1 ⊗ Π2 B′⊥ ⊗ Π2⊥
)∣∣∣∣,

(21)

where e1 = (1, 0, 0, . . . , 0)′. Note that the prior (21) is the Jeffreys prior of the unrestricted reduced
form (16) evaluated at λ = 0. Most importantly, |J(Φ, (Π2, β, λ))|λ=0 = 0 when Π2 has reduced rank.
This feature in KVD approach eliminates the potential impact of local nonidentification.

The joint posterior of the parameters of the LISEM (4) is readily constructed as proportional to the
product of the prior (21) and the likelihood function (5),

p(β, π1, Π1, Π2, Ω
∣∣∣ Y, Z)

∝ p(β,π1, Π1, Π2, Ω)L∗(β, γ, Π1, Π2, Ω
∣∣∣ Y, Z) ∝ |Ω|−(T+m+1)/2

∣∣∣Ω−1
⊗Z′Z

∣∣∣1/2

×

∣∣∣∣(B′ ⊗ Ik2 e1 ⊗Π2 B′⊥ ⊗Π2⊥
) ∣∣∣∣

× exp{− 1
2 tr[Ω−1(

(
y1 Y2

)
−

(
Z1 Z2

)( π1 Π1

Π2β Π2

)
)

′

(
(

y1 Y2
)
−

(
Z1 Z2

)( π1 Π1

Π2β Π2

)
)]}

(22)

Unfortunately, the above posterior or its conditional densities do not belong to a known class of
probability density functions.

3.5. The Jackknife Instrumental Variable Estimator (JIVE)

Motivated by split sample instrumental variables estimators, Angrist et al. (1999) and
Blomquist and Dahlberg (1999) independently suggested a jackknife instrumental variable estimator
(JIVE). For model (1) and (2), JIVE is given by

δ̂jive =
(
X̂
′

jiveX
)−1(

X̂
′

jivey1
)

(23)

where X̂jive is the T × (m− 1 + k1) matrix with t-th row defined by

ZtΠ̂−t = Zt
(
Z′
−tZ−t

)−1(
Z′
−tX−t

)
=

ZtΠ̂ − htXt

1− ht
,

6 This is the prior suggested in Drèze (1976). Zellner (1971) and Zellner et al. (1988) used a similar prior with −(m + 1)/2 in
the exponent.
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Z−t and X−t are (T − 1) × k and (T − 1)× (m− 1 + k1) matrices obtained after eliminating the t-th rows
of Z and X matrices respectively, Π̂ = (Z′Z)−1(Z′X) and ht = Zt(Z′Z)

−1Z′t. In JIVE, the instrument is
independent of the disturbances even in finite samples, which is achieved by using a ‘leave-one-out’
jackknife-type fitted value in place of the usual unrestricted reduced form predictions.

Angrist et al. (1999) also proposed a second jackknife estimator that is a slight modification of (23).
Similar to their study, we found that its performance is very similar to JIVE, and is not reported here.

4. Posterior Simulator: “Gibbs within M–H” Algorithm

Given the full conditional densities in (9) through (12) for the four blocks of parameters, evaluating
the joint posterior densities by Gibbs sampling is straightforward, see Geweke (1996) for a detailed
description. Although Geweke’s (1996) shrinkage prior does not meet the argument in KVD that the
implied prior/posterior on the parameters of an embedding linear model should be well-behaved, we
found that the use of Geweke’s shrinkage prior does not lead to a reducible Markov Chain. With the
specification of a shrinkage prior, when Π2 has reduced rank, the joint posterior density still depends on
β and will not exhibit any asymptotic cusp. In the following, we only discuss the posterior simulation
for CP and KVD.

KVD suggested two simulation algorithms for the posterior (22): an Importance sampler and
a Metropolis–Hastings algorithm. We found that their M–H algorithm performs unsatisfactorily
with low acceptance rate even for reasonable parameter specifications.7 As mentioned earlier, since
the posteriors (14) and (22) as well as their conditional posteriors do not belong to any standard
class of probability density functions, Gibbs sampling cannot be used. In this section, we suggest
an alternative simulation algorithm which combines Gibbs sampling (see Casella and George (1992)
and Chib and Greenberg (1996)) and the Metropolis–Hastings algorithm (see Metropolis et al. 1953;
Hastings 1970; Smith and Roberts 1993; Tierney 1994; Chib and Greenberg 1995). Our algorithm is
different from the “M–H within Gibbs” algorithm and can find its usefulness in other applications
as well.

To generate drawings from the target density p(x), we use a candidate-generating density r(x).
An Independence sampler, which is a special case of the M–H sampler, in algorithmic form is as follows:

0. Choose starting values x0

1. Draw xi from r(x)
2. Accept xi with probability

α
(
xi−1, xi

)
=

 min
(

p(xi)r(xi−1)
p(xi−1)r(xi)

, 1
)
, if p

(
xi−1

)
r
(
xi
)
> 0

1, if p
(
xi−1

)
r
(
xi
)
= 0,

(24)

otherwise xi = xi−1

3. i = i + 1. Go to 1.

It is generally not feasible to draw all elements of the vector x simultaneously. A block-at-a-time
possibility was first discussed in (Hastings 1970, sct. 2.4) and then in Chib and Greenberg (1995) along
with an example.

Chib and Greenberg (1995) considered applying the M–H algorithm in turn to sub-blocks of the
vector x, which presumes that the target density p(x) may be manipulated to generate full conditional
densities for each of the sub-blocks of x, conditioning on other elements of x. However, the full

7 Zellner et al. (2014) suggested a variant of this approach called Acceptance-Rejection within Direct Monte Carlo (ARDMC)
to evaluate the posterior density, and report substantial gain in computational efficiency, particularly with weak instruments.
They also studied the existence conditions for posterior moments of the parameters of interest in terms of the number of
available instruments being greater than the number of endogenous variables plus the order of the moment.
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conditionals are sometimes not readily available from the target density for empirical investigators.
The posteriors (14) and (22) happen to fall in this category. In this latter case, problems come up
at step 1 while trying to generate drawings from the joint marginal density r(x). Note that these
drawings, whether accepted or rejected at step 2, satisfy the necessary reversibility condition if step 1
is performed successfully.

To simplify the notation, we consider a vector x which contains two blocks, x = (x1, x2). KVD
used the fact that

r(x1, x2) = r(x1)r(x2|x1) (25)

and suggested to draw xi
1 from r(x1) and then draw xi

2 from r
(
x2

∣∣∣xi
1

)
. The pair

(
xi

1, xi
2

)
is then taken

as a drawing from r(x). It turns out that this strategy gives very low acceptance rate at step 2 in
simulation studies for various reasonable parameter values. Sometimes the move never takes place
and the posterior has all its mass at the parameter values of the first drawing. The reason for the failure
is that information is not updated at subsequent drawings and the transition kernel of (25) is static.

If the full conditionals r(x1|x2) and r(x2|x1) are available, which is usually true for many standard
densities, we propose to use them in a Gibbs sampler to make independent drawings from the invariant
density r(x) after the Markov chain has converged.

The combined algorithm is thus as follows, which we call “Gibbs within M–H”:

0. Choose starting values x0 =
(
x0

1 + x0
2

)
1. Draw xi

1 from r(x1
∣∣∣xi−1

2 ) , draw xi
2 from r(x2

∣∣∣xi
1) .

2. Accept xi =
(
xi

1 xi
2

)
with probability α

(
xi−1

1 , xi
2

)
as defined in (24), otherwise xi = xi−1.

3. i = i + 1. Go to 1.

As explained, step 2 is the Gibbs step and step 3 is the M–H step in our combined algorithm.
In the following subsections, we describe the steps for implementing the above procedure to generate
drawings from the posteriors (14) and (22).8

4.1. Implementing the CP Approach

Note that the posterior in the CP approach is proportional to the product of the prior, which is
uniformly bounded, and the likelihood function, which can be sampled by a Gibbs sampler. Therefore,
we choose the candidate-generating density the way suggested by Chib and Greenberg (1995): we use
the likelihood function, L(β,γ, Π1, Π2, Σ|Y, Z), as the candidate generating density for the posterior
(14). Using precision matrix Σ−1, the simulation steps are as follows,

0. Choose starting values
(
β0,γ0, Π0

1, Π0
2, Σ−1,0

)
1. Draw Σ−1,i from p

(
Σ−1

∣∣∣βi−1,γi−1, Πi−1
1 , Πi−1

2 , Y, Z
)

Draw
(
βi,γi, Πi

1, Πi
2

)
from p

(
β,γ, Π1, Π2 |Σ−1,i, Y, Z

)
2. Accept βi,γi, Πi

1, Πi
2, Σ−1,i as a drawing from the posterior (14) with probability,

min


∣∣∣σi

11

∣∣∣(k2−m+1)/2∣∣∣Σ−1,i
∣∣∣(k−m+1)/2∣∣∣Πi′

2 Z′2QZ2Z2Πi
2

∣∣∣1/2∣∣∣σi−1
11

∣∣∣(k2−m+1)/2∣∣∣Σ−1,(i−1)
∣∣∣(k−m+1)/2∣∣∣Πi−1′

2 Z′2QZ1Z2Πi−1
2

∣∣∣1/2
, 1

,

Otherwise, βi,γi, Πi
1, Πi

2, Σ−1,i =
(
βi−1,γi−1, Πi−1

1 , Πi−1
2 , Σ−1,(i−1)

)
.

3. i = i + 1. Go to 1.

8 Gao and Lahiri (2000b) illustrated the algorithm empirically with a simple labor supply model.
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The conditional densities used in the first step are constructed as follows (see Percy (1992) and
Chib and Greenberg (1996)): Rewrite the model (1) and (2) as a SUR model,

yt = Wtδ+

(
ut

V2,t

)
, (26)

where
yt =

(
y1,t Y′2,t

)′
Wt =


(
Y′2,t Z′1,t

)
0

0
(
Im−1 ⊗Z′t

) ,

δ =

β′,γ′, (vec
(

Π1

Π2

))′′. Then

p
(
Σ−1

∣∣∣ δ, Y, Z
)
∝

∣∣∣Σ−1
∣∣∣(T−2(m+1))/2

exp [−
1
2

tr
(
Σ−1H

)
] (27)

which follows a Wishart distribution with (T −m− 1) degrees of freedom, where H =∑T
t=1(yt −Wtδ)(yt −Wtδ)

′, and

p
(
δ
∣∣∣ Σ−1, Y, Z

)
= N

((∑T

t=1
W′t Σ−1Wt

)−1(∑T

t=1
W′t Σ−1yt

)
,
(∑T

t=1
W′t Σ−1Wt

)−1
)

(28)

4.2. Implementing the KVD Approach

KVD proposed to use the posterior of the unrestricted linear model (16), p(β, λ, Π2, Ω|Y, Z), as the
candidate generating density of the posterior (22), p(β, Π2, Ω|Y, Z), where the parameters (π1, Π1)
have been concentrated out. First (Φ, Ω) is generated from p(Φ, Ω|Y, Z), and then (β, λ, Π2) is obtained
from Φ using (19). However, λ is also sampled which is not present in the posterior p(β, Π2, Ω|Y, Z).
Therefore, KVD assumes that λ is generated by a conditional density of the form,

g(λ
∣∣∣β, Π2, Ω)

= (2π)−(k2−m+1)/2∣∣∣B⊥Ω−1B′⊥
∣∣∣(k2−m+1)/2∣∣∣Π′2⊥Z′2MZ1Z2Π2⊥

∣∣∣1/2

× exp [− 1
2 tr(B⊥Ω−1B′⊥(λ− λ̂)

′
Π′2⊥Z′2MZ1Z2Π2⊥)(λ− λ̂))],

(29)

where λ̂ =
(
Π′2⊥Z′2MZ1Z2Π2⊥

)−1
Π′2⊥Z′2MZ1(Y −Z2Π2B)Ω−1B′⊥

(
B⊥Ω−1B′⊥

)−1
.

Therefore, the density p(β, λ, Π, Ω|Y,Z) is used to approximate the posterior g(λ|β, Π2, Ω)p(β,
Π2, Ω|Y,Z). The weight function, defined as the ratio of the posterior and the candidate generating
density, becomes

ω(β,λ, Π2, Ω) =
g(λ

∣∣∣β, Π2, Ω)p(β, Π2, Ω
∣∣∣Y, Z)

p(β,λ, Π2, Ω
∣∣∣Y, Z)

=

∣∣∣ J(Φ, (Π2, β,λ))
∣∣∣
λ=0

∣∣∣∣∣∣J(Φ, (Π2, β,λ))
∣∣∣ g(λ

∣∣∣β, Π2, Ω)|λ=0, (30)

where the Jacobian matrix J(Φ, (Π2, β,λ)) as well as J(Φ, (Π2, β,λ))
∣∣∣
λ=0 have been carefully derived

in KVD9. Note that ω(·) = p(·)/r(·), so (30) may be used in the “GS within M–H” algorithm to
simplify (24).

Similar to the way we implemented the CP approach, it is more convenient to work with the
precision matrix Ω−1 in the conditional densities. Applying the procedure outlined above, the steps
involved in constructing the Markov chain for the posterior (22) are summarized as follows,

9 See also Kleibergen (1997, 1998). Note that their claimed relationship that |J(Φ, (Π2, β, λ))| ≥ |J(Φ, (Π2, β, λ))|λ=0 is analytically
incorrect; see the Appendix A for proof.
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0. Choose starting values
(
Φ0, Ω−1,0

)
1. Draw Ω−1,i from p(Ω−1

|Φ i−1, Y, Z) Draw Φi from p(Φ|Ω i−1, Y, Z)

2. Perform a singular value decomposition of Φi = UiSiVi′

3. Compute βi,λi, Πi
2 according to (18) and (19)

4. Compute ω
(
βi,λi,πi

1, Πi
1, Πi

2, Ω−1,i
)

according to (29) and (30)

5. Draw (πi
1, Πi

1) from p
(
π1, Π1 |Ω−1,i, Φi

(
Πi

2, βi,λ
)
Y, Z

)
|λ=0

6. Accept (βi,πi
1, Πi

1, Πi
2, Ω−1,i) as a drawing from the posterior with probability,

min

 ω
(
βi,λi, Πi

2, Ω−1,i
)

ω
(
βi−1,λi−1, Πi−1

2 , Ω−1,(i−1)
) , 1

,

otherwise,
(
βi,λi, Πi

2, Ω−1,i
)
=

(
βi−1,λi−1, Πi−1

2 , Ω−1,(i−1)
)
.

7. i = i + 1. Go to 1.

Note that the conditional densities used in the first step are as follows:

p
(
Σ−1

∣∣∣ Φ, Y, Z
)
∝

∣∣∣Ω−1
∣∣∣(T+k2−m−1))/2

exp
[
−

1
2

tr
(
Ω−1G

)]
, (31)

which follows a Wishart distribution Wm
(
T + k2, G−1

)
with (T + k2) degree of freedom, where G =

Y′QzY + (Φ − Φ̂)
′Z′2MZ1Z2(Φ − Φ̂), and Φ̂ =

(
Z′2MZ1Z2

)−1
Z′2MZ1Y. In addition,

p
(
Φ

∣∣∣ Ω−1, Y, Z
)∣∣∣Ω−1

∣∣∣k2/2
exp

[
−

1
2

tr
[
Ω−1

(
Φ − Φ̂

)′
Z′2MZ1Z2

(
Φ − Φ̂

)]]
, (32)

which is matric-variate normal density.
The conditional density used in step 5 is

p
(
π1, Π1

∣∣∣Ω−1, Φ(Π2, β,λ), Y, Z
)
∝

∣∣∣Ω−1
∣∣∣k1/2

exp
[
−

1
2

tr
[
Ω−1

(
Λ − Λ̂

)′
Z′1Z1

(
Λ − Λ̂

)]]
, (33)

Evaluated at λ = 0, where Λ = (π1 Π1), Λ̂ =
(
Z′1Z1

)−1
Z′1(Y − Z2Φ).

4.3. Convergence Diagnosis

One important implementation issue associated with MCMC methods is that of determining the
number of iterations required. There are various informal or formal methods for the diagnosis of
convergence, see Cowles and Carlin (1996) and Brooks and Roberts (1998) for comprehensive reviews
and recommendations. Since the posterior densities in (14) and (22) resulting from CP and KVD do not
have moments of any positive integer order, most of the methods proposed in the MCMC literature
which require the existence of at least the first moment (posterior mean) are ruled out. We are left with
a very few alternatives that can be used in our context.

First, the popular Raftery and Lewis (1992) method has been recognized as the best for estimating
the convergence rate of the Markov chain if quantiles of the posterior density are of major interest,
although the method does not provide any information as to the convergence rate of the chain as
a whole. Because we are interested in the posterior modes and medians for β associated with the
Bayesian approaches, we will largely rely on Raftery and Lewis’ method to determine the number of
burn-ins and the subsequent number of iterations required to attain specified accuracy (e.g., estimating
the 0.50 quantile in any posterior within ±0.05 with probability 0.95). However, we do not adopt their
suggested skip-interval. MacEachern and Berliner (1994) showed that estimation quality is always
degraded by discarding samples. We also experimented with using the skip-intervals and found that
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the results are basically the same if a sufficient number of iterations are run. This seems to be inefficient
and sometimes infeasible in terms of computation time.

For each specification in our Monte Carlo study with repeated experiments, we determined the
number of burn-ins and subsequent number of iterations by running the publicly available FORTRAN
code gibbsit on MCMC output of 10,000 iterations from three or more testing replications. For KVD
and CP approaches, the number of burn-ins for both the GS step and the M–H algorithm were
estimated. It was found that the number of burn-ins in the GS step is negligible for most cases.
However, we discarded more iterations as the transient phase than the estimated number of burn-ins.10

The estimated number of subsequent iterations across testing replications was stable for the Gibbs
sampler (in both Geweke approach and the GS step for KVD and CP approaches), but it varied a lot for
the M–H procedures, which is also demonstrated by the variation in acceptance rates over repeated
experiments. We used a generous value for the number of subsequent iterations when feasible.

Second, for MCMC output from each testing replication, we also applied other convergence
diagnostic methods, including percentiles derived from every quarter of the long chain,
Yu and Mykland (1998)’s CUSUM plot, and Brooks (1996)’s D-sequence statistic. While the CUSUM
partial sums actually involve averaging over sampling drawings, the computation of Brooks’ statistic
is justified on the basis that it is designed to measure the frequency of back and forth movement in the
MCMC algorithm. However, these diagnostics may sometimes provide contradictory outcomes so
that one has to be extra careful in interpreting them before making a judgment on convergence.

5. Simulation Results and Discussions

In this section, we present results of Monte Carlo experiments and discuss some of the findings.
As mentioned before, for the purpose of comparison, we also computed a number of single K-class
estimators including OLS, 2SLS, LIML, and Fuller’s modified LIML. In summary, the set of K-class
estimators for the structural coefficients in model (1) and (2) is given by:(

β̂
γ̂

)
=

(
Y′2Y2 −K1V̂′2V̂2 Y′2Z1

Z′1Y2 Z′1Z1

)−1 (
Y2 −K2V̂2

)′
y1

Z′1y1


where V̂2 = QZY2—see Equation (7) above.

The following LISEM estimators have been considered:

(1) Ordinary least squares (OLS)
K1 = K2 = 0.

(2) Two stage least squares (2SLS)
K1 = K2 = 1.

(3) Zellner’s (1978) Bayesian minimum expected loss estimator (MELO)

K1 = K2 = 1− k/(T − k−m− 1).

(4) Zellner’s Bayesian method of moments relative to balanced loss function (BMOM)11

K1 = 1− k/(T − k) , K2 = 1− (1−ω)k/(T − k) with ω = 0.75

10 In practice, there is often a concern about possible underestimation of true length of the burn-in period using the Raftery
and Lewis method if the quantile of interest is not properly pre-prescribed, see Brooks and Roberts (1998).

11 Tsurumi (1990) used ω = 0.75 for Zellner’s extended MELO (ZEM) in his experiments. BMOM and ZEF are almost identical
in our context.
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(5) Classical LIML. We compute classical LIML as an iterated Aitken estimator (see Pagan (1979) and
Gao and Lahiri (2000a)).

(6) Fuller (1977) modified LIML estimators (Fuller1 and Fuller4)

K1 = K2 = λ∗ − α/(T − k) for α = 1, 4

where

λ∗ = min
β

(y1 −Y2β)
′QZ1(y1 −Y2β)

(y1 −Y2β)
′QZ(y1 −Y2β)

and it is computed using the LIML estimate.
(7) JIVE.
(8) Posterior mode and median from the Geweke (1996) approach using Gibbs Sampling. The values

of the hyperparameters are chosen to be τ2 = 0.01, v = m(m + 1)/2, S = 0.01Im.12

(9) Mode and median of the marginal density of β based on classical LIML from Gibbs sampling
(LIML-GS). LIML-GS is a byproduct of the “Gibbs within M–H” algorithm for the CP approach
since the likelihood function is used as the candidate-generating density to explore the CP posterior.

(10) Posterior mode and median from CP approach using “Gibbs within M–H” algorithm.
(11) Posterior mode and median from KVD approach using “Gibbs within M–H” algorithm.

For the Bayesian approaches and LIML-GS, we report both (posterior) mode and median to show
possible asymmetry in the marginal densities of β. Any preference for one over the other will depend
on the researcher’s loss function. We obtain 16 estimates for each generated data set. The data are
generated from the model,

y1 = Y2β+ u
Y2 = Z2π+ V2,

(34)

where y1, Y2 are T × 1 such that m = 2, and Z2 : T × k2. We further specify β = 1 and

Σ =

(
1 ρ
ρ 1

)
(35)

For
∣∣∣ρ∣∣∣ we used 0.20, 0.60, and 0.95.13 Z2 is simulated from a N

(
0, Ik2 ⊗ IT

)
distribution and (u, V2)

from a N(0, Σ ⊗ IT) distribution. A constant term is added in each equation, i.e., Z1 is a T × 1 vector
of 1 s.

The simulation results are reported in Tables 1–13. Tables 1–12 are for cases with ρ > 0, each table
reporting results for one specification.

Table 1. T = 50, ρ = 0.60, k2 = 4, R2 = 0.40.

Mean Std RMSE MAD

OLS 1.348 0.089 0.359 0.348
2SLS 1.045 0.144 0.151 0.121

MELO 1.115 0.126 0.171 0.144
BMOM 0.967 0.127 0.131 0.102
LIML 0.998 0.152 0.152 0.118

Fuller1 1.015 0.147 0.148 0.116

12 We found that the median-bias and dispersion of the posterior density of β from the Geweke (1996) approach increase as τ2

gets larger. Although one might suspect that the convergence the Gibbs sampler could be slow with smaller values of τ2,
our convergence diagnostics did confirm this concern.

13 We do not report cases with |ρ| = 0.99 or 1. As pointed out by Maddala and Jeong (1992), when the instruments are weak
and |ρ| is very close to one, the exact finite sample distribution of IV estimator is bimodal. Our experiments show that the
marginal posterior density of β from the Bayesian approaches exhibits a similar pattern.
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Table 1. Cont.

Mean Std RMSE MAD

Fuller4 1.061 0.136 0.149 0.120
JIVE 0.957 0.178 0.183 0.141

Geweke_Mode 1.056 0.140 0.151 0.122
Geweke_Median 1.031 0.143 0.146 0.116
LIML_GS_Mode 1.061 0.139 0.152 0.123

LIML_GS_Median 1.036 0.142 0.146 0.116
CP_Mode 1.046 0.144 0.151 0.121

CP_Median 1.021 0.145 0.147 0.115
KVD_Mode 1.090 0.148 0.173 0.143

KVD_Median 1.079 0.137 0.158 0.130

Notes: Number of replications: 400. Geweke: nburn = 100, n = 2000. CP: nburn_GS = 100, nburn_MH = 100,
n = 5000, acceptance rate = 0.482 (0.015). KVD: nburn_GS = 100, nburn_MH = 100, n = 4000, acceptance rate = 0.215
(0.136).

Table 2. T = 50, ρ = 0.60, k2 = 1, R2 = 0.10.

Mean Std RMSE MAD

OLS 1.537 0.111 0.548 0.537
2SLS 1.030 0.345 0.346 0.267

MELO 1.173 0.262 0.314 0.248
BMOM 0.881 0.264 0.290 0.229
LIML 1.030 0.345 0.346 0.267

Fuller1 1.107 0.300 0.319 0.245
Fuller4 1.250 0.219 0.332 0.277

JIVE 0.803 0.491 0.529 0.409
Geweke_Mode 1.089 0.331 0.343 0.265

Geweke_Median 0.907 0.518 0.526 0.358
LIML_GS_Mode 1.091 0.313 0.326 0.255

LIML_GS_Median 0.778 1.386 1.404 0.592
CP_Mode 1.108 0.309 0.327 0.256

CP_Median 0.797 1.383 1.398 0.580
KVD_Mode n.a. n.a. n.a. n.a.

KVD_Median n.a. n.a. n.a. n.a.

Notes: Number of replications: 400. Geweke: nburn = 100, n = 3000. CP: nburn_GS = 200, nburn_MH = 200,
n = 10,000, acceptance rate = 0.551 (0.023).

Table 3. T = 50, ρ = 0.60, k2 = 4, R2 = 0.10.

Mean Std RMSE MAD

OLS 1.539 0.111 0.550 0.539
2SLS 1.231 0.279 0.362 0.296

MELO 1.366 0.186 0.411 0.368
BMOM 0.943 0.184 0.193 0.154
LIML 1.043 0.579 0.581 0.386

Fuller1 1.143 0.367 0.394 0.307
Fuller4 1.281 0.244 0.372 0.307

JIVE 0.816 0.568 0.597 0.474
Geweke_Mode 1.244 0.287 0.377 0.309

Geweke_Median 1.204 0.309 0.370 0.300
LIML_GS_Mode 1.260 0.268 0.373 0.308

LIML_GS_Median 1.220 0.298 0.370 0.300
CP_Mode 1.230 0.293 0.372 0.301

CP_Median 1.194 0.315 0.370 0.298
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Table 3. Cont.

Mean Std RMSE MAD

KVD_Mode 1.351 0.384 0.520 0.389
KVD_Median 1.381 0.367 0.529 0.405

Notes: Number of replications: 400. Geweke: nburn = 100, n = 2000. CP: nburn_GS = 100, nburn_MH = 100,
n = 10,000, acceptance rate = 0.475 (0.010). KVD: nburn_GS = 100, nburn_MH = 100, n = 3000, acceptance rate = 0.400
(0.217).

Table 4. T = 50, ρ = 0.60, k2 = 9, R2 = 0.10.

Mean Std RMSE MAD

OLS 1.535 0.111 0.546 0.535
2SLS 1.363 0.221 0.425 0.371

MELO 1.463 0.139 0.483 0.463
BMOM 0.969 0.132 0.136 0.106
LIML 1.090 0.864 0.869 0.534

Fuller1 1.182 0.479 0.512 0.366
Fuller4 1.302 0.291 0.419 0.333

JIVE 0.706 0.933 0.978 0.728
Geweke_Mode 1.357 0.239 0.430 0.367

Geweke_Median 1.350 0.245 0.427 0.361
LIML_GS_Mode 1.375 0.218 0.328 0.380

LIML_GS_Median 1.367 0.228 0.432 0.374
CP_Mode 1.215 0.629 0.665 0.466

CP_Median 1.255 0.388 0.464 0.346
KVD_Mode 1.550 0.376 0.666 0.556

KVD_Median 1.573 0.322 0.657 0.576

Notes: Number of replications: 400. Geweke: nburn = 100, n = 1000. CP: nburn_GS = 200, nburn_MH = 200,
n = 10,000, acceptance rate = 0.242 (0.040). KVD: nburn_GS = 200, nburn_MH = 100, n = 10,000, acceptance
rate = 0.267 (0.188).

Table 5. T = 100, ρ = 0.60, k2 = 4, R2 = 0.10.

Mean Std RMSE MAD

OLS 1.538 0.077 0.543 0.538
2SLS 1.138 0.208 0.250 0.200

MELO 1.257 0.156 0.301 0.264
BMOM 0.954 0.156 0.163 0.127
LIML 1.023 0.280 0.281 0.210

Fuller1 1.069 0.250 0.259 0.197
Fuller4 1.171 0.195 0.259 0.209

JIVE 0.914 0.320 0.331 0.262
Geweke_Mode 1.149 0.215 0.262 0.208

Geweke_Median 1.111 0.228 0.254 0.198
LIML_GS_Mode 1.162 0.205 0.261 0.209

LIML_GS_Median 1.117 0.225 0.254 0.199
CP_Mode 1.155 0.207 0.259 0.206

CP_Median 1.107 0.228 0.252 0.196
KVD_Mode 1.233 0.205 0.310 0.258

KVD_Median 1.215 0.210 0.301 0.243

Notes: Number of replications: 400. Geweke: nburn = 100, n = 2000. CP: nburn_GS = 200, nburn_MH = 200,
n = 10,000, acceptance rate = 0.616 (0.008). KVD: nburn_GS = 200, nburn_MH = 100, n = 10,000, acceptance
rate = 0.312 (0.175).
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Table 6. T = 100, ρ = 0.60, k2 = 9, R2 = 0.10.

Mean Std RMSE MAD

OLS 1.542 0.078 0.548 0.542
2SLS 1.258 0.197 0.325 0.274

MELO 1.376 0.134 0.399 0.376
BMOM 0.972 0.132 0.135 0.110
LIML 1.003 0.437 0.437 0.291

Fuller1 1.071 0.311 0.319 0.243
Fuller4 1.180 0.233 0.294 0.232

JIVE 0.927 0.408 0.414 0.333
Geweke_Mode 1.253 0.201 0.323 0.269

Geweke_Median 1.238 0.206 0.315 0.261
LIML_GS_Mode 1.265 0.196 0.330 0.278

LIML_GS_Median 1.247 0.202 0.319 0.266
CP_Mode 1.196 0.264 0.329 0.266

CP_Median 1.192 0.232 0.301 0.240
KVD_Mode 1.371 0.278 0.464 0.382

KVD_Median 1.395 0.269 0.478 0.397

Notes: Number of replications: 400. Geweke: nburn = 100, n = 1000. CP: nburn_GS = 200, nburn_MH = 200,
n = 6000, acceptance rate = 0.434 (0.029). KVD: nburn_GS = 200, nburn_MH = 200, n = 10,000, acceptance rate = 0.210
(0.179).

Table 7. T = 100, ρ = 0.60, k2 = 4, R2 = 0.05.

Mean Std RMSE MAD

OLS 1.565 0.080 0.571 0.565
2SLS 1.254 0.282 0.380 0.309

MELO 1.376 0.184 0.419 0.379
BMOM 0.953 0.183 0.189 0.150
LIML 1.052 0.584 0.586 0.392

Fuller1 1.158 0.377 0.409 0.307
Fuller4 1.296 0.244 0.384 0.317

JIVE 0.833 0.638 0.659 0.527
Geweke_Mode 1.264 0.285 0.388 0.314

Geweke_Median 1.224 0.316 0.387 0.305
LIML_GS_Mode 1.274 0.283 0.394 0.320

LIML_GS_Median 1.232 0.310 0.387 0.306
CP_Mode 1.263 0.295 0.395 0.318

CP_Median 1.223 0.316 0.387 0.304
KVD_Mode 1.388 0.389 0.549 0.418

KVD_Median 1.394 0.315 0.504 0.414

Notes: Number of replications: 400. Geweke: nburn = 100, n = 2000. CP: nburn_GS = 100, nburn_MH = 100,
n = 4000, acceptance rate = 0.611 (0.009). KVD: nburn_GS = 200, nburn_MH = 200, n = 8000, acceptance rate = 0.442
(0.224).

Table 8. T = 100, ρ = 0.60, k2 = 9, R2 = 0.05.

Mean Std RMSE MAD

OLS 1.574 0.076 0.579 0.574
2SLS 1.386 0.219 0.444 0.394

MELO 1.478 0.131 0.496 0.478
BMOM 0.979 0.129 0.131 0.105
LIML 1.139 0.882 0.893 0.545

Fuller1 1.224 0.477 0.527 0.389
Fuller4 1.335 0.280 0.437 0.358

JIVE 0.844 0.823 0.838 0.663
Geweke_Mode 1.385 0.243 0.455 0.395

Geweke_Median 1.380 0.246 0.453 0.390
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Table 8. Cont.

Mean Std RMSE MAD

LIML_GS_Mode 1.397 0.230 0.459 0.404
LIML_GS_Median 1.387 0.236 0.453 0.396

CP_Mode 1.338 0.465 0.575 0.433
CP_Median 1.337 0.311 0.459 0.376
KVD_Mode 1.584 0.462 0.745 0.592

KVD_Median 1.608 0.368 0.711 0.610

Notes: Number of replications: 400. Geweke: nburn = 100, n = 2000. CP: nburn_GS = 200, nburn_MH = 200,
n = 10,000, acceptance rate = 0.433 (0.035). KVD: nburn_GS = 200, nburn_MH = 200, n = 10,000, acceptance
rate = 0.371 (0.221).

Table 9. T = 100, ρ = 0.20, k2 = 4, R2 = 0.10.

Mean Std RMSE MAD

OLS 1.172 0.090 0.194 0.174
2SLS 1.046 0.253 0.257 0.206

MELO 1.083 0.189 0.206 0.164
BMOM 0.859 0.190 0.237 0.195
LIML 1.017 0.333 0.333 0.260

Fuller1 1.029 0.298 0.299 0.236
Fuller4 1.059 0.235 0.242 0.192

JIVE 0.957 0.417 0.419 0.340
Geweke_Mode 1.053 0.251 0.257 0.200

Geweke_Median 1.041 0.267 0.270 0.214
LIML_GS_Mode 1.058 0.244 0.251 0.197

LIML_GS_Median 1.044 0.265 0.269 0.212
CP_Mode 1.054 0.255 0.261 0.205

CP_Median 1.040 0.271 0.274 0.218
KVD_Mode 1.131 0.368 0.391 0.237

KVD_Median 1.161 0.328 0.365 0.245

Notes: Number of replications: 400. Geweke: nburn = 100, n = 1000. CP: nburn_GS = 100, nburn_MH = 100,
n = 5000, acceptance rate = 0.615 (0.011). KVD: nburn_GS = 100, nburn_MH = 100, n = 1000, acceptance rate = 0.548
(0.200).

Table 10. T = 100, ρ = 0.20, k2 = 9, R2 = 0.10.

Mean Std RMSE MAD

OLS 1.179 0.096 0.203 0.181
2SLS 1.085 0.214 0.230 0.182

MELO 1.124 0.146 0.192 0.154
BMOM 0.823 0.143 0.228 0.193
LIML 0.992 0.397 0.397 0.301

Fuller1 1.015 0.347 0.347 0.270
Fuller4 1.055 0.267 0.273 0.216

JIVE 0.991 0.481 0.481 0.390
Geweke_Mode 1.084 0.218 0.234 0.184

Geweke_Median 1.079 0.223 0.237 0.187
LIML_GS_Mode 1.087 0.212 0.229 0.181

LIML_GS_Median 1.082 0.218 0.233 0.185
CP_Mode 1.054 0.308 0.313 0.223

CP_Median 1.063 0.254 0.262 0.207
KVD_Mode 1.249 0.234 0.342 0.283

KVD_Median 1.286 0.235 0.370 0.308

Notes: Number of replications: 400. Geweke: nburn = 100, n = 1000. CP: nburn_GS = 100, nburn_MH = 200,
n = 5000, acceptance rate = 0.456 (0.023). KVD: nburn_GS = 100, nburn_MH = 100, n = 5000, acceptance rate = 0.413
(0.202).
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Table 11. T = 50, ρ = 0.95, k2 = 4, R2 = 0.10.

Mean Std RMSE MAD

OLS 1.846 0.052 0.848 0.846
2SLS 1.359 0.180 0.402 0.363

MELO 1.572 0.118 0.584 0.572
BMOM 1.057 0.118 0.131 0.102
LIML 0.988 0.404 0.404 0.255

Fuller1 1.169 0.196 0.259 0.221
Fuller4 1.417 0.120 0.434 0.417

JIVE 0.637 0.611 0.711 0.478
Geweke_Mode 1.347 0.302 0.460 0.358

Geweke_Median 1.277 0.377 0.468 0.305
LIML_GS_Mode 1.338 0.155 0.372 0.345

LIML_GS_Median 1.252 0.194 0.318 0.281
CP_Mode 1.314 0.162 0.353 0.325

CP_Median 1.234 0.194 0.304 0.266
KVD_Mode 1.411 0.379 0.559 0.428

KVD_Median 1.462 0.463 0.654 0.514

Notes: Number of replications: 400. Geweke: nburn = 100, n = 3000. CP: nburn_GS = 200, nburn_MH = 200,
n = 10,000, acceptance rate = 0.476 (0.010). KVD: nburn_GS = 200, nburn_MH = 200, n = 10,000, acceptance
rate = 0.036 (0.038).

Table 12. T = 100, ρ = 0.95, k2 = 4, R2 = 0.10.

Mean Std RMSE MAD

OLS 1.850 0.033 0.851 0.850
2SLS 1.230 0.126 0.262 0.234

MELO 1.414 0.094 0.425 0.414
BMOM 1.044 0.095 0.105 0.082
LIML 1.025 0.170 0.172 0.132

Fuller1 1.095 0.142 0.171 0.143
Fuller4 1.264 0.099 0.282 0.265

JIVE 0.873 0.199 0.236 0.191
Geweke_Mode 1.216 0.117 0.246 0.223

Geweke_Median 1.150 0.127 0.197 0.172
LIML_GS_Mode 1.227 0.118 0.256 0.235

LIML_GS_Median 1.158 0.128 0.203 0.180
CP_Mode 1.221 0.116 0.250 0.228

CP_Median 1.154 0.127 0.200 0.176
KVD_Mode 1.258 0.207 0.331 0.280

KVD_Median 1.252 0.294 0.387 0.260

Notes: Number of replications: 400. Geweke: nburn = 100, n = 3000. CP: nburn_GS = 200, nburn_MH = 200,
n = 10,000, acceptance rate = 0.626 (0.007). KVD: nburn_GS = 200, nburn_MH = 200, n = 10,000, acceptance
rate = 0.022 (0.022).

Table 13. Performance of BMOM and KVD when ρ < 0.

Mean Std RMSE MAD Remarks

T = 50, ρ = −0.60, k2 = 4, R2 = 0.40
BMOM 0.852 0.129 0.196 0.165 Compare Table 1.

KVD_Mode 0.971 0.150 0.152 0.119 Acceptance rate for
KVD_Median 0.999 0.153 0.152 0.119 KVD: 0.713 (0.130)

T = 50, ρ = −0.60, k2 = 4, R2 = 0.10
BMOM 0.551 0.191 0.488 0.453 Compare Table 3.

KVD_Mode 0.851 0.327 0.359 0.271 Acceptance rate for
KVD_Median 0.934 0.341 0.347 0.267 KVD: 0.680 (0.133)
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Table 13. Cont.

Mean Std RMSE MAD Remarks

T = 50, ρ = −0.60, k2 = 9, R2 = 0.10
BMOM 0.420 0.136 0.600 0.580 Compare Table 4.

KVD_Mode 0.857 0.367 0.393 0.296 Acceptance rate for
KVD_Median 0.927 0.399 0.406 0.291 KVD: 0.482 (0.155)

T = 100, ρ = −0.60, k2 = 4, R2 = 0.10
BMOM 0.676 0.160 0.362 0.326 Compare Table 5.

KVD_Mode 0.901 0.213 0.235 0.186 Acceptance rate for
KVD_Median 0.964 0.237 0.239 0.190 KVD: 0.772 (0.110)

T = 100, ρ = −0.60, k2 = 9, R2 = 0.10
BMOM 0.531 0.129 0.486 0.469 Compare Table 6.

KVD_Mode 0.903 0.240 0.258 0.200 Acceptance rate for
KVD_Median 0.952 0.247 0.252 0.198 KVD: 0.614 (0.138)

T = 100, ρ = −0.60, k2 = 4, R2 = 0.05
BMOM 0.514 0.181 0.519 0.486 Compare Table 7.

KVD_Mode 0.813 0.306 0.358 0.285 Acceptance rate for
KVD_Median 0.908 0.362 0.373 0.287 KVD: 0.720 (0.128)

T = 100, ρ = −0.60, k2 = 9, R2 = 0.05
BMOM 0.407 0.131 0.608 0.593 Compare Table 8.

KVD_Mode 0.848 0.424 0.450 0.312 Acceptance rate for
KVD_Median 0.907 0.349 0.361 0.275 KVD: 0.585 (0.144)

T = 100, ρ = −0.20, k2 = 4, R2 = 0.10
BMOM 0.753 0.195 0.314 0.266 Compare Table 9.

KVD_Mode 1.002 0.267 0.267 0.208 Acceptance rate for
KVD_Median 1.037 0.291 0.293 0.218 KVD: 0.699 (0.162)

T = 100, ρ = −0.20, k2 = 9, R2 = 0.10
BMOM 0.673 0.159 0.364 0.328 Compare Table 10.

KVD_Mode 1.093 0.318 0.331 0.233 Acceptance rate for
KVD_Median 1.129 0.279 0.307 0.241 KVD: 0.553 (0.181)

T = 50, ρ = −0.95, k2 = 4, R2 = 0.10
BMOM 0.427 0.120 0.585 0.573 Compare Table 11.

KVD_Mode 0.737 0.244 0.359 0.312 Acceptance rate for
KVD_Median 0.836 0.246 0.295 0.239 KVD: 0.173 (0.112)

T = 100, ρ = −0.95, k2 = 4, R2 = 0.10
BMOM 0.589 0.097 0.422 0.411 Compare Table 12.

KVD_Mode 0.815 0.155 0.241 0.209 Acceptance rate for
KVD_Median 0.889 0.153 0.189 0.156 KVD: 0.179 (0.103)

Notes: Number of replications: 500.

Table 13 summarizes the results for cases with ρ < 0 for BMOM and KVD for whom negative
ρ made a surprising difference. As mentioned before, we focus on the estimates of the structural
parameter β. Specifically, we analyze the sensitivity of the various estimates of β with respect to
the strength of the instrumental variables Z, the degree of overidentification (k2 −m + 1), the degree
of endogeneity (ρ), and the sample size (T). Also, we will examine whether the performance of
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an estimator is symmetric with respect to the sign of parameter ρ, an issue generally overlooked in the
literature.14

Note that the strength of the instrumental variables for the included endogenous variable Y2 is
measured in terms of the adjusted R2 by regressing Y2 on Z = (Z1, Z2). In the data generating process,

we controlled R
2

to be within ±2.5% of the specified value to reduce unnecessary variation. We did not

experiment with extremely small R
2

(say, 0.01 or less). In these cases, the mean values of all estimators
approached the point of concentration ω12/ω22, which is equal to (β+ ρ) for our data generating
process (DGP).

For each specification, the number of replications is 400. The number of burn-ins (nburn_GS and
nburn_MH), and subsequent number of iterations (n) determined at the convergence diagnosis step
are reported in the footnotes to each table.

The average acceptance rate and its standard deviation (in parentheses) across replications for
each M–H routine are reported as well. To evaluate alternative estimators, we computed mean,
standard deviation (Std), root of mean squared errors (RMSE), and mean absolute deviation (MAD)
over repeated experiments for all the estimators considered.15 Since LIML, posterior densities for
CP and KVD, as well as 2SLS in the just-identified case do not have finite moments of positive order
in finite samples, one should interpret the computed mean, standard deviation and RMSE across
replications for these estimators with caution. In this sense, the MAD across replications is a preferred
measure to consider.

We will first look at cases reported in Tables 1–12 with ρ > 0. In Table 1, we consider a case (T = 50,

ρ = 0.60, k2 = 4) with moderately strong instruments (R
2
= 0.40). It is found that with reasonably strong

instruments all estimators designed for simultaneous equations perform reasonably well. As expected,
OLS is seriously biased. BMOM has a slight edge over others in terms of RMSE and MAD. For all
Bayesian approaches and LIML-GS, the medians perform a little better than modes, and CP over KVD,
in terms of bias, RMSE, and MAD. Notice that the classical LIML estimates are different from LIML-GS
(mode or median). As noted by Drèze (1976), from a Bayesian viewpoint, LIML produces an estimate
of β conditionally on the overidentifying restrictions, the modal values of all the remaining parameters,
and a uniform prior. In other words, the concentrated likelihood function of β after concentrating out
(i.e., maximizing with respect to) other reduced-form and nuisance parameters is a conditional density.

However, LIML-GS is a marginal density with all other parameters being integrated out. Due to
possible asymmetry in the distribution of the nuisance parameters, the modal/median values of
LIML-GS may not coincide with classical LIML estimates. In all our experiments, we find that the
median-unbiasedness property of (conditional) LIML does not carry over to the marginal LIML
(i.e., LIML-GS); however, the former generally has a much larger standard deviation than the latter.
In a way, LIML-GS brings the classical LIML estimator close to its Bayesian counterpart for the purpose
of comparison.

It is interesting to note that across all our tables, the difference between LIML-GS and CP can only
be attributed to the importance of Jeffreys prior. Compared to LIML-GS, typically CP has a smaller
bias, but slightly larger standard deviation, even though the differences are very small. In some cases,

14 Denote Ω =

[
ω11 ω12
ω12 ω22

]
. Using Σ = C′ΩC, we have σ12 = ω11 − 2βω12 + β2ω22, σ12 = ω12 − βω22, and σ22 = ω22.

Letting ρ = σ12/
√
σ11σ22, the second relationship may be rewritten as:

β−
ω12

ω22
= −ρ

√
σ11

ω22

If Σ is normalized as in (35) with σ11 = ω22 = 1, then ω12 = β + ρ. Therefore, in our context, given β = 1, the sign and
magnitude of ρ (or ω12) has a special significance.

15 Medians were also calculated. Since they were very close to the corresponding means in all our experiments, we did not
report them in this paper.
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however, the use of Jeffreys prior reduces the bias in CP quite substantially. For example, in Table 4
with T = 50 and a high degree of overidentification, the bias is reduced from 0.36 to 0.25.

A simple case when the structural model is just identified (k2 = 1) is reported in Table 2. For this
case it is well known that classical LIML coincides with 2SLS. The KVD approach does not accommodate
the case of just-identification since (15) requires k2 > (m − 1).16 In this case, we find that CP-Mode
produces results closer to LIML-GS-Mode than to LIML. CP (1998) showed that for a two-equation
just-identified SEM in orthonormal canonical form, the posterior density of β with Jeffreys prior has
precisely the same functional form as the density of the finite sample distribution of the corresponding
LIML estimator as obtained by Mariano and McDonald (1979). Our simulation results show that the
assumption of orthonormal canonical form is crucial for their exact correspondence, which cannot
be extended to a general SEM.17 In general, the Bayesian marginal density is not the same as the
classical conditional density. Interestingly, JIVE is considerably more biased and has larger standard
deviation than 2SLS. Also, CP-Median and LIML-GS-Median perform significantly worse than their
modes. This is because in an exactly identified model with weak instruments, the probability of local
nonidentification is substantial, and the resulting nonstandard marginal density exhibits a very high
variance. The same result holds true for Geweke-Median, but to a lesser extent. Thus, for exactly
identified SEMs with very weak instruments, mode of the marginal density is a more dependable
measure of β. We should point out that in all other cases in this study, the medians generally turned
out to be more preferable than the modes in terms of bias, RMSE, and MAD (see Tables 11 and 12,
for instance).

Results reported in Tables 3–12 consider cases with general overidentification and weak
instruments. As noted in the literature, OLS and 2SLS are median-biased in the direction of the
correlation coefficient ρ, and the bias in 2SLS grows with the degree of over identification, and decreases
as sample size increases. Results in Tables 3–10 confirm these results. Since MELO is a single K-class
estimator with 0 < K < 1, its performance is always between OLS and 2SLS estimates. The bias in
MELO shows the same pattern as that of 2SLS. With moderate simultaneity, the median-bias in 2SLS
can be as large as about 40% of the true value (see Table 8). We note that MELO, LIML-GS-Mode,
and KVD-Mode or KVD-Median are also median-biased in the direction of ρ. However, the bias in
JIVE is consistently in the opposite direction of ρ. Classical LIML is remarkably median-unbiased when
the instrumental variables are not very weak, which is well documented in the literature. We find that
LIML is median-biased in the direction of ρ when the instruments are very weak (Table 8), which is
consistent with the finding in Staiger and Stock (1997) using local-to-zero asymptotic theory. Even in
this situation, the bias of LIML is much smaller than that of any other estimator, except BMOM.

The MAD of OLS is very close to its bias (i.e., relatively small Std) across all cases and it implies
that OLS method is robust in the sense that it does not suffer from heavy tails or outlying estimates,
see Zellner (1998). In this sense, MELO and BMOM are all robust with relatively small standard
deviations across replications. However, OLS exhibits large bias in the presence of simultaneity and
is not so appealing. It is known that for a degree of overidentification strictly less than seven, 2SLS
would have a smaller asymptotic mean squared error (AMSE) than LIML, cf. Mariano and McDonald

16 When k2 = (m − 1), a diffuse prior in (20) for the linear model implies that the prior for the parameters of the LISEM (4) is

p(β,π1, Π1, Π2, Ω) ∝ |Ω|−(k+m+1)/2
|Π2|,

and the prior for the parameters of the LISEM (1) and (2) is

p(β,γ, Π1, Π2, Σ) ∝ |Σ|−(k+m+1)/2
|Π2|

which is identical to the Jeffreys prior; see also expressions (22) and (42) in CP.
17 Note that the relationship between the standardized parameter vector and the original parameter vector involves the nuisance

parameters, cf. Chao and Phillips (1998). However, when a SEM is in orthonormal canonical form (i.e., the exogenous
regressors are orthonormal and the disturbance covariance matrix Ω is an identity matrix), both the density of random
parameter β from the CP approach and the probability density of the classical LIML estimator for β are conditional on
these information.
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(1979) and references therein. In cases with weak instruments the situation gets more complicated in
finite samples. In our experiments, LIML has larger RMSE and MAD than 2SLS except in Tables 11
and 12 where ρwas 0.95. Note that the degree of overidentification is 8.0 in Tables 4, 6, 8 and 10.

Among classical estimators, JIVE turns out to be least appealing. Monte Carlo simulations in
Angrist et al. (1999) showed that JIVE has slight median bias in the opposite direction of ρ (but less than
2SLS) and have heavier tails than LIML. Our Table 6 is comparable to panel 2 of their Table 1, and the
results are similar. Our other experiments show that JIVE may also have large absolute bias (larger than
LIML) in the case with weak instruments, sometimes even greater than 2SLS (see Table 2). Generally,
JIVE has slightly less bias than 2SLS, but this gain is overshadowed by enlarged standard deviation
such that in finite samples it has no advantage over 2SLS in terms of MAD and RMSE. We also find that
JIVE has greater RMSE and MAD than LIML. Blomquist and Dahlberg (1999) experimented with much
larger sample sizes than ours. Comparing our Table 4 with Table 6 and with an unreported simulation
with a sample size of 500, we found that the relative gain in JIVE is more than other estimators as
sample size increases, even though its relative low standing remains valid. Examined from different
angles, these results are very similar to those reported by Davidson and MacKinnon (2006a, 2006b).18

Fuller’s modified LIML estimators are included because Fuller1 is designed to minimize the
median-bias, and Fuller4 to minimize the mean-squared error. It seems that this conclusion is also
problematic in the presence of weak instruments. Between the two, Fuller1 has smaller median-bias,
and Fuller4 has smaller standard deviations across replications. However, in terms of RMSE or MAD,
Fuller4 shows no advantage over Fuller1 in most of the cases.

Because all the estimators except OLS are consistent and their asymptotic distributions are
also the same, results in Tables 3–6 confirm that their bias and dispersion decrease as sample size
increases. But if the instruments are very weak (see Tables 7 and 8), their bias and dispersion may
remain significant, a point emphasized forcefully by Zellner (1998). However, when the endogeneity
is not strong (see Tables 9 and 10), their bias and dispersion may not be a big concern for some of
the estimators.

Across all cases, we find that the bias in BMOM is small if ρ is not too small and the
structural Equation (1) is overidentified. As sample size increases or degree of over-identification rises,
the observed bias in BMOM decreases. The most striking feature of BMOM is that it exhibits the smallest
MAD and Std when ρ is not too small. MELO shows slightly smaller MAD and Std than BMOM if ρ is
small (see Tables 9 and 10). In cases with very weak instruments and a high degree of overidentification,
the MAD of BMOM is only one-fourth of that of other estimators (see Table 8). These are in accordance
with Tsurumi (1990)’s finding that in many cases, ZEM has the least relative mean absolute deviation.
Meanwhile, if ρ is very small and the structural equation is overidentified, the bias in BMOM can be
large; 2SLS, LIML-GS, Geweke, and CP perform remarkably well in these situations.

Next, we examine in more detail the performance of the Bayesian approaches. Overall, the median
bias resulting from these approaches exhibits the same pattern as the bias of 2SLS, it increases with
the degree of overidentification, and decreases as sample size rises. The Geweke (1996) approach
used a shrinkage prior but its performance is comparable with LIML-GS and CP. The median-bias
from PMOD-Geweke is the same or slightly less than that of LIML-GS-Mode, and the bias from
Geweke-Median is always slightly less than that of LIML-GS-Median. Similar relationships are observed
for MADs. These reflect the impact of the (informative) shrinkage prior on the posterior density.

For each specification, the acceptance rate in the M–H algorithm using CP approach is stable
while that using KVD approach shows huge variation across replications. The acceptance rate for CP is
generally above 40%, except when sample size is small and the degree of overidentification is high.
This shows that the posterior of CP is largely dominated by the likelihood function (3) and the Jeffreys

18 Ackerberg and Devereux (2006) and Blomquist and Dahlberg (2006) have suggested some ad hoc adjustments to the original
JIVE formula to improve its performance.
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prior generally carries little information. Second, in terms of the computed standard deviations (Stds) of
the estimates across replications, CP-Mode has larger dispersion than LIML-GS-Mode, and CP-Median
has larger dispersion than LIML-GS-Median. These also shed light on the notion that Jeffreys prior is
less informative than a uniform prior. However, between the Jeffreys prior (13) used by CP and the
implied prior (21) resulting from diffuse/Jeffreys prior on a linear model used by KVD, it is not clear
which one is less informative.

As for the KVD (1998) approach, we observe that it performs as well as any other estimator if
the instruments are not weak (see Table 1). But when the instruments are weak, and ρ is positive,
KVD shows more bias and higher MAD than those from CP. In Table 4 with T = 50 and high degree of
overidentification, KVD performs as bad as OLS.

Next, we consider cases with negative ρ, and the results are summarized in Table 13. We replicate
each case in Tables 1–12 with the same specification except ρ being negative. Since the performance of
all estimators except BMOM and KVD were basically the same with respect to the sign of ρ, we only
report results on these two in Table 13. We find that when ρ changes sign, the bias of BMOM does not
change sign and even increases in magnitude. Also note that the computed Stds for BMOM when
ρ < 0 are close to the respective ones when ρ > 0. Therefore, for cases with ρ < 0, BMOM has large
RMSEs/MADs and loses its attraction. Note that BMOM is the same as the double K-class estimator
(DKC) with K values fixed. This asymmetry in the performance in DKC is not well recognized in the
literature, and has been discussed in Gao and Lahiri (2001). The observed asymmetry in its bias with
respect to ρ in our experiments is readily explained by examining an expression for the mean of double
K-class estimator (DKC) in (Dwivedi and Srivastava (1984, Theorem (1)). We can express δ̂DKC as:

δ̂DKC = δ̂K1 +

(
Y′2Y2 −K1V̂′2V̂2 Y′2Z1

Z′1Y2 Z′1Z1

)−1(
(K1 −K2)V̂′2y1

0

)
, (36)

where δ̂K1 is a single K-class estimator with characterizing scalar K1. When Z′1Z2 = 0, which is satisfied
in our experimental specifications, a double K-class estimator of β may be written as

β̂DKC = β̂K1 + (K1 −K2)
Y′2QZy1

Y′2∆Y2

where ∆ = (1−K1)Qz1 + K1PZ2 . Observe that for 0 < K1 < 1, β K̂1 is biased in the direction of ρ,
as noted in Mariano and McDonald (1979). Note also that Y′2∆Y2 > 0, and Y′2QZy1 provides an estimate
ofω12. Although Dwivedi and Srivastava (1984) explored the dominance of double K-class over K-class
using the exact MSE criterion, their guidelines for the selection of K2 for a given K1 are not entirely
valid, because the conditions were derived from a small Monte Carlo simulation with positive ω12 and
negative ρ only. Since K1 < K2 for BMOM, when ρ and ω12 have the opposite sign, the second term
in β̂DKC will be of the same sign as the bias of β̂K1 , therefore β̂DKC (hence BMOM) will exhibit large
bias. Otherwise, when ρ.ω12 > 0, the bias is mitigated. Based on our simulation results, we found that
the sign of ρ has no effect on the standard deviation of BMOM. This finding shows that the greater
RMSE of BMOM when ρω12 < 0 is due to the aggravated bias. For the specification corresponding to

Table 4 in Table 13 (i.e., T = 50, ρ = −0.60, K2 = 4, R
2

= 0.10), we find that for given K1 = 0.947, RMSE is
minimized if K2 is chosen to be 0.829, which is much less than K1, and less than K2 = 0.987 used in
BMOM. See Gao and Lahiri (2001) for further details.

In Tables 3–12 we found that KVD with ρ > 0 performs very poorly, often with substantial bias and
relatively high RMSE and MAD. CP uniformly dominates KVD in these cases. However, with ρ < 0
the picture turns around remarkably well in favor of KVD. As we see in Table 13, across all cases the
bias tends to be negative and relatively small. With other parameter values being the same, KVD with
ρ < 0 has significantly less RMSE and MAD than cases when ρ > 0, and performs unequivocally the
best among all estimators when endogeneity is strong. However, since this observed asymmetry is
essentially a finite sample problem with KVD, the improved performance when ρ < 0 becomes less
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significant when the sample size increases from 50 to 100. With ρ < 0 the overall performance of KVD
is very comparable to that of CP, if not slightly better in some cases.

After experimenting with widely different negative and positive values of β and ρ, we found out
that the performance of KVD is dependent on the sign of βρ, rather than on the sign of ρ. When βρ > 0,
it performs very unsatisfactorily as documented in Tables 3–12. Kleibergen and Zivot (2003) have
derived exact analytical expressions for the conditional densities of β given Ω for both the KVD and CP
posteriors. They show that the difference between the two is in the Jacobian relating the unrestricted
linear multivariate model to the restricted reduced form model. We expect that this additional term
may account for the asymmetry in KVD with respect to βρ. In our experiments, we found that in
finite samples, when βρ > 0, the reduced rank restriction using singular value decomposition shifts
the marginal posterior for KVD away from the marginal posterior of the linear multivariate model.
However, when the sample size gets large, the problem seems to go away.

6. Conclusions

This paper examines the relative merits of some contemporary developments in the Bayesian
and classical analysis of limited information simultaneous equations models in situations where the
instruments are very weak. Since the posterior densities and their conditionals in the Bayesian
approaches developed by Chao and Phillips (1998) and Kleibergen and van Dijk (1998) are
nonstandard, we proposed and implemented a “Gibbs within Metropolis–Hastings” algorithm,
which only requires the availability of the conditional densities from the candidate-generating density.
These conditional densities are used in a Gibbs sampler (GS) to simulate the candidate generating
density, whose drawings, after convergence, are then weighted to generate drawings from the
target density in a Metropolis–Hastings (M–H) algorithm. We rely on Raftery and Lewis (1992) to
determine the number of burn-ins, and the subsequent number of required iterations in order to
ensure convergence. Through a MCMC simulation study, our results provide useful guidelines for
empirical practitioners.

The first comforting result is that with reasonably strong instruments (marginal R
2

in excess of 0.40),
all estimators perform equally well in finite samples. In cases with very weak instruments (marginal

R
2

less than 0.10), there is no single estimator that is superior to others in all cases—a conclusion also
reached by Andrews and Stock (2005). When endogeneity is weak (ρ less than 0.20), Zellner’s MELO
does the best. When the endogeneity is relatively strong (ρ in excess of 0.60) and ρω12 > 0, BMOM
outperforms all other estimators by wide margins. When the endogeneity is strong but βρ < 0, the KVD
approach seems to get very appealing; but, otherwise, its performance is surprisingly poor. With βρ > 0,
as the sample size gets larger, the performance of KVD improves rapidly. Fortunately, the Geweke and
CP approaches exhibit no such asymmetry and their performances based on bias, RMSE, and MAD are
very similar. Based on the medians of marginal posteriors, their performance ranking is consistently
a distant second. The record of JIVE is quite disappointing across all our experiments and is not
recommended in practice. Even though JIVE is slightly less biased than 2SLS in most cases, its standard
deviation is considerably higher, particularly in small samples. The most remarkable result in this
study is that poor instruments can affect the performance of different estimators differently, depending
on the signs and magnitudes of certain key parameters of the model. Given the finding that even
in finite samples with very weak instruments BMOM and KVD perform remarkably well on certain
parts of the parameter space, more research is needed to understand the reasons for the asymmetry
and find ways to fix the problem. Another important caveat of our comparative study is that it was
done in an iid setting. Heteroskedastic and autocorrelated errors, particularly in highly leveraged
regressions, can affect inferences based on alternative instrument variable regressions differentially
relative to ordinary least squares, see Young (2019). These issues remain unresolved.
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Appendix A

Proof that |J(Φ, (Π2, β, λ))| ≥ |J(Φ, (Π2, β, λ))|λ=0 is invalid, cf. footnote 9.
In current notation, we need to show that |J(Φ, (Π21, θ2, β, λ))| ≥ |J(Φ, (Π21, θ2, β, λ))|λ=0| fails,

where θ2 = Π22Π−1
21 . The fact is that J(Φ, (Π21, θ2, β, λ))|λ=0 and W are not orthogonal, where W = J(Φ,

(Π21, θ2, β, λ))−J(Φ, (Π21, θ2, β, λ))|λ=0.
Consider a simple case with m = k2 = 2. In this case,

Φ =

(
1
θ2

)
Π21

(
β 1

)
+

(
−θ2

1

)(
1 + θ2

2

)−1/2
λ
(
1 + β2

)−1/2
(1− β).

Denote K =
(
1 + θ2

2

)−1/2(
1 + β2

)−1/2
. Therefore,

J(Φ, (Π21, θ2, β, λ))|λ=0 =


β 0 Π21 K(−θ2)

βθ2 βΠ21 θ2Π21 K(1)
1 0 0 K(βθ2)

θ2 Π21 0 K(−β)

,

W =


0 λK

(
1 + θ2

)−1
(−1) λK

(
1 + β2

)−1
(βθ2) 0

0 λK
(
1 + θ2

)−1
(−θ2) λK

(
1 + β2

)−1
(−β) 0

0 λK
(
1 + θ2

)−1
(β) λK

(
1 + β2

)−1
(θ2) 0

0 λK
(
1 + θ2

)−1
(βθ2) λK

(
1 + β2

)−1
(−1) 0


.

It is easy to check that |J(Φ, (Π21, θ2, β, λ))|λ=0|W′ is not a zero matrix but with its third row being
0 s. Interestingly,J

(
Φ, (Π21, θ2, β, λ))|λ=0

)′
W =


0 0 0 0
0 0 λK(−Π21) 0
0 λK(−Π21) 0 0
0 0 0 0

.
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