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Abstract: This paper presents an extension to the Oaxaca–Blinder decomposition with continuous
groups using a semiparametric approach known as varying coefficients model. To account for
potential self-selection into the continuum of groups, the use of inverse mills ratios is expanded upon
following the literature on endogenous selection. The flexibility of this methodology may allow
detecting heterogeneity when analyzing endogenous dose treatments effects, as well as correcting for
endogeneity when analyzing the heterogeneous partial effects across the continuous group variable.
For illustration, the methodology is used to revisit the impact of body weight on wages, using body
mass index (BMI) as the continuum of groups, finding evidence that body weight has a negative,
but decreasing impact on wages for both white men and women.

Keywords: Oaxaca–Blinder Decomposition; heckman selection; semi-parametric; endogeneity;
kernel; non-linear; BMI; Body weight; wages differentials

JEL Classification: C14; I19; J31; J71

1. Introduction

Since the seminal papers from Blinder (1973) and Oaxaca (1973), many studies have used what is
known as the Oaxaca–Blinder (OB) decomposition for analyzing outcomes differences between two
well defined groups. Such differences are characterized as functions of differences in characteristics
(composition effect) and differences in coefficients associated with those characteristics (wage structure
effect). Subsequent research provided refinements that extended the OB decomposition analysis to
non-linear functions, distributional statistics other than the mean, as well as strategies to identify the
model when some of the underlying assumptions do not hold (see Fortin et al. (2011) for a review of
other methodological extensions).

While the OB decomposition can be directly applied to scenarios with naturally discrete groups
(i.e., union and non-union workers, men and women, whites and nonwhites), the application of OB type
decompositions on cases with continuous or quasi-continuous groups is not standard. Ñopo (2008) and
Ulrick (2012) have proposed extensions to the standard OB decomposition allowing for a continuous
group variable, using ad hoc parametric approximations.1 These strategies can be biased if the selected
functional form is incorrect, and neither strategy deals with a scenario where there is self-selection of
individuals into groups based on unobservables (endogenous membership).

The purpose of this paper is to extend the OB decomposition allowing for a continuous
group variable using a semiparametric approach known as varying coefficient models

1 Ñopo (2008) uses a linear interaction with the continuous variable, whereas Ulrick (2012) proposes the use of a cubic
polynomial to capture nonlinearities in the coefficients.
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(Hastie and Tibshirani 1993).2 The strategy accounts for endogenous self-selection into groups
abstracting from a generalization of the Heckman selection model that uses generalized inverse
mills ratios (GIMR) or generalized residuals (Heckman 1979; Lee 1978; Li and Racine 2007; Vella 1998)
to address the problem. As discussed in Wooldridge (2015), the use of GIMR is equivalent to using a
control function approach when addressing endogeneity.

A thorough search of the relevant literature yielded only two other papers that discuss the
estimation of varying coefficient models with this type of endogeneity. Centorrino and Racine (2017)
propose a strategy that uses instrumental variables and method of moments to address endogeneity
and estimate the varying coefficient models using sieve estimators. More recently, Delgado et al. (2019)
developed an estimator based on a control function approach, using a combination of spline regressions
for the estimation of the first stage residuals, and kernel regressions for the identification of the
coefficients in the model. The strategy proposed here is closer to Delgado et al. (2019) which
generalized residuals from a first stage auxiliary regression, the generalized inverse mills ratios,
are included in the main model before it is estimated using local linear kernel regression methods.

The strategy presented could be used for analyzing heterogeneous dose-treatment effects under
endogeneity, using an OB decomposition framework. In addition, under the assumption that all other
control variables are exogenous, the proposed strategy can also be used to identify the parameters
of the model of interest and analyze the heterogeneity of the impact of characteristics across the
continuous group variable. For example, Centorrino and Racine (2017) re-explore the impact of
race, experience and place of residence on wages when looking at individuals with different levels
of education (equivalent the continuous grouping variable). Delgado et al. (2019) illustrate their
methodology analyzing the demand for gasoline in the US using household income as the grouping
variable. Other applications may include the analysis of smoking and smoking intensity on wages
(Hotchkiss and Pitts 2013), training duration on employment probabilities (Kluve et al. 2012), or as will
be shown in the illustration section, the impact of Body Mass Index (BMI) on wages (Cawley 2004).

The subsequent sections of the paper are structured as follows. Section 2 describes the basic
Oaxaca–Blinder decomposition analysis in the presence of self-selection/endogenous membership.
Section 3 introduces the use of the Generalized Inverse Mills Ratio (GIMR), when individuals self-select
into continuous group. Section 4 describes the estimation of varying coefficient models, selection of
bandwidths and the estimation of standard errors. Section 5 provides Monte-Carlo Simulations showing
the performance of the proposed strategy. Section 6 provides an example of the implementation of the
methodology revisiting the wage penalty of obesity based on the research of Cawley (2004). Section 7
concludes the paper.

2. The OB Decomposition with Selection: Basics

In the standard OB approach, the goal is to analyze how differences in observed characteristics,
and returns to these characteristics, explain average differences on outcomes between two groups.
For the appropriate identification of the OB decomposition, the strategy requires that potential outcomes
can be estimated using two well-specified linear models with exogenous membership into each group.
This ensures that the distribution of the errors is orthogonal to the group membership.

In many instances, however, the assumption of membership exogeneity is likely to be violated
if individuals self-select to be part of a specific group (i.e., part of the treatment group).3 When this
happens the conditional distribution of the errors is no longer independent of the group membership,
ruling out the identification strategy of the standard decomposition approach. A strategy commonly
used to address this problem is the implementation of a Heckman Selection model.

2 This model is also known as smooth coefficient model.
3 Fortin et al. (2011) provide other scenarios where the conditional independence assumption might be violated.
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As described in Heckman (1979), endogenous selection can be considered as an omitted variable
problem that can be corrected by modeling the selection process and using this information to identify
the parameters of the model of interest.4 This strategy requires the estimation of a three-equation
model that is described as follows:

yi = XiβA + µA,i i f D∗i ≥ 0 or εi ≥ −Ziγyi = XiβB + µB,i i f D∗i ≥ 0 or εi ≥ −ZiγD∗i = Ziγ+ εi (1)

where D∗i is the latent propensity of an individual i to be part of group B, X is a set of exogenous
variables uncorrelated with µA and µB, and Z is a vector of variables related to individuals membership
that may include variables not included in X.5 If we assume that (µA,i,µB,i, εi) are jointly distributed as
multivariate normal:

µA,i,µB,i, εi ∼ N




0
0
0

,


σ2
Aµ . ρAσAµ

. σ2
Bµ ρBσBµ

ρAσAµ ρBσBµ 1


 (2)

the model can be estimated using a full information maximum likelihood (FIML) or a two-step procedure
(heckit). The latter involves including estimates for the selection correction terms, the inverse mills
ratio (IMR), in the main outcome model based on the information from the selection equation. For this
setup, the IMR (λ) is defined as follows:

E
(
µk,i

∣∣∣Zi, D
)
∝ λi =

−φ(Ziγ)

Φ(−Ziγ)
∗ 1(i ∈ A) +

φ(Ziγ)

Φ(Ziγ)
∗ 1(i ∈ B) (3)

where φ(.) stands for the normal density function, and Φ(.) for the normal cumulative density function.
The parameters γ can be obtained by estimating the selection equation in (1) using a probit model,

while unbiased estimations for outcome equations can be obtained using ordinary least squares (OLS)
by including the corresponding IMR as explanatory variables:

yi = XiβA + δAλi + eA
i i f i ∈ Ayi = XiβB + δBλi + eB

i i f i ∈ B (4)

In this setting, an estimation of the outcome gap after adjusting for selection can be written as
follows:

E(yi
∣∣∣i ∈ B) − E(yi

∣∣∣i ∈ A) = ∆y =
(
xBβ̂B + δ̂BλB

)
−

(
xAβ̂A + δ̂AλA

)
(5)

∆y−
(
δ̂BλB − δ̂AλA

)
= ∆ys = xBβ̂B − xAβ̂A (6)

which can be used to implement any variation of the standard OB decomposition based on assumptions
of the counterfactual wage structure.6 As described in Fortin et al. (2011), outcome differences
accounted for by differences in the coefficients (structure effect) can be interpreted as the treatment
effect of membership, after adjusting for differences in observed characteristics and endogenous
selection. In addition, under the exogeneity assumption of the explanatory variables X, the detailed
decomposition can be used to analyze the heterogeneity of the contribution individual characteristics
on the outcome gap.

4 This strategy has been used in the framework of the OB decomposition in terms of a switching regression model with
unknown selection. See for example Lee (1978).

5 While identification of the Heckman selection model can be obtained based on the non-linearity alone, it is recommended to
have an instrumental variable for better identification of the model.

6 For example, assuming counterfactual wages are given by the wage structure observed in Group B, the components of the
decomposition would be given by ∆ys = (xB − xA)βB + xA(βB − βA), where xA(βB − βA) can be interpreted as a treatment
effect under the conditional independence assumption.
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3. Generalized Sample Selection

The model described above assumes that the only information known about the selection process
is that individuals are members of one of two groups (A or B). As discussed in Vella (1998), D may
contain additional information that can be used to obtain a better approximation of the selection
correction term, even if the interest remains in analyzing differences between two groups.

As before, consider a model where the continuous characteristic Di is observed for each individual,
which can reference their membership status to a continuum of groups. This information can be used
to broadly classify individuals into Groups A and B (dichotomization of the groups). The selection
process and outcome equations can be described as follows:

yi = XiβA + µA,i i f Di ≤ c

yi = XiβB + µB,i i f Di > c

Di = Ziγ+ εi

(7)

with µA,i,µB,i, εi following a joint normal distribution as defined previously, with some arbitrary
threshold c to define membership, and with the third Equation in (7) representing the equation,
or equations, that describe the endogenous selection process. This model reverts to the standard
switching regression model if a dichotomous transformation 1(Di > c) is used as described in the
previous section. However, if further variation in Di is observed, other methods can be used to exploit
this information.

Many authors have proposed alternatives for the estimation of these types of selection models
where more information about the endogenous membership is available, using both parametric and
semiparametric strategies (see Li and Racine (2007, sct. 10.3), and Vella (1998)). In general, following
the approach proposed by Heckman (1979), these methodologies suggest that to obtain consistent
estimators for the parameters β, one should include an approximation of the selection bias term
as a control in the main regression model. This paper concentrates on three methodologies that
assume the overall distribution of D is observed, but can be easily adapted to scenarios where D is
partially observed.

Vella (1998) discusses the estimation of models such as the one described above and suggests that
a feasible strategy is to estimate the selection process as a tobit model if D has a censored distribution.7

In this case, assuming D is censored at zero, the corresponding IMR (selection correction term) is
defined as:

E
(
µk,i

∣∣∣Di, Zi
)
∝ λ∗i = −

1
σe

φ
(Ziγ
σe

)
Φ
(
−

Ziγ
σe

)1(Di = 0) +
1
σe

Di −Ziγ

σe
∗ 1(Di > 0) (8)

These are often called generalized residuals, and are referred here as generalized inverse mills
ratios (GIMR). It should be noted when D is not censored, the selection equation can be estimated using
standard OLS and the IMR are simply the OLS residuals. Alternatively, this equation can be modified
if D is censored at different points of its distribution. Including these residuals in the main model is
equivalent to the control function described in Wooldridge (2015). Control function approach is also a
common strategy for dealing with endogeneity in linear and nonlinear parametric frameworks, and in
nonparametric frameworks (see Li and Racine (2007, chp. 17), Henderson and Parmeter (2015, chp. 10),
and Wooldridge (2015)).

As Vella (1998) and Li and Racine (2007) describe, using the correction term in Equation (8)
provides estimations that are more stable and efficient than using the standard IMR (which assumes
dichotomous grouping). However, an instrumental variable is required to identify the coefficients of

7 This model is also known as type-3 tobit models, or tobit selection models (Li and Racine 2007, sct. 10.3).
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the selection correction term and the grouping variable D (intensity), if it were to be included in the
model specification.

An alternative method described in Vella (1998) is one where the selection process corresponds to
a setting with discrete but ordered selection rules. If we assume that D̃ is a discretized transformation
of D (i.e., D̃i = K i f Di ∈ {llk, ulk} f or K ∈ [0, 1, . . . , J]), and that D̃∗k,i is the latent propensity of an

individual i to be part of group D̃ = K, then the selection equation process can be written as:

D̃∗k,i = Ziγk + εi ∀k ∈ [0, 1, . . . , J]

D̃i =



0 i f D̃∗1,i < 0 → εi < −Ziγ1

1 i f D̃∗1,i > 0 and D̃∗2,i < 0 → −Ziγ1 ≤ εi < −Ziγ2
...

...
J − 1 i f D̃∗J−1,i > 0 and D̃∗J,i < 0 → −ZiγJ−1 ≤ εi < −ZiγJ

J i f D̃∗J,i > 0 → −ZiγJ ≤ εi

(9)

Note that Equation (9) is a different way of writing the selection model described in Vella (1998),
where all coefficients in γk are permitted to vary. Additionally, note that all latent coefficients are
affected by the same shock (εi). Under the parallel lines assumption (Williams 2016), an ordered probit
(O-probit) can be used to estimate this model, where only the constant is allowed to vary across models.

As described in Chernozhukov et al. (2013), a more flexible alternatives for the estimation of
the selection model is allowing all parameters in γk to vary across all points of the distribution of
D. This can be done using independent models (Foresi and Peracchi 1995), or using simultaneous
models such as the generalized ordered probit model (Terza 1985). Both alternatives impose greater
computational burden and may produce unrealistic predicted probabilities in the model, as the number
of groups (J) increase.8

As described in Vella (1998), similar to the binary group case, the outcome equations can be
consistently estimated using OLS by simply including a selection correction term, which for the
selection rule described by Equations (9) takes the following form:

E
(
µk,i

∣∣∣D̃i, Zi
)
∝ λ∗i =

−φ(Ziγ1)

1−Φ(Ziγ1)
1D̃i=0 +

J−1∑
k=1

φ(Ziγk) −φ(Ziγk+1)

Φ(Ziγk) −Φ(Ziγk+1)
∗ 1D̃i=k +

φ
(
ZiγJ

)
Φ
(
ZiγJ

) ∗ 1D̃i=J (10)

where λ∗i is the GIMR. Here, the term E
(
µk,i

∣∣∣D̃i, Zi
)

is only an approximation of the correction term

E
(
µk,i

∣∣∣Di, Zi
)
, as it can be considered as the expected value of the correction term for all values of Di

within the group D̃i. Any approximation bias would disappear
(
E
(
µk,i

∣∣∣D̃i, Zi
)
− E

(
µk,i

∣∣∣Di, Zi
)
→ 0

)
as the sample size increases to infinity (N→∞ ) and the bandwidth within each category tends to
zero (ulk − llk → 0). If no instrumental variables are used in the selection equation model, the GIMR
will be strongly linear with the estimated latent index, and the estimator will be poorly identified
(Chiburis and Lokshin 2007). This strategy can be easily adapted to scenarios where Di is partially
observed due to censorship, however, a drawback is that it requires choosing the number of groups to
reclassify the original data.

Taking from the literature on distributional regressions (Chernozhukov et al. 2013), the last
alternative suggested here is to use global distributional regressions to characterize the cumulative
distribution of the outcome F(D

∣∣∣z) . This can be done using a fractional probit model that takes
the form:

F(Di|z) = P(d ≤ Di
∣∣∣z) = Φ(Ziγ) (11)

8 See Williams (2016) for a brief discussion of this problem in the case of generalized ordered logit models, where the model
produces negative probabilities of belonging to a particular group.
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Empirically, this model can be estimated by substituting P(d ≤ Di
∣∣∣x) with the sample unconditional

cumulative distribution F̂(Di) = 1
n
∑

1(di < Di), or some other approximation.9 In this case,
the corresponding GIMR takes the form:

E
(
µk,i

∣∣∣Di, Zi
)
∝ λ∗i = F̂(Di) ∗

φ(Ziγ)

Φ(Ziγ)
−

(
1− F̂(Di)

) φ(Ziγ)

Φ(−Ziγ)
(12)

Once the corresponding selection correction terms have been estimated, they can be used to
estimate the parameters for the models of interest (Equation (7)) and the selectivity corrected average
wage gaps. These elements can then be used to implement an OB decomposition in the standard
way using Equation (6). In this framework, the structure effect can be interpreted as the average
treatment effect.

As it will be shown through Monte-Carlo Simulations, all these methodologies can be used for
identification of the main parameters of the model, but the correct identification of the constant in the
original model will depend on the shape of the distribution of membership variable and the method of
estimation of the generalized inverse mills ratios.

4. Varying Coefficient Models with Endogenous Membership

4.1. Local Kernel Estimators

The previous section described the construction of sample selection correction terms that uses
the information on the intensity of the treatment/selection variable to obtain the GIMR, which can be
used to correctly identify the parameters of the outcome models and implement an OB decomposition
comparing two groups. In this section, we discuss the strategy that would allow us to estimate
parameters corresponding to any number of groups, depending on the grouping variable Di.

A generalization of the selection process and outcome equations that accounts for a continuum of
groups can be written as:

yi = Xiβ(Di) + µi

Di = Ziγ+ εi
(13)

where β(Di) is assumed to be a vector of parameters that vary with the continuous variable D. Similar
to the previous setup, we assume that the errors µi and εi are correlated, which implies that D is
endogenous, and Equation (13) cannot be directly estimated. This problem has also been discussed in
Centorrino and Racine (2017) and Delgado et al. (2019), with the latter suggesting a three-step control
function approach, similar to the one suggested here, to correct for this source of endogeneity.

Under the assumption that D is a discreet and ordered variable, Chiburis and Lokshin (2007)
implement an estimator for Equations (13) using an ordered probit to model the selection process,
and OLS regressions for the outcome models for each identified group. They implement the estimators
for this model for both FIML and a two-step heckit procedure.

Abstracting from Chiburis and Lokshin (2007) estimator, and based on the discussion provided
in Section 2, including the GIMR term into the outcome model would allow us to obtain consistent
estimates of the parameters by estimating the following equation:

yi = Xiβ(Di) + δ(Di)λ
∗

i + ei (14)

where Xi is a vector that includes the constant and explanatory variables, and λ∗i is the estimate of the
GIMR for person i.10

9 This can be done, for example, using the kernel cumulative density estimation of D.
10 Notice that λ∗i does not vary with respect to the point of reference variable D, but rather the individual realization Di.
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In contrast with Centorrino and Racine (2017), if we assume that D is continuous, it would be
impossible to estimate the parameters in Equation (14) by running separate regressions with constraint
samples.11 Borrowing from the non-parametric econometrics’ literature, feasible estimations can be
obtained for the parameters B(Di) = [β(Di), δ(Di)] using a semiparametric model known as varying
coefficient models (Hastie and Tibshirani 1993; Li and Racine 2007).12 Using this strategy, one imposes
no restrictions on the coefficients B(Di) other than them being smooth and differentiable at Di.

One of the estimators for varying coefficient models expand on the use of kernel local smoothing
regressions, allowing for a flexible parameterization of the outcome model in Equation (14), modeling
the conditional mean E(yi

∣∣∣Di = d) as a linear function of explanatory variables and selection term
conditional on d. This would in principle allow us to obtain estimates of the coefficients B(d) for every
point of interest:

E(yi
∣∣∣Di = d) = m̂y(d) = E(WiB(Di)

∣∣∣d) = E(Wi|d)B(d) = m̂w(d)B(d) (15)

with Wi =
[
1, Xi, λ∗i

]
, and the function m̂z(d) representing the conditional mean of any variable z in

the neighborhood of d. This model can be estimated by minimizing the following objective function:

MinB(d) L =
∑

(yi −WiB(d))
2K

(
Di − d

h

)
(16)

which is equivalent to minimizing the weighted squares errors of the model, with weights given
by the kernel function K(.) and the bandwidth h. As discussed in Hastie and Tibshirani (1993),
to reduce problems with boundary bias, the recommendation is to use a local linear approximation
for B(d) � B0(d) + B1(d)(Di − d). The constant component of these coefficients, B0(d) =

[
β0(d), δ0(d)

]
,

represent the local effect that any variable has on the outcome y in the neighborhood of Di = d. Once all
the parameters in Equation (14) are identified, they can be used to implement the OB decomposition
for the selectivity corrected outcome between any two particular groups, depending on assumptions
regarding the reference group (Fortin et al. 2011).

4.2. Bandwidth and Standard Errors

An important aspect of the estimation of varying coefficient is the choice of bandwidth h. Larger
bandwidths help reduce the variance of the estimated parameters, but increase the bias. In contrast,
smaller bandwidths can reduce the bias, at a cost of higher variance.13 While there are a few suggestions
in the literature regarding to the choice of bandwidths (see for example Zhang and Lee (2000)),
a leave-one-out Cross-validation procedure, using a single smoothing parameter h for smoothing all
explanatory variables, is used here. This implies choosing h so that it minimizes the following expression:

CVloo(h) =
∑

ω(Di)
(
yi −Xiβ̂−i(Di, h) − δ̂−i(Di, h) ∗ λ∗i

)2
(17)

where β̂−i(.) and δ̂−i(.) are the leave-one-out estimators for β−i(.) and δ−i(.), for a given bandwidth h
and at a point Di. ω(Di) is a weight function that is used to avoid difficulties of slow converge cause
by the sparse distribution of D. Because the bandwidth does not affect the calculation of the GIMR,
the parameter λ∗i is considered exogenous for the estimation of the Cross-validation criteria.

11 Since we assume D to be continuous, it should have no repeated values. In practice, due to intentional or unintentional
measuring strategies continuous variables are available only in discrete form. This is the case for years of education in
example used in Centorrino and Racine (2017).

12 See Cameron and Trivedi (2005), Chapter 9 for details on Kernel regression estimators.
13 Derivations of the bias and variance for kernel local linear estimators for varying coefficient models are provided in

Section 9.3.2. in Li and Racine (2007).
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In the present context, the analytical estimation of the standard error of varying coefficient models
with selection can be considerably cumbersome to implement. Under the assumption that the selection
term is fixed and exogenous, Li and Racine (2007) provide expressions for the asymptotic distribution
of the standard errors for the kernel local linear estimator of varying coefficient models.14 However,
because the model described above is based on a two-step estimation process, the estimation of the
standard errors needs additional adjustments (Heckman 1979).

Because of the added complexity, a more feasible method, albeit computationally intensive, is using
bootstrapped standard errors with pairwise resampling (Horowitz and Lee 2012).15 The benefits of this
strategy have been discussed in Yatchew (2003) and Keele (2008), and more recently, its application
has been formally discussed in Cattaneo and Jansson (2018) in the framework of kernel-based
semiparametric estimations. For the procedure that follows, we use the cross-validation optimal
bandwidth of the original sample as fixed for each bootstrap iteration.16 The procedure can be described
as follows:

Step 1. Obtain a random paired bootstrap sample S1 from the original sample.
Step 2. Estimate the selection correction term λ∗S1 using any of the methods presented in Section 2.

Step 3. Estimate the coefficient for the outcome models for all points of interest d, based on the bootstrap
sample S1, using local kernel regressions, and the global optimal bandwidth.
Step 4. Estimate the decomposition components for the group(s) of interest.
Step 5. Repeat Steps 1 to 4, B times to obtain the empirical distributions of the aggregated and detailed
decomposition components.

In the next section I present a Monte-Carlo Simulation to assess the performance of the proposed
strategy to identify parameters of the outcome models, as well as to analyze the estimation of the
confidence intervals and standard errors. After that, I provide an illustration of the methodology
revising the main results from Cawley (2004), where BMI will be used as the continuum group variable.

5. Monte-Carlo Simulations

To assess the performance of the proposed methodology, and their finite sample properties, I draw
simulate 1000 samples of size n = 500, 1000, 2500 and 5000, from the following scheme:

x1

x2

z

 ∼ N



0
0
0

,


1 0.3 0.3
0.3 1 0.35
0.3 0.35 1


 &


u0

u1

u2

 ∼ N



0
0
0

,


1 0 0
0 1 0
0 0 1




whereN represents a joint normal distribution. The endogenous membership is defined by:

d = 1 + x1 − x2 + z + u0 + u1

with three separate specifications used for the varying coefficient:

β0 = 1 + 0.3 ∗ d− 0.1 ∗ d2; β1 = 1.5 ∗φ(d− 1) + 0.2 ∗ d; β2 = 1− 3 ∗Φ(d)

where φ and Φ are the standard normal probability and cumulative density functions, respectively.
These functional forms were chosen to generate nonlinearities that could not be captured using

14 See Section 9.3.2. in Li and Racine (2007) for further details.
15 This procedure is also followed in Centorrino and Racine (2017) for the construction of their confidence intervals.
16 Exploring the consequences of bandwidth selection within each bootstrap is beyond the scope of this paper. However,

a simple exercise using Stata command npregress suggests that estimating the bandwidth for each bootstrap sample produces
larger standard errors compared to using a fixed bandwidth.
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polynomial approximations. Finally, to add heterogeneity on the degree of endogeneity across d,
the outcome of interest is defined as:

y = β0(d) + β1(d)x1 + β2(d)x2 + (γ(d) ∗ u1 + u2) , with γ(d) = 1.5 + sin(0.5 ∗ d)

After each sample is simulated, the model is estimated with the procedure described in Section 3,
estimating the cross-validated bandwidths for each simulated sample, and estimating bootstrapped
standard errors using 199 repetitions. Table 1 provides a summary of the results, showing the bias,
standard errors from the simulations, average bootstrapped standard errors, and the 95% coverage
and bias corrected coverage using normal based confidence intervals.

For the results in Table 1, OLS-GIMR is used to correct for endogenous selection. Table 2 provides
a similar exercise, using simulations with samples of size n = 5000, but applying the GIMR from the
ordered probit and fractional probit regression models. In all cases, Tables 1 and 2 reports the average
estimates for the coefficients at selected points in the distribution of d, with the top and bottom values
(−3 and 5) representing the 2.5th and 97.5th percentiles of the distribution of d.

The simulations suggest that the proposed estimator performs reasonably well in finite samples.
Akin to other applications of semiparametric analysis, the estimator presents the largest bias at the
boundaries of the distribution, but also around points where the second derivative of the coefficient with
respect to d (∂2βk(d)/∂d2) is large. This bias disappears when larger samples and smaller bandwidths
are used.

The bootstrap procedure used to correct the standard errors produces estimates that slightly
understates the simulated standard errors. For the simulations with samples sizes n = 500, the average
bootstrapped standard errors understate the simulated standard errors by 5% in average. For the
simulations with sample size of 5000, bootstrapped standard errors understate the simulated standard
error in 2.5% in average. Looking at the raw coverage, except for areas with large bias, the estimator
obtains coverages between 90% to 95%, even for the simulations with the smallest sample size.17

After correcting for the average bias, the coverage is above 94% for the majority of the cases. Finally,
comparing the performance of the different estimators of the GIMR (Table 2), all strategies perform
similarly well, with only minor differences in coverage. Additional simulations presented in the
appendix show that the choice of the GIMR estimations matters if d has a bounded distribution.18

17 Coverage estimates based on percentile confidence intervals show similar levels of coverage, and are not reported here.
The simulation files are available upon request.

18 Appendix A provide additional simulations following the setups from Centorrino and Racine (2017), where d has a bounded
distribution between 0 and 1.
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Table 1. Monte-Carlo Simulation summary. Based on OLS-Generalized Inverse Mills Ratios.

Sample 500 Sample 1000 Sample 2500

True 95% 95% BC 95% 95% BC 95% 95% BC
d β1(d) Bias σ̂s

β1
σ̂bt
β1

Cov. Cov. Bias σ̂s
β1

σ̂bt
β1

Cov. Cov. Bias σ̂s
β1

σ̂bt
β1

Cov. Cov.

−3 −0.600 0.178 0.326 0.299 87.0% 92.6% 0.110 0.232 0.223 90.3% 94.2% 0.056 0.157 0.154 92.4% 94.6%
−2 −0.393 0.145 0.224 0.205 86.4% 91.9% 0.096 0.159 0.152 88.4% 94.3% 0.052 0.107 0.105 91.7% 95.8%
−1 −0.119 0.130 0.185 0.178 88.2% 93.0% 0.094 0.139 0.132 86.0% 93.7% 0.059 0.094 0.090 88.7% 93.7%
0 0.363 0.007 0.185 0.182 95.2% 95.4% 0.005 0.135 0.134 95.4% 95.4% 0.004 0.093 0.092 94.5% 94.5%
1 0.798 −0.143 0.218 0.204 85.4% 93.0% −0.113 0.158 0.152 86.8% 94.0% −0.077 0.106 0.104 85.2% 94.1%
2 0.763 −0.050 0.243 0.238 93.0% 93.6% −0.025 0.174 0.179 96.2% 95.7% −0.007 0.126 0.124 95.3% 95.5%
3 0.681 0.009 0.292 0.285 95.2% 94.7% 0.028 0.206 0.218 96.6% 96.1% 0.032 0.156 0.151 94.2% 94.6%
4 0.807 −0.065 0.391 0.357 91.7% 92.8% −0.020 0.278 0.274 94.3% 94.5% −0.002 0.202 0.191 94.3% 94.3%
5 1.000 −0.144 0.528 0.494 90.8% 92.3% −0.075 0.384 0.371 92.8% 93.5% −0.041 0.258 0.258 94.4% 95.3%

True 95% 95% BC 95% 95% BC 95% 95% BC
d β2(d) Bias σ̂s

β1
σ̂bt
β1

Cov. Cov. Bias σ̂s
β1

σ̂bt
β1

Cov. Cov. Bias σ̂s
β1

σ̂bt
β1

Cov. Cov.

−3 0.996 −0.024 0.258 0.254 94.2% 94.1% −0.049 0.186 0.181 92.5% 92.6% −0.033 0.122 0.121 94.2% 94.7%
−2 0.932 −0.134 0.183 0.169 83.8% 92.6% −0.113 0.126 0.123 83.9% 94.6% −0.074 0.085 0.082 83.7% 94.5%
−1 0.524 −0.228 0.161 0.140 61.6% 91.0% −0.170 0.120 0.103 57.7% 90.5% −0.120 0.078 0.070 56.6% 92.2%
0 −0.500 −0.017 0.142 0.140 95.7% 95.1% −0.009 0.104 0.104 94.1% 94.2% −0.006 0.070 0.071 95.4% 94.8%
1 −1.524 0.205 0.185 0.159 66.6% 90.9% 0.155 0.133 0.118 69.6% 91.1% 0.109 0.089 0.081 67.9% 92.9%
2 −1.932 0.145 0.201 0.185 82.5% 92.8% 0.096 0.139 0.139 88.3% 94.6% 0.063 0.100 0.096 87.0% 93.5%
3 −1.996 0.046 0.228 0.224 93.9% 94.4% 0.030 0.165 0.170 95.5% 95.6% 0.014 0.117 0.117 94.7% 95.6%
4 −2.000 0.021 0.303 0.288 93.2% 93.4% 0.024 0.226 0.216 94.0% 94.3% 0.012 0.153 0.150 95.1% 95.0%
5 −2.000 0.044 0.429 0.415 93.1% 92.7% 0.055 0.299 0.300 93.6% 94.5% 0.022 0.204 0.204 94.7% 95.0%

True 95% 95% BC 95% 95% BC 95% 95% BC
d β0(d) Bias σ̂s

β1
σ̂bt
β1

Cov. Cov. Bias σ̂s
β1

σ̂bt
β1

Cov. Cov. Bias σ̂s
β1

σ̂bt
β1

Cov. Cov.

−3 −0.800 0.427 0.758 0.684 85.3% 92.5% 0.274 0.557 0.534 89.7% 93.7% 0.127 0.384 0.376 92.3% 93.7%
−2 0.000 0.224 0.406 0.390 91.0% 94.1% 0.143 0.306 0.292 90.7% 93.4% 0.072 0.214 0.203 93.0% 93.3%
−1 0.600 0.089 0.260 0.250 92.8% 94.5% 0.049 0.187 0.184 94.3% 94.2% 0.021 0.126 0.125 94.1% 94.5%
0 1.000 0.012 0.175 0.166 93.4% 93.4% 0.000 0.125 0.121 93.6% 93.6% −0.009 0.081 0.082 95.4% 95.3%
1 1.200 −0.027 0.140 0.136 93.7% 94.6% −0.023 0.105 0.101 93.4% 94.1% −0.015 0.069 0.068 94.2% 94.4%
2 1.200 −0.024 0.222 0.219 94.5% 94.5% −0.030 0.164 0.165 94.9% 95.2% −0.019 0.113 0.112 94.9% 94.7%
3 1.000 0.024 0.406 0.398 94.7% 95.1% −0.009 0.294 0.306 95.8% 95.6% −0.019 0.218 0.210 94.6% 94.6%
4 0.600 0.107 0.713 0.670 92.3% 93.4% 0.037 0.538 0.525 94.0% 94.6% 0.007 0.390 0.370 93.4% 93.6%
5 0.000 0.279 1.233 1.134 91.9% 94.1% 0.168 0.946 0.892 91.5% 92.3% 0.083 0.632 0.634 94.7% 94.8%

Note: σ̂s
βk

corresponds to the simulated standard errors. σ̂bt
βk

corresponds to the average bootstrapped standard errors. For each simulation, 199 repetitions are used to estimate bootstrapped
standard errors. Coverage (Cov.) was evaluated as the proportion of the cases where the true value falls within the normal based confidence interval. The Bias corrected coverage (BC Cov.)
was evaluated as the proportion of the cases where the true value falls within the normal based after correcting for the average bias.
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Table 2. Monte-Carlo Simulation summary: Alternative Generalized Inverse Mills Ratios estimates.

Sample 5000 OLS-GIMR Oprobit-GIMR Fprobit-GIMR

d True β1(d) Bias σ̂s
β1

σ̂bt
β1

95%
Cov.

95% BC
Cov. Bias σ̂s

β1
σ̂bt
β1

95%
Cov.

95% BC
Cov. Bias σ̂s

β1
σ̂bt
β1

95%
Cov.

95% BC
Cov.

−3 −0.600 0.035 0.117 0.114 92.6% 93.8% 0.035 0.117 0.114 92.7% 93.9% 0.034 0.117 0.114 92.6% 93.8%
−2 −0.393 0.027 0.081 0.079 93.0% 93.8% 0.026 0.081 0.079 93.1% 93.8% 0.026 0.081 0.079 93.4% 93.9%
−1 −0.119 0.041 0.068 0.067 90.5% 94.5% 0.041 0.068 0.067 90.7% 94.4% 0.040 0.068 0.067 90.8% 94.5%
0 0.363 −0.002 0.069 0.068 94.5% 94.8% −0.002 0.069 0.069 94.5% 94.8% −0.002 0.069 0.069 94.3% 94.8%
1 0.798 −0.063 0.082 0.078 86.0% 94.1% −0.062 0.082 0.078 86.3% 94.0% −0.061 0.083 0.078 86.2% 94.0%
2 0.763 −0.006 0.095 0.092 93.6% 93.7% −0.006 0.096 0.093 93.6% 93.6% −0.006 0.096 0.093 93.7% 93.5%
3 0.681 0.022 0.122 0.113 93.0% 92.9% 0.022 0.122 0.113 93.0% 92.8% 0.022 0.123 0.114 93.1% 92.6%
4 0.807 −0.005 0.144 0.144 94.7% 94.6% −0.005 0.144 0.144 94.7% 94.7% −0.005 0.145 0.145 95.0% 94.7%
5 1.000 −0.024 0.202 0.193 93.0% 92.7% −0.024 0.202 0.193 92.9% 93.1% −0.023 0.203 0.194 92.9% 93.1%

d True β2(d) Bias σ̂s
β2

σ̂bt
β2

95%
Cov.

95% BC
Cov. Bias σ̂s

β2
σ̂bt
β2

95%
Cov.

95% BC
Cov. Bias σ̂s

β2
σ̂bt
β2

95%
Cov.

95% BC
Cov.

−3 0.996 −0.025 0.091 0.090 93.7% 94.8% −0.025 0.091 0.090 93.7% 94.7% −0.024 0.091 0.090 93.6% 94.7%
−2 0.932 −0.050 0.064 0.062 86.8% 93.5% −0.050 0.064 0.062 86.8% 93.5% −0.049 0.064 0.063 87.2% 94.0%
−1 0.524 −0.089 0.057 0.052 57.6% 93.3% −0.089 0.057 0.052 57.8% 93.4% −0.088 0.057 0.052 59.3% 93.3%
0 −0.500 −0.002 0.054 0.053 94.7% 94.3% −0.002 0.054 0.053 94.6% 94.3% −0.002 0.054 0.053 94.5% 94.3%
1 −1.524 0.083 0.066 0.060 68.6% 92.2% 0.083 0.067 0.060 69.1% 92.2% 0.081 0.067 0.061 70.0% 92.1%
2 −1.932 0.045 0.072 0.072 89.0% 95.5% 0.045 0.072 0.072 89.2% 95.6% 0.044 0.072 0.072 90.0% 95.3%
3 −1.996 0.011 0.086 0.088 94.6% 94.6% 0.011 0.087 0.088 94.6% 94.6% 0.011 0.087 0.088 94.6% 94.8%
4 −2.000 0.009 0.111 0.112 94.9% 94.9% 0.009 0.111 0.112 94.9% 94.9% 0.009 0.111 0.113 94.8% 94.8%
5 −2.000 0.012 0.154 0.152 94.7% 94.6% 0.012 0.154 0.152 94.8% 94.6% 0.012 0.155 0.153 94.4% 94.5%

d True β0(d) Bias σ̂s
β0

σ̂bt
β0

95%
Cov.

95% BC
Cov. Bias σ̂s

β0
σ̂bt
β0

95%
Cov.

95% BC
Cov. Bias σ̂s

β0
σ̂bt
β0

95%
Cov.

95% BC
Cov.

−3 −0.800 0.082 0.287 0.282 93.7% 93.9% 0.081 0.288 0.282 93.8% 93.9% 0.079 0.288 0.283 93.8% 94.1%
−2 0.000 0.034 0.158 0.152 93.0% 93.5% 0.033 0.159 0.152 93.1% 93.1% 0.032 0.159 0.153 93.5% 93.6%
−1 0.600 0.011 0.090 0.092 95.4% 95.1% 0.011 0.090 0.092 95.4% 95.1% 0.010 0.091 0.093 95.2% 95.1%
0 1.000 −0.009 0.061 0.060 94.8% 94.8% −0.009 0.061 0.060 94.9% 94.6% −0.009 0.061 0.061 94.8% 94.7%
1 1.200 −0.018 0.050 0.050 94.2% 95.4% −0.018 0.050 0.050 94.2% 95.3% −0.018 0.050 0.051 94.3% 95.5%
2 1.200 −0.016 0.086 0.083 93.3% 93.3% −0.016 0.086 0.083 93.3% 93.2% −0.016 0.086 0.083 93.4% 93.3%
3 1.000 −0.007 0.162 0.157 93.8% 93.9% −0.007 0.163 0.157 93.9% 93.8% −0.007 0.164 0.158 94.1% 93.7%
4 0.600 0.018 0.280 0.277 94.1% 94.3% 0.017 0.280 0.278 94.2% 94.2% 0.017 0.281 0.279 94.3% 94.2%
5 0.000 0.045 0.496 0.478 93.9% 94.0% 0.044 0.497 0.479 93.8% 93.9% 0.042 0.499 0.481 93.6% 94.1%

Note. The Oprobit-GIMR was estimated using 50 groups of equal size. The Fprobit-GIMR was estimated using the empirical cumulative distribution of d as dependent variable. For each
simulation, 199 repetitions are used to estimate bootstrapped standard errors. Coverage (Cov.) was evaluated as the proportion of the cases where the true value falls within the normal
based confidence interval. The Bias corrected coverage (BC Cov.) was evaluated as the proportion of the cases where the true value falls within the normal based after correcting for the
average bias.
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6. Application: Revising the Impact of Obesity on Wages

Several studies have found that that body weight is negatively correlated with wages, in particular
for white women (Cawley 2004; Sabia and Rees 2012; Averett 2011; Fikkan and Rothblum 2012).
The most common explanations for the negative correlation are: obesity lowers wages by reducing
productivity and increasing discrimination; low wages may cause obesity due to unhealthy eating
habits caused by lower income; or that unobserved factors simultaneously cause higher body weights
and lower wages. On his review of the literature, Cawley (2004) criticizes the robustness of various
strategies that have been followed in the literature to analyze the relationship between body weight
and wages, and suggests the application of an instrumental variable approach to better capture the
causal relationship between Body Mass Index (BMI) and wages.

Using data from the National Longitudinal Survey of the Youth (NLSY) for the years 1981 to
2000, Cawley (2004) provides estimations for the impact of BMI and weight on wages, using sibling’s
BMI, sex and age as instruments for own BMI.19 Correcting for reporting errors on weight and height,
the evidence of his preferred model suggests that the negative effect of higher BMI on wages is only
statistically significant for white women, with no statistically significant effect for other groups.

For the illustration of the proposed methodology, BMI will be considered the continuous group
variable that is used to analyze the wage gaps in relation to body weight, using the same instrumental
variables as Cawley (2004). Due to the higher demands that the methodology imposes on the data,
some changes on the data definitions and model specifications are introduced. These changes are
described next.

6.1. Replication and Variable Definition Changes

Cawley (2004) estimates instrumental variable models for six demographic groups based on
gender and race, using measures for BMI that are corrected for self-reporting error20 as the main
explanatory variable, and using siblings’ BMI, age and sex as instrumental variables. In his preferred
model, Cawley (2004) reports that BMI has a negative impact on wages for all groups and races, but is
only statistically significant for white woman. For this group, a one-point increase in BMI translates in
1.7% lower of wages.

Due to the higher demands that the semiparametric methodology imposes on the data, the original
model specification required some adjustments.21 First, sampling weights are excluded from the
analysis, so that clustered bootstrapped standard errors can be applied directly. Second, data with
missing information in the general intelligence score, highest grade attained, job tenure and county
employment rate are excluded from the sample. Father’s and mother’s highest degree of education are
combined into a single variable (parent highest degree of education), and observations with missing
data on both parents are also excluded from the sample. Finally, observations with a BMI below 14 and
above 60 are also excluded from the sample. This reduces the total sample from 44,026 observations to
40,087 observations.

Re-estimating the results using the same specifications used in Cawley (2004), incorporating the
changes described above, show that the conclusions are robust to the model and sample specification
changes, with small changes in the point estimates (see Table 1). On the bottom two panels of Table 3,
the main model is re-estimated including the OLS-GIMR to account for endogeneity (Wooldridge 2015).
OLS-GIMR is chosen because the full distribution of BMI is observed in the data. In addition to using
the Siblings data as instruments, second order interactions are also included as instruments to account

19 The author implements a larger set of regression analysis using methodologies previously used in the literature. However,
for the purpose of this paper, we will concentrate only on the instrumental variable approach. Further details on the data
construction can be found in Cawley (2004).

20 See Cawley (2004, p. 454) for a complete description of the data and model specification.
21 See Appendix B for complete set of results and intermediate steps for the data and model specification changes.
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for further nonlinear effects. The results using the OLS-GIMR are identical to the standard instrumental
variable approach, showing only small changes when interactions are added as instruments. For the
rest of the paper, linear and quadratic terms of the instrumental variables will be used to account for
nonlinear effects for identification of the selection process.22

Table 3. Replication, Modified Specification, and Control Function estimations.

Replication of Cawley (2004)

Ln (wage per h) White Nonwhite
Male Female Male Female

BMI −0.0131 −0.0168 * −0.00369 −0.00515
[0.00831] [0.00496] [0.00508] [0.00544]

N 13,355 10,800 11,185 8686

Replication with changes in model specification and sample

Ln (wage per h) White Nonwhite
Male Female Male Female

BMI −0.0127 −0.0154 * −0.00425 −0.00735
[0.00804] [0.00493] [0.00504] [0.00545]

N 12,184 10,101 9844 7958

Control Function Approach: Instruments: Siblings BMI, age and sex

Ln (wage per h) White
Male Female

BMI −0.0127 −0.0154 *
[0.00833] [0.00527]

N 12,184 10,101

Instruments: Siblings BMI, age and sex, including interactions

Ln (wage per h) White
Male Female

BMI −0.012 −0.0150 *
[0.00748] [0.00530]

N 12,184 10,101

Note: Clustered standard errors at the individual level in parenthesis. Control function approach estimates use
bootstrapped standard errors clustered at the individual level with 250 repetitions. * p < 0.01.

6.2. Semiparametric Oaxaca Decomposition

6.2.1. Oaxaca Decomposition Approach and Implementation

To implement an OB decomposition in the present framework, it is necessary to define an
appropriate reference group to analyze wage gaps across BMI, and the appropriate way to estimate
the parameters for the reference group.23 For the analysis of BMI and wages, a common approach is
to use individuals with a “healthy” BMI level as the baseline group, and compare the results against
other groups (over and underweight). Following this premise, people with a BMI between 18.5 and 25
are used as the reference group, and the coefficients estimated with this sample will be considered
as the average coefficients for people with healthy BMI. This group represents approximately 48% of

22 Control function approach using alternative measures for the GIMR were also estimated and are available upon request.
While the results from the alternative specifications are similar to the ones presented here, they are somewhat larger and
statistically significant for both white men and white women.

23 In scenarios like the analysis of wage penalties of smoking behavior, the reference group is clearly identified (non-smokers).
In this case, one could argue that the assumption of smooth coefficients is only appropriate for people who smoke, and that
coefficients for non-smokers should be estimated separately.
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white men and 62% of white women. Using this reference group, the OB decomposition is obtained by
estimating the following equations:

ln(wagei) = XiβH + δH ∗ λi + ei i f BMIi ∈ (18.5, 25)

ln(wagei
∣∣∣BMIi = d) = Xiβ(d) + δ(d) ∗ λi + ei

(18)

The first equation is estimated using the sample of the reference group only (healthy BMI), whereas
the second is estimated using kernel local linear regressions as described in Section 4.1, over the whole
distribution of BMI. Notice that both equations include the GIMR (λi) variable to adjust for sample
selection, and that Equation (18) considers everyone, including those in the reference group.24

For the implementation of the OB decomposition, I use a threefold decomposition on the selectivity
corrected wage gap, using the following formulas:

Composition effect : ∆X(d) =
(
m̂x(d) − E(X

∣∣∣Healthy)
)
β̂H

Wage Structure effect : ∆β = E(X
∣∣∣Healthy)

(
β̂(d) − β̂H

)
Interaction : ∆X(d)∆β =

(
m̂x(d) − E(X

∣∣∣Healthy)
)(
β̂(d) − β̂H

) (19)

where m̂x(d) is the local linear predicted mean of X with BMI at d, and E(X
∣∣∣Healthy) is the mean of

X for people with healthy BMI, and β̂H and β̂(d) are the estimated coefficients corresponding to the
reference group and for people with BMI around d.

The bandwidth for the kernel regressions is selected separately for white men and white women
using the cross-validation procedure described in Section 4.2, using the OLS-GIMR as the selection
correction term. To reduce impact of sparse areas in the distribution of BMI on the bandwidth selection,
two approaches were taken. The first is to set ω(Di) = 0 for observations at the top and bottom 1%
of the distribution. The second is to use a strictly monotonic transformation of BMI, specifically the
cumulative distribution G(BMI), as the grouping variable for the estimation of the local linear regressions.25

This transformation is similar to varying the bandwidth since more information will be used in areas that
are more sparsely distributed than others, but it can also be compared to the use of k-nearest neighbors
estimators. All models are estimated using Gaussian kernel functions. Table 4 provides the optimal
bandwidths obtained from the cross-validation procedure for both men and women.26

Table 4. Cross-validated Optimal Bandwidths.

Variable of Reference Men CV Criterion Women CV Criterion

BMI 3.2900 −1.40814 4.8540 −1.56378
G(BMI) 0.1769 −1.40852 0.2241 −1.54543

Note: CV = Cross-validation Log of Mean Squared leave-one-out error.

6.2.2. Aggregate Decomposition Results

Figure 1 plots the selectivity corrected wage gap across the BMI for men and women, comparing
people at all points of the BMI distribution with those in the reference group. The panels on the right
provide the estimates that use the original BMI variable for the semiparametric regression, while the
panels on the left show the estimates using the transformed variable G(BMI), but rescaled. The darker

24 This scenario assumes that BMI has no additional impact on wages within the health group. Alternatively, following the
critique raised by Cain (1986) in regards to using pooled data as the reference group, one could also include BMI as control
in the pooled regression. For this illustration, such change has no substantial impact on the results.

25 In principle, this transformation should have no effect on the estimation of the semiparametric model. If z = g(x), and g() is a
strictly monotone transformation, then E(y

∣∣∣X = x) = E(y
∣∣∣g(X) = g(x)) = E(y

∣∣∣Z = z).
26 In practice, the bandwidth selection and estimation of the varying coefficient models are done using a set of commands written

for the statistical software Stata. These programs are available upon request.
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and lighter regions show the 90% and 95% confidence intervals constructed using a clustered paired
bootstrap procedure with 399 repetitions. For men and women, the displayed gaps are provided for
the relevant range of BMI which excludes the top and bottom 1% of the distribution.

According to the estimations, the selectivity corrected wage gap for men and women exhibit
an inverse U shape with respect to their BMI. For women, I estimate a negative but non-statistically
significant wage gap for all points of the BMI distribution. Based on the semiparametric estimation
that relies on transformed BMI data, women at the top of the BMI distribution earn in average 6% less
than the average women with healthy BMI, which is significant only at 10% level. The results based on
kernel regressions with the original distribution of BMI provide qualitatively similar results but with
lower precision at the extremes of the distribution.

In the case of men, the results suggest those with a BMI above 23 exhibit a positive and statistically
significant wage gap compared to the reference group. The largest positive gap (16%) is observed for
men with a BMI around 27, but this declines steadily for men with higher BMI, and turns statistically
not significant for men with a BMI above 32. Men with a BMI below 22 show a negative wage
gap, as large as 28% (based on the original variable distribution). Similar to the results for women,
the estimates for men at the top of the BMI distribution are less precise when using the original BMI
for the semiparametric regression. Because the results using the transformed variable are more precise
than the alternative, the rest of the analysis will center on these estimations alone.27
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Figure 1. Selectivity corrected Wage gap over BMI by gender. Note: Darker and lighter areas correspond
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standard errors with 399 repetitions clustered at the individual level.

27 Figures in Appendix B provide various robustness checks including: Sensitivity to alternative GIMRs, results based on
kernel regressions with original BMI distribution, and differences in the bandwidth estimation.
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Similar to the standard OB analysis, the total wage gap reported in Figure 1 is not an adequate
measure of the wage gap driven by differences in BMI because it is are driven by differences in
characteristics (composition effect), coefficients (wage structure effect) or a combination of both.
On Figure 2, I provide the semiparametric estimations for these three components for men and women.
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Figure 2. Aggregated Semiparametric decomposition components. Note: Darker and lighter areas
correspond to the 90% and 95% confidence intervals. Confidence intervals constructed based on
bootstrapped standard errors with 399 repetitions clustered at the individual level.

According to the estimations, the composition effect has a large and statistically significant impact
when explaining the wage gaps based on BMI. Its magnitude, which is larger for men than women,
shows a monotonically increasing trend with respect to BMI, but at a decreasing rate. Across the
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distribution of BMI, differences in characteristics explain a wage gap that ranges between −20% to 21%
for men, and −14% to 12% for women, when looking at people with BMI of 18 and 40, and compared to
people with healthy BMI. This implies that white men and women with higher BMI have on average
better endowments, which translates into higher wages.

Consistent with Cawley (2004) estimates, the wage structure effect for women shows a
monotonically decreasing trend respect to BMI across the whole distribution, suggesting that BMI has
a negative but non-linear impact on wages. The estimations show that there is a steady decline in the
wage structure component among women, with a wage gap that goes from +8% for women with BMI
of 18, to a wage gap of −11% for women with a BMI of 30.

For men, the effect of BMI on wages shows a different pattern. On the one hand, the results
are less precise and the wage structure effect is not statistically significant across BMI. Setting aside
the low precisions of the estimates, the wage structure effect for men shows an inverse u shape
with respect to BMI. Compared to men with a BMI of 25, for whom a point estimate of +0.7% wage
structure gap is estimated, the wage premium declines at lower and higher ends of BMI distribution.
This may explain why the instrumental variable estimates for men’s (see Table 3) is negative but not
statistically significant.

The last component of the decomposition is the interaction effect, which accounts for the fact that
average wages are different because both coefficients and characteristics differ across groups. For men
and women, the interaction effect grows negative with higher BMI, but it is only statistically significant
for women.

6.2.3. Revisiting the Impact of Obesity on Wages: Partial Effect of BMI

One of the conclusions in Cawley (2004) is that a one standard deviation increase in body weight
(roughly 32lbs), or equivalently a 5.5 BMI points increase, is associated with a drop in wages of 9%.28

This is a linear extrapolation of the estimates of their preferred model which suggest that a one-point
increase in BMI is associated with a wage reduction of 1.7%.

While the results provided on Figure 2 cannot be directly compared to these findings, a modification
of the wage structure effect in Equation (19) can be used to obtain partial effects that can be
directly compared to Cawley’s results. Specifically, using characteristics fixed to the reference
group, the marginal effect of BMI on the wage structure effect can be calculated as follows:

∂Wage Gap (∆β)
∂BMI

∣∣∣∣∣∣
BMI=d

= E(X
∣∣∣Healthy)

(
β̂(d + ε) − β̂(d− ε)

ε

)
(20)

Figure 3 provides the estimations of the change of the wage structure effect as a function of BMI,
and compares them to the marginal effect based on the replication of the IV linear estimates presented
in Table 3.29

28 Cawley (2004, p. 465) stated that a two standard-deviation change in weight is associated with a 9 percent change in wages,
when in fact this estimate reflects the impact of a one standard-deviation change in weight.

29 For internal consistency, the instrumental variable estimations include the quadratic terms and interactions as instruments.
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errors with 399 repetitions clustered at the individual level. The vertical axis measures the marginal
effect of BMI on the wage structure component of the wage gap.

The marginal effect of BMI on the wage structure for women with a BMI between 20 and 25 is
larger than that based on the linear IV estimate. The largest estimated marginal effect indicates that
one-point increase in BMI for a woman with a BMI score of 22.5 relates to a wage decline of 2.5%,
an almost 65 percent greater effect than linear IV estimate (1.5%). The negative impact of increasing
BMI is not statistically significant for women with BMI below 20 or above 29, and the impact is below
0.5% for women with a BMI below 18 or above 30. Men with a BMI below 25 seem to experience a
small positive wage gain associated with increasing BMI, although it is not statistically significant.
The wage penalty due to a higher BMI is statistically significant above 27, with the largest wage decline
is measured at 2.3% (at a BMI of 29.5), almost twice as large as the linear IV estimates of 1.2%. While the
partial effect on wages decrease as BMI increases, it remains statistically significant through the rest of
the BMI distribution.

7. Conclusions

In this paper, I have presented a methodology for the implementation of Oaxaca–Blinder
decomposition when the grouping variable is continuous, and there is presence of endogenous
selection into groups. This methodology uses a semiparametric approach known as varying coefficient
models (Hastie and Tibshirani 1993), which has the advantage to provide a more flexible specification
on the parameterization of the coefficients, compare to the models proposed by Ñopo (2008) and
Ulrick (2012). Specifically, this paper describes the use of kernel local linear regressions for the
estimation of such models.

The use of the generalized inverse mills ratios, also known as generalized residuals, allow for a
feasible strategy to control for the endogenous selection based on the continuous grouping variable.
This methodology is similar to the one proposed in Delgado et al. (2019), suggesting a similar control
function approach to address endogeneity from the semiparametric component of the regression.
While I do not discuss the theoretical properties of the estimator, the Monte-Carlo Simulation exercises
suggests that the proposed strategy provides a simple but powerful approach to obtain consistent
estimators of the outcome model parameters. This suggests that the proposed estimator can be used
alongside to the methodologies proposed by Centorrino and Racine (2017) and Delgado et al. (2019).
A more formal analysis of theoretical properties of the proposed estimator is left for future research.

This methodology may prove useful for the analysis of endogenous treatment effects with varying
treatment intensity, when heterogeneous effects are present. In addition, it can also be used for
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analyzing the heterogeneity of the impact of other exogenous variables conditional on a grouping
variable of interest.

In the illustration example, I revise the results from Cawley (2004) to evaluate the causal effect of
BMI on wages. The application of the semiparametric OB decomposition shows that the association
between BMI and wages is nonlinear, and that the negative impact of BMI on wages varies considerably
compared to the effect described in Cawley (2004). Furthermore, it showed that for men, BMI also
has a statistically significant and negative association with wages, which was not captured previously
because of the weak but positive impact that BMI has on wages for men with low BMI.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Additional Monte-Carlo Simulations

Setup: Centorrino and Racine (2017).
For this exercise, I follow the second scheme described in Centorrino and Racine (2017). In this

setup, the variables of interest are defined as follows:
n1

n2

n3

 = N



0
0
0

,


1 0.2 −0.3
0.2 1 0.4
−0.3 0.1 1


 and W = n1; x1 = Φ(n2); x2 = B(1, Φ(n3))

whereN represents a joint normal distribution, Φ is the cumulative distribution function of a standard
normal, and B(1, p) is the Bernoulli distribution with probability of success p.

The endogenous variable d is defined as:

d = (1 + exp(2 ∗W + 2.5 ∗ x1 − x2 − 5 ∗ u + v))−1, with u ∼ N(0, 0.01) and v ∼ N
(
0,

(1
3

)2)
In this case, the endogenous variable d has a bounded distribution, which ranges from 0 to 1. and

has a nonlinear relationship with the exogenous variables and the errors of the model. The smooth
coefficients are defined as:

β0(z) = 2 ∗ exp(−d); β1 = 2 ∗ d2; β2(d) = sin(πd)

Finally, the outcome is defined as:

y = β0(d) + β1(d) ∗ x1 + β2(d) ∗ x2 + u

Tables A1–A3 provides a summary of the Monte-Carlo Simulations using samples of size 1000,
and 199 repetitions for the bootstrapped standard errors, using the three methodologies for the
estimation of GIMR. Different from the simulation exercise in text, there are notable differences when
using different GIMR. While all options show similar performance in terms of coverage, identifying the
parameters β1 and β2, OLS-GIMR performs the worse in correctly identifying the constant β0, with the
estimates using OP-GIMR performing the best. The Bias corrected coverage suggests that the estimator
has near to 95% of cases falling within the 95% confidence interval.
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Table A1. Monte-Carlo Simulations: OLS GIRM.

True
Bias

σ̂s
βk

σ̂bt
βk

95% 95%

d β1(d) Cov. BC Cov.

0.05 0.005 0.019 0.057 0.055 93.8% 94.4%
0.15 0.045 0.019 0.057 0.056 93.5% 93.9%
0.25 0.125 0.019 0.059 0.056 94.2% 93.7%
0.35 0.245 0.019 0.059 0.057 93.8% 93.8%
0.45 0.405 0.020 0.059 0.057 93.5% 93.8%
0.55 0.605 0.019 0.059 0.058 94.8% 94.7%
0.65 0.845 0.019 0.059 0.058 94.4% 95.0%
0.75 1.125 0.020 0.059 0.057 93.2% 94.5%
0.85 1.445 0.020 0.059 0.057 93.5% 94.1%
0.95 1.805 0.019 0.057 0.056 93.2% 94.4%

True Bias σ̂s
βk

σ̂bt
βk

95% 95%

d β2(d) Cov. BC Cov.

0.05 0.156 0.000 0.026 0.026 94.7% 94.8%
0.15 0.454 0.000 0.027 0.026 95.6% 95.6%
0.25 0.707 0.001 0.027 0.027 95.1% 95.3%
0.35 0.891 0.000 0.028 0.027 94.7% 94.8%
0.45 0.988 0.001 0.028 0.027 94.2% 94.4%
0.55 0.988 0.000 0.028 0.027 94.9% 95.0%
0.65 0.891 0.000 0.027 0.027 94.8% 94.8%
0.75 0.707 0.001 0.027 0.027 94.6% 94.5%
0.85 0.454 0.000 0.027 0.027 94.7% 94.7%
0.95 0.156 0.000 0.026 0.026 95.2% 95.3%

True Bias σ̂s
βk

σ̂bt
βk

95% 95%

d β0(d) Cov. BC Cov.

0.05 1.902 −0.177 0.047 0.046 1.5% 94.6%
0.15 1.721 −0.256 0.044 0.043 0.0% 94.7%
0.25 1.558 −0.214 0.041 0.040 0.0% 94.1%
0.35 1.409 −0.139 0.039 0.038 4.3% 93.7%
0.45 1.275 −0.053 0.036 0.036 68.6% 94.0%
0.55 1.154 0.039 0.034 0.034 77.7% 94.3%
0.65 1.044 0.126 0.033 0.033 4.1% 94.1%
0.75 0.945 0.200 0.033 0.033 0.0% 93.9%
0.85 0.855 0.244 0.033 0.033 0.0% 94.3%
0.95 0.773 0.164 0.033 0.034 0.2% 95.2%

Note: σ̂s
βk

corresponds to the simulated standard errors. σ̂bt
βk

corresponds to the average bootstrapped standard
errors. For each simulation, 199 repetitions are used to estimate bootstrapped standard errors. Coverage (Cov.) was
evaluated as the proportion of the cases where the true value falls within the normal based confidence interval.
The Bias corrected coverage (BC Cov.) was evaluated as the proportion of the cases where the true value falls within
the normal based after correcting for the average bias.
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Table A2. Monte-Carlo Simulations: Oprobit GIRM.

True
Bias

σ̂s
βk

σ̂bt
βk

95% 95%

d β1(d) Cov. BC Cov.

0.05 0.005 −0.003 0.046 0.044 94.1% 94.5%
0.15 0.045 −0.004 0.047 0.045 93.9% 94.3%
0.25 0.125 −0.003 0.047 0.045 94.2% 93.8%
0.35 0.245 −0.004 0.047 0.046 94.1% 94.2%
0.45 0.405 −0.002 0.048 0.046 93.8% 94.1%
0.55 0.605 −0.003 0.047 0.046 93.6% 94.2%
0.65 0.845 −0.004 0.047 0.046 94.0% 94.0%
0.75 1.125 −0.003 0.048 0.046 93.6% 94.0%
0.85 1.445 −0.003 0.047 0.046 94.1% 94.3%
0.95 1.805 −0.007 0.047 0.046 93.6% 94.1%

True Bias σ̂s
βk

σ̂bt
βk

95% 95%

d β2(d) Cov. BC Cov.

0.05 0.156 0.000 0.022 0.022 95.5% 95.5%
0.15 0.454 0.001 0.022 0.022 95.2% 95.2%
0.25 0.707 0.003 0.022 0.022 95.5% 94.9%
0.35 0.891 0.004 0.022 0.023 94.9% 95.2%
0.45 0.988 0.005 0.023 0.023 94.8% 95.2%
0.55 0.988 0.004 0.022 0.023 94.8% 95.6%
0.65 0.891 0.003 0.023 0.023 94.8% 94.9%
0.75 0.707 0.003 0.022 0.023 94.8% 95.3%
0.85 0.454 0.002 0.022 0.023 94.3% 94.4%
0.95 0.156 0.000 0.022 0.023 96.0% 96.0%

True Bias σ̂s
βk

σ̂bt
βk

95% 95%

d β0(d) Cov. BC Cov.

0.05 1.902 0.002 0.037 0.037 95.3% 95.4%
0.15 1.721 0.001 0.034 0.033 95.5% 95.5%
0.25 1.558 0.001 0.032 0.032 94.6% 94.4%
0.35 1.409 0.000 0.032 0.031 93.9% 93.8%
0.45 1.275 0.000 0.031 0.030 94.4% 94.4%
0.55 1.154 0.001 0.030 0.030 94.8% 95.0%
0.65 1.044 0.002 0.029 0.029 94.6% 94.6%
0.75 0.945 0.001 0.029 0.029 94.6% 94.7%
0.85 0.855 0.001 0.029 0.029 94.8% 94.6%
0.95 0.773 0.002 0.031 0.031 94.4% 94.2%

Note: σ̂s
βk

corresponds to the simulated standard errors. σ̂bt
βk

corresponds to the average bootstrapped standard
errors. For each simulation, 199 repetitions are used to estimate bootstrapped standard errors. Coverage (Cov.) was
evaluated as the proportion of the cases where the true value falls within the normal based confidence interval.
The Bias corrected coverage (BC Cov.) was evaluated as the proportion of the cases where the true value falls within
the normal based after correcting for the average bias.
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Table A3. Monte-Carlo Simulations: Fprobit GIRM.

True
Bias

σ̂s
βk

σ̂bt
βk

95% 95%

d β1(d) Cov. BC Cov.

0.05 0.005 −0.002 0.048 0.047 94.3% 94.4%
0.15 0.045 −0.001 0.049 0.047 94.3% 94.4%
0.25 0.125 −0.001 0.050 0.048 94.6% 94.3%
0.35 0.245 −0.002 0.050 0.048 93.8% 93.7%
0.45 0.405 0.000 0.051 0.049 94.1% 94.0%
0.55 0.605 −0.002 0.050 0.050 95.7% 95.5%
0.65 0.845 −0.002 0.051 0.050 94.3% 94.0%
0.75 1.125 0.000 0.052 0.051 94.2% 94.2%
0.85 1.445 −0.001 0.052 0.051 94.6% 94.9%
0.95 1.805 −0.002 0.053 0.051 94.2% 94.5%

True Bias σ̂s
βk

σ̂bt
βk

95% 95%

d β2(d) Cov. BC Cov.

0.05 0.156 0.000 0.023 0.023 95.3% 95.1%
0.15 0.454 −0.001 0.023 0.023 94.9% 95.0%
0.25 0.707 0.000 0.024 0.024 95.0% 94.9%
0.35 0.891 0.000 0.024 0.024 94.5% 94.6%
0.45 0.988 0.001 0.025 0.024 95.4% 95.3%
0.55 0.988 0.000 0.024 0.024 95.4% 95.4%
0.65 0.891 0.000 0.025 0.025 95.8% 95.8%
0.75 0.707 0.001 0.025 0.025 94.5% 94.6%
0.85 0.454 −0.001 0.025 0.025 94.9% 94.7%
0.95 0.156 −0.001 0.025 0.025 95.2% 95.1%

True Bias σ̂s
βk

σ̂bt
βk

95% 95%

d β0(d) Cov. BC Cov.

0.05 1.902 −0.073 0.042 0.039 54.5% 93.7%
0.15 1.721 −0.037 0.038 0.034 78.9% 92.4%
0.25 1.558 −0.012 0.036 0.032 90.3% 90.9%
0.35 1.409 0.006 0.035 0.031 89.5% 90.0%
0.45 1.275 0.022 0.035 0.030 84.2% 91.3%
0.55 1.154 0.039 0.034 0.030 71.0% 90.6%
0.65 1.044 0.054 0.034 0.030 53.1% 91.4%
0.75 0.945 0.067 0.034 0.029 37.9% 90.9%
0.85 0.855 0.082 0.034 0.030 22.6% 90.4%
0.95 0.773 0.084 0.034 0.031 24.2% 93.1%

Note: σ̂s
βk

corresponds to the simulated standard errors. σ̂bt
βk

corresponds to the average bootstrapped standard
errors. For each simulation, 199 repetitions are used to estimate bootstrapped standard errors. Coverage (Cov.) was
evaluated as the proportion of the cases where the true value falls within the normal based confidence interval.
The Bias corrected coverage (BC Cov.) was evaluated as the proportion of the cases where the true value falls within
the normal based after correcting for the average bias.
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Appendix B. Sensitivity to Model Specifications and Bandwidth. Illustration

Table A4. Replication of Cawley (2004) with model and sample modifications.

Replication of Cawley (2004)

White Black Hispanic
Male Female Male Female Male Female

BMI −0.0131 −0.0168 * −0.00258 −0.00191 −0.00914 −0.0124
[0.00831] [0.00496] [0.00678] [0.00600] [0.00731] [0.0125]

N 13,355 10,800 6811 5651 4374 3035

Pooling Black and Hispanic

White NonWhite
Male Female Male Female

BMI −0.0131 −0.0168 * −0.00369 −0.00515
[0.00831] [0.00496] [0.00508] [0.00544]

N 13,355 10,800 11,185 8686

Excluding Sample Weights

White NonWhite
Male Female Male Female

BMI −0.0126 −0.0149 * −0.00241 −0.00643
[0.00789] [0.00471] [0.00472] [0.00518]

N 13,355 10,800 11,185 8686

Dropping if Parents education is missing

White NonWhite
Male Female Male Female

BMI −0.0118 −0.0147 * −0.003 −0.00634
[0.00803] [0.00480] [0.00481] [0.00518]

N 12,393 10,195 10,465 8224

Modifying model specification

White NonWhite
Male Female Male Female

BMI −0.0124 −0.0155 * −0.0048 −0.00673
[0.00805] [0.00487] [0.00492] [0.00535]

N 12,191 10,111 9854 7963

Dropping Extreme BMI values (below 16 and above 60)

White NonWhite
Male Female Male Female

BMI −0.0127 −0.0154 * −0.00425 −0.00735
[0.00804] [0.00493] [0.00504] [0.00545]

N 12,184 10,101 9844 7958

Note. * p < 0.01. Clustered standard errors in parenthesis.
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Figure A3. Aggregate Semiparametric decomposition: OLS-GIMR. with kernel regression using
BMI. Note: Dashed line is the estimation that uses G(BMI) for the kernel regression. Shaded areas
represent the 90% and 95% confidence interval based on bootstrapped standard errors using BMI for
the kernel regressions.
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Figure A4. Aggregate Semiparametric decomposition with kernel regression using G(BMI) Sensitivity
to GIMR estimation method. Note: Shaded areas represent the 90% and 95% confidence interval,
based on the bootstrapped standard errors for model using OLS-GIMR.
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