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Abstract: In forecasting count processes, practitioners often ignore the discreteness of counts and
compute forecasts based on Gaussian approximations instead. For both central and non-central
point forecasts, and for various types of count processes, the performance of such approximate point
forecasts is analyzed. The considered data-generating processes include different autoregressive
schemes with varying model orders, count models with overdispersion or zero inflation, counts with
a bounded range, and counts exhibiting trend or seasonality. We conclude that Gaussian forecast
approximations should be avoided.

Keywords: count time series; estimation error; Gaussian approximation; predictive performance;
quantile forecasts; Value at Risk

1. Introduction

Let (Xt)t∈Z be a count process and x1, . . . , xT a count time series thereof, i.e., the xt are
non-negative integer values from N0 = {0, 1, . . .}. After having fitted a model to the data x1, . . . , xT
available up to time T, in many applications, the aim is to predict the outcome of XT+h for some
forecast horizon h ≥ 1 by computing a point forecast x̂T+h. When forecasting a real-valued process,
the conditional mean is commonly used as a central point forecast, as this is known to be optimal
in the sense of the mean squared error (MSE) (Box and Jenkins 1970; Gneiting 2011). Since count
values are included in the set of real numbers, the same approach is commonly applied to count time
series, despite the fact that the mean forecast will usually lead to a non-integer value. Actually, the
discreteness of the count process (Xt)Z is often ignored in practice, in the sense that a real-valued
process model such as a Gaussian ARIMA model (Autoregressive Integrated Moving-Average, also
Box–Jenkins model) is fitted to x1, . . . , xT and then used for computing the required point forecasts.
Forecasts of count processes are then approximated by taking either the rounded or ceiled value of the
real-valued forecast. More recently, however, coherent forecasting techniques have been recommended
(Bisaglia and Canale 2016; Freeland and McCabe 2004; Jung and Tremayne 2006; McCabe and Martin
2005; McCabe et al. 2011; Silva et al. 2009), which only produce forecasts in N0. This is achieved by
computing the h-step-ahead conditional distribution of XT+h (given the past xT , . . . , x1) of the actual
count process model, and by deriving an integer-valued quantity as the forecast value. The most
widely used coherent central point forecast is the conditional median, which also satisfies an optimality
property as it minimizes the mean absolute error (MAE) (Gneiting 2011). This paper is restricted to the
conditional median if aiming at a central forecast, but the conditional mode might also be relevant in
some applications (see Appendix D).
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In certain applications, one is more interested in obtaining a non-central point forecast. In risk
analysis, for example, when considering a loss distribution, particularly large outcomes of Xt are
viewed as an undesired event (e.g., large numbers of defects, large numbers of complaints, etc.) and,
as such, viewed as a risk (Göb 2011). For a fixed risk level ρ ∈ (0, 1), one of the most common risk
measures is the Value at Risk (VaRρ), which is defined to be the ρth quantile of the (loss) distribution,

VaRρ = min
{

x ∈ N0 | P(X ≤ x) ≥ ρ
}

. (1)

VaRρ is interpreted as a threshold that is only exceeded in the worst (1− ρ)× 100% cases. We use
the VaRρ obtained from the conditional distribution of XT+h, given the past xT , . . . , x1, as a non-central
(and coherent) point forecast. We refer to this type of VaRρ as the “conditional VaRρ,” but we point
out that it should not be confused with the risk measure of the same name1. Similar to the central
median forecast, the conditional VaRρ is either computed based on the actual count process model
(thus leading to a coherent forecast), or in an approximate way by discretizing the conditional VaRρ

obtained from a real-valued process model.
Although there exist approaches of how to compute coherent point forecasts for count processes,

these are often ignored in practice and methods for real-valued time series (plus discretization) are
used instead. Thus, it is natural to ask how well these approximate forecasts perform compared to
coherent forecasting techniques. There are only a few works in the literature that address this question.
Quddus (2008) analyzed central point forecasts based on certain datasets about traffic accidents in
Great Britain. It turned out that especially for the disaggregated datasets, a discrete forecasting model
shows the best forecasting performance. Bisaglia and Gerolimetto (2015) performed a simulation study
to compare the median forecast for a so-called Poi-INAR(1) process (see Appendix A for details) with
the rounded-mean forecast, and they concluded that the Gaussian AR(1) approximation should be
avoided. Alwan and Weiß (2017) considered quantile forecasts for INAR(1) processes in the context of
demand prediction and showed that, in most cases, the approximate demand forecasts lead to severely
increasing costs compared to coherent model-based forecasts. The simulation results presented by
Maiti et al. (2016), who again compared Gaussian AR approximations to AR-like count processes, show
a more mixed picture: while the approximation performed equally well with respect to (non-coherent)
mean forecasts, it performed poorly concerning quantiles.

Although these works indicate that such discretized approximate point forecasts might perform
quite poorly, it would be too premature to outright recommend against the approximate approach.
Our reason for being cautious is the limited scope of the available works, which mainly focus on
central forecasts for AR(1)-like Poisson counts. Therefore, we analyze the approximation quality
of both central and non-central point forecasts in a comprehensive way by considering different
types of data-generating process (DGP); see Appendix A for background information, various
parameterizations of the respective models as well as different experimental designs. More precisely,
we compute the conditional median as a central point forecast and the VaR as a non-central point
forecast either in a coherent way by using the actual count process model, or in an approximate
way by ignoring discreteness and working with a Gaussian time series model instead. In the latter
case, the computed real-valued forecast is discretized by ceiling2 (i.e., mapping real numbers x to
the least integer ≥ x), which corresponds to a Gaussian approximation without continuity correction

1 In a risk context (see Göb 2011), the term “conditional VaR” is sometimes used synonymously with the tail conditional
expectation or to the expected shortfall. These measures provide additional information about the mean extend of an
exceedance of VaRρ and do thus not lead to integer values.

2 Alternative ways of discretizing a real-valued forecast would be rounding (to the nearest integer; this corresponds to the
Gaussian approximation with continuity correction) or flooring (i.e., mapping real numbers x to the greatest integer ≤ x),
but these are not further considered here. Note that, in the work by Homburg (2018), the median approximation with ceiling
or with rounding lead to similar results, whereas the VaRρ approximation was improved by using ceiling (or no continuity
correction, respectively).



Econometrics 2019, 7, 30 3 of 28

(Homburg 2018). We investigate the quality of the approximate forecasts (either with or without
estimation uncertainty) with respect to the performance metrics introduced in Section 2. Note that,
in contrast to Bisaglia and Gerolimetto (2015); Maiti et al. (2016); Quddus (2008), we compute these
forecast metrics precisely from the DGP’s model, not as data- or simulation-based empirical means
(see Appendix A.4 for computational details). In Section 3, we start with a detailed analysis of the
Poi-INAR(1) case, compare different experimental designs, and distinguish between approximation
and estimation error in forecasting. We also consider the exponentially weighted moving-average
(EWMA) forecasting method, which is quite popular among practitioners. In Section 4, we analyze
the performance of the point forecasts for count processes with overdispersion or zero inflation,
for higher-order autoregressions, for different types of AR-like models, for processes of bounded
counts, and for non-stationary processes exhibiting trend or seasonality (see Figure 1 for an overview).
Our analyses are illustrated with selected figures and tables; further results can be found at
https://www.hsu-hh.de/mathstat/en/research/projects/forecastingrisk. Finally, we conclude in
Section 5 and outline some issues for future research.

Overdispersion: Zero inflation: Bounded counts:

NB-INAR(1) ZIP-INAR(1) BinAR(1) BinARCH(1)
(Section 4.1) (Section 4.4)

Poi-INAR(1)
(Section 3)M
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Poisson counts (unbounded, equidispersed)
with AR(1)-like autocorrelation structure

Higher-order autoregression: Seasonality and trend:

Poi-INAR(p) Poi-INARCH(p) ll-Poi-AR(1)
(Section 4.2) (Section 4.3) (Section 4.5)D
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Figure 1. Overview of considered DGPs.

2. Evaluating the Performance of Coherent Point Forecasts

In this paper, we compare quantile-based coherent forecasts with their discretized counterparts
obtained from a real-valued approximation of the actual count process. The performances of the
approximate forecasts are evaluated based on selected inaccuracy measures, relative to the forecasts
computed from the true count model. There are many proposals in the literature of how to evaluate
the point forecasting inaccuracy (see Shcherbakov et al. 2013). Concerning central point forecasts, the
Mean Absolute Error (MAE),

MAE = E
[
|XT+h − x̂T+h|

∣∣ xT , . . . , x1
]
, (2)

is commonly used (see Appendix A.4 for computational details), but also the Root Mean Squared Error
(RMSE) is very popular (see Appendix C for the definition). While the RMSE is minimized by the
conditional mean (which is not coherent for counts), the MAE is minimized by the conditional median
(Gneiting 2011). Since we concentrate on the conditional median as the coherent central point forecast
for counts in this work, we use the MAE as the appropriate performance measure. Nevertheless,
in Appendix C, we also provide some background information on the use of MSE-based performance
measures. The MAE is then used to define the following relative measure

RMAE =
MAEf
MAEt

, (3)

where the subscript “f” refers to the forecasts to be evaluated (e.g., obtained from the approximating
model by discretization, or by using estimated parameter values), and the subscript “t” represents the

https://www.hsu-hh.de/mathstat/en/research/projects/forecastingrisk
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true count model of the DGP. Having, for example, an RMAE value of 1.5 implies that the MAE of the
evaluated forecasting scheme is increased by 50% compared to the true model’s MAE, the latter being
the unavoidable error in forecasting.

Concerning non-central point forecasts, inaccuracy measures are commonly based on asymmetric
loss functions. The “lin-lin” loss function, for example, is given by

ρ |XT+h − x̂T+h| · 1{XT+h>x̂T+h} + (1− ρ) |XT+h − x̂T+h| · 1{XT+h<x̂T+h},

where the indicator function 1A becomes 1 if A is true and 0 otherwise. Defining x̂T+h as the minimizer
of the expectation thereof leads to the conditional ρ-quantile, i.e., the VaRρ is the optimal forecast with
respect to this type of asymmetric loss (Christoffersen and Diebold 1997; Gneiting 2011). In a risk
context, however, it seems to be more appropriate to only penalize exceedances (Lopez 1998). As such,
we adjust the MAE to the situation of approximating a value in the right tail region and henceforth use
the Mean Excess Loss (MEL) given by

MEL = E
[
(XT+h − x̂T+h)1{XT+h>x̂T+h}

∣∣ xT , . . . , x1
]

(4)

as well as the corresponding relative measure

RMEL =
MELf
MELt

. (5)

Again, we refer to Appendix A.4 for computational details, and to Appendix C for a brief
discussion of the MSE’s tail version. The RMEL allows for a detailed insight into the inaccuracy of an
approximate non-central point forecast. It takes the value 1 if the approximate forecast coincides with
the true one. If the approximate forecast is larger than the true one, the RMEL takes a value < 1. Then,
we may interpret the forecast as being conservative, because in the practice of risk analysis, we would
prepare for a larger risk than actually expected. In contrast, a RMEL value > 1 indicates that the actual
risk is underrated, leading to an increased mean excess loss. In view of forecast accuracy, any deviation
of the RMEL from 1 is undesirable, whereas, in practice, the costs associated with exceeding or falling
below the true forecast might be different.

3. Baseline Model Poi-INAR(1): Approximate Forecasting and Performance Evaluation

As described in Section 1, our aim is to analyze the quality of different types of approximated point
forecasts for count processes, where we evaluate their accuracy by the metrics introduced in Section 2.
Our analyses are done in a comprehensive way by considering a wide variety of count process models
(see Figure 1 for an overview). As a first step, in this section, we consider counts generated by a
Poi-INAR(1) model, which constitutes an integer-valued counterpart to the Gaussian AR(1) model.
The approximate point forecasts are derived from the Gaussian AR(1) model as described in Section 3.1.
Their performance is first investigated without additional estimation uncertainty, to uncover the pure
effect of approximation error; also different experimental designs are investigated in this context
(see Sections 3.2–3.4). Section 3.5 focuses on the additional effect of estimation uncertainty.

3.1. INAR(1) Model and Gaussian Approximation

Let the true DGP be an INAR(1) process (Xt)Z with α ∈ (0, 1). It is defined by the recursion
Xt = α ◦ Xt−1 + εt, where the binomial thinning operator “◦” is used as a discrete-valued substitute of
the conventional multiplication; see Appendix A.2 for further details about the nature of the process
along with how h-step-ahead forecasts are computed.

Assuming that the Gaussian model is a good enough capture of the correlative structure,
practitioners often ignore the discreteness of DGP’s range and approximate the DGP’s true model by
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a corresponding Gaussian model. In the INAR(1) case considered here, an approximating Gaussian
AR(1) process (Yt)Z would be used, which follows the recursion

Yt − µY = φ(Yt−1 − µY) + εt with i.i.d. εt ∼ N(0, σ2
ε ), (6)

where “i.i.d.” abbreviates “independent and identically distributed.” Here and throughout this
article, we use µ and σ2 to denote the mean and variance, respectively, with the subscript indicating
the considered random variable. For a Gaussian AR(1) process to be stationary, the requirement
is φ ∈ (−1, 1). However, since we use it for approximating an INAR(1) process that only allows
for positive autocorrelation3, we restrict to φ ∈ (0, 1). In choosing the parameters of the Gaussian
approximation, we distinguish between two scenarios:

• If the DGP’s parameterization is assumed to be known, we implement the Gaussian approximation
according to the “X-method” considered by Homburg (2018), which calls for setting µY = µX and
φ = α, and the Gaussian variance σ2

ε is chosen such that σ2
Y = σ2

X (see Appendix B for details).
• If the DGP’s parameterization is assumed to be unknown, we directly fit the Gaussian approximate

model to the given count time series. Then, we use the scenario with estimated parameters to
consider the joint effect of approximation and estimation error.

After specification of the approximating Gaussian AR(1) process, the resulting approximate
h-step-ahead forecast distribution is normal,

YT+h|YT = yT ∼ N

(
φh yT + µY(1− φh), σ2

ε
1− φ2h

1− φ2

)
. (7)

We obtain the approximate discrete point forecasts by first computing the corresponding
real-valued forecast from Equation (7) (setting yT = xT), and by discretizing it afterwards. In this
work, as explained in Section 1, we use the ceiling operation for discretization, which corresponds to
the Gaussian approximation without continuity correction.

3.2. Evaluating Poi-INAR(1) Forecast Approximations

In this section, we consider the DGP Poi-INAR(1) (see Appendix A.2 for details). Using Equation (7)
along with the “X-method,” the approximating forecast distribution is

YT+h|YT = yT ∼ N

(
αh yT +

λ

1− α
(1− αh), λ(1 + α)

1− α2h

1− α2

)
(8)

with yT = xT . To first analyze the influence of the distribution parameters µX and α, we concentrate on
the forecasting scenario, where the last observation xT is assumed to equal the median of the marginal
distribution, and where the forecast horizon h equals 1. The influence of these two design parameters
is examined in Sections 3.3 and 3.4.

As a coherent central point forecast, we use the median of the discrete conditional distribution
(see Section 1) as it expresses the center of the distribution in a probabilistic sense. By contrast, the
approximate median is the ceiled Gaussian median. For different autocorrelation levels α, the left
graph in Figure 2 shows the computed RMAE values plotted against increasing mean µX. It can be
seen that the RMAE tends towards 1 with increasing µX , i.e., the Gaussian approximation improves
with increasing mean. This is plausible, because the Poisson distribution becomes less skewed
with increasing µX and approaches normality because of the central limit theorem (Jolliffe 1995).

3 Usually, this restriction is not problematic because positive autocorrelation is most commonly encountered in practice.
However, there are also models for count time series allowing for negative autocorrelation (see Appendix A for details).
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Interestingly, for a given mean level, the RMAE increases with the autocorrelation parameter α.
Additionally, the gaps between RMAE values for different autocorrelation levels decrease with the
mean level. For a typical low-count scenario with, say, 1 ≤ µX ≤ 5 and α = 0.8, we have to expect
RMAE values between 1.5 and 3.0, and these values remain notably larger than 1 even for µX ≈ 10.
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VaR X,0.95
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Figure 2. RMAE for median forecast approximation against µX (left), and RMEL for 95%-quantile
forecast approximation (right), with horizon h = 1, where xT equals median of marginal distribution.

As already mentioned, we consider an upper quantile (VaR) as the coherent non-central
point forecast. To evaluate the forecast performance of the approximate discrete upper quantile
(ceiled Gaussian VaR), we use the RMEL defined in Section 2. The right graph in Figure 2 shows
the RMEL values for the VaR approximation at level 95%. First, we note that the RMEL mainly
takes values ≤ 1. This implies that the Gaussian approximation tends to exceed the true VaR0.95

(conservative risk forecast). Furthermore, the RMEL tends very slowly towards 1 with increasing µX ,
thus the approximation quality improves much more slowly than for the central median forecast.

Figure 3 shows the RMEL for the higher quantile levels 99% and 99.5%. Again, it can be seen
that the approximation improves in accuracy with increasing µX, but now the RMEL values are
more often > 1 (underrating of the risk). Given the upper tail of the true forecast distribution
(a Poisson-binomial mixture) is generally heavier than the corresponding tail of the normal distribution,
this effect becomes particularly visible for very large quantile levels such as ≥ 99%.

3.3. Effect of Last Observation xT

In the preceding analysis, the last observation xT is assumed to be the median of the true marginal
distribution. Now, we analyze the effect of the location of xT . In Figures 4 and 5, xT is set equal to the
25%-, 50%-, and 75%-quantile of the INAR(1)’s Poisson marginal distribution.
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Figure 3. RMEL for (left) 99%- and (right) 99.5%-quantile forecast approximation against µX , with
horizon h = 1, where xT equals median of marginal distribution.
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Figure 5. RMEL for 95%-quantile forecast approximation against µX , with horizon h = 1 and different
α, where xT equals either 25%-, 50%-, or 75%-quantile of marginal distribution.

Generally, the accuracy of the median approximation of the one-step-ahead forecast distribution
improves over µX. However, with increasing α, the location of xT has a stronger effect on the actual
RMAE level. While for xT located in the right tail region, the RMAE for fixed µX improves with
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increasing autocorrelation, it deteriorates for increasing α if xT is located central or in the left tail region.
For the VaR0.95 approximation of the one-step-ahead forecast distribution, the location of xT appears
to not have such a large influence on the accuracy of the Gaussian AR(1) approximation. Independent
of the location of xT , we generally have RMEL values < 0.5 throughout µX ≤ 10.

Remark 1. At this point, let us briefly comment on another scheme for VaR forecasting, as it is popular among
financial practitioners: the historical simulation (HS) approach (see, e.g., Hendricks (1996)). The HS approach is a
moving-window approach that computes the sample quantile from past observations (commonly, stock or portfolio
returns) to generate a VaR forecast. If computing a sample quantile from a stationary process, it constitutes an
estimate of the marginal distribution’s VaR. For forecasting, however, the conditional distribution’s VaR is
more relevant. These alternative estimates of VaR can differ considerably for the autocorrelated count processes
considered in the present work. Consider the example of a Poi-INAR(1) DGP with marginal mean µX = 5,
which has the marginal distribution Poi(5) and thus the marginal VaR0.95 = 9. The conditional VaRs depend
on both the autocorrelation parameter α and the last observation xT , where the latter is chosen as either the
25%-quantile x0.25 = 3, the 50%-quantile x0.5 = 5, or the 75%-quantile x0.75 = 6:

• If α = 0.33, then xT = 3 leads to VaR0.95 = 8, xT = 5 to VaR0.95 = 9, and xT = 6 to VaR0.95 = 9.
• If α = 0.55, then xT = 3 leads to VaR0.95 = 7, xT = 5 to VaR0.95 = 8, and xT = 6 to VaR0.95 = 9.
• If α = 0.8, then xT = 3 leads to VaR0.95 = 5, xT = 5 to VaR0.95 = 7, and xT = 6 to VaR0.95 = 8.

As can be seen, the conditional VaRs vary considerably depending on the level of autocorrelation α and
value of the last observation xT . Thus, in the context of our work on autocorrelated processes, the HS approach
does not serve as a viable alternative for VaR estimation.

3.4. Effect of Forecast Horizon h

Let us now study the effect of an increasing forecast horizon h, causing the conditional forecast
distribution to approach the stationary marginal distribution. For a given level of autocorrelation,
Figure 6 shows that the h-step-ahead median approximation improves as h increases. Furthermore,
it can be seen that performance deteriorates with increasing autocorrelation. As such, by concentrating
on h = 1 as in the previous sections, we obtain some kind of worst-case performance of the central
Gaussian AR(1) approximation. Figure 7, in contrast, shows that an increased forecast horizon does
not have a strong effect on the approximation of the h-step-ahead VaR0.95. Thus, the result for h = 1 is
representative for the overall performance of the non-central Gaussian AR(1) approximation.
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Figure 6. RMAE for median forecast approximation against µX , with different α and varying horizons
h, where xT equals median of marginal distribution.



Econometrics 2019, 7, 30 9 of 28

R
M

EL

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 h = 1

h = 3
h = 6

α = 0.33

2 4 6 8 10

h = 1
h = 3
h = 6

α = 0.55

2 4 6 8 10

h = 1
h = 3
h = 6

α = 0.8

µX
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3.5. Point Forecasts of Poi-INAR(1) Processes under Estimation Uncertainty

In Section 3.2, the performance of the (non-)central one-step-ahead point forecasts is evaluated
for the case where model parameters are known. By doing so, we can explore the pure effect of the
approximation error. In practice, however, the process parameters are usually not known and have to
be estimated. Consequently, the point forecasts are also affected by estimation error. For the analyses
presented in this section, we simulated 1000 Poi-INAR(1) time series per scenario. For each time
series, the required model parameters (either for the Poi-INAR(1) fit or the Gaussian AR(1) fit) were
estimated, and the forecasts were computed based on the fitted models. For parameter estimation,
we used the method of moments (Yule–Walker estimation) because of computational efficiency. In
practice, maximum likelihood estimation (MLE) is preferred due to better statistical properties than
method-of-moments estimation (for the INAR family, forecasting based on non-parametric MLE would
also be possible (see McCabe et al. 2011)). We experimented with MLE and found that it rarely had
any observable effect relative to method-of-moments estimation; presumably, any advantages from
MLE were lost with the discretizing of the forecasts. For each simulated time series and corresponding
point forecast, the RMAE and RMEL values were computed, where deviations from 1 were now
caused by either estimation error only (for the coherent forecasts from the fitted count model), or by
both estimation and approximation error (for the forecasts from the fitted approximating model).
The plotted points in the subsequent figures represent truncated means of these 1000 simulated RMAE
and RMEL values; specifically, the 10 smallest and largest RMAE and RMEL values were truncated
per simulation scenario to eliminate extreme values (outliers) from this calculation.

The means of the simulated RMAE and RMEL values (where xT is fixed as the median of the true
marginal distribution) are shown as dots in Figures 8 and 9, whereas the solid lines correspond to the
respective curves for the known-parameter case in Figure 2.
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Figure 8. Mean of simulated RMAE values for median forecast against µX , with horizon h = 1, α = 0.55,
and different sample sizes T, where xT equals median of marginal distribution.
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Figure 9. Mean of simulated RMEL values for 95%-quantile forecast against µX , with horizon h = 1,
α = 0.55, and different sample sizes T, where xT equals median of marginal distribution.

The simulated RMAEs shown in Figure 8 demonstrate that the median forecasts based on the fitted
Poi-INAR(1) model are only slightly affected by estimation error. Estimation error has a greater effect
on the Gaussian approximate forecasts than on the Poi-INAR(1) forecasts. With this said, the RMAEs
show a similar behavior against µX as the RMAEs for the known-parameter case. The situation
becomes much more complicated for the VaR0.95-forecasts analyzed in Figure 9. Because of estimation
error, both the Poi-INAR(1) forecasts and the Gaussian AR(1) forecasts may lead to RMEL values
that deviate considerably from 1. Generally, with increasing sample size, the plotted points tend to
settle down to the known-parameter counterparts. Interestingly, the Gaussian forecasts seem to settle
down more generally with increasing T than it is the case with the Poi-INAR(1) forecasts, as can be
seen with T = 2500. Comparing Figures 8 and 9, it is clear that the performance of central forecasts
(of either type) is rather robust while non-central forecasts (of either type) are severely affected by
estimation error.

Rather than using a fixed xT , we now consider the use of the last observation xT from each
simulated time series as the starting point for forecasting. Figure 10 shows the resulting mean RMAE
values for the median forecasts (left) and the mean RMEL values for the VaR0.95-forecasts (right) for
the example situation α = 0.55, T = 250. The RMAE values resulting from the fitted Poi-INAR(1) and
Gaussian AR(1) model behave similarly as in Figure 8. In particular, the RMAE values corresponding



Econometrics 2019, 7, 30 11 of 28

to the Gaussian approximation converge towards 1 with increasing µX but show large deviations for
small µX. In the RMAE graph, we also added another forecasting competitor: namely, the rounded
EWMA forecast (with smoothing parameter chosen to minimize the squared one-step prediction
error), which is often used by practitioners. Even though the EWMA forecasting method is always
worse than the fitted Poi-INAR(1) model, it outperforms the Gaussian AR(1) forecast for µX ≤ 3. This
effect amplifies with increasing autocorrelation. For example, for α = 0.8, the EWMA approximation
provides better forecast approximations than Gaussian AR(1) for all µX ≤ 10.
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Figure 10. Mean of simulated RMAE values for median forecast (left) and RMEL values for
95%-quantile forecast (right) against µX , with horizon h = 1, α = 0.55, and size T = 250, where xT

equals respective last observation of simulated time series.

While the RMAE values show a quite stable behavior, the mean RMEL values for the 95%-quantile
forecasts plotted on the right-hand side of Figure 10 show a lot of fluctuation (especially for small µX).
The Poi-INAR(1)’s mean RMEL values are typically larger than 1 (implying that the computed forecasts
fall below the true VaR0.95) and tend towards 1 with increasing µX . In contrast, the Gaussian AR(1)’s
mean RMEL values are consistently smaller than 1 (computed forecast exceeds true VaR0.95), and
remaining so even with increasing µX .

The explanation for this is given in Figure 11. Here, the displayed areas express the percentages
of the RMEL being < 1, = 1 or > 1 (grey-white areas for Poi-INAR(1) forecasts, areas separated by
black lines for Gaussian AR(1) ones). The percentages add up to 100% along the Y-axis: the distance
between 0 and the lower bound of the grey area (lower black line) gives the percentage of simulation
runs leading to RMEL < 1, the height of the grey area (distance between black lines) the percentage
of exact matches (RMEL = 1), and the upper distances the percentages for RMEL > 1. According to
Figure 11, the percentage of RMEL values = 1 generally decreases with growing µX (for both models)
due to the increase in variance σ2

X = µX, but a growing T reduces this effect. For the Poi-INAR(1)
model, growing T also considerably increases the percentage of RMEL values = 1, with a balanced
amount of RMEL > 1 and < 1. For the Gaussian AR(1) model, in contrast, the percentage of RMEL
values < 1 remains constant in T (roughly around 40%), and only the percentage of RMEL values > 1
decreases. This explains why the mean RMEL in Figure 10 tends towards a constant value below 1.
Generally, for our Poi-INAR(1) simulations, we have at least 60% matches for the central forecast
(RMAE = 1) if fitting a Poi-INAR(1) model, whereas the minimal hit rate is about 30% for the Gaussian
approximation. For the VaR0.95 forecast, we achieve at least 40% or 30% matches (RMEL = 1) if fitting
a Poi-INAR(1) or Gaussian AR(1) model, respectively. Especially when fitting a Poi-INAR(1) model,
these percentages increase noticeably with growing sample size T.



Econometrics 2019, 7, 30 12 of 28

R
M

EL
<

1,
=

1,
>

1

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T = 75

2 4 6 8 10

T = 250

2 4 6 8 10

T = 2500

µX

Figure 11. Percentages of RMEL values for 95%-quantile forecast being = 1 (central area), < 1
(lower area), and > 1 (upper area) against µX , with horizon h = 1, α = 0.55, and different sample
sizes T, where xT equals respective last observation of simulated time series. Grey area corresponds to
Poi-INAR(1) forecasts, areas separated by black line to Gaussian AR(1) forecasts.

4. Point Forecasting for Diverse Types of DGPs

The baseline analysis regarding point forecasting for the Poi-INAR(1) DGP presented in Section 3
allowed us to introduce our forecasting approaches, to distinguish between approximation and
estimation error, and to discuss possible variations of the experimental design. Now, we extend our
analyses in a more streamlined way to several different types of DGP, as summarized in Figure 1 before.
In Section 4.1, we continue with INAR(1) DGPs, but now having overdispersion or zero inflation.
Then, we allow for higher-order autoregression in Section 4.2 by considering an INAR(2) process.
In Section 4.3, we investigate the so-called INARCH family as an alternative AR type model for count
processes. While all these DGPs have the full (unbounded) set N0 as their range, Section 4.4 focuses
on processes of bounded counts. Finally, Section 4.5 concludes by considering non-stationary count
processes, which exhibit seasonality and trend in addition to an AR component.

4.1. Point Forecasts of INAR(1) Processes with Overdispersion or Zero Inflation

The most common violations of a Poisson assumption are overdispersion (i.e., a variance larger
than the mean) and zero inflation (i.e., a larger zero probability than for a Poisson distribution having
the same mean). Within the INAR(1) model, overdispersed observations Xt can be generated by
using a negative binomial distribution for the innovation’s, εt ∼ NB(n, π) (see Weiß (2018)). For this

NB-INAR(1) model, π controls the innovations dispersion index: Iε = σ2
ε

µε
= 1

π . Using Equation (A2)
in Appendix A.2, we can find values for (n, π) for any choice of the Xt’s mean and dispersion index,
(µX, IX) with IX > 1. The true h-step-ahead forecast distribution is computed using Equations (A4)
and (A5), and the approximation in Equation (7) results as

YT+h|YT = yT ∼ N

(
αh yT +

n(1− π)

π

1− αh

1− α
,

n(1− π)

π

(
1
π

+ α

)
1− α2h

1− α2

)
, (9)

with φ = α. Analogously, the use of the zero-inflated Poisson distribution ZIP(λ, ω) for the innovations
(which adds an amount ω > 0 of zero probability while reducing the underlying Poi(λ)-probabilities by
(1−ω)) causes zero-inflated INAR(1) observations (see Jazi et al. (2012)). Actually, the ZIP-innovations
also cause overdispersion (with Iε = 1 + ωλ). Similarly, NB-innovations also exhibit some degree
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of zero inflation. For the ZIP-INAR(1) model, we determine the true h-step-ahead INAR(1) forecast
distribution again using Equations (A4) and (A5), and we approximate it by the Gaussian AR(1) model

YT+h|YT = yT ∼ N

(
αh yT + (1−ω)λ

1− αh

1− α
, λ(1−ω)(1 + ωλ + α)

1− α2h

1− α2

)
, (10)

with φ = α.
The effect of overdispersion and zero inflation on the RMAE of the approximate median forecast

is generally rather small, deviations are only visible for a large autocorrelation level α. Therefore,
in Figure 12, we selected graphs with α = 0.80 for illustration. There is not much difference between
the case of an NB-INAR(1) process (left) or a ZIP-INAR(1) process (right). Except for a low mean such
as µ ≤ 4, we do not see a strong effect of increased overdispersion or zero inflation on the goodness
of approximation. The deterioration of approximation quality for small means µX can be explained
as follows. Having fixed the marginal mean µX , the conditional means in Equations (9) and (10) and
thus the approximate median forecasts are not further affected by overdispersion or zero inflation, and
only the conditional variances are increased. The true median forecasts, however, tend more and more
towards zero with increasing overdispersion and especially zero inflation, thus the forecast accuracy
concerning the median deteriorates.

R
M

A
E

2 4 6 8 10

1.
0

1.
5

2.
0

2.
5

3.
0 NB IX = 1.01

IX = 1.4
IX = 2.4

α=0.8

µX

R
M

A
E

2 4 6 8 10

1.
0

1.
5

2.
0

2.
5

3.
0 ZIP IX = 1.01

IX = 1.4
IX = 2.4

µX

Figure 12. RMAE for median forecast approximation of NB-INAR(1) (left) and ZIP-INAR(1) process
(right) against µX , with horizon h = 1, α = 0.80, and different IX , where xT equals to median of
marginal distribution.

When evaluating the approximate VaR0.95 of the 1-step-ahead forecast distribution with either
NB- or ZIP-distributed innovations, the RMEL values are affected for all levels of α. Figure 13 shows
an illustrative example with α = 0.55. In both cases, the approximation error turns from RMEL < 1
(forecast exceeds true VaR0.95) to RMEL > 1 (forecast falls below true VaR0.95) with increasing IX,
but mainly for large µX in the NB-case, and only for small µX in the ZIP-case. The tendency towards
RMEL > 1 in the NB-case can be explained as follows: increasing overdispersion leads to more
probability mass in the upper tail of the true forecast distribution and thus an increased VaR0.95,
whereas the tails of the normal distribution are always light4. In the ZIP-case with large µX , in contrast,
the additional dispersion is caused by the large distance between the zero and the remaining probability
masses, so the upper tail does not much differ from the Poi-INAR(1) case.

4 The tail behavior of the normal and the NB distribution can be distinguished, for example, based on the mean excess
E[X − c | X > c] for a given threshold value c > 0 (see Su and Tang 2003). While E[X − c | X > c] converges to 0 with
increasing c in case of a normal distribution, it can converge to any positive real number for an NB-distribution.
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Figure 13. RMEL for 95%-quantile forecast approximation of NB-INAR(1) (left) and ZIP-INAR(1)
process (right) against µX , with horizon h = 1, α = 0.55, and different IX , where xT equals to median
of marginal distribution.

Figure 14 plots the simulated mean RMEL values for IX = 2.4 under additional estimation
uncertainty (with xT chosen as the respective last observation of the simulated time series). Both for
the NB- and the ZIP-case, the mean RMEL of the INAR(1) forecasts tends towards a level near 1 with
growing µX. The Gaussian approximations’ mean RMEL, in contrast, becomes increasingly larger
than 1 (forecast below true VaR0.95) in the NB-case, and smaller than 1 (forecast exceeds true VaR0.95)
in the ZIP case, confirming our discussion of Figure 13.
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Figure 14. Mean of simulated RMEL values for 95%-quantile forecast of NB-INAR(1) (left) and
ZIP-INAR(1) process (right) against µX , with horizon h = 1, α = 0.55, size T = 250, and IX = 2.4,
where xT equals respective last observation of simulated time series.

The reason for this change in the mean RMEL becomes obvious in Figure 15. Here, we see that
for both DGPs, NB and ZIP, the percentages of RMEL values below and above 1 are fairly even if
fitting an INAR(1) model to the data. With growing µX , the Gaussian AR(1) approximation of the NB
model starts to produce a lot of RMEL values greater than 1, and the percentage for RMEL = 1 slightly
decreases. In the ZIP-case, the approximation first produces mainly RMEL values > 1, but changes to
producing more RMEL values < 1 for µX ≥ 6. Thus, both cases lead to a biased RMEL performance,
with a bias in opposite directions.
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Figure 15. Percentages of RMEL values < 1, = 1, > 1 for 95%-quantile forecast of NB-INAR(1) (left)
and ZIP-INAR(1) process (right) against µX , with horizon h = 1, α = 0.55, size T = 250, and IX = 2.4,
where xT equals respective last observation of simulated time series. Grey area corresponds to INAR(1)
forecasts, areas separated by black line to Gaussian AR(1) forecasts.

4.2. Point Forecasts of Poisson INAR(2) Processes

Until now, all considered models (and their approximations) have autoregressive order 1.
Now, we extend to second-order autoregression and consider the Poisson INAR(2) model Xt =

α1 ◦ Xt−1 + α2 ◦ Xt−2 + εt; see Equations (A8) and (A9) in Appendix A.2 for further details. For given
ρ(1) = α and α2, we computed α1 = α (1− α2) and again generated 1000 replications per scenario.
To approximate the Poi-INAR(2) process, we used its second-order counterpart, the Gaussian
AR(2) process, and fit it to the simulated count time series. Based on the respective last two
observations xT , xT−1, point forecasts for both types of fitted model were computed.

The respective first- and second-order Poi-INAR models produce rather similar results. For α =

0.55 and T = 250, the RMAE values of the fitted Poi-INAR(2) model and its Gaussian approximation
are very close to the values plotted in Figure 10 (also see the left part in Figure 18 below). For α = 0.8,
the Gaussian approximation produces slightly reduced RMAE values compared to the first-order case.
In addition, the conclusions regarding the VaR0.95 approximation do not change for the second-order
DGP as illustrated by Figure 16 for the simulation scenario α = 0.55, α2 = 0.45, T = 250. On the
left-hand side, we see the mean RMEL of the fitted Poi-INAR(2) model and its Gaussian approximation
as dots. To check for possible differences to the INAR(1) case in Figure 10 (right), but to keep Figure 16
readable at the same time, we applied a moving window of length 5 to the dots in Figure 10 and
plotted the resulting smoothed mean RMEL values of the Poi-INAR(1) model and its approximation
as solid lines. The other plots show the percentages of RMELs < 1, = 1, > 1 of the fitted Poi-INAR
model (middle) and its approximation (right). We can see slightly lower percentages of exact VaR0.95

point forecasts (RMEL = 1) than in the Poi-INAR(1) case, but the general behavior is the same for
both model orders. Thus, while overdispersion or zero inflation may severely affect the approximate
forecasting performance, the actual model order seems to be of minor importance in these regards.

4.3. Point Forecasts of INARCH Processes

Another type of AR-like models for counts are included in the INGARCH family; and these are
often used as alternatives to the INAR model. In this section, we evaluate point forecasts of first-
and second-order Poisson INARCH models (and their Gaussian AR approximations5) under estimation
uncertainty; see Equations (A10) and (A11) in Appendix A.3 for background information.

5 We still use a Gaussian AR approximation, not ARCH approximation. Despite their controversial name (Weiß 2018),
the INARCH models are just AR-type models for count processes (see Appendix A.3).
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Figure 16. RMEL for 95%-quantile forecast of Poi-INAR(2) process, with horizon h = 1, α = 0.55,
α2 = 0.45, and size T = 250, where xT , xT−1 equal last observations of simulated time series. (Left)
Mean of simulated RMEL values against µX ; solid lines correspond to smoothed values of Poi-INAR(1)
case. (Right) Percentage of RMEL < 1, = 1, > 1 for Poi-INAR(2) forecast (first graph) and for Gaussian
AR(2) forecast (second graph) as grey areas; solid lines correspond to respective Poi-INAR(1) values.

The performance of the median and VaR0.95 forecast for the Poi-INARCH(1) model is generally
quite similar to the Poi-INAR(1) case. However, for large autocorrelation parameter α, the Gaussian
approximation to the Poi-INARCH(1) model provides a better performance regarding central forecasts
than in the Poi-INAR(1) case, in the sense of lower mean RMAE values for the approximate median
forecast, see the left part of Figure 17. The middle graph shows that the mean RMEL values of the
approximate VaR0.95 forecast, though still constantly below 1, are closer to 1 than in the Poi-INAR(1)
case. From the right part of Figure 17, however, we see that the percentage of correct VaR0.95 forecasts
(RMEL = 1) is even worse. The Gaussian AR(1) approximation of the Poi-INARCH(1) model just
produces more RMEL values > 1, which shifts the mean RMEL closer to 1.
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Figure 17. Poi-INARCH(1) DGP with horizon h = 1 and size T = 250, where xT equals respective last
observation of simulated time series; all plots against µX . (Left) Mean of RMAE values for median
forecast, where α = 0.80; solid lines correspond to smoothed values of Poi-INAR(1) case. (Center)
Mean of RMEL values for 95%-quantile forecast, where α = 0.55; solid lines correspond to smoothed
values of Poi-INAR(1) case. (Right) Percentages of RMEL < 1, = 1, > 1 for Gaussian approximations
to Poi-INARCH(1) (areas) or Poi-INAR(1) DGP (lines), where α = 0.55.

The mean RMAE and RMEL values of the fitted Poi-INARCH(2) model and its approximation
generally produce a very similar picture to that of the Poi-INARCH(1) model, but a growing α2 slightly
reduces the variation among the RMAE and RMEL values, see the right-most graph in Figure 18.
A comparison between the different AR-like processes for counts is done in Figure 18. The mean
RMAE values (left part) of the fitted Gaussian AR(2) approximation show the same overall behavior
as in the Poi-INAR(2) case, and the same conclusion applies to the mean RMEL values in the right
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part of Figure 18. As the only difference, as in the first-order case in Figure 17, the Poi-INARCH(2)
approximation’s mean RMEL values are somewhat closer to 1 than in the Poi-INAR(1) case. The reason
is the same as before: the percentage of exact matches (RMEL = 1) is reduced at the cost of more cases
with RMEL > 1. However, besides these small differences, the specific type of AR-like DGP for counts
does not have a notable effect on the forecasting performance, while other parameters such as the
actual autocorrelation level are much more important.
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Figure 18. RMAE for median forecast (left) and RMEL for 95%-quantile forecast (right) against µX :
DGP Poi-INAR(2) vs. Poi-INARCH(2), with horizon h = 1, α = 0.55, α2 = 0.45, and size T = 250,
where xT , xT−1 equal last observations of simulated time series; solid lines correspond to smoothed
values of Poi-INAR(1) or Poi-INARCH(1) case, respectively.

4.4. Point Forecasts of Bounded Counts Processes

In the preceding sections, we examine forecasts of models with an infinite range of counts. Now,
we turn to AR(1)-like count time series with a bounded range {0, . . . , n} with some n ∈ N. This
restriction is relevant if the counts are determined with respect to a population of specified (and
typically low) size n (such as a fixed group of countries, companies or customers). Here, it may happen
that VaR0.95 = n (i.e., it is not possible to exceed the VaR0.95), which, in turn, causes MEL values equal
to 0 (see Equation (4)). However, in our simulations, this happened extremely rarely. The few cases
where we had a division by zero when calculating the RMEL did not affect the computation of the
truncated mean (as described in Section 3.5, the RMAE and RMEL values are averaged only after
truncating their 10 smallest and largest values).

We start with the binomial AR(1) process having a binomial marginal distribution; see Equation (A6)
and (A7) in Appendix A.2 for further details. However, we later also refer to binomial INARCH(1)
processes, where the marginal distribution exhibits extra-binomial variation. The median forecast
performance for BinAR(1) counts nearly coincides with the Poi-INAR(1) case from Section 3.5. While
this also holds for the RMEL given a small π (where binomial and Poisson distribution are quite
similar to each other), the Gaussian approximation in the BinAR(1) case with π = 0.45 performs
quite differently from the one in the Poi-INAR(1) case. In the left plot of Figure 19, we see that the
fitted Gaussian approximation in the BinAR(1) case provides much lower mean RMEL values than
in the Poi-INAR(1) case. However, as shown in the right plot, the BinAR(1) approximation does not
worse in terms of exact matches (RMEL = 1). It has a more biased RMEL performance, because it
produces RMEL values > 1 very rarely. This leads to mean RMEL values being notably lower than in
the Poi-INAR(1) case, and implies more frequent exceedances of the true VaR0.95. At this point, it is
helpful to recall the discussions of Figures 2 and 9. The Gaussian AR(1) approximation’s forecasts
generally tend to exceed the true VaR0.95 (RMEL < 1), also in the Poisson case. There, RMEL values
> 1 can be assigned to the estimation error (more often in smaller samples), because it tends towards 0
for a growing sample size T. In the binomial case with π = 0.45, where the marginal distribution is
close to symmetry, the estimation error does not seem to have such a strong effect.
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Figure 19. 95%-quantile forecast against µX , with horizon h = 1, α = 0.55, and size T = 250, where xT

equals last observation of simulated time series. (Left) Mean of simulated RMEL values for BinAR(1)
DGP (dots); solid lines correspond to smoothed values of Poi-INAR(1) case. (Right) Percentages of
RMEL < 1, = 1, > 1 for Gaussian approximations to BinAR(1) (areas) vs. Poi-INAR(1) DGP (lines).

We also considered the binomial INARCH(1) model as a DGP for bounded counts; see Equation (A12)
and (A13) in Appendix A.3 for background information. The plots of the BinARCH(1) model look
very similar to the BinAR(1) plots. In the case of deviation, they show the same behavior as the
Poi-INARCH(1) model compared to the Poi-INAR(1) one (see Figure 17). For this reason, we do not
further discuss them at this point.

4.5. Point Forecasts under Seasonality and Trend

As the final scenario, we allow the count DGP to be non-stationary by including both seasonality
and trend. For this purpose, we use the ll-Poi-AR(1) model with period p given by Equation (A14)
in Appendix A.3, which extends an AR(1)-like data-generating mechanism with a linear trend and
harmonic oscillation for the log-means. Popular models for Gaussian time series with seasonality
and trend are seasonal ARIMA (SARIMA) models and regression models with ARMA innovations
(Brockwell and Davis 2016, Chapter 6), which both reduce to the ordinary ARMA models in the
absence of seasonality and trend. Thus, we defined Gaussian approximations to the ll-Poi-AR(1)
DGP by considering the SARIMA(1, 1, 0)× (0, 1, 0)p with period p on the one hand, and a regression
model with AR(1) innovations on the other hand, having linear trend and harmonic oscillation as in
Equation (A14). Since now the mean varies over time, we no longer evaluate our simulation results by
plots against the mean, but we present tabulated values for illustration.

Let us start with some general findings. In our simulations, we considered different periods, but
there was no effect on the predictive performance; therefore, we restrict the subsequent illustrations
to p = 12 (such as for monthly data). Furthermore, the Gaussian SARIMA approximation did
considerably worse than the ARMA regression approximation in the majority of cases. This is plausible,
because the true DGP has deterministic seasonality and trend as also assumed by the ARMA regression,
whereas the SARIMA model assumes stochastic seasonality and trend. In view of this general result,
we no longer consider the SARIMA approximation from this point on.

Table 1 shows mean RMAE and RMEL values and the corresponding percentages of RMAE or
RMEL = 1 (in parentheses) for the sample sizes T = 75, 250, with increasing trend parameter γ1 to
the right, and increasing seasonality γ2, γ3 downwards. For the fitted ll-Poi-AR(1) model, the mean
RMAEs are very close to 1, and the percentage of exactly matching the true conditional median is
at least 70%. This percentage slightly deteriorates with increasing seasonality, but improves with
sample size T. Although there is again more variation in the RMEL case, we essentially observe the
same pattern also here. The Gaussian AR(1) regression approximation, in turn, leads to a much worse
forecasting performance. Mean RMAEs are not smaller than 1.1, and the percentage of exact matches
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is only around 40% or worse. In addition, the exact matches of the true conditional VaR0.95 (RMEL
= 1) are clearly worse than in the ll-Poi-AR(1) case. In particular, these rates further decrease with
both increasing trend or seasonality, and, often, they do not improve with increasing T.

Table 1. Mean RMAE and RMEL values (percentages of RMAE or RMEL = 1 in parentheses) for
ll-Poi-AR(1) DGP with p = 12, γ0 = 0.5, and α = 0.55. Forecasts for fitted ll-Poi-AR(1) or Gaussian
AR(1) regression model (labeled as “Poi” or “Gau,” respectively), sample size T = 75 vs. T = 250.

T = 75 RMAE RMEL
γ1 0 0.001 0.002 0 0.001 0.002

γ2 γ3 Poi Gau Poi Gau Poi Gau Poi Gau Poi Gau Poi Gau

0 0 1.011 1.186 1.012 1.185 1.012 1.178 1.604 1.078 1.401 1.044 1.093 0.889
(0.874) (0.386) (0.880) (0.350) (0.849) (0.280) (0.691) (0.679) (0.699) (0.607) (0.741) (0.589)

0.1 0.3 1.026 1.186 1.027 1.188 1.029 1.175 1.359 0.939 1.339 1.043 1.304 1.109
(0.769) (0.395) (0.763) (0.361) (0.750) (0.398) (0.611) (0.486) (0.603) (0.509) (0.579) (0.501)

0.2 0.6 1.028 1.183 1.029 1.198 1.026 1.186 1.450 0.996 1.326 1.042 1.356 1.225
(0.743) (0.387) (0.759) (0.365) (0.721) (0.376) (0.633) (0.424) (0.603) (0.367) (0.599) (0.370)

T = 250

0 0 1.002 1.195 1.003 1.131 1.006 1.102 1.348 0.949 1.174 1.100 0.897 1.105
(0.944) (0.365) (0.835) (0.273) (0.900) (0.388) (0.849) (0.766) (0.851) (0.638) (0.755) (0.536)

0.1 0.3 1.007 1.154 1.007 1.149 1.009 1.108 1.203 0.845 1.219 1.033 1.169 1.266
(0.862) (0.408) (0.856) (0.345) (0.814) (0.369) (0.792) (0.576) (0.699) (0.542) (0.710) (0.503)

0.2 0.6 1.008 1.159 1.008 1.157 1.010 1.132 1.271 0.925 1.119 0.965 1.212 1.279
(0.853) (0.351) (0.820) (0.341) (0.802) (0.340) (0.761) (0.420) (0.724) (0.362) (0.675) (0.287)

We also varied the autoregressive parameter α in {0.33, 0.55, 0.8} as in the above sections, but a
clear effect could not be recognized. In contrast, such an effect is visible if varying the intercept γ0

(controlling the baseline mean exp(γ0)). This is illustrated in Table 2 for γ0 = 1, 2 (the case γ0 = 0.5
is provided by the lower part of Table 1). For the fitted ll-Poi-AR(1) model, the percentages of exact
matches for both the central and non-central forecasts decrease with increasing γ0. This result, which
is in analogy to earlier results such as in Figure 11, can be explained with the conditional Poisson’s
variance, which increases with increasing mean. However, although decreasing, these rates are much
larger than those corresponding to the Gaussian approximation. Note that, for these larger values
of γ0, the Gaussian approximation also shows decreasing rates of RMEL = 1 for increasing trend or
seasonality. Thus, we conclude that forecasts relying on a Gaussian approximation are even more
problematic in the presence of seasonality and trend than in the stationary case.

Table 2. Mean RMAE and RMEL values (percentages of RMAE or RMEL = 1 in parentheses) for
ll-Poi-AR(1) DGP with p = 12, T = 250, and α = 0.55. Forecasts for fitted ll-Poi-AR(1) or Gaussian
AR(1) regression model (labeled as “Poi” or “Gau,” respectively), intercept γ0 = 1.0 vs. γ0 = 2.0.

γ0 = 1.0 RMAE RMEL
γ1 0 0.001 0.002 0 0.001 0.002

γ2 γ3 Poi Gau Poi Gau Poi Gau Poi Gau Poi Gau Poi Gau

0 0 1.002 1.101 1.007 1.085 1.006 1.061 0.884 0.696 1.064 1.016 1.078 1.419
(0.950) (0.369) (0.807) (0.464) (0.768) (0.474) (0.793) (0.543) (0.776) (0.590) (0.694) (0.368)

0.1 0.3 1.006 1.114 1.010 1.088 1.012 1.070 1.097 0.866 1.149 1.118 1.148 1.353
(0.860) (0.309) (0.776) (0.354) (0.725) (0.387) (0.777) (0.509) (0.660) (0.491) (0.622) (0.454)

0.2 0.6 1.006 1.116 1.009 1.105 1.012 1.089 1.074 0.840 1.097 1.189 1.196 1.483
(0.852) (0.316) (0.785) (0.337) (0.711) (0.386) (0.768) (0.302) (0.711) (0.275) (0.614) (0.264)

γ0 = 2.0

0 0 1.002 1.038 1.007 1.035 1.008 1.024 1.012 0.856 1.095 1.174 1.075 1.449
(0.791) (0.443) (0.681) (0.426) (0.637) (0.372) (0.766) (0.546) (0.597) (0.461) (0.562) (0.366)

0.1 0.3 1.008 1.043 1.012 1.042 1.013 1.033 1.097 0.932 1.066 1.209 1.110 1.687
(0.713) (0.400) (0.619) (0.391) (0.540) (0.382) (0.658) (0.431) (0.538) (0.333) (0.460) (0.289)

0.2 0.6 1.007 1.063 1.012 1.066 1.013 1.084 1.113 0.978 1.098 1.318 1.117 1.650
(0.729) (0.336) (0.600) (0.305) (0.593) (0.194) (0.676) (0.212) (0.528) (0.152) (0.492) (0.107)
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5. Conclusions and Future Research

If coherent point forecasting is done based on a count time series model, then estimation error
is nearly without effect on median forecasts. Non-central quantile forecasts, in contrast, are affected
by estimation error, but the RMEL performance is more or less balanced and clearly improves
with increasing sample size. If point forecasting relies on the discretization of a Gaussian ARMA
approximation, the forecasting performance becomes considerably worse (both with and without
estimation error). While the median forecast performance at least improves with increasing mean µX ,
non-central point forecasts show a strongly biased RMEL performance for any considered mean level.
The RMEL performance is also severely affected by overdispersion or zero inflation, whereas neither
the actual AR order nor the type of AR-like process (INAR vs. INARCH) leads to strong differences
in forecasting performance. A bounded range may cause additional difficulties in approximating
non-central point forecasts because of more frequent exceedances of the true quantile’s value. Finally,
point forecasts for non-stationary processes of counts were also investigated and we found that the
approximation of non-central point forecasts further deteriorates with increasing trend or seasonality.

To summarize, the practice of discretizing Gaussian ARIMA forecasts for count time series is
strongly discouraged. For means µX ≤ 10, which are rather common values for real applications,
non-central point forecasting should always rely on a count time series model. The same conclusion
applies to central forecasts except the case of a low autocorrelation level, where the approximation
leads to a reasonable performance also for somewhat smaller mean levels. It is telling that the Gaussian
AR(1) forecast approximation is often outperformed by the basic EWMA approach, although the latter
still does considerably worse than the model-based prediction.

There are a few directions for future research regarding the forecasting of count processes.
One important direction is the construction and evaluation of (approximate) prediction intervals
for count time series. Concerning (non-central) point forecasts, it would be interesting to incorporate
costs into performance evaluation; especially the effect asymmetric cost schemes should be studied,
where forecasts below or above the true quantile value go along with different costs. Finally, one
may think of a risk-optimal parameter estimation for count time series, in the sense that estimates
are determined by minimizing some measure of forecast errors for a given risk metric and risk level.
In the context of risk optimization for discrete distributions, risk metrics different than VaR are often
preferred, e.g., the expected shortfall, because the VaR has a multiextremum structure in this case
(Larsen et al. 2002).
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Appendix A. Considered Models for Count Time Series

This appendix provides a brief survey of those count time series models, which were used as a
DGP in our numerical and simulation studies. More details and references on these and further count
time series models can be found in the book by Weiß (2018).
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Appendix A.1. Important Count Distributions

Let X be a count random variable. If the range of X is bounded from above by some upper
limit n ∈ N, i.e., if X can only take values in {0, . . . , n}, then the most common model is the binomial
distribution Bin(n, π) with some π ∈ (0, 1). Its probability mass function (PMF) is given by

P(X = x) =

(
n
x

)
· πx · (1− π)n−x for 0 ≤ x ≤ n,

and mean and variance are equal to nπ and nπ(1− π), respectively.

If X can take values in the full set of non-negative integers, N0, then the Poisson distribution
Poi(λ) with λ > 0 constitutes an important model. Its PMF equals

P(X = x) = e−λ λx

x!
for x ∈ N0.

Since mean and variance are equal to each other, both equal to λ, the Poisson distribution has the
equidispersion property. A common model for unbounded counts with overdispersion is the negative
binomial distribution NB(n, π) with n ∈ (0, ∞) and π ∈ (0, 1), and with PMF

P(X = x) =

(
n + x− 1

x

)
· (1− π)x · πn for x ∈ N0.

Its mean equals n 1−π
π , whereas its variance is inflated by the factor 1/π, thus given by n 1−π

π2 .
If overdispersion is caused by zero inflation, one often uses the zero-inflated Poisson distribution
ZIP(λ, ω) with λ > 0 and ω ∈ [0, 1) (ω = 0 corresponds to the Poi(λ)-distribution). It has the PMF

P(X = x) = 1{x=0} ·ω + (1−ω) e−λ λx

x!
for x ∈ N0,

and mean and variance are given by (1−ω) λ and (1−ω) λ (1 + ω λ), respectively.

Appendix A.2. Thinning-based Models

(Xt)Z is said to be an INAR process of order 1 (integer-valued autoregressive) if it follows
the recursion

Xt = α ◦ Xt−1 + εt (A1)

with independent and identically distributed (i.i.d.) innovations εt. The INAR(1) model uses the
binomial thinning operator “◦” (Steutel and van Harn 1979). For α ∈ (0, 1) and a count random
variable N, binomial thinning is defined as α ◦ N = ∑N

i=1 ξi, where (ξi) is a sequence of i.i.d. Bernoulli
random variables with P(ξi = 1) = α, being independent of N. The thinning operations at each
time t are performed independently of each other and of (εt)Z, and the εt are independent of (Xs)s<t

(McKenzie 1985).
The autocorrelation function (ACF) is of AR(1)-type, given by ρ(k) = Corr[Xt, Xt−k] = αk. The

mean and the dispersion index of the marginal distribution of the INAR(1) process are determined by

µX := E[Xt] =
µε

1− α
, σ2

X := Var[Xt] =
σ2

ε + αµε

1− α2 and IX =
σ2

X
µX

=
Iε + α

1 + α
, (A2)

where I denotes the index of dispersion, and I = 1 corresponds to the case of equidispersion
(Weiß 2018). We speak of a Poisson INAR(1) process (Poi-INAR) following the recursion of Equation (A1)
if the innovations are i.i.d. Poisson, εt ∼ Poi(λ). The marginal distribution is then also Poisson and
thus equidispersed with µX = σ2

X = λ
1−α . The h-step-ahead probability mass function (pmf) is given by
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p(XT+h = x|XT = xT) =
min{x,xT}

∑
s=0

(
xT
s

)
(αh)s(1− αh)xT−s e−λ 1−αh

1−α

(x− s)!
·
(

λ
1− αh

1− α

)x−s

, (A3)

with conditional mean αhxT + λ
(

1−αh

1−α

)
and variance αh(1 − αh)xT + λ

(
1−αh

1−α

)
(Freeland and McCabe 2004).

If the innovations’ distribution is not Poisson or not further specified, no closed-form formula is
available for the h-step-ahead pmf with h > 1. The one-step-ahead pmf is given by

p(x|xT) = p(XT+1 = x|XT = xT) =
min{x,xT}

∑
s=0

(
xT
s

)
αs(1− α)xT−s · P(εt = x− s), (A4)

and the h-step-ahead forecast distribution is determined numerically by making use of the Markov
property: for an M sufficiently large, we define the transition probability matrix

P :=
(

p(r|s)
)

r,s=0,...,M and compute the matrix power Ph, (A5)

the entries of which are the desired h-step-ahead forecast probabilities (Weiß 2018).
The INAR(1) model in Equation (A1) cannot be used for time series of bounded counts, i.e., where

the Xt have the finite range {0, . . . , n} with some n ∈ N. As a solution, McKenzie (1985) suggested
replacing the innovation term εt by the additional thinning β ◦ (n− Xt−1). More precisely, letting
π ∈ (0, 1) and α ∈

(
max{− π

1−π ,− 1−π
π }, 1

)
, and defining β := π(1− α) and γ := β + α, the binomial

AR(1) process (Xt)N0 follows the recursion

Xt = γ ◦ Xt−1 + β ◦ (n− Xt−1) with X0 ∼ Bin(n, π), (A6)

where again all thinnings are performed independently of each other, and independently of (Xs)s<t.
The BinAR(1) model in Equation (A6) defines a stationary Markov chain with the binomial marginal
distribution Bin(n, π), and the ACF ρ(k) = αk (which might also become negative). The one-step-ahead
pmf equals

p(x|xT) =
min(x,xT)

∑
m=max(0,x+xT−n)

(
xT
m

)(
n− xT
x−m

)
γm(1− γ)xT−mβx−m(1− β)n−xT+m−x. (A7)

The h-step-ahead conditional distribution is computed according to Equation (A5) with M = n.
In addition, higher-order extensions of Equation (A1) have been proposed in the literature. Here,

we concentrate on the second-order case. The most widely used type of INAR(2) model is due to
Du and Li (1991), who required conditional independence for the thinnings (α1 ◦t+1 Xt, α2 ◦t+2 Xt)

given Xt in the extended model recursion

Xt = α1 ◦t Xt−1 + α2 ◦t Xt−2 + εt. (A8)

The one-step-ahead pmf equals

p(x|xT , xT−1) = ∑
min {x,xT}
j1=0 ∑

min {x−xT ,xT−1}
j2=0

(xT
j1
) α

j1
1 (1− α1)

xT−j1 · (xT−1
j2

) α
j2
2 (1− α2)

xT−1−j2 · P(εt = x− j1 − j2),
(A9)

and h-step-ahead probabilities can be computed by adapting Equation (A5) to the bivariate Markov
chain given by (Xt, Xt−1)N0 . The ACF satisfies ρ(1) = α1/(1− α2) and ρ(k) = α1 ρ(k− 1) + α2 ρ(k− 2)
for k ≥ 2.
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Appendix A.3. Regression Models

Regression models for count time series assume a parametric relation for the counts’ conditional
mean. Quite popular are so-called INGARCH models (integer-valued generalized autoregressive
conditional heteroskedasticity), which assume a linear relation between the conditional mean Mt :=
E[Xt | Xt−1, . . .] and previous observations (Ferland et al. 2006). The actual count is then emitted by,
e.g., a Poisson distribution having mean Mt (Poi-INGARCH), but other types of count distribution
could be used as well (Weiß 2018). The Poi-INARCH(2) model assumes

Xt|Xt−1, . . . ∼ Poi(β + α1Xt−1 + α2Xt−2) (A10)

with β > 0, 0 < α1 + α2 < 1, and it reduces to the Poi-INARCH(1) model if α1 = α and α2 = 0. The
ACF is computed in the same way as for the respective INAR model. The one-step-ahead pmf equals

p(x|xT , xT−1) = exp(−β− α1xT − α2xT−1)
(β + α1xT + α2xT−1)

x

x!
; (A11)

this reduces to p(x|xT) by setting α2 = 0. The h-step-ahead probabilities can be computed by
adapting Equation (A5). An INARCH(1) model for bounded counts was proposed by Weiß and
Pollett (2014); their binomial INARCH(1) model is defined by

Xt|Xt−1, . . . ∼ Bin
(

n, a + b
Xt−1

n

)
(A12)

with a, a + b ∈ (0, 1). Setting π = a
1−b and α = b, a BinARCH(1) process has the same mean µX = nπ

and ACF as the corresponding BinAR(1) process, but a larger variance (extra-binomial variation). The
one-step-ahead pmf equals

p(x|xT) =

(
n
x

) (
a + b xT

n
)x (1− a− b xT

n
)n−x, (A13)

and the h-step-ahead conditional distribution is computed according to Equation (A5) with M = n.
Zeger and Qaqish (1988) proposed an AR-like Poisson regression model for unbounded counts

with an additional log-link, which allows to incorporate covariate information like deterministic trend
and seasonality. In Section 4.5, we consider this log-linear Poisson AR(1) model (ll-Poi-AR(1) model)
together with a linear trend and a harmonic oscillation with period p (and hence angular frequency
ω = 2π/p), given by

ln Mt =

=: ln µt︷ ︸︸ ︷
γ0 + γ1 t + γ2 cos(ωt) + γ3 sin(ωt) + α1

(
ln (Xt−1 + 1)− ln (µt−1 + 1)

)
. (A14)

For γ1 = γ2 = γ3 = 0, we have a purely autoregressive model. In our simulations, we actually
used a harmonic oscillation based on cos(ω(t + t0)), sin(ω(t + t0)) with t0 randomly drawn from
{0, . . . , p− 1} such that predictions may happen at each position within a cycle. Omitting the covariate
part ln µt in Equation (A14), one ends up with an AR(1)-like model for counts, where the ACF may
also take negative values depending on the sign of α1.

Appendix A.4. Computation of Inaccuracy Measures

The inaccuracy measures defined in Section 2 are computed based on the true DGP’s forecast
distribution, p(x|xT , . . .) for x = 0, 1, . . . (see Appendices A.2 and A.3 for the respective formulae). The
MAE in Equation (2) with respect to the forecast value x̂ is computed as the finite sum
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MAE ≈
M

∑
x=0
|x− x̂| p(x|xT , . . .),

where the upper limit M is either set equal to n in the case of a bounded range {0, . . . , n} (then
the computed sum even leads to the exact value of MAE), or it is chosen “sufficiently large” for an
unbounded range. In our case, we determined M such that 1−∑M

x=0 p(x|xT , . . .) < 10−10. Analogously,
the MEL in Equation (4) is computed as

MEL =
M

∑
x=x̂+1

(x− x̂) p(x|xT , . . .).

Appendix B. About Gaussian Approximations of INAR(1) Processes

Let (Xt)Z be an INAR(1) process as described in Appendix A.2, and the (Yt)Z be the corresponding
approximating Gaussian AR(1) process in Equation (6). The variance of Equation (6) differs from the
variance of the INAR(1) process in Equation (A2):

σ2
Y := Var[Yt] =

σ2
ε

1− α2 , σ2
X := Var[Xt] =

σ2
ε + αµε

1− α2 .

It is not possible to match both the observations’ and the innovations’ variance simultaneously.
Therefore, Homburg (2018) distinguished between two approaches: the ε-method is motivated by
conformably modeling the innovations, thus the Gaussian approximation is defined by

σ2
ε = σ2

ε ⇒ σ2
Y =

σ2
ε

1− α2 6= σ2
ε + αµε

1− α2 = σ2
X . (A15)

To obtain agreement within the observations, in contrast, the Gaussian innovations can be defined
according to the X-method:

σ2
Y =

σ2
ε

1− α2 =
σ2

ε + αµε

1− α2 = σ2
X ⇔ σ2

ε = σ2
ε + αµε = µε(Iε + α). (A16)

If computing the median as a central forecast, only the conditional mean αh(yT − µY) + µY(1− αh)

of the Gaussian AR(1) approximation in Equation (7) is relevant, which does not depend on σ2
ε .

Choosing µY = µX , there is no difference between the X- and ε-method for this type of central forecast.
For the mode, there might be an effect in special cases, also see the discussion in Appendix D, but
usually, also this type of central point forecast is not affected by the X- or ε-method. If approximating
quantiles in the upper tail region (non-central forecasts), however, the X-method outperforms the
ε-method. This is illustrated by Figure A1, according to which the ε-method often causes RMEL > 1
(forecast below VaR0.95), while the X-method has RMEL ≤ 1 and is hence more conservative. As a
consequence, we decided to use the X-method in this work.
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Figure A1. RMEL for 95%-quantile forecast approximation against µX ((left) X-method; and (right)
ε-method), with horizon h = 1, where xT equals median of marginal distribution.

Appendix C. MSE-based Performance Evaluation of Point Forecasts

In this work, we use the MAE to evaluate the median forecast as a central forecast, and the
MEL defined by Equation (4) for the non-central quantile forecasts. Other widely used performance
measures are defined based on mean squared errors, namely

MSE = E
[
(XT+h − x̂T+h)

2 ∣∣ xT , . . . , x1
]

and RMSE =
√

MSE

for evaluating central forecasts, and the corresponding tail version

TRMSE =
√

E
[
(XT+h − x̂T+h)2 1{XT+h>x̂T+h}

∣∣ xT , . . . , x1
]

for non-central forecasts. The RMSE is minimized by the conditional mean, which, for a Gaussian
approximation, coincides with the conditional median as well as the mode. For the right-skewed
conditional distribution of the Poi-INAR(1) process, we often observe E[Xt+h | xT ] > Med[Xt+h | xT ] >

Mod[Xt+h | xT ]. Thus, the RMSE is usually not minimized by the median forecast considered in this
work, and it will lead to different values than the MAE. To compare the performance measures RMAE
and RMEL with the MSE-based ones, we also computed the relative measures

RRMSE =
RMSEf
RMSEt

, RTRMSE =
TRMSEf
TRMSEt

.

Figure A2 shows the RMAE and RRMSE of the (approximate) median forecasts for a Poi-INAR(1)
process. We see that the main conclusions from both graphs coincide: the relative error tends towards 1
with increasing µX, and is larger for larger levels of the autocorrelation parameter α. Thus, RRMSE
does not provide further insights into the approximation quality.

As illustrated by Figure A3, also the RMEL and RTRMSE both provide essentially the same
message about the approximations’ forecast performance, namely that the forecasts tend to exceed
VaR0.95 (RMEL and RTRMSE ≤ 1). Furthermore, both graphs show that with increasing µX, the
approximation quality improves. Thus, again, there is no benefit if considering RTRMSE as a further
metric for approximation quality.
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Figure A2. RMAE (left) and RRMSE (right) for median forecast approximation against µX , with
horizon h = 1, where xT equals median of marginal distribution.
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Figure A3. RMEL (left) and RTRMSE (right) for 95%-quantile forecast approximation against µX , with
horizon h = 1, where xT equals median of marginal distribution.

Appendix D. About the Mode as a Coherent Central Point Forecast

Another possibility for a coherent central point forecast is the mode. While median and mode
always coincide for a symmetric unimodal distribution, they might differ for the skewed conditional
distributions of count models. The decision between median and mode as a central point forecast has
to be done based on practical reasoning: the mode is motivated as being the most probable outcome,
whereas the median expresses the center of the distribution in a probabilistic sense. A reason against
the use of the mode is the possibility of multiple modes. The mode might also be misleading in the
presence of zero inflation, and it does not have a “non-central counterpart.” Furthermore, while the
approximate median just corresponds to the ceiled Gaussian median, the discretization may cause
the approximate mode to deviate from the ceiled Gaussian mode (=median). As an example, if we
have a strong degree of overdispersion (i.e., if σ2

X is much larger than µX), it may happen that the
approximate discrete zero probability, i.e., P(YT+h ≤ 0|yT), is maximal within the pmf although the
median is larger than 0. For an NB-INAR(1) process with (µX, IX, α) = (5, 4, 0.33), and with xT = 4
being the median of the marginal distribution, the true one-step-ahead forecast pmf has median 3 and
mode 2. The Gaussian approximation in Equation (9) has conditional mean 4.67, thus ceiling leads to
the approximate median forecast 5. However, because of the large conditional variance (≈17.8), the
approximate zero probability P(YT+1 ≤ 0|yT = xT) becomes largest within the approximate forecast
pmf, i.e., the approximate mode equals 0. Thus, approximate mode and median deviate heavily from
each other.
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Furthermore, the popular forecast error measures RMAE and RRMSE (see Appendix C) might
both be misleading if being applied to mode forecasts. If looking at Figure A4 regarding the Gaussian
approximation of a Poi-INAR(1) DGP, both RMAE and RRMSE sometimes fall below 1, which would
indicate that the approximate mode forecast is more accurate than the true mode. However, the RMAE
of the mode forecast falls below 1 if the approximated mode is closer to the median of the Poi-INAR(1)
forecast distribution than the true mode, since the MAE is minimized by the median (analogously,
the RMSE is minimized by the mean). This gets even clearer with the following numerical example:
assume (µ, α) = (2.7, 0.33), then for xT = 3, the true one-step-ahead mode equals 2 and the median 3.
For the Gaussian approximation, the conditional mean is 2.799, and the approximate mode and median
forecast are 3. Thus, while both median forecasts are equal (hence RMAE = RRMSE = 1), the mode
forecasts differ (approximation error). Both relative measure lead to a value smaller than 1 if applied to
the modes: RMAE ≈ 0.94 and RRMSE ≈ 0.90. This can be explained by the fact that the approximate
mode forecast 3 is closer to the conditional median 3 or to the conditional mean 2.799, respectively,
than the true mode 2.
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Figure A4. RMAE (left) and RRMSE (right) for mode forecast approximation against µX , with horizon
h = 1, where xT equals median of marginal distribution.
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