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Abstract: The standard approach to indirect inference estimation considers that the auxiliary
parameters, which carry the identifying information about the structural parameters of interest,
are obtained from some recently identified vector of estimating equations. In contrast to this standard
interpretation, we demonstrate that the case of overidentified auxiliary parameters is both possible,
and, indeed, more commonly encountered than one may initially realize. We then revisit the “moment
matching” and “parameter matching” versions of indirect inference in this context and devise efficient
estimation strategies in this more general framework. Perhaps surprisingly, we demonstrate that if
one were to consider the naive choice of an efficient Generalized Method of Moments (GMM)-based
estimator for the auxiliary parameters, the resulting indirect inference estimators would be inefficient.
In this general context, we demonstrate that efficient indirect inference estimation actually requires
a two-step estimation procedure, whereby the goal of the first step is to obtain an efficient version
of the auxiliary model. These two-step estimators are presented both within the context of moment
matching and parameter matching.

Keywords: indirect inference; auxiliary models; overidentification

JEL Classification: C10; C14; C15

1. Introduction

Twenty-five years ago, with the publication of their manuscript on “Efficient Method of Moments”
(hereafter, EMM), Gallant and Tauchen (1996) (hereafter, GT) made a seminal contribution to the
field of simulation-based estimation and inference. The EMM estimation approach proposed by GT
estimates parameters of the underlying structural model by “matching moments” defined through
a score generator, namely the score function of some hypothesized auxiliary model. In the EMM
approach, the efficiency of the resulting structural parameter estimators will occur when the score
function for the chosen auxiliary model asymptotically spans the score function of the well-specified
parametric model that has generated the data.

The efficiency argument underlying EMM estimation was further developed in Gallant and Long
(1997), where it was argued that the score function of the SNP (SemiNonParametric) density of Gallant
and Nychka (1987) spans the score of most relevant distributions, at least when the number of terms,
K, in the SNP expansion diverges to infinity as the sample size diverges. Similarly, and concurrent
with the development of EMM, following Smith (1993), Gourieroux et al. (1993) (hereafter, GMR)
demonstrate that, for well-chosen weighting matrices used for moment matching, indirect inference
estimators based on score matching will be asymptotically equivalent to indirect inference estimators
based on the direct matching of auxiliary parameters.

Therefore, the question of “Which Moments to Match” is actually independent of the efficient
indirect inference estimation strategy employed, which we dub, by analogy with the trinity of
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asymptotic tests, the score approach (i.e., matching the score function of the auxiliary model) and the
Wald approach (i.e., matching directly the estimators of auxiliary parameters). In contrast, GMR have
shown that a likelihood ratio type of approach (also proposed by Smith (1993)) can lead to inefficient
indirect inference estimators. Given the asymptotic equivalence between the score and Wald indirect
inference approaches, the only pending issue for satisfactory application of indirect inference is then
the selection of the auxiliary model.

Several authors, including Gallant and Long (1997), Andersen and Lund (1997) (hereafter, AL),
and Gallant et al. (1997), have carefully discussed the choice of auxiliary model in the context of
EMM, namely through the use of some SNP score generator. Not surprisingly they find that, as in
any moment matching exercise, to achieve good finite-sample performance of the indirect inference
estimator “it is important to conserve on the number of elements in the score generator” (AL), that is,
on the number of moments to match within estimation. While this concern for parsimony is obviously
sensible, one may consider different ways that it can be achieved. Basically, the aforementioned studies,
as well as other EMM studies, put forward two principles.

Principle 1: Following Eastwood (1991), implementation of the SNP approach requires choosing
the truncation degree in the expansion in an adaptive (i.e., random, data-dependent) manner. While
AL interpret the results of Eastwood (1991) to suggest that AIC is the optimal model choice strategy
for this adaptive truncation, they eventually decide to elicit a “choice of score generator(s) (...) guided
by the more conservative HQC and BIC criteria”. In addition, Gallant and Long (1997) and Gallant et
al. (1997) also use the BIC in determining the choice of the auxiliary model, while the latter stresses
that “to implement the EMM estimator we require a score generator that fits these data well”, leading
to the use of the BIC to measure the trade-off between parsimony vs goodness-of-fit. Principle 2: For a
given number of terms in the SNP expansion, the score generator can be interpreted as the score of an
unconstrained parametric model, which ensures that, by definition, we end up with a just-identified
set of moment conditions to match: the number of auxiliary parameters to estimate is exactly the
number of components in the score vector. For instance, and in contrast to Gallant and Long (1997),
who allow for conditional heterogeneity in the innovation density, AL (see p. 364) “find no evidence
that such an extension is required”, and, by the same token, AL eliminate the additional heterogeneity
parameter introduced by Gallant and Long (1997) and the corresponding moments to match. However,
one may realize that an alternative approach would have been adding moment conditions aimed at
utilizing the knowledge that this kind of heterogeneity is not present in the data, and which would
then lead to an overidentified set of moments to match.

The purpose of the present paper is to revisit the issue of selecting an auxiliary model that is
optimal for the purpose of indirect inference, in terms of efficiency, without tying our hands by having
to adhere to Principles 1 and 2 above. We contend that these principles are stricter than necessary for
the following reasons.

(i) We argue that the first principle puts too much emphasis on the idea that “to implement the EMM
estimator we require a score generator that fits these data well”. Gallant and Long (1997) show
that (see their Lemma 1, p. 135) under convenient regularity conditions, asymptotic efficiency is
reached if and only if the linear span of a “true score” (i.e., the score of a well-specified parametric
model for the structural model) is asymptotically included (at the true value of the structural
parameters) in the linear span of the score of the auxiliary model. This does not require in any way
that the auxiliary model is (even asymptotically for an arbitrary large number of parameters) a
well-specified model, in the sense that it is consistent with the Data Generating Process (DGP).
Of course, as emphasized by GT, a sufficient condition for this score spanning property is the
so-called smooth embedding of the score generator, which means that there is a one-to-one and
twice continuously differentiable mapping between the two parametrizations (i.e., the auxiliary
and structural). Then score spanning is just a consequence of computing compounded derivatives.
However, this sufficient condition for score spanning is definitely not necessary and, thus, there is
no logical argument to impose a model selection criterion, like AIC or BIC, to select an auxiliary
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model. We remind the reader that the purpose of the auxiliary model is not to describe the DGP,
but to provide informative estimating equations. After all, it may be possible to satisfy the linear
spanning condition by using a vector of moments that define well-suited auxiliary parameters but
have no interpretation as a score function of a quasi-likelihood.

(ii) The next point is the realization that what determines the efficiency of indirect inference estimators
is the moments they match, and not necessarily the auxiliary parameters. Hence, and in contrast
to the example given in Principle 2 above, one may well contemplate using a set of moment
conditions that overidentify the vector of unknown auxiliary parameters. Of course, moment
estimation of the auxiliary parameters will eventually resort to a just-identified set of moment
conditions, through the choice of a particular linear combination of the (possibly) overidentified
moment conditions. However, we argue that the choice of this just-identified set of moment
conditions should not be guided by efficiency of the resulting estimator of auxiliary parameters (as
would be the case with an efficient two-step Generalized Method of Moments (GMM) estimator)
but, on the contrary, by our goal of obtaining an asymptotically efficient indirect estimator of the
structural parameters. We demonstrate that this new focus of interest produces a novel way to
devise a two-step GMM estimator of the auxiliary parameters that is, in general, different from
standard efficient two-step GMM estimators.

The fact that we wish to relax Principles 1 and 2, with our main focus on asymptotically efficiency
of the elicited indirect inference estimator, does not mean that we overlook the need “to conserve
on the number” of moments to match, for the purpose of finite-sample performance. However, our
claim is that the trade-off between parsimony and asymptotic efficiency should set the focus on
indirect estimation of structural parameters and not on goodness-of-fit of the auxiliary model. Ideally,
one should devise a procedure to select the valid and relevant moments to match, for instance by
resorting to “an information-based LASSO for GMM with many moments” as recently proposed by
Cheng and Liao (2015). The key idea of the Cheng and Liao (2015) approach is to define a new adaptive
penalty that ensures the valid and relevant moment conditions are consistently selected in the GMM
shrinkage estimation. This adaptive penalty depends on a measure of the information content of the
moment conditions. However, while the measure of information used by Cheng and Liao (2015) is
naturally based on the asymptotic variance of the resulting GMM estimator, we do not really care
about the asymptotic variance of the GMM estimator of our auxiliary parameters. As explained above,
our focus of interest is the asymptotic variance of the resulting indirect inference estimator of structural
parameters. To this end, the present paper demonstrates the relevant way to measure the information
content of the moments we wish to match. While we only consider here a given finite set of moments,
the use of this new measure of information for the purpose of moment selection in a possibly infinite
set, by a well-tuned procedure in the spirit of Cheng and Liao (2015), is left for future research.

The remainder of the paper is organized as follows. In Section 2, we present a very general
framework for indirect inference consisting of a set of moment conditions that are able to identify both
the structural parameters (given a value of the auxiliary parameters) and the auxiliary parameters
(given a value of the structural parameters). This duality leads us to revisit the issue of model
choice criteria for eliciting an informative auxiliary model. In Section 3, we demonstrate that there
exists an efficient choice of the auxiliary model that can be used to construct asymptotically efficient
indirect inference estimators. The equivalence between moment matching and parameter matching
is maintained in this general setting, and, in both cases, we devise an efficient two-step procedure to
construct efficient indirect inference estimators, where the goal of the first-step estimator is to obtain
an efficient choice of the auxiliary model. We conclude the paper in Section 4 by paving the way for
these tools to be used in the context of several popular auxiliary models, including moment models,
and vector auto-regressive models, for which there is a clear trade-off between asymptotic efficiency
and parsimony. Proofs of certain results are detailed in the Appendix A.
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2. Auxiliary versus Structural Models

We argue that the most general framework for Indirect Inference can be accommodated through a
set of k moment conditions whose information content is two-fold identification:

• Identification of the true unknown value θ0 of the structural parameters θ ∈ Θ ⊂ Rdθ , for a given
value (the true unknown one) of the auxiliary parameters.

• Identification of the true unknown value β0 of the auxiliary parameters β ∈ B ⊂ Rdβ , for a given
value (the true unknown one θ0) of the structural parameters.

While the former identification will be encapsulated in the definition of the structural model,
including a parametric model that will allow us to replace analytically intractable moment conditions
by their Monte Carlo counterparts, evaluated at any possible value of θ ∈ Θ, the latter identification
will remain true to the standard GMM setting, where the true unknown value θ0 is implicitly contained
in the data generating process (hereafter, DGP). Note that both identification schemes maintain that the
moment conditions are numerous enough to identify, or overidentify, the structural (resp., auxiliary)
parameters when the true values of the auxiliary (resp., structural) parameters are given; i.e., it must
be that

k ≥ min
{

dβ, dθ

}
.

2.1. Auxiliary Model

We consider an auxiliary model characterized by a finite number of moment restrictions. We set
our focus on a vector of auxiliary moment functions g(y, β) taking values in Rk, which (possibly)
depends on a random vector y and unknown auxiliary parameters β ∈ B ⊂ Rdβ . This model admits a
true unknown value β0 of the auxiliary parameters, which satisfy the moments conditions

E
[

g(y, β0)
]
= 0, (1)

and where E[.] denotes expectation taken with respect to the distribution of y. In other words,
the unknown DGP is assumed to fulfill a vector of moment restrictions that are known up to a vector
of auxiliary parameters β that must be consistently estimated from data.

For this purpose, we have at our disposal a sequence of stationary observations {yt}T
t=1 on the

random vector y, which allows us to compute sample counterparts of the moment functions

ḡT (β) =
1
T

T

∑
t=1

g(yt, β).

In this section, we maintain the classical assumptions of Generalized Method of Moments
(hereafter, GMM), implying that the true unknown value β0 is identified, both globally and locally at
first-order, and the moments are not redundant at the true value.

Assumption 1. The following assumptions are satisfied.

(i) E [g(y, β)] = 0 ⇐⇒ β = β0.
(ii) J = ∂E[g(y,β)]

∂β′
∣∣
β=β0 is full column rank.

(iii) Ω = plimT=∞

[√
TḡT

(
β0)] is a positive definite matrix.

Any consistent estimator of β0 based on these moment conditions, and denoted by β̂T(K), can be
seen, at least asymptotically, as the solution of the just identified set of equations

KḡT
(

β̂T(K)
)
=

1
T

T

∑
t=1

Kg
(
yt, β̂T(K)

)
= 0, (2)
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for some (dβ × k)-dimensional selection matrix K, with rank dβ. For example, Equation (2) may be
defined from the first-order conditions of the minimization problem

min
β∈B
‖ḡT(β)‖2

W , (3)

where ‖x‖2
W := x′Wx denotes the weighted Euclidean norm. In such an example, the selection matrix K

would actually be a random matrix depending on the observed sample and where the Jacobian matrix
J and possibly also the weighting matrix in the squared norm are replaced by sample counterparts.

However, recalling that our ultimate goal is efficient estimation of θ0 and not efficient estimation
of β0, the results of Bates and White (1993) (see their Section 3.2), which implies that among all the
discrepancy functions allowing us to consistently estimate β0 the optimal one is a quadratic form of
ḡT (β), are not applicable in this context. Therefore, Equation (2) must be viewed as general estimating
equations where the selection matrix K may be replaced by a random sample counterpart K̂T . However,
as far as first-order asymptotic distributional theory is concerned, the choice of a consistent estimator
K̂T of a selection matrix K is immaterial. For this reason, we simplify the notations by overlooking
the (possible) dependence of K on the observed sample. Since β̂T(K) is defined only through the
estimating Equation (2), and not necessarily via a minimization problem like (3), we will require a
slight strengthening of Assumption 1 (ii).

Assumption 2. The matrix KJ is non-singular.

We note that Assumption 2 would be implied by Assumption 1 in the case where the estimating
Equations in (2) are obtained from the minimization of a quadratic form. However, since we do not
wish to impose such a restriction, we must explicitly maintain Assumption 2 in the general case.
Assumption Assumption 2 implies that the selection matrix K is of full row rank and also further
restricts it with respect to the Jacobian matrix J.

Note that it is quite natural in practice to expect that Assumption 2 is fulfilled. For example, if a
subset g̃(y, β) of the components of g(y, β) just identifies β (with a Jacobian matrix J̃ conformable to
Assumption 1), then a selection matrix K built by combining

(
k− dβ

)
zero columns with a non-singular

(dβ × dβ)-dimensional matrix K̃ will satisfy Assumption 2 so long as the zero columns of K are such
that they only elicit the components of g̃(y, β) in the sense that:

KJ = K̃ J̃.

Under standard regularity conditions, Assumptions 1 and 2 together with a Taylor expansion of
Equation (2) will allow us to view β̂T(K) as a “linear estimator” with asymptotic expansion

√
T
[

β̂T(K)− β
0
]
= −(KJ)−1K

√
TḡT(β0) + oP(1). (4)

In particular,
√

T
[

β̂T(K)− β
0
]

will be asymptotically normal with variance

ΣK(β0) =[(KJ)]−1KΩK′[(KJ)′]−1.

While efficient GMM estimation of β0 would minimize this variance matrix, by eliciting a
selection matrix K = J′Ω−1 (to obtain the asymptotic variance

[
J′Ω−1 J

]−1), it is not the purpose
of the present paper.

More generally, we note that, for any weighting matrix W, minimization of ‖ḡT(β)‖2
W would

amount to a selection matrix K = J′W. However, as we will see in Section 3, the optimal selection
matrix, for the purpose of efficient indirect inference estimation, does not belong to this general family.
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2.2. The Structural Model

We assume the parametric structural model is characterized by a transition density function
p(yt |Yt−1; θ) , θ ∈ Θ ⊂ Rdθ and Yt−1 = {y1, y2, ..., yt−1}. We denote, for h = 1, ..., H, {y(h)t (θ)}T

t=1 a
simulated sample path from p(. |.; θ). Then, we end up with (H + 1) mutually independent paths
consisting of T stationary observations on y, H simulated paths {y(h)t (θ)}T

t=1 (h = 1, ..., H), which can
be computed for any possible value θ ∈ Θ and always using the same random seeds, and the observed
path {yt}T

t=1. Throughout the remainder we let Eθ [·] denote the expectation taken with respect to the

distribution of y(h)t (θ).
As announced at the beginning of this section, we require identification assumptions about the

structural parameters (for given β0) similar to the identification assumptions maintained about β in
Assumption 1, and where θ0 is implicitly given by the DGP. Note that, by definition of the true value
θ0, it corresponds to the DGP in the sense that, for all β ∈ B,

Eθ0 [g(y, β)] = E [g(y, β)] .

To ensure identification of θ0, we maintain the following global and local identification assumptions.

Assumption 3. The following assumptions are satisfied.

(i) Eθ

[
g(y, β0)

]
= 0 ⇐⇒ θ = θ0.

(ii) Γ =
∂Eθ [g(y,β0)]

∂θ′
∣∣
θ=θ0 is full column rank.

Assumption 3 is required to define a consistent and asymptotically normal indirect inference
(hereafter, II) estimator of θ0. More precisely, we consider II estimators defined through the following
minimization program:

θ̂T,H(K, W) = arg min
θ∈Θ

[
1

TH

H

∑
h=1

T

∑
t=1

g
(

y(h)t (θ), β̂T(K)
)]′

W

[
1

TH

H

∑
h=1

T

∑
t=1

g
(

y(h)t (θ), β̂T(K)
)]

, (5)

where W is a given positive definite weighting matrix.1

The II estimator θ̂T,H(K, W) is a generalization of the score-matching one initially proposed by
GT. In particular, GT consider a similar minimization program to (5), but specifically require that g(·)
is the score vector of some parametric auxiliary model with parameters β, which ensures that the
dimension of g(·) and the dimension of β coincide. As a result, no selection matrix K is required in the
GT approach.

In particular, our setting includes the case where, as in GT, the function g(·) is the score vector of
some auxiliary model, but where this model is subject to a set of exclusion restrictions, such that the
number of free parameters dβ is much smaller than the dimension k of the score vector g(·). A typical
example of this situation would be a Vector Auto-Regressions (VAR) auxiliary model (see, e.g., Smith
(1993)), which, for the sake of parsimony, is subject to some exclusion restrictions. Note that when AL
eliminates the additional heterogeneity parameters introduced by Tauchen (1997), we would again
be in a case where k > dβ if some components of the complete score vector had not been arbitrarily
eliminated.

In contrast to the GT approach, the II estimator (5) only requires k ≥ dβ. This estimator is our
focus of interest in this paper. We first note that we can describe this estimator through a standard

1 Similar to the selection matrix K, the weighting matrix W can be replaced by a consistent, data-dependent estimator, say WT
such that WT →p W as T → ∞, without altering the first-order asymptotic theory of the II estimator.



Econometrics 2019, 7, 14 7 of 17

linear representation, similarly to common II estimators: under standard regularity conditions, a Taylor
expansion of the first-order conditions for (5) and the linear expansion of

√
T
[

β̂T(K)− β
0
]

in (4) yield2

√
T
[
θ̂T,H(K, W)− θ0

]
=
[
Γ′WΓ

]−1 Γ′W× (6){
J (KJ)−1 K

1√
T

T

∑
t=1

{
g
(

yt, β0
)}
− 1√

T

T

∑
t=1

{
1
H

H

∑
h=1

g
(

y(h)t (θ0), β0
)}}

+ oP(1).

From Equation (6), we can conclude that
√

T
[
θ̂T,H(K, W)− θ0] is an asymptotically normal vector

whose asymptotic variance may be reduced by the fact that our minimization (5) involves the entire
vector of moment functions g(y, β) and not just the subset gK(y, β) = Kg(y, β).

The reason for this possibility of variance reduction is two-fold. First, the component of (6) that
is computed from simulated data uses the entire set of estimating functions g(y, β) and not only the
subset gK(y, β). This should be beneficial in terms of asymptotic variance in the same way that in
standard GMM (see, e.g., the linear representation (4)), adding valid moment functions can only
decrease (weakly) the asymptotic variance of the efficient GMM estimator. However, in the case of (6),
this efficiency gain would vanish as the number simulated paths, H, diverges to infinity.

Second, and more importantly, the multiplicative factor in the asymptotic expansion for θ̂T(K, W)

depends on the matrix [Γ′WΓ]−1, which is determined by the Jacobian matrix for the entire set of
estimating functions g(·, β) and not the subset of moments gK(·, β). As such, and for Ω as defined in
Assumption 1, we know from the theory of efficient GMM estimation that an asymptotic variance[
Γ′Ω−1Γ

]−1 is smaller (or equal) to the asymptotic variance
[
Γ′K′ (KΩK′)−1 KΓ

]−1
, where the latter is

obtained by considering only the subset gK(y, β) of estimating functions.
The intuition behind this possible efficiency gain will be formally confirmed in Section 3. For this

purpose, it is worth shedding first more light on the issue of model choice that, as explained in the
introduction, has been often used in the extant literature for the selection of the auxiliary model.

2.3. Moment Selection Criterion

As already explained, the standard strategy for II based on a score generator amounts to picking
a parsimonious auxiliary model, with the implication being that certain components within a possibly
large set of estimating functions are eliminated (jointly with some auxiliary parameters) to arrive at a
vector of just identified auxiliary parameters β. We can nest this particular case within our general
setup by examining the case where, all along the II estimation strategy, including the minimization (5),
we decide to use only a given just identified subset of g(y, β), namely

gK(y, β) = Kg(y, β).

When considering the just identified subset of moments gK(y, β), we must redefine the
Jacobian matrices J and Γ by JK = KJ and ΓK = KΓ, respectively, as well as the variance matrix
ΩK = KΩK′. Denoting WK as the weighting matrix used in the minimization program (5) (with g(y, β)

replaced by gK(y, β)), we can deduce that the corresponding II estimator has the following linear
asymptotic expansion:

√
T
[
θ̂
(K)
T,H(K, W)− θ0

]
=

[
Γ′KWKΓK

]−1 Γ′KWK{
1√
T

T

∑
t=1

{
gK

(
yt, β0

)}
− 1√

T

T

∑
t=1

{
1
H

H

∑
h=1

gK

(
y(h)t (θ0), β0

)}}
+ oP(1),

2 See the Appendix A for more detailed derivations.
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and the asymptotic variance of this II estimator is given by

Σ(K)
H (K, WK) =

(
1 +

1
H

) [
Γ′KWKΓK

]−1 Γ′KWKΩKWKΓK
[
Γ′KWKΓK

]−1 .

In this case, the optimal choice of the weighting matrix is WK = Ω−1
K , which would lead to an

allegedly optimal asymptotic variance given by estimator

Σ∗(K)H (K) =
(

1 +
1
H

) [
Γ′KΩ−1

K ΓK

]−1
. (7)

However, the optimality of this II estimator is questionable. In particular, a more efficient II
estimator could be obtained if we could overcome the information loss due to the selection of moments
through the matrix K, which would allow us to obtain the asymptotic variance

Σ∗H =

(
1 +

1
H

) [
Γ′Ω−1Γ

]−1
. (8)

Surprisingly enough, we will show in the next section that (8) is an efficiency bound and that it
can be feasibly reached in the standard context of II where dβ ≥ dθ , i.e., when the vector of auxiliary
parameters is large enough to possibly identify the structural parameters. However, it will turn out that
obtaining such an efficiency bound will require a two-step II estimation procedure, where an optimal
selection matrix K∗ will be estimated in the first step, and the second step will use this estimator to
deduce an II estimator that is capable of reaching the efficiency bound (8).

As one would suspect, two-step II estimators that reach the efficiency bound in (8) can be obtained
under both the “moment matching” and “parameter matching” approaches to II. We note here that the
reference to “moment matching” and “parameter matching” is explicit, and from hereon we will no
longer refer to such approaches as “score matching” and “Wald approach”, since the auxiliary model
may not be a parametric model endowed with a score function. In particular, in this generalization
it may not be possible to interpret the estimator of the auxiliary parameters as a quasi-maximum
likelihood estimator, as these auxiliary estimators will be based on a preliminary estimator of an
optimal selection matrix, K∗, the solution of the equation

Γ′KΩ−1
K ΓK = Γ′Ω−1Γ. (9)

In this way, the optimal choice of the selection matrix K must be related to the Jacobian matrix
Γ of the structural model and is definitely not what would be elicited by a model selection criterion
blindly applied to the auxiliary model. As will be made clear later, the optimal selection matrix K∗,
defined through (9), is not in general consistent with GMM estimation of the auxiliary parameters.

3. Which Moments to Match?

3.1. Optimal Selection Matrix K

The goal of this subsection is to deduce a selection matrix K that solves Equation (9). For this
purpose, it is worth revisiting Equation (7) in terms of orthogonal projections. More precisely, let us
associate to any given selection matrix K, of dimension dβ × k and rank dβ, a full column rank matrix
X, defined as

X = (Ω1/2)′K′,

where Ω1/2 is any matrix such that
Ω = (Ω1/2)(Ω1/2)′.



Econometrics 2019, 7, 14 9 of 17

We can then write

Γ′KΩ−1
K ΓK = Γ′K′

(
KΩK′

)−1 KΓ

= Γ′
[
(Ω1/2)′

]−1
X
(
X′X

)−1 X′
[
Ω1/2

]−1
Γ

= Γ̃′PX Γ̃,

where
Γ̃ =

[
Ω1/2

]−1
Γ, and PX = X

(
X′X

)−1 X′.

Taking A � B to mean that the difference (A− B) is positive semi-definite, we obviously deduce[
Γ′KΩ−1

K ΓK

]−1
=
[
(PX Γ̃′)(PX Γ̃)

]−1 �
[
Γ̃′Γ̃
]−1

=
[
Γ′Ω−1Γ

]−1
,

with equality if
PX Γ̃ = Γ̃. (10)

The above confirms that the asymptotic variance of the II estimator θ̂T,H(K, Ω−1
K ) does not,

in general, reach the efficiency bound (8) but can reach this bound when condition (10) is fulfilled,
which requires that the columns of Γ̃ are in the range of the matrix X; i.e., this requires that[

Ω1/2
]−1

Γ = XΛ = (Ω1/2)′K′Λ

for some matrix Λ. In other words, a matrix K will satisfy (9) if there exists some matrix Λ such that

K′Λ = Ω−1Γ. (11)

If the selection matrix K fulfills Equation (11), not only will the corresponding II estimator
θ̂T,H(K, Ω−1

K ) reach the efficiency bound in (8), but it will also be asymptotically equivalent to the
optimal II estimator θ̂T,H(K, W) defined in (5). To see this, we note from Equation (6)

plim
T→∞

Var
{√

T
[
θ̂T,H(K, W)− θ0

]}
=

[
Γ′WΓ

]−1 Γ′W J (KJ)−1 KΩK′
(

J′K′
)−1 J′WΓ

[
Γ′WΓ

]−1

+
1
H
[
Γ′WΓ

]−1 Γ′WΩWΓ
[
Γ′WΓ

]−1 .

The second term is obviously minimized by choosing W = Ω−1. Interestingly enough, this choice
is also optimal for the minimization of the first term, at least when condition (11) is fulfilled. To see
this note that

Γ′W J (KJ)−1 KΩK′
(

J′K′
)−1 WΓ = Γ′Ω−1 J (KJ)−1 KΩK′

(
J′K′

)−1 J′Ω−1Γ

= Λ′KJ (KJ)−1 KΩK′
(

J′K′
)−1 J′K′Λ

= Λ′KΩK′Λ

= Γ′Ω−1ΩΩ−1Γ

= Γ′Ω−1Γ.

Hence, when K satisfies Equation (11), the asymptotic variance of θ̂T,H(K, W) is minimized at
W = Ω−1, and this asymptotic variance achieves the efficiency bound in (8). Moreover, we note that
when dβ ≥ dθ , it is always possible to construct a choice of K conformable to (11); a selection matrix
satisfying Equation (11) is given by

K∗′ =
[

Ω−1Γ C
]

, (12)
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for C an arbitrary k×
(
dβ − dθ

)
-dimensional matrix, with rank

(
dβ − dθ

)
and whose columns do not

belong to the space spanned by the columns of Ω−1Γ. In this case, Equation (11) is fulfilled for

Λ =

[
Iddθ

0

]
,

where the zero lower block of Λ has dimension
(
dβ − dθ

)
× dθ .

In order to summarize, three comments are in order. First, Σ∗H defined by (8) is obviously an
asymptotic efficiency bound for estimation of θ0, at least when the number H of simulation goes to
infinity. The asymptotic variance limH→∞ Σ∗H corresponds to the asymptotic variance of the efficient
GMM estimator based on the infeasible moment conditions for θ:

Eθ

[
g
(

y(h)t (θ), β0
)]

= 0,

which are infeasible since they depend on the unknown value β0 of the auxiliary parameters.
Second, importantly this efficiency bound is feasible, insofar as dβ ≥ dθ and, of course, up to

consistent estimation of a selection matrix K∗ satisfying (12) (the following two subsections describe
the construction of such a consistent estimator).3 It must be stressed that the identities in (7) and (8)
imply that, when K = K∗, there is no additional efficiency gain when working with the whole vector
g
(

y(h)t (θ), β̂T(K)
)

of moment functions in the moment matching estimator (5).
Third, and in contrary to the above point, when dβ < dθ we cannot reach this efficiency bound in

general and it would be more efficient to use the entire vector g
(

y(h)t (θ), β̂T(K)
)

of moment functions
in the moment matching estimator (5). Otherwise, any selection matrix K used in the computation
θ̂
(K)
T,H(K, W) will likely lead to some information loss, since it cannot be chosen in an optimal manner

(according to minimal asymptotic variance).

3.2. Efficient Two-Step Moment Matching

When dβ ≥ dθ , an efficient two-step II estimation procedure for θ0 can proceed as follows.
Let β̃T = β̂T(K) be associated to some arbitrary (dβ × k)-dimensional selection matrix K with rank dβ.
As with standard two-step GMM, this will allow us to compute a consistent estimator Ω̂T of the matrix
Ω. In turn, this allows us to compute a consistent estimator θ̃T of θ0 as

θ̃T = arg min
θ∈Θ

[
1
T

T

∑
t=1

g
(

y(1)t (θ), β̃T

)]′
Ω̂−1

T

[
1
T

T

∑
t=1

g
(

y(1)t (θ), β̃T

)]
. (13)

If β̃T were almost surely equal to the true unknown value β0, the estimator of θ0 defined by
(13) would actually reach the efficiency bound (8). To see this, recall that, as already mentioned,
the efficiency bound actually coincides with the asymptotic variance of an efficient GMM estimator of
θ0 based on the moment conditions Eθ

[
g(y, β0)

]
= 0. Unfortunately, these moment conditions are not

feasible in general and, thus, θ̃T incurs some efficiency loss because we have used a first-step estimator
β̃T = β̂T(K), of β0, that is sub-optimal (as far as estimation of θ0 is concerned). Therefore, θ̃T is nothing
but a possibly inefficient “first-step” consistent estimator of θ0. Indeed, there is no compelling reason
to consider the first-step estimator θ̃T , defined by (13), over the more naive first-step estimator

θ̃T = arg min
θ∈Θ

∥∥∥∥∥ 1
T

T

∑
t=1

g
(

y(1)t (θ), β̃T

)∥∥∥∥∥
2

,

3 A discussion and interpretation of this surprising feasibility (in spite of the fact that β0 is unknown) is given in Section 3.4.
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since both estimators are inefficient.
So long as θ̃T is a consistent estimator of θ0 (irrespective of the weighting matrix used for its

computation), we can deduce a consistent estimator Γ̂T,H∗ , of Γ(θ0), using4

Γ̂T,H∗ =
∂

∂θ′

{
1

TH∗
H∗

∑
h=1

T

∑
t=1

g
(

y(h)t (θ), β̃T

)}
θ=θ̃T

.

Using this consistent estimator of Γ(θ0), define the selection matrix K̂T as

K̂′T =
[

Ω̂−1
T Γ̂T,H∗ CT

]
where CT is an arbitrary k×

(
dβ − dθ

)
-dimensional matrix with rank

(
dβ − dθ

)
, and whose columns

do not belong to the space spanned by the columns of Ω̂−1
T Γ̂T,H∗ .

For CT →p C, where C is an arbitrary k ×
(
dβ − dθ

)
-dimensional matrix, with rank

(
dβ − dθ

)
,

and whose columns do not belong to the space spanned by the columns of Γ′(θ0)Ω−1, we can
conclude that

plim
T→∞

[
Γ̂′T,H∗Ω̂

−1
T

C′T

]
=

[
Γ′(θ0)Ω−1

C′

]
= K∗

Now, letting β̂T = β̂T(K̂T) be defined as the solution of

K̂T ḡT(β̂T ) =
1
T

T

∑
t=1

K̂T g(yt, β̂T) = 0,

it directly follows, from the above arguments, that the feasible two-step II estimator

θ̂T,H

(
K̂T , Ω̂−1

T

)
= arg min

θ∈Θ

[
1

TH

H

∑
h=1

T

∑
t=1

g
(

y(h)t (θ), β̂T
(
K̂T
))]′

Ω̂−1
T

[
1

TH

H

∑
h=1

T

∑
t=1

g
(

y(h)t (θ), β̂T
(
K̂T
))]

will reach the efficiency bound in Equation (8).

3.3. Efficient Two-Step Parameter Matching

We now examine a version of the above II estimator based on parameter matching, where we
explicitly work under the assumption that the “auxiliary” parameters β “identify” the structural
parameters θ. Note that this assumption was not maintained for the general moment matching
considered above. Assumption 4 thus complements Assumption 3 in this respect.

Assumption 4. The selection matrix K is a (dβ × k)-dimensional matrix with rank dβ, which fulfills the
following conditions.

(i) There exists a function bK(.) such that, for all θ ∈ Θ,

Eθ [Kg(y, bK(θ))] = 0.

(ii) bK(θ
0) = β0 = plimT→∞ β̂T(K) and bK(θ) = plimT→∞ β̃T,H(θ, K), where β̃T,H(θ, K) is the solution

of
1

TH

T

∑
t=1

H

∑
h=1

Kg
(

y(h)t (θ), β̃T,H(θ, K)
)
= 0.

4 Note that one may want to compute this derivative numerically and to choose H∗ very large (and possibly different from H
in the rest of the procedure) to take advantage of the smoothness properties of the population moments.
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(iii) bK(θ) = β0 ⇐⇒ θ = θ0.
(iv) The Jacobian matrix ∂bK(θ

0)/∂θ′ has rank dθ .

In this context, we can define a parameter matching II estimator of θ0 as

θ̂P
T,H(K, W) = arg min

θ∈Θ

[
β̂T(K)− β̃T,H(θ, K)

]′WT
[
β̂T(K)− β̃T,H(θ, K)

]
, (14)

where W = plimT→∞ WT is a (dβ × dβ)-dimensional positive definite matrix. GMR show that (for
given K), asymptotically efficient estimation of θ0 is delivered by an optimal choice W(K) of W that
is the inverse of the asymptotic variance of β̂T(K). Therefore, from the expansion in Equation (4),
the optimal W(K) is given by

W(K) =
{
(KJ)−1(KΩK′)(J′K′)−1

}−1
.

Hence, by using the result of GMR, the asymptotic variance of the II estimator in Equation (14) is
given by

plim
T→∞

Var
[√

T
[
θ̂P

T,H [K, W(K)]− θ0
]]

=

(
1 +

1
H

){
∂b′K(θ

0)

∂θ
(KJ)′(KΩK′)−1(KJ)

∂bK(θ
0)

∂θ′

}−1

. (15)

Moreover, by differentiating the identity

KEθ

[
g
(

y(h)t (θ), bK(θ)
)]

= 0,

we obtain

KΓ(θ0) + KJ
∂bK(θ

0)

∂θ′
= 0 (16)

so that Equation (15) can be rewritten as

plim
T→∞

Var
[√

T
[
θ̂P

T,H [K, W(K)]− θ0
]]

=

(
1 +

1
H

){
Γ′(θ0)K′(KΩK′)−1KΓ(θ0)

}−1
.

Not surprisingly, we find that the optimal parameter matching II estimator θ̂P
T,H [K, W(K)] based

on a selection matrix K is asymptotically equivalent to the optimal moment matching II estimator
θ̂T,H(K, Ω−1) based on the same selection matrix. As a consequence, an optimal choice K∗ satisfying
Equation (11) will allow us to reach the efficiency bound (8). Moreover, this optimal selection matrix is
the same for the optimal II estimator based on moment matching and the optimal II estimator based
on parameter matching, with the two estimators being asymptotically equivalent. Indeed, an efficient
two-step parameter matching estimator can be devised in a similar fashion to the efficient two-step
moment matching estimator described in the former subsection.

However, it is important to note the distinction between the required identification conditions
underpinning the two estimators, i.e., the moment matching estimator, θ̂T,H(K, W), and the parameter
matching estimator, θ̂P

T,H(K, W). In particular, the identification conditions underpinning the parameter
matching approach is much more restrictive than the conditions required for the moment matching
estimator. In particular, Assumption 3 simply assumes, for given β0, identification of the moment
conditions at θ0, as well as the existence of a consistent and asymptotically normal estimator
β̂T(K). However, in addition to the existence of a consistent and asymptotically normal estimator
β̂T(K), Assumption 4 assumes that we consider only selection matrices K for which there exists
both a continuously differentiable limit map, bK(θ), with full column-rank Jacobian, as well as a
consistent estimator.
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3.4. Interpretation of Results and Discussion

As alluded to in Section 3.1, the optimal asymptotic variance (8) demonstrates that we do not
pay a price for ignoring the value of β0 in terms of optimal II estimation of θ0, which means that
limH→∞ Σ∗H corresponds to the asymptotic variance of an efficient GMM estimator for the infeasible
moment conditions about θ,

Eθ

[
g
(

y(h)t (θ), β0
)]

= 0.

The intuition behind this result is relatively simple and can be expressed as follows: when the
binding function b(.) is known, which is precisely the case for an infinite number of simulations, we can
estimate β0 through additional estimating equations β − b(θ) = 0 that just identify β. This result
echoes the following well-known result in GMM estimation theory (see, e.g., (Breusch et al. 1999)):
when additional moment restrictions just identify the additional nuisance parameters that they
introduce, they do not modify the accuracy of the efficient GMM estimator of the parameters of
interest. As already announced in the introduction, what really matters for the efficiency of the II
estimators is a choice of the auxiliary model well focused on the structural model. Hence the definition
of the optimal selection matrix K∗.

To better understand this issue, imagine a favorable case where the overidentifying information
pertains to the complete path of the binding function, meaning that, for all θ ∈ Θ,

Eθ [g(y, b(θ))] = 0. (17)

In other words, the binding function θ 7→ b(θ) does not depend on a specific selection matrix K,
and thus there is no conflict between efficient estimation of β0 and efficient estimation of θ0. We can
actually check this directly, since differentiating the identity (17) yields

Γ(θ0) + J
∂b(θ0)

∂θ′
= 0. (18)

Therefore,

Ω−1Γ(θ0) = −Ω−1 J
∂b(θ0)

∂θ′
= −K′

∂b(θ0)

∂θ′
(19)

when K has been chosen for efficient GMM estimation of β0 (i.e., K′ = Ω−1 J). In this case, the selection
matrix K corresponding to efficient GMM estimation of β0 does fulfill the optimality condition (11) that
produces an efficient II estimator of θ0. The identity (19) indeed demonstrates that, for this choice of K,
the columns of Ω−1Γ(θ0) are linear combinations of the columns of K′. However, it may be argued
that an identity like (17) should be the exception rather than the rule. There is a striking difference
between the identity (16) that we obtained in a general setting (but for a given selection matrix K) and
the much stronger condition (18) that does not depend on K and allows us to get altogether efficient II
estimation of θ0 and efficient GMM estimation of β0. In contrast, it is worth stressing that any choice of
K based on a GMM estimator of β0 is generically inconsistent with efficient II estimation of θ0 since,
in general, for any weighting matrix W and any matrix Λ

K = J′W =⇒ K′Λ = W JΛ 6= Ω−1Γ.

It is worth realizing that situations of tension between efficient estimation of β0 on the one hand
and efficient estimation of θ0 on the other hand (typically when (17) is violated) go beyond the simple
framework considered in this paper. For instance, Sargan (1983) and Dovonon and Renault (2013) have
stressed that for non-linear GMM, β may be globally identified by (1) while first-order identification
may fail at some particular value β0 because the matrix Γ is not full column rank. It turns out that
in many circumstances (see, e.g., (Dovonon and Renault 2013)) the particular value at which rank
deficiency occurs is precisely the case of interest. Dovonon and Hall (2018) have documented the
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implication of such a lack of first-order identification for II when using the naive selection matrix
K = J′Ω−1.

Recall that the messages of this paper are two-fold: one, the naive selection matrix K = J′Ω−1 may
not be an efficient choice; two, more importantly, the efficient choice is based on a matrix Γ, the rank
of which has no reason to be deficient when there is a rank deficiency in the matrix J. Therefore,
it may well be the case that standard asymptotic theory for II is still valid, in contrast with the case of
Dovonon and Hall (2018), when II is performed efficiently.

A similar argument applies in the case of weak identification (see, e.g., (Stock and Wright 2000) and
(Kleibergen 2005)), that is, when the matrix Γ is only asymptotically rank deficient. A general theory of
II in the case of first-order under-identification or weak identification of the auxiliary parameters is left
for future research.

4. Conclusions

The overall message of this paper can be summarized as follows: application of the II methodology
may require, for the sake of finite-sample performance, the imposition of certain constraints on the
auxiliary model, leading to auxiliary parameters that are defined by an overidentified system of
moment conditions. Typically, when II is based on a score generator, a la GT, possibly due to some
interpretation of the auxiliary parameters, one would imagine that there exist more restrictions than
are needed to identify the auxiliary parameters. In this context, we demonstrate that efficient indirect
estimators of the structural parameters should take advantage of the overidentifying restrictions,
but for the purpose of optimizing the accuracy of the II estimator of the structural parameters θ, not for
the GMM estimator of the auxiliary parameters β, which is generally not equivalent.

The general characterization of a two-step efficient II estimator proposed in this paper may be
used in various contexts. As a first example, we have in mind procedures that select valid and relevant
moments to match, as recently devised by Cheng and Liao (2015), through an “information-based
LASSO”. If we contemplate applying this procedure to the choice of the auxiliary moment model, the
information criterion of Cheng and Liao (2015) would be based on the asymptotic variance

[
J′Ω−1 J

]−1

of the efficient GMM estimator of β. In contrast, for the purpose of efficient II estimation of θ0, it would
be more relevant to use as an information criterion the efficient asymptotic variance

[
Γ′Ω−1Γ

]−1 of
an II estimator of θ (up to a correction factor for the number of simulations). Theoretically speaking,
nothing prevents us to revisit the theory of Cheng and Liao (2015) in this new context of indirect
moment-based estimation.

A second example may be inspired by the recent work of Hansen (2016) on “Stein Combination
Shrinkage” for Vector Auto-Regressions (VAR). Since the work of Smith (1993), VAR models have been a
popular class of auxiliary models for II estimation of structural models stemming from macroeconomic
theory, however, there exists little guidance in the extant literature about the trade-off between
efficiency and parsimony in the specification of these VAR models for II estimation. Moreover, the poor
finite-sample performance of estimators for VAR models of dimension larger than two, and with
more than one lag, has been widely documented, but the consequences for employing such a class of
auxiliary models within II estimation have not been meaningfully studied. Hansen (2016) uses the
tool of model averaging for the aggregation of estimators of VAR parameters provided by different
possible shrinkage strategies. In our framework, this can be understood as averaging over estimators of
auxiliary parameters β provided by different selection matrices K. Then, in our context, the procedure
of model averaging should be elicited with regards to efficient II estimation of the structural parameters
θ, which differs from the issue of efficient estimation of the VAR parameters β.

More generally this paper contributes to the search for efficiency in the context of II estimation.
We emphasize the fact that the moments to match, or equivalently, the score generator provided by the
auxiliary model, should not be treated as a statistical object whose inference must be efficient within
the logic of the auxiliary world. Instead, auxiliary models should only be used as lenses focused on
minimizing the asymptotic variance of the indirect estimator of θ obtained by calibrating the estimating
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equations on β, without overlooking some finite sample issues related to the parsimony in the choice
of these equations. Future research includes extensions to the cases of weak identification, first-order
under-identification, and model misspecification.
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Appendix A. Proofs

Appendix A.1. Proof of Equation (6)

The first-order conditions that define θ̂T,H(K, W) can be written

Γ′(θ0)W
1√
T

T

∑
t=1

{
1
H

H

∑
h=1

g
(

y(h)t
(
θ̂T,H(W)

)
, β̂T(K)

)}
= oP(1),

which, after a first order Taylor expansion gives

oP(1) = Γ′(θ0)W
1√
T

T

∑
t=1

{
1
H

H

∑
h=1

g
(

y(h)t

(
θ0
)

, β0
)}

+ Γ′(θ0)WΓ(θ0)
√

T
[
θ̂T,H(W)− θ0

]
+Γ′(θ0)W J

√
T
[

β̂T(K)− β0
]

.

Plugging in the linear expansion (4) of the estimator β̂T(K), i.e.,

√
T
[

β̂T(K)− β
0
]
= −(KJ)−1K

√
TḡT(β0) + oP(1).

we obtain
√

T
[
θ̂T,H(K, W)− θ0

]
=

[
Γ′(θ0)WΓ(θ0)

]−1
Γ′(θ0)W (A1){

J (KJ)−1 K
1√
T

T

∑
t=1

{
g
(

yt, β0
)}
− 1√

T

T

∑
t=1

{
1
H

H

∑
h=1

g
(

y(h)t (θ0), β0
)}}

+ oP(1)

In other words,
√

T
[
θ̂T,H(K, W)− θ0] is asymptotically a linear function of the asymptotically

Gaussian vector [
1√
T

T

∑
t=1

{
g
(

yt, β0
)}

,
1√
T

T

∑
t=1

g
(

y(h)t (θ0), β0
)]

1≤h≤H

Appendix A.2. Proof of Equation (15)

If β̂T(K) has been computed from the sample counterpart of estimating equations

KḡT
(

β̂T(K)
)
= 0

for some matrix K of dimension dβ × k and of rank dβ, we have, by assumption,

√
T
[

β̂T(K)− β0
]
= − (KJ)−1 K

1√
T

T

∑
t=1

{
g
(

yt, β0
)}

+ oP(1)
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and
√

T
[

β̃T,H(θ
0, K)− β0

]
= − (KJ)−1 K

1√
T

T

∑
t=1

1
H

H

∑
h=1

g
(

y(h)t (θ0), β0
)
+ oP(1).

Thus, taking the difference

√
T
[

β̂T(K)− β̃T,H(θ
0, K)

]
= − (KJ)−1 K

1√
T

T

∑
t=1

{
g
(

yt, β0
)
− 1

H

H

∑
h=1

g
(

y(h)t (θ0), β0
)}

+ oP(1)

Therefore,
√

T
[
β̂T(K)− β̃T,H(θ

0, K)
]

is asymptotically normal with asymptotic variance(
1 +

1
H

)
(KJ)−1 KΩK′[(KJ)′]−1

Hence, by using the result of GMR, the asymptotic variance of the indirect inference estimator
is then

{
plimT→∞ Var

[√
T
[
θ̂P

T,H [K, W(K)]− θ0
]]}

=
(

1 + 1
H

){
∂b′K(θ

0)
∂θ (KJ)′(KΩK′)−1(KJ) ∂bK(θ

0)
∂θ′

}−1
(A2)

Moreover, by differentiating the identity

KE
[

g
(

y(h)t (θ), bK(θ)
)]

= 0

we obtain

KΓ(θ0) + KJ
∂bK(θ

0)

∂θ′
= 0

so that (A2) can be rewritten:{
plim
T→∞

Var
[√

T
[
θ̂P

T,H P[K, W(K)]− θ0
]]}

=

(
1 +

1
H

){
Γ′(θ0)K′(KΩK′)−1KΓ(θ0)

}−1
.
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