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1 Introduction

Higher moments capturing non-normalities of return distributions have been recog-

nized as an important source of risk in pricing securities for long time (Fama, 1965). More

recent papers suggest that additional features of individual securities’ payoff distribution

may be relevant for understanding differences in assets’ returns. For example Amaya et al.

(2015); Neuberger and Payne (2021) argue that time variation of moments is an important

aspect that induces changes in investment opportunity set by changing the expectation

of future market returns, or by changing the risk-return trade-off.1 In addition, risk pre-

mium associated with idiosyncratic and systemic counterparts are documented to impact

the pricing kernel of an investor unequally (Langlois, 2020). These risks related to higher

moments of return distributions are however exclusively being modelled as constant across

frequencies which imposes strong restrictions on risk measurement across horizons (Bandi

et al., 2021). In contrast to this assumption, recent literature documents theoretically as well

as empirically2 that investor’s preferences are frequency-specific (Dew-Becker and Giglio,

2016; Neuhierl and Varneskov, 2021; Bandi et al., 2021). It remains an open question how

different sources of risk to an investor are high-frequency (low-frequency) fluctuations of

higher moments such as skewness or kurtosis, associated with transitory (persistent) risks.

The main goal of this paper is to provide a systematic investigation of how short-

term and long-term fluctuations of important higher moments measures are priced in the

cross-section of expected stock returns. Since these moment based risks are highly time-

varying and have transitory (short-term) as well as persistent (long-term) components,

we want to determine the role of these components using recent advances in financial

econometrics coupled with newly available high-frequency intraday data enabling accurate

1See also Kelly and Jiang (2014); Harvey and Siddique (2000); Ang et al. (2006). Amaya et al. (2015) show
that realized skew measures computed from intraday return data on individual stocks can be used to sort
stocks into portfolios that have significantly different excess returns, while Boyer et al. (2009) and Conrad
et al. (2013) show that high idiosyncratic skewness in individual stocks is also correlated with positive
returns. Ghysels et al. (2016) present similar results for emerging market indices.

2Importance of horizon-specific decision making of investors has been recognized by literature for
decades. Choice of horizons significantly affects model outcomes in terms of asset pricing (Levhari and Levy,
1977), portfolio selection (Tobin, 1965), and portfolio performance (Levy, 1972). Such discoveries stressed the
importance of capturing heterogeneous preferences of investors across investment horizons. Models incorpo-
rating such assumption started emerging shortly (Gressis et al., 1976; Lee et al., 1990), however the increased
attention to modelling the horizon-specific risks is a very recent phenomenon (Dew-Becker and Giglio, 2016;
Neuhierl and Varneskov, 2021; Bandi et al., 2021).
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measurement of the time-varying higher moments.

Why should we model investor preferences over higher moment risks as horizon-

specific? Risk changes across investment styles as well as frequencies (Bandi et al., 2021)

hence models that assume constant risk across investment horizons generally fail to de-

scribe a range of key characteristics including pricing of cross-sections when confronted

with data. While long-run risk models (Bansal and Yaron, 2004) suggest that persistent

components of risk are those of importance, empirical evidence is mixed suggesting that

they do not capture the dynamics in returns fully. In contrast, Neuhierl and Varneskov

(2021) argue that key feature of an asset pricing model should be ability to decompose the

risk into frequency-specific components. Higher moments of return distribution exhibit

strong time dynamics (Amaya et al., 2015) which implies that they will carry important

transitory and permanent sources of risk. For example skewness risk often perceived as

a manifestation of tail risk or crash risk may have transitory as well as persistent compo-

nents that can be well connected to the transitory and permanent shocks in the economy

creating horizon-specific risk. Our work is closely related to Neuberger and Payne (2021)

who suggest how to compute higher moments of long-horizon returns from daily returns.

In contrast, we use cyclical decomposition of fluctuations from intraday data that offers

full decomposition of information to any frequency band of interest, and we exploit both

transitory and persistent components of the higher moments. We view this decomposition

as a natural way to explicitly model heterogeneous investment horizons and describe their

dynamics fully.

More generally, returns and risk can be decomposed to elements with various levels

of persistence (Adrian and Rosenberg, 2008). In their seminal work, Bansal and Yaron

(2004) suggest frequency decomposition of consumption and dividend growth processes

as a key to explaining various asset markets puzzles. Shocks to consumption at different

frequencies have different implications for model outcomes; they enter the pricing kernel

with different weights (Dew-Becker and Giglio, 2016), have varying effects on asset returns

(Ortu et al., 2013; Yu, 2012) and lifetime utility Bidder and Dew-Becker (2016), moreover ex-

posure of firms’ cash flow to shocks with different persistence varies (Li and Zhang, 2016).

Bandi et al. (2021) decompose the betas in consumption CAPM model, thus disentangle

the effect of exposure to market risk for various horizons. Kamara et al. (2016) identify
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the sources of transitory and persistent risks in five cornerstone factors (MKT, SMB, HML,

MOM, LIQ) by observing their power to explain the cross-section of expected returns over

different horizons.

Varying preferences of investors across horizons justify certain degree of horizon-dependence

in their risk attitudes. Several theoretical concepts explain such behaviour of investors. E.g.

myopic loss aversion connects willingness of an individual to participate on an investment

(alternatively on a bet, game, etc.) with the horizon of evaluation (for details see Be-

nartzi and Thaler, 1995) thus perceives decision making of investors as horizon-specific.

Standardly used preferences, e.g. Epstein-Zin (Epstein and Zin, 2013), are described by a

discount factor and risk aversion parameter. Under horizon-dependent risk aversion, the

representation of investor preferences needs to be adjusted by adding a patience coefficient

(Gonzalo and Olmo, 2016). In order to prevent the outcomes of our model to be driven by

selection of specific utility function (Dittmar, 2002), we approximate the stochastic discount

factor using the model-free approach (e.g., Dittmar, 2002; Chabi-Yo, 2012). The empirical

model we propose disentangles the short-run and long-run characteristics of investors’ risk

attitudes connected to various sources of transitory and persistent risk through empirical

decomposition of higher moment risks into different horizons.

Assuming the idiosyncratic risk can be fully diversified, literature for long considered

that only market risk enters the decision making of the investors. However, it has been

documented both theoretically and empirically (e.g., Amaya et al., 2015; Jondeau et al.,

2019) that idiosyncratic risk is also priced in the asset returns. The reason for this may be

well grounded in the fact that idiosyncratic risk can be diversified away only in an uncon-

nected system of stocks. As argued by Elliott et al. (2014); Barunik and Ellington (2020b)

investors require risk premia for idiosyncratic risk in case the stocks form a connected

network. Another important reason for the relevance of idiosyncratic risk originates from

deliberate under-diversification of investors who, for example, do not hold fully diversified

portfolios because they want to take advantage of the extreme positive returns stemming

from holding positively skewed assets. In turn, these investors are exposed to the average

idiosyncratic risk due to the network structures of stock markets, and their documented

behaviour which violates rational decision making in the traditional sense.
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While considerable research has examined the time-series relation between the idiosyn-

cratic moments and the cross-section of returns, the question of how the aggregate mo-

ments affect the cross-section of expected returns has received less attention. Literature

documents that while idiosyncratic skewness risk is important, systematic return skew-

ness offers defensive returns during bad times as well (Langlois, 2020), and average market

skewness is priced in the cross-section of returns (Jondeau et al., 2019). Our work is related

to this recent debate and we further explore how the two sources of risk are being priced

by investors with horizon-specific preferences.

Our key contribution is that we document how the higher moments are priced by

investors at different investment horizons. We establish our main empirical results for

a cross-section of U.S. firms. While empirical literature is predominantly build on evi-

dence from the U.S. financial markets, we like to contrast this phenomenon of “academic

home bias puzzle” with assets that are one of the most important financial innovations in

decades, exchange-traded funds (ETFs). Using the ETFs dataset allows us to control the

robustness of our empirical results by including assets representing securities from non-

U.S. developed and emerging countries as well as small cap stocks. As such, ETFs are of

considerable interest to economists, but the literature is still in its early stage. They have

grown substantially in recent years and have potential to dramatically reshape the broader

investment landscape (Lettau and Madhavan, 2018). To our knowledge, we are the first to

look at higher moments risks in ETFs using high-frequency data.

The sample collected over the period January 2010 to November 2018 uses high fre-

quency data to calculate realized moments using one minute sampled prices filtered to 5-

minute prices, and we build daily and weekly returns and moment factors database to test

the conditional asset pricing models. We find that both realized market and idiosyncratic

higher moment risks are priced in the cross-section of asset returns with heterogeneous

persistence. In particular, on sorting the individual stocks into portfolios based on their

weekly short-run component of skewness, we document a significant equally-weighted

weekly return differential between stocks in the lowest quintile and the stocks in the high-

est quintile. Sorts on the market skewness are also driven mainly by its transitory short-run

component as we document returns with similar significance. These results remain also

after controlling for all effects using Fama-MacBeth type cross-sectional predictability re-

5



gressions, both conditionally and unconditionally. This means that market and average

idiosyncratic skewness are both predominantly short-run phenomena, however their term

structures exhibit different dynamics.

2 Pricing of Frequency-Dependent Higher Moments

The empirical search for explanation of why different assets earn different average re-

turns centers around risk factor models arising from the Euler Equation. Whereas litera-

ture documents large number of factors, their overall poor performance supports the focus

on risk factors capturing the properties of asset returns such as moments of distribution.

Higher moments are highly informative once data depart from normality, that is otherwise

convenient to assume. Non-normalities of return distribution have been recognized in the

literature empirically (Fama, 1976, 1996; Bakshi et al., 2003), and problems documented by

standard asset pricing and portfolio selection models, e.g. equity premium puzzle3 or de-

liberate underdiversification4, may be explainable through tails of distribution expressed

by the higher moments. Barberis and Huang (2008) observe that investors deciding under

risk often depart from the expected utility framework, hence the decision-making would

be better modelled under cumulative prospect theory overweighting the tails. Higher

weight given to information in the tails of returns distribution better coincides with the

documented preferences of investors towards positively skewed assets.5 Desire to exploit

extreme positive returns stemming from holding “lottery-like” assets is among the ex-

planations of the documented deliberate underdiversification of investors (Simkowitz and

Beedles, 1978; Mitton and Vorkink, 2007).6

Harvey and Siddique (2000) note that failures of CAPM are most significant for assets in

the lowest deciles of market-cap, i.e. the most significantly skewed assets. In their model

based on pricing kernel quadratic in market returns7, excess returns are dependent on

covariance and coskewness with the market. Chabi-Yo (2012) derives a pricing kernel with

3Mehra and Prescott (1985) noted that class of general equilibrium models is not able to explain large
average equity risk premia and low risk-free rate observed on US markets.

4Investors deliberately hold insufficiently diversified portfolios, although they would be capable of ob-
taining a sufficient number of assets to fully diversify away the idiosyncratic risk.

5Barberis and Huang (2008) claim their model could explain e.g. poor performance of IPOs or success of
momentum strategies.

6Investors forego the opportunity to exploit returns of positively skewed assets by becoming completely
diversified (Simkowitz and Beedles, 1978; Mitton and Vorkink, 2007).

7Such pricing kernel is derived by Taylor expansion cut-off before the fourth derivative.
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stochastic volatility, skewness and kurtosis risk using an alternative model-free approach;

small-noise expansion. Maheu et al. (2013) build on this result and derive an autoregressive

asset pricing model containing jumps stemming from the higher moment risk. One of

the intermediate steps in the derivation relates excess returns to second, third and fourth

centralized moment of returns on aggregate wealth.

2.1 Frequency Decomposition

Higher moments are exclusively assumed as a risk that is constant across frequencies in

the literature. This is too restrictive for the data, instead the risk factors should be modelled

as having heterogeneous impact across frequencies. Our main aim is to investigate how the

short-term as well as long-term fluctuations of higher moments matter in the cross-section

of returns. This endeavor stems from the recent discussion which points to changing risk

attitudes across investment styles as well as frequencies (Bandi et al., 2021; Neuhierl and

Varneskov, 2021) and suggests that key feature of an asset pricing model should be ability

to decompose the risk into frequency-specific components. To our knowledge, the ability

of the transitory and persistent fluctuations in higher moments to price stock returns has

not been evaluated. Similarly to the notion of spectral factor models (Bandi et al., 2021)

that decompose CAPM beta into several frequencies, we decompose the higher moments

to their horizon-specific components.

Assume that a higher moment Mt has two orthogonal components capturing economic

cycles shorter than 2j periods and longer than 2j periods (for example months) for j ≥ 1.

These represent the short-run and long-run components capturing transitory and perma-

nent information respectively. Bandi et al. (2021) show formally that it is always possible to

decompose covariance-stationary time-series in such a way that these two components are

orthogonal, they are non anticipative, and hence suitable for out of sample applications.

These are key for the purpose of using such factors in asset pricing models.

Assuming the higher moment is a covariance-stationary time-series, we can decompose

higher moment risk factor into components operating over the short and the long horizons

as

Mt = M(s)
t + M(l)

t (1)

= M<2j

t + M>2j

t , (2)

7



where M(s)
t captures the short-run component of the moment computed as a sum of the

corresponding elements up to j, and M(l)
t captures the long-run component of the moment

consisting of the elements larger than j.

Based on this notion, we formalize an asset pricing model that connects horizon-specific

components of higher moments to a risk premium. While this decomposition is general

and allows for user specified choices of horizons, in the empirical application on the daily

and weekly data we use j = 7 and j = 5 respectively. This choice corresponds to ap-

proximately less than half year for the short-term component and more than half year for

the long-term component, and we focus on this decomposition specifically to disentangle

the persistent risks from the transitory. Hence from now on, we will refer to short-run

and long-run components of higher moment risk within this definition. The two distinct

sources of risk will have transitory and permanent nature, and our aim is to find how these

risks are priced in the cross-section of stocks as well as exchange traded funds.

2.2 Parameterization of the equity premium

Asset pricing models rely on approximating the stochastic discount factor (SDF) ei-

ther by assuming a particular form of utility function, or in a model-free manner using

Taylor expansion. Dittmar (2002) argues that results of many multi-factor or nonlinear

pricing kernel8 models stem from arbitrary assumptions about utility function. Prefer-

ence for skewness and aversion to kurtosis can be motivated by already existing concepts

while employing the model-free approach preventing the model outcomes to be affected by

restrictive assumptions. Arditti (1967) motivates preference for positive skewness via de-

creasing risk premia in wealth, Kraus and Litzenberger (1976) formulate the three-moment

CAPM based on properties of theoretically feasible utility functions9, and Fang and Lai

(1997) add cokurtosis to formulate four-moment CAPM. Dittmar (2002) derives set of con-

ditions to eliminate counterintuitive risk taking by investors consisting of risk aversion,

decreasing absolute risk aversion and decreasing absolute prudence. Pricing kernel satis-

fying these assumptions consists of elements representing moments of returns distribution

8Terms stochastic discount factor and pricing kernel both refer to Mt+1 from the Euler equation (see
Equation (3)), and we treat them as interchangeable.

9Desirable properties of utility function according to Arrow (1970): i) positive marginal utility with
respect to wealth, ii) decreasing marginal utility in wealth, i.e. risk aversion, iii) non-increasing absolute risk
aversion (Kraus and Litzenberger, 1976).
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up to the fourth order and implies that investors have preferences over both skewness and

kurtosis.

To formalize the discussion, we build on Harvey and Siddique (2000); Dittmar (2002);

Maheu et al. (2013); Chabi-Yo (2012), and we assume a general utility function U(Wt+1)
10

depending on wealth Wt can be accurately approximated by taking a Taylor expansion

up to the fourth order (Dittmar, 2002). Defining Rw
t+1 as the simple net return on wealth,

we expand U(Wt+1) around Wt(1 + Ct) where Ct is an arbitrary return Ct = Et(Rw
t+1).

The pricing kernel is defined as Mt+1 = U′(Wt+1)/U′(Wt) and it can be approximated by

(Maheu, 2005)

Mt+1 ≈
3

∑
n=0

U(n+1)(1 + Ct)

U′(1)n!
(Rw

t+1 − Ct)
n

= g0,t + g1,t(Rw
t+1 − Ct) + g2,t(Rw

t+1 − Ct)
2 + g3,t(Rw

t+1 − Ct)
3,

(3)

where gn,t = [U(n+1)(1+Ct)/U′(1)][1/n!] = [U(n+1)(1+Ct)/U′(1+Ct)n!][U′(1+Ct)/U′(1)].

Further, we assume that both excess return of ith asset Ri
t+1 as well as simple net return

on wealth Rw
t+1 can be decomposed to elements consisting of short-term and long-term

fluctuations as

Rt+1 ≡
N

∑
j=1

R(j)
t+1 + R(∞)

t+1 = R(short)
t+1 + R(long)

t+1 , (4)

where R(short)
t+1 = ∑J

j=1 R(j)
t+1, and R(long)

t+1 = R(∞)
t+1 = R(j>J)

t+1 , and choice of J depends on the

economic meaning of short-term and long-term fluctuations.11

The following proposition establishes how the prices are linked with frequency depen-

dent higher moments.

Proposition 1 (Pricing of Frequency-Dependent Higher Moments). Assume an ith asset re-
turn Ri

t+1 and return on wealth Rw
t+1 can be decomposed to their short-term and long-term fluctua-

tions that satisfy Eq. (4), and the pricing kernel Mt+1 that satisfies Eq. (3). Further assume orthog-

onality of components
(

ε
(s)
t+1

)n (
ε
(l)
t+1

)n
=
(

ε
(s)
t+1

)n
R(l)

t+1 =
(

ε
(l)
t+1

)n
R(s)

t+1 = 0, for n ∈ {1, 2, 3}.

10The restriction we place on the utility function U(Wt+1) is that its derivatives, U(n)(Wt+1) for n ∈
{1, 2, 3, 4}, exist, and are finite.

11Note that due to the equivalence in Equation (4), the decomposition is not restricted to two horizons.
In fact, we are able to construct components from arbitrary number of horizons by splitting the sum in
intermediate points.
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Excess returns of asset i then conform

Et
(

Re
t+1,i

)
= ∑

h∈{s,l}
θ
(h)
1,t,iEt

[(
ε
(h)
t+1

)2
]
+ ∑

h∈{s,l}
θ
(h)
2,t,iEt

[(
ε
(h)
t+1

)3
]
+ ∑

h∈{s,l}
θ
(h)
3,t,iEt

[(
ε
(h)
t+1

)4
]

,

(5)
where Et

[
(εt+1)

n] denotes n-th centralized moment of returns on aggregate wealth, ε
(s)
t+1 consists

of the short-run components of returns on aggregate wealth, and ε
(l)
t+1 consists of the long-run

components of returns on aggregate wealth.

Proof. See Appendix A.

Proposition 1 allows us to build a model valid for the whole set of applicable utility

functions while maintaining the interpretation of individual coefficients in the model, i.e.

it allows us to disentangle and quantify the horizon-specific components of investors’ risk

tastes (risk aversion, absolute risk aversion, absolute prudence). Heterogeneity of risk

tastes across different horizons may be a key step towards explaining the cross-section of

stock (and other assets) returns.

Finally, the Equation (5) can be expressed as (see Appendix A for detailed discussion)

Et(Re
t+1,i) = ∑

h∈{s,l}
β
(h)
t,i

√
v(h)t + ∑

h∈{s,l}
δ
(h)
t,i s(h)t + ∑

h∈{s,l}
K(h)

t,i k(h)t , (6)

where
√

v(h)t , s(h)t and k(h)t are short- and long-run components of volatility, skewness

and kurtosis of returns on aggregate wealth, respectivelly. The connection of the respective

coefficients is detailed in the Appendix A.

2.3 Computing the Horizon-Specific Higher Moments from High Frequency Data

The discussion assumes that higher moments evolve dynamically, but at the same time

we need to realize that higher moments are generally hard to measure. In this subsec-

tion, we provide brief summary of high-frequency based estimation of higher moment

risk measures that we plug into the model. We rely on recent advances in high-frequency

econometrics to measure the realized volatility, realized skewness and realized kurtosis

and then decompose their fluctuations to transitory and persistent parts so we define

horizon-specific higher moments. Here, we also briefly discuss the high-frequency data

that we use in our main empirical investigations.
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2.4 Realized moments

The daily realized variance (RDV), realized skewness (RDS), and realized kurtosis

(RDK) representing the second, third, and fourth moment of daily returns distribution

can be computed from 5-minute prices. Using already well-known arguments of Ander-

sen et al. (2001, 2003) realized variance can be constructed as sum of the squared high-

frequency intraday returns as

RDVt =
K

∑
j=1

r2
t,j, (7)

where rt,j = pt,j/K− pt,(j−1)/K with pt,j/K denoting a natural logarithm of j-th intraday price

at day t. We use five-minute returns so that in 6.5 trading hours we have K = 78 intraday

returns. Realized Volatility (RDVOL) is computed as RDVOLt =
√

RDVt.

Since we are mainly interested in measuring asymmetry and higher order moments of

the daily return’s distribution, we construct a measure of ex-post realized skewness based

on intraday returns standardized by the realized variance following Amaya et al. (2015) as

RDSt =

√
N ∑K

j=1 r3
t,j

RDV3/2
t

. (8)

The negative values of the realized skewness indicate that stock’s return distribution has

a left tail that is fatter than the right tail, and positive values indicate the opposite. In

addition, extremes of the return distribution can be captured by realized kurtosis

RDKt =
N ∑K

j=1 r4
t,j

RV2
t

. (9)

Note that as discussed by Amaya et al. (2015), with increasing sampling frequency K re-

alized skewness in the limit separates the jump contribution from the continuous contri-

bution to cubic variation and it captures mainly jump part. This feature is important to

note since the measure does not capture leverage effect arising from correlation between

return and variance innovations. Hence assets with positive jumps on average will have a

positive realized third moment and vice versa. Hence higher moments measured by high

frequency data are likely to contain different information from those computed from daily

data or options (see Amaya et al. (2015) for rigorous discussion).
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2.4.1 Decomposition of the Realized Moments

The realized higher-order moments exhibit strong time series dynamics Amaya et al.

(2015) and may thus have unexplored transitory and persistent components that create

heterogeneous types of risks matching our theoretical expectation. To explore such risk,

we decompose the realized measures to their horizon-specific components.

Assume that a realized moment RDMt ∈ {RDVOLt, RDSt, RDKt} has two orthogonal

components capturing economic cycles shorter than 2j periods (for example months) and

longer than 2j periods for j ≥ 1. These represent the short-run and long-run components

capturing transitory and permanent information contained in the higher moments respec-

tively. As discussed earlier, we can decompose our risk factors into components operating

over the short and the long horizons as

RDMt = RDM(s)
t + RDM(l)

t , (10)

= RDM<2j

t + RDM>2j

t , , (11)

where RDM(s)
t denotes short-run realized moment computed as a sum of the correspond-

ing elements up to j, and RDM(l)
t denotes long-run realized moment consisting of the

elements larger than j.

2.5 Idiosyncratic and Market Moments

Another important aspect of the discussion is the type of moment based risk we use

in the analysis. A traditional view in the literature is that idiosyncratic moment risks can

be diversified away, and only systematic components of moments should be rewarded

(Harvey and Siddique, 2000). However, enormous literature emphasizes the ability of id-

iosyncratic risks to predict subsequent returns. Recently, Jondeau et al. (2019) document

that average of monthly skewness across firms predicts future market returns, and they

argue that systematic market skewness is not the main channel by which investor’s pref-

erences for skewness affect future market return. In addition, Langlois (2020) documents

that systematic and idiosyncratic skewness are connected with different expected returns

across stocks. While stocks with higher systematic skewness are appealing because they of-

fer defensive returns during bad times, stocks with positive idiosyncratic skewness attract

investors seeking high returns regardless of broad market movements, and are connected
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to a lottery-like payoff.

Empirical ability of idiosyncratic skewness risk to predict the cross-section of returns

has been recognized across many different measures of skewness, specifically option im-

plied measures (Conrad et al., 2013), realized measures computed from high-frequency

data (Amaya et al., 2015), or idiosyncratic skewness forecasted by a time series model

(Boyer et al., 2009). These findings indicate that investors are willing to accept low returns

and high volatility if they are compensated by positive skewness. Such phenomenon is

closely connected to deliberate underdiversification (Simkowitz and Beedles, 1978; Mitton

and Vorkink, 2007) that is driven by “lotto investors" demanding assets with high upside

potential. Moreover, preference of investors over “lottery-like" assets is connected to strong

predictive power of maximum past returns (Bali et al., 2011), and it plays a central role in

explaining the idiosyncratic volatility puzzle (Hou and Loh, 2016).12

Generally, there is evidence that idiosyncratic higher moments can help explaining mul-

tiple financial market puzzles. We contribute to this debate by assessing the role of both

market and average idiosyncratic moments with respect to their short-term as well as long-

term fluctuations. In other words, we investigate how the short-term and long-term fluctu-

ations of average idiosyncratic and market higher moments are priced in the cross-section

of assets.

This discussion leads to the final model where both market as well as average idiosyn-

cratic moments are combined. Using the results of Jondeau et al. (2019), both types of the

risks can directly enter our pricing model based on the assumption that a stock return is a

linear combination of market return and the idiosyncratic (unexplained) part. We add the

12Idiosyncratic volatility puzzle is a phenomenon observed by Ang et al. (2006), who document a negative
relationship between idiosyncratic volatility and returns. This is very puzzling as investors should require
positive risk premia, if any, for idiosyncratic volatility. However, high idiosyncratic volatility indicates pos-
sible high future exposure to idiosyncratic skewness (Boyer et al., 2009). Preference for right skewed assets
along with market frictions holds a prominent place amongst explanations of idiosyncratic volatility puzzle
(Hou and Loh, 2016).
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idiosyncratic source of risk to our model in Equation (6) as13

Et(Re
t+1,i) = ∑

h∈{s,l}
β
(h,m)
t,i

√
v(h,m)

t + ∑
h∈{s,l}

δ
(h,m)
t,i s(h,m)

t + ∑
h∈{s,l}

K(h,m)
t,i k(h,m)

t +

∑
h∈{s,l}

β
(h,I)
t,i

√
v(h,I)

t + ∑
h∈{s,l}

δ
(h,I)
t,i s(h,I)

t + ∑
h∈{s,l}

K(h,I)
t,i k(h,I)

t ,
(12)

where the upper case I indicates idiosyncratic risk, and the lower case m indicates market

risk. Thus M(h,I)
t ∈ {

√
v(h,I)

t , s(h,I)
t , k(h,I)

t }, h ∈ {s, l}, stands for the horizon-specific com-

ponent of the corresponding idiosyncratic moment, and M(h,m)
t ∈ {

√
v(h,m)

t , s(h,m)
t , k(h,m)

t },

h ∈ {s, l}, stands for the horizon-specific component of the corresponding market mo-

ment. Analogously, φ
(h,I)
t,i ∈ {β(h,I)

t,i , δ
(h,I)
t,i ,K(h,I)

t,i }, h ∈ {s, l}, denotes the coefficient as-

sociated with the corresponding horizon-specific idiosyncratic risk factor, and φ
(h,m)
t,i ∈

{β(h,m)
t,i , δ

(h,m)
t,i ,K(h,m)

t,i }, h ∈ {s, l}, denotes the coefficient associated with the corresponding

horizon-specific market risk factor.

Estimation of such model is possible mainly due to use of high-frequency data allowing

computation of the realized moments. Specifically, we proxy the aggregate representations

of the three moments {
√

v(I)
t , s(I)

t , k(I)
t } with an average idiosyncratic higher moment at

time

RDM(I)
t =

1
N

N

∑
i=1

RDMt,i, (13)

where RDMt,i ∈ {RDVOLt,i, RDSt,i, RDKt,i}. The short-term and long-term components

of the three moments {
√

v(h,I)
t , s(h,I)

t , k(h,I)
t }, h ∈ {s, l}, are proxied with an average horizon-

specific idiosyncratic higher moment at time t

RDM(h,I)
t =

1
N

N

∑
i=1

RDM(h)
t,i , (14)

where h ∈ {s, l} and RDM(h)
t,i ∈ {RDVOL(s)

t,i , RDVOL(l)
t,i , RDS(s)

t,i , RDS(l)
t,i , RDK(s)

t,i , RDK(l)
t,i }.

In addition to average idiosyncratic moments, we use the S&P 500 index returns for mea-

surement of market higher moments {
√

v(m)
t , s(m)

t , k(m)
t ,

√
v(h,m)

t , s(h,m)
t , k(h,m)

t }, h ∈ {s, l}. In

13Note that derivation of this model follows directly from the arguments in Jondeau et al. (2019) who
assume simply an asset return to have market as well as purely idiosyncratic component creating a linear
combination of these two sources of risk.
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Figure 1. Daily realized measures for cross-section of stocks

The top row depicts market (dashed) and average idiosyncratic (black line) realized measures of the cross-
section of daily stock returns. The bottom row depicts the long-term components that capture fluctuations
of all measures longer than half a year.

our cross-sectional analysis, we also use weekly returns and we construct correspond-

ing weekly realized measures by summing the corresponding daily realized variance,

skewness and kurtosis over the week. Specifically, assuming t is Monday, we compute

the weekly realized measures as RVOLt = 252
5

(
∑4

i=0 RDVt−i

)1/2
, RSt = 1

5 ∑4
i=0 RDSt−i,

RKt =
1
5 ∑4

i=0 RDKt−i, where we annualize realized volatility as standard in the literature

to facilitate the interpretation of the results.

2.6 Data

Our empirical analysis focuses on two main datasets. Firstly the U.S. stocks, and sec-

ondly the exchange-traded funds (ETFs) that recently grew in popularity since they pro-

vide an easy and cheap form of diversification. The main reason we chose the ETF data in

addition to the usually studied U.S. equities is that they cover variety of different securities

in terms of asset classes, industrial sectors, market cap, and most importantly country of

origin. Including the ETFs ensure robustness of our estimation to the “academic home bias
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Figure 2. Daily realized measures for cross-section of ETFs

The top row depicts market (dashed) and average idiosyncratic (black line) realized measures of the cross-
section of daily ETF returns. The bottom row depicts the long-term components that capture fluctuations of
all measures longer than half a year.

puzzle”.

We analyze high-frequency intraday data about all companies listed on the New York

Stock Exchange (NYSE), the American Stock Exchange (AMEX), and NASDAQ that have

been constituents of the S&P 500 index over the period from January 1998 until August

2018. We also analyze Exchange Traded Funds traded on NYSE ARCA during the same

period.14 We record prices every five minutes starting 9:30 EST and construct five-minute

log-returns for the period 9:30 EST to 16:00 EST for a total of 78 intraday returns. We

construct the five- minute grid by using the last recorded price within the preceding five-

minute period, and we consider excess returns as required by our empirical model outlined

later in the text. A “coarse” five-minute sampling scheme aims to balance the bias induced

by market microstructure effects and mirrors common practice in the literature.

After data cleaning, we are left with the cross-section of 367 stocks and 100 ETFs cover-

14The data were obtained from Tick Data and Quant Quote databases.
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ing the period of 01/2010 to 11/2018.15 The daily (weekly) return of an asset is constructed

from dividends and splits adjusted prices as an excess return of a logarithmic difference

between opening and closing price for a given period. We use the 3-month Treasury Bill

rate as the risk-free rate.

Note that our sample starts after the year 2010 which since we are using intraday data

to compute the measures, data after year 2010 are especially interesting after the intro-

duction of Globex platform and millisecond time stamps recording. Moreover, there is a

recent discussion in the literature pointing to substantial time-variation in the risk premia

connected to various risk factors (Boons et al., 2020; Barroso et al., 2021). Selected sample

period affects the magnitude of effects displayed by the individual risk factors, and the

sign of these effects may change in different subsamples as well. Most papers studying the

effects of moment based risks using high-frequency data use the sample period 1993-2013

(Amaya et al., 2015; Bollerslev et al., 2020). In light of the documented time-variation in the

state risk variables and the highly time-conditional nature of the risk-return relationships

on financial markets, we believe that it is important to use contemporary high-frequency

data to explain the recent fluctuations in asset returns.

Figures 1 and 2 show all the computed realized moments for stocks and ETFs respec-

tively. Specifically, the first row of Figure 1 contrasts market and average idiosyncratic re-

alized volatility, realized skewness and realized kurtosis of stock returns. It is visible that

the measures of average idiosyncratic realized volatility and realized kurtosis are larger in

magnitude than the market ones, and that market realized skewness shows larger fluctua-

tions than average idiosyncratic realized skewness. The bottom row comparing long-term

fluctuations of the market and average idiosyncratic measures shows similar dynamics of

these two sources of volatility and kurtosis risk, while interestingly different dynamics of

the skewness risks. While market skewness fluctuates around zero with a large negative

spike during 2017, average idiosyncratic skewness is positive for the whole period.

In contrast to the stock returns’ moments, ETFs returns’ moments depicted in Figure 2

show less significant discrepancies between average idiosyncratic and market moments.16

15The dataset ends after 08/2018 in case of stocks.
16Note that the market returns are approximated by the returns of the S&P 500 index for both stocks and

ETFs data. Hence, the lines representing the market measures in Figure 1 and Figure 2 are identical.
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Specifically, average idiosyncratic volatility and average idiosyncratic kurtosis are only

slightly larger in comparison to corresponding market measures. While skewness shows

similar overall dynamics, its long-run component is more connected to the market long-run

component, although again stays in positive values most of the time. Table 1 further reveals

Table 1. Correlations: Stocks

This table provides the correlation matrix for the realized market and average idiosyncratic realized moments
in the Panel A, correlation matrix for the frequency-decomposed realized market and average idiosyncratic
moments in the Panel B, and Panel C.

Panel A RVOL(m)
t RS(m)

t RK(m)
t RVOL(I)

t RS(I)
t RK(I)

t

RVOL(m)
t

RS(m)
t -0.045

RK(m)
t -0.037 0.168

RVOL(I)
t 0.921 -0.023 -0.084

RS(I)
t -0.035 0.618 0.123 -0.009

RK(I)
t -0.389 0.188 0.293 -0.25 0.199

Panel B RVOL(s,m)
t RVOL(l,m)

t RS(s,m)
t RS(l,m)

t RK(s,m)
t RK(l,m)

t

RVOL(s,m)
t

RVOL(l,m)
t 0.11

RS(s,m)
t -0.071 -0.003

RS(l,m)
t 0.023 0.314 0.026

RK(s,m)
t 0.02 -0.015 0.171 0.006

RK(l,m)
t -0.062 -0.703 0.004 -0.048 0.045

Panel C RVOL(s,m)
t RVOL(l,m)

t RS(s,m)
t RS(l,m)

t RK(s,m)
t RK(l,m)

t RVOL(s,I)
t RVOL(l,I)

t RS(s,I)
t RS(l,I)

t RK(s,I)
t

RVOL(s,I)
t 0.905 0.148 -0.036 0.021 -0.032 -0.091

RVOL(l,I)
t 0.125 0.92 -0.002 0.143 -0.018 -0.748 0.156

RS(s,I)
t -0.049 0.004 0.62 0.014 0.124 0.002 -0.015 0.005

RS(l,I)
t 0.053 0.023 0.022 0.493 0.007 0.046 0.073 -0.083 0.048

RK(s,I)
t -0.289 -0.079 0.205 -0.016 0.285 0.055 -0.116 -0.079 0.216 -0.027

RK(l,I)
t -0.178 -0.829 -0.002 -0.119 0.026 0.598 -0.188 -0.805 -0.005 -0.035 0.138

that market realized volatility is strongly correlated with average idiosyncratic volatility

while the relation is weaker for the realized skewness and almost disappears in case of

kurtosis.17 This suggests that the average idiosyncratic and market parts of the third and

fourth moments carry different information. More importantly, Panel B shows that short-

run and long-run components of market higher moments are generally uncorrelated except

strong negative correlation between long-run components of market volatility and kurtosis.

Long-run components of market volatility and skewness display weak correlation of 0.314.

The pattern is not very different in the right part of Panel C where correlation ma-

trix of horizon-specific components of average idiosyncratic moments is displayed. While

most of the terms are not correlated, long-run components of average idiosyncratic volatil-

17Note the correlation matrix for ETFs is very similar and we report it in the Appendix D
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ity and kurtosis show strong negative correlation. Finally, left part of Panel C displaying

the cross-correlations between the horizon-specific components of market and average id-

iosyncratic moments confirms the previous findings. The values on the diagonal document

that correlation between the corresponding components of the same moment is strongest

in case of volatility, and becomes weaker in case of skewness and kurtosis. Moreover, we

observe strong negative correlation between long-run components of average idiosyncratic

volatility and market kurtosis as well as between the long-run components of average id-

iosyncratic kurtosis and market volatility.

This preliminary analysis documents that various types of the risks and information are

hidden in the transitory and persistent components of higher moments. We will explore

these in the next sections.

3 Frequency-Dependent Higher Moments and Future Returns

The previous discussion implies that individual assets exhibit different exposures to

short-run and long-run components of higher moment risk, and that there are two relevant

sources of such risk; market and idiosyncratic. Subsequently, different exposures to the

corresponding risk factors yield different returns on average. In this section, we test the

effects of exposure to each risk factor unconditionally using portfolio sorting exercises.

We divide the factors to four “groups”; aggregate market factors, horizon-specific market

factors, aggregate idiosyncratic factors, and horizon-specific idiosyncratic factors. When

estimating the exposures used for sorting the portfolios we control for remaining factors

from the corresponding group. The sorting procedure is described in detail in Appendix C.

It is not straightforward to connect our results to existing empirical evidence due to

presence of different specifications of higher moments in the literature, although the exist-

ing empirical results provide us with certain guidance in terms of signing the individual

relationships. Some researchers sort the portfolios directly based on the measures of id-

iosyncratic higher moments (Bollerslev et al., 2020; Amaya et al., 2015), some sort based

on the exposures to innovations in market higher moments (Ang et al., 2006; Chang et al.,

2013), we sort based on the exposures to market and average idiosyncratic higher moments.
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Table 2. Cross-section of Stocks

We are sorting on the factor loadings of corresponding variables. The length of the rolling window is
3 months, the post-ranking returns are recorded for the next week. The complete sorting procedure is
described in Apendix C. We report the average post-ranking raw returns (in bps) for each portfolio, the t-
statistics are reported in parentheses. The last column displays the difference in returns of the highest quintile
portfolio, and the lowest quintile portfolio, hence corresponds to the strategy of buying high exposure assets
and selling low exposure assets.

Variable 1 2 3 4 5 High - Low
Market

RVOL(m)
t 0.29 0.99 1.38 1.39 -0.08 -0.38

(0.16) (0.65) (1) (1.05) (-0.06) (-0.33)

RS(m)
t 2.21 2.01 1.33 0.09 -1.71 -3.92

(2) (1.61) (0.91) (0.05) (-0.8) (-2.52)

RK(m)
t 0.76 1.46 1.06 0.85 -0.17 -0.93

(0.49) (1.07) (0.77) (0.58) (-0.09) (-0.88)

RVOL(s,m)
t 0.58 1.06 1.63 1.27 -0.57 -1.15

(0.32) (0.7) (1.15) (0.97) (-0.39) (-1.09)

RVOL(l,m)
t 0.38 0.94 1.27 1.14 0.24 -0.14

(0.23) (0.66) (0.9) (0.82) (0.15) (-0.16)

RS(s,m)
t 2.22 2.33 0.82 0.43 -1.88 -4.1

(1.99) (1.86) (0.57) (0.26) (-0.88) (-2.67)

RS(l,m)
t 0.28 1.44 1.35 0.52 0.37 0.09

(0.17) (1.03) (0.98) (0.36) (0.23) (0.1)

RK(s,m)
t 0.47 1.75 1.21 0.75 -0.21 -0.68

(0.3) (1.28) (0.88) (0.51) (-0.12) (-0.66)

RK(l,m)
t 0.31 0.8 1.26 1.29 0.32 0.01

(0.19) (0.55) (0.89) (0.93) (0.2) (0.01)
Idiosyncratic

RVOL(I)
t 0.22 1.4 1.57 1.18 -0.41 -0.64

(0.13) (0.93) (1.13) (0.88) (-0.28) (-0.66)

RS(I)
t 2.06 2.22 0.96 0.24 -1.55 -3.61

(1.79) (1.77) (0.66) (0.14) (-0.74) (-2.36)

RK(I)
t 1.49 1.15 1.31 0.81 -0.8 -2.29

(1.03) (0.86) (0.95) (0.52) (-0.43) (-1.96)

RVOL(s,I)
t 0.44 0.91 2.03 1.26 -0.67 -1.1

(0.25) (0.63) (1.46) (0.92) (-0.43) (-1.16)

RVOL(l,I)
t 0.68 1.06 1.37 0.91 -0.05 -0.73

(0.4) (0.75) (0.98) (0.66) (-0.03) (-0.81)

RS(s,I)
t 2.09 2.02 1.19 0.27 -1.64 -3.72

(1.81) (1.61) (0.81) (0.17) (-0.78) (-2.46)

RS(l,I)
t 0.17 0.94 1.24 1.24 0.39 0.21

(0.1) (0.67) (0.91) (0.89) (0.23) (0.23)

RK(s,I)
t 1.4 1.48 1.13 0.87 -0.92 -2.32

(0.97) (1.1) (0.81) (0.57) (-0.5) (-2.01)

RK(l,I)
t 1.19 1.23 1.37 0.87 -0.7 -1.89

(0.71) (0.87) (0.98) (0.61) (-0.44) (-2.01)
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3.1 Sorts of Stock Portoflios

In this subsection we report the results of the portfolio sorting exercise applied on the

stocks dataset. We are using daily returns and relatively short moving windows to capture

the dynamics of the coefficients. We consider 3-months as the minimum window length

to obtain precise estimates of the factor loadings. For the sake of robustness, we report

results for window length of 3 months, and 6 months. We consider post-ranking returns

to avoid any spurious effects (Harvey and Siddique, 2000; Ang et al., 2006; Agarwal et al.,

2009; Chang et al., 2013).

Table 2 displays the results of sorts using rolling window length of 3 months, Table A2

in Appendix D displays the results of sorts using rolling window length of 6 months. Both

Tables indicate a negative relationship between exposure to skewness and subsequent stock

returns. The relationship is valid for market skewness as well as average idiosyncratic

skewness. Exposure to market skewness displays a High-Low spread of −3.92 with a

significant t-statistic of −2.52 in Table 2, and −3.31 with a significant t-statistics of −1.97

in Table A2. Exposure to average idiosyncratic skewness exhibits a High-Low spread that

is slightly lower in magnitude; −3.61 and −2.78 respectively, with t-statistics of −2.36

and −1.62. Negative risk premia accepted for assets with higher exposure to skewness,

and the dominant role of skewness among the three studied moments are in line with

previous research (Ang et al., 2006; Agarwal et al., 2009; Chang et al., 2013; Amaya et al.,

2015; Bollerslev et al., 2020). Moreover, the results in this section confirm that average

idiosyncratic skewness is also priced in the cross-section of stocks (Jondeau et al., 2019),

and that strategies based on exposure to both sources of skewness yield similar excess

returns.

Decomposition into the frequency-specific components allows us to observe the term

structure of skewness risk. The literature develops myriad of long-run risk models stress-

ing the importance of the long-run volatility component in the decision making of investors

(e.g., Bidder and Dew-Becker, 2016), however the empirical evidence suggests that the

long-run component itself is not able to completely capture the dynamics of asset returns.

To our knowledge, the literature does not provide any theoretical or empirical guidance

towards the term structure of skewness risk. Table 2 and Table A2 indicate the short-run

component of skewness risk as the dominant source of the skewness risk premia present
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in the cross-section of stock returns. The portfolios sorted based on exposure to the short-

run component of market skewness display a High-Low spread of −4.1 (3-month rolling

window), and −3.43 (6-month rolling window), with significant t-statistics of −2.57 and

−2.06 respectively. On the contrary, the High-Low spread for portfolios sorted based on

exposure to the long-run component of market skewness is not significantly different from

0 for either length of the rolling window. Portfolios sorted on horizon-specific components

of average idiosyncratic skewness display qualitatively the same results in Table 2.

The evidence of downward-sloping term structure of average idiosyncratic skewness

risk is weaker in Table A2 where portfolios sorted based on the long-run component of av-

erage idiosyncratic skewness display a High-Low spread of 2.79 with a significant t-statistic

of 2.97. High-Low spread corresponding to the short-run component of average idiosyn-

cratic skewness is −2.81 with a t-statistic of −1.65. However, positive risk-premia required

for holding assets with high exposure to the long-run component of average idiosyncratic

skewness do not correspond to any other results regarding exposure to skewness we ob-

tain. It should be noted that all the results in this exercise are computed separately for mar-

ket and idiosyncratic risk, hence we cannot conclude whether these elements are jointly

relevant for investors. We take a closer look at the interrelations inside the pricing kernel

in Section 4.

The relationship between exposure to skewness and subsequent average stock returns

predominantly propagated through the short-run component of skewness is documented

for both lengths of the rolling window, and it is stronger in case of market skewness.

On the other hand, we fail to document any consistent relationship between exposure

to volatility or kurtosis and subsequent stock returns on the aggregate level, while we

document a negative relationship between exposure to the short-run component of average

idiosyncratic kurtosis and subsequent stock returns both in Table 2 and Table A2.

3.2 Sorts of ETFs Portoflios

In this subsection we report the results of the portfolio sorting exercise applied on

the ETFs dataset. Table 3 displays the results of sorts using rolling window length of 3

months, Table A3 in Appendix D displays the results of sorts using rolling window length

of 6 months. Consistently with results from the previous subsection, high exposure to
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Table 3. Cross-section of ETFs

We are sorting based on the factor loadings of corresponding variables. The length of the rolling window
is 3 months, the post-ranking returns are recorded for the next week. The complete sorting procedure is
described in Apendix C. We report the average post-ranking raw returns (in bps) for each portfolio, the t-
statistics are reported in parentheses. The last column displays the difference in returns of the highest quintile
portfolio, and the lowest quintile portfolio, hence corresponds to the strategy of buying high exposure assets
and selling low exposure assets.

Variable 1 2 3 4 5 High - Low
Market

RVOL(m)
t -1.22 -0.93 -0.53 -0.72 -1.18 0.03

(-0.69) (-0.63) (-0.38) (-0.52) (-0.81) (0.03)

RS(m)
t 0.11 -0.89 -0.41 -0.64 -2.76 -2.87

(0.09) (-0.65) (-0.28) (-0.4) (-1.47) (-2.67)

RK(m)
t -1.39 -0.86 -0.09 -0.35 -1.89 -0.5

(-0.9) (-0.61) (-0.06) (-0.24) (-1.14) (-0.52)

RVOL(s,m)
t -1.43 -0.17 -0.64 -0.88 -1.45 -0.03

(-0.83) (-0.12) (-0.45) (-0.64) (-0.97) (-0.03)

RVOL(l,m)
t -0.87 -0.01 -0.45 -0.77 -2.47 -1.6

(-0.56) (-0.01) (-0.32) (-0.53) (-1.53) (-1.8)

RS(s,m)
t 0.12 -0.83 -0.57 -0.68 -2.61 -2.73

(0.1) (-0.61) (-0.39) (-0.43) (-1.4) (-2.57)

RS(l,m)
t -1.33 -0.5 0.03 -0.6 -2.17 -0.84

(-0.84) (-0.35) (0.02) (-0.41) (-1.36) (-0.97)

RK(s,m)
t -1.12 -0.88 -0.3 -0.34 -1.94 -0.83

(-0.71) (-0.63) (-0.21) (-0.23) (-1.15) (-0.83)

RK(l,m)
t -1.12 -0.43 -0.62 -0.65 -1.76 -0.64

(-0.7) (-0.29) (-0.43) (-0.45) (-1.16) (-0.77)
Idiosyncratic

RVOL(I)
t -1 -0.37 -0.61 -0.56 -2.03 -1.03

(-0.58) (-0.25) (-0.43) (-0.41) (-1.38) (-1.1)

RS(I)
t -0.06 0.01 -0.56 -1.68 -2.29 -2.23

(-0.05) (0.01) (-0.38) (-1.05) (-1.2) (-2.02)

RK(I)
t -0.81 -0.55 -0.29 -0.57 -2.35 -1.53

(-0.53) (-0.38) (-0.21) (-0.39) (-1.42) (-1.63)

RVOL(s,I)
t -1.11 -0.39 -0.72 -0.65 -1.71 -0.61

(-0.64) (-0.26) (-0.5) (-0.47) (-1.14) (-0.63)

RVOL(l,I)
t -0.63 -0.29 -0.59 -1.04 -2.02 -1.39

(-0.39) (-0.2) (-0.42) (-0.71) (-1.3) (-1.57)

RS(s,I)
t -0.01 0.01 -0.87 -1.45 -2.25 -2.24

(-0.01) (0) (-0.59) (-0.9) (-1.18) (-2.01)

RS(l,I)
t -1.98 -0.85 -0.25 -0.59 -0.91 1.07

(-1.24) (-0.59) (-0.18) (-0.41) (-0.57) (1.23)

RK(s,I)
t -1.07 -0.32 -0.36 -0.59 -2.24 -1.17

(-0.7) (-0.22) (-0.25) (-0.4) (-1.36) (-1.26)

RK(l,I)
t -0.4 -0.17 -0.62 -1.25 -2.13 -1.73

(-0.25) (-0.12) (-0.43) (-0.86) (-1.36) (-2.01)
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both sources of skewness risk results in significantly lower subsequent average returns.

The High-Low spreads corresponding to exposure to market skewness risk are −2.87 and

−2.8 with significant t-statistics of −2.67 and −2.52 respectively, the High-Low spreads

corresponding to exposure to average idiosyncratic skewness risk are −2.23 and −2.42

with significant t-statistics of −2.02 and −2.05 respectively. We detect no robust evidence

that other factors apart from skewness are priced in the cross-section of ETFs returns except

for the long-run component of average idiosyncratic kurtosis. Portfolios sorted based on

exposure to the long-run component of average idiosyncratic kurtosis display High-Low

spreads of -1.73 (3-month rolling window) and −3.32 (6-month rolling window) both with

significant t-statistics.

The results in Tables 3 and A3 provide further evidence supporting the downward-

sloping term structure of skewness risk. High-Low spreads associated with the portfolios

sorted based on exposure to short-run component of market skewness are −2.73 and −3.01

with significant t-statistics of −2.57 and −2.75 respectively. High-Low spreads associated

with the portfolios sorted based on exposure to short-run component of average idiosyn-

cratic skewness are −2.24 and −2.6 with significant t-statistics of −2.01 and −2.2 respec-

tively. There is no evidence that the long-run component of market or average idiosyncratic

skewness is priced in the ETF returns.

4 Cross-Sectional Regressions

Portfolio sorting exercises consistently indicate that skewness is a dominant factor in

pricing the stock and ETF returns, and it identifies average idiosyncratic skewness risk

as an important factor in excess to market skewness risk. Most importantly, we observe

downward-sloping term structure of skewness risk denoting that the transitory compo-

nents of skewness risk play a major role in pricing the stock and ETF returns. Generally,

portfolio sorts reveal the returns of investment strategies that form portfolios based on

exposures to different sources of risk. While this illustrates the ability to make profit by

trading based on the underlying risk factors, portfolio sorts ignore potentially important

information by aggregating the stocks into quintile portfolios and consider market and

average idiosyncratic moments separately. We expand these results using cross-sectional

regressions that simultaneously control for multiple variables enabling us to inspect the
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implications of the interrelations between individual components of Equation (12). To un-

derstand how the risk factors affect the returns jointly, we evaluate the ability of frequency-

dependent higher moments to predict subsequent returns.

Specifically, our estimation is based on the regression framework of Fama and MacBeth

(1973). For a general set of K risk factors Xt = {xt,1, xt,2, . . . , xt,K}, where {xt,j}T
t=1 is a time-

series of the j-th risk factor, j ∈ [1, K], we estimate the following cross-sectional regressions

rt+1,i = αi +
K

∑
j=1

βi,jxt,j + εt,i, (15)

where rt+1,i denotes the return for stock i over the t + 1 and K denotes the number of

control variables xt,j. Having estimated the slope coefficients βi,j, we use the factor loadings

β̂i,j to estimate the second stage regression in a following way

ri = ω +
K

∑
j=1

λj β̂i,j + ηi, (16)

where ri is a time-series average of returns of asset i.

Empirical evidence suggests (see e.g. Ghysels, 1998), that the relationships estimated in

Equation (15) evolve dynamically in time, hence we need to estimate a conditional model

where coefficients will evolve over time as βt,i,j. The time variation in state variable risk

premia is recently discussed by Barroso et al. (2021), and it also is an important component

of our model described by Proposition 1.

The time-varying parameter asset pricing regression then becomes

rt+1,i = αt,i +
K

∑
j=1

βt,i,jxt,j + εt,i. (17)

Similarly to rolling window approximation of the standard Fama-Macbeth framework, we

obtain T regressions, and T sets of coefficients. However, our truly time-varying param-

eter estimates are able to fully capture the dynamics using localization of the regression.

Our time-varying parameter (TVP) Fama-Macbeth estimates are estimated with help of

the modified Quasi-Bayesian Local-Likelihood approach of Petrova (2019) detailed in Ap-

pendix B.

We consider two baseline models both estimated in the static and the dynamic speci-
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fication. Firstly, we estimate the Static Four Moment Model (SFMM) as well as Dynamic

Four Moment Model (DFMM) using market risk factors with subscript m and average

idiosyncratic risk factors with subscript I:

Xt ∈ {RVOL(m)
t , RS(m)

t , RK(m)
t , RVOL(I)

t , RS(I)
t , RK(I)

t }

Secondly, we use the frequency-dependent higher moments in the Static Horizon-Specific

Model (SHSM) as well as Dynamic Horizon-Specific Model (DHSM) with following re-

gressors

Xt ∈{RVOL(s,m)
t , RVOL(l,m)

t , RS(s,m)
t , RS(l,m)

t , RK(s,m)
t , RK(l,m)

t ,

RVOL(s,I)
t , RVOL(l,I)

t , RS(s,I)
t , RS(l,I)

t , RK(s,I)
t , RK(l,I)

t }.

Above described models combine the effects of volatility, skewness, and kurtosis repre-

senting different aspects of risk on the financial markets. The results allow us to identify

the aspects of risk dominant in pricing the cross-section of stock and ETF returns, and

understand the signs of these effects and their implications. Generally, investors with sen-

sible preferences over risk prefer portfolios with lower volatility, higher skewness, and

lower kurtosis (Kimball, 1993), hence need to be compensated by higher returns for ac-

cepting portfolios with higher volatility, lower skewness, or higher kurtosis. However, it is

not straightforward to connect these phenomena to the prices of risk. We are able to cap-

ture the conditions under which the price of volatility is positive/negative thanks to the

Intertemporal CAPM (Merton, 1973; Campbell, 1996; Ang et al., 2006; Chen, 2002). Market

volatility is priced because it serves as a hedge against future changes on the market. If

high volatility is connected to downward price movements, then an asset whose return

has a positive sensitivity to market volatility is a desirable hedging instrument, hence the

negative price of market volatility in such case. If the opposite holds, an asset with positive

sensitivity to market volatility is undesirable, hence investors should require compensation

for holding such asset. The sign of market volatility risk price is therefore usually expected

to be negative due to the presence of the leverage effect, but the theory does not rule out

the opposite effect. The empirical results regarding the effect of volatility on asset returns

are also mixed. There is evidence that innovations to market volatility are negatively priced

in the cross-section of asset returns (Ang et al., 2006; Chang et al., 2013), and non-robust
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evidence that idiosyncratic volatility has a positive effect on subsequent returns on assets

in the TAQ database (Bollerslev et al., 2020).

Price of higher moments cannot be determined by observing the empirical correlations,

since such approach would ignore the individual investors’ risk attitudes like skewness

preference. Chabi-Yo (2012) concludes that the prices of market skewness risk, and market

kurtosis risk depend on the fourth and fifth derivative of the utility function which are

hard to sign. Hence, we shall perceive determining the prices of higher moment risks

merely as an empirical exercise. Lastly, we expect that the prices of risk of the short-run

and long-run components will retain the signs of the corresponding factors, but there is no

force which would ensure that it will always be the case.

We describe the empirical results from several perspectives. Controlling for both sources

of risk allows us to uncover the discrepancies in information contained in average idiosyn-

cratic risk factors and market risk factors. Comparing the static models to their dynamic

counterparts reveals the time variation in the risk factors and its consequences on model

outcomes. Lastly, decomposing volatility, skewness and kurtosis to the short-run and long-

run components helps disentangle the transitory and persistent nature of investors pref-

erences towards different sources of higher moment risks. Distinguishing the transitory

and persistent components of the individual risk sources, i.e. decomposing the risks into

frequency-specific components should be a key feature of an asset pricing model (Neuhierl

and Varneskov, 2021).

4.1 Stocks data

This section reports the results of the above described cross-sectional regressions using

daily and weekly stocks data. In addition, the effects are controlled for the three Fama-

French factors typically used in the literature (MKT, SMB, HML). Table 4 displays the

results of SFMM (Panel A), and DFMM (Panel B) estimated using daily stock returns,

Table 5 displays the results of SHSM (Panel A), and DHSM (Panel B) estimated using daily

stock returns. Each Panel in the Tables throughout the rest of this section presents a model

containing the group of market factors ([1], [4], [7], and [10]), a model containing the group

of idiosyncratic factors ([2], [5], [8], and [11]), and a model combining these two groups

together and controlling for the Fama-French factors ([3], [6], [9], and [12]).
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The portfolio sorting exercises suggest that the most important indicator of subsequent

returns is exposure to skewness. Both market and average idiosyncratic skewness risk

prove to be relevant, and the frequency decomposition suggests that investors value mostly

the transitory components of skewness risk. Results in Table 4 support the findings from

the univariate exercise indicating negative effect of exposure to both market and average

idiosyncratic skewness on subsequent asset returns. These effects are significant mostly

in Panel B hence in the dynamic specification. The coefficients associated with market

(model [4]) and average idiosyncratic (model [5]) skewness are −0.11 and −0.20 with sig-

nificant t-statistics of −3.7 and −11.4 respectively, and both coefficients remain significant

in model [6] controlling for market and average idiosyncratic moments as well as the

Fama-French factors.

Evidence from both Panels suggests that neither market nor average idiosyncratic volatil-

ity is priced in the cross-section of daily stock returns. We observe certain degree of ambi-

guity regarding the prices of kurtosis risk. The coefficients associated with market kurtosis

are negative while the coefficients associated with average idiosyncratic kurtosis are posi-

tive in Panel A. However, only the former are statistically significant on the 5%-level. On

the other hand, all coefficients associated with market kurtosis and average idiosyncratic

kurtosis are positive and highly significant in Panel B.

Table 5 displays the risk factors from Table 4 decomposed to the short-run and the long-

run components. The decomposition into frequency-specific components shows us how

different sources of risk are priced through their transitory and persistent components as-

sociated with high-frequency and low-frequency fluctuations on the financial markets. The

portfolio sorting exercise indicates downward-sloping term structure of both market and

average idiosyncratic skewness risk, and this result is generally confirmed by Table 5. The

coefficients associated with the short-run component of market skewness are statistically

significant in both Panels. The long-run components are significant as well, but they are

much weaker economically. The results are qualitatively very similar in case of average

idiosyncratic skewness with the exception of model [12] where the long-run component

displays more significant effect on subsequent returns.

Figure 1 reveals that dynamics of skewness consists mostly of transitory fluctuations
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Table 4. Cross-section of Stocks - Daily

We report estimated coefficients from the four moment (FMM) predictive regressions defined in Section 4.
Prices of risk are estimated on daily stock data with market (RVOL(m)

t , RS(m)
t , RK(m)

t ) and average idiosyn-

cratic (RVOL(I)
t , RS(I)

t , RK(I)
t ) moments as risk factors.

Panel A: Static Panel B: Dynamic
[1] [2] [3] [4] [5] [6]

const 0.0005 0.0007 0.0007 0.0007 0.0017 0.0013
(2.7673) (3.7373) (3.6225) (6.2995) (11.0043) (10.431)

RVOL(m)
t -0.0001 -0.0001 0.0003 -0.0005

(-0.4293) (-0.5536) (1.558) (-2.5604)
RS(m)

t -0.0774 -0.1462 -0.1115 -0.1057
(-1.4434) (-2.3914) (-3.6967) (-3.6792)

RK(m)
t -1.2521 -1.3166 1.0201 1.764

(-4.3359) (-4.5113) (9.2237) (19.7774)
RVOL(I)

t 0.0001 -0.0 0.0003 -0.0
(0.5291) (-0.0329) (1.2392) (-0.0169)

RS(I)
t -0.0408 -0.0265 -0.2047 -0.1456

(-2.1499) (-1.5138) (-11.3823) (-8.7436)
RK(I)

t 0.137 0.1599 2.7028 2.5545
(1.4439) (1.5952) (33.1023) (35.6841)

R2 0.1919 0.1236 0.2648

Table 5. Cross-section of Stocks - Daily

We report estimated coefficients from the horizon-specific (HSM) predictive regressions defined in
Section 4. Prices of risk are estimated on daily stock data with short- and long-term compo-
nents of the market (RVOL(s,m)

t , RVOL(l,m)
t , RS(s,m)

t , RS(l,m)
t , RK(s,m)

t , RK(l,m)
t ) and average idiosyncratic

(RVOL(s,I)
t , RVOL(l,I)

t , RS(s,I)
t , RS(l,I)

t , RK(s,I)
t , RK(l,I)

t ) moments as risk factors.
Panel A: Static Panel B: Dynamic

[7] [8] [9] [10] [11] [12]
const 0.0007 0.0007 0.0008 0.0011 0.001 0.0008

(3.3262) (3.8432) (4.0637) (9.3069) (5.9256) (6.4268)
RVOL(s,m)

t -0.0001 -0.0001 0.0011 0.0007
(-0.7655) (-0.4715) (6.0693) (4.291)

RVOL(l,m)
t 0.0001 0.0 -0.0017 -0.0013

(0.4409) (0.1529) (-13.0928) (-10.754)
RS(s,m)

t -0.0914 -0.1312 -0.0576 -0.0732
(-1.7777) (-2.207) (-1.9567) (-2.6463)

RS(l,m)
t -0.0177 -0.0179 -0.0302 -0.0303

(-2.9919) (-3.1058) (-5.1788) (-5.6145)
RK(s,m)

t -1.1635 -1.0454 -0.1411 -0.1171
(-4.2631) (-3.9092) (-1.7178) (-1.5133)

RK(l,m)
t 0.0339 0.0129 0.6358 0.2998

(0.9766) (0.3899) (19.8582) (11.1084)
RVOL(s,I)

t 0.0002 0.0001 0.0002 0.0004
(0.9521) (0.3589) (1.4647) (2.4549)

RVOL(l,I)
t 0.0 -0.0 -0.0013 -0.0014

(0.0721) (-0.1758) (-8.4728) (-10.5486)
RS(s,I)

t -0.0335 -0.0275 -0.0381 -0.0029
(-1.8849) (-1.6464) (-2.2737) (-0.1798)

RS(l,I)
t -0.008 -0.0066 -0.0088 -0.0066

(-4.7339) (-4.3928) (-5.4307) (-4.6196)
RK(s,I)

t 0.0714 0.0737 -0.0165 -0.0202
(0.8661) (0.8899) (-0.4725) (-0.6054)

RK(l,I)
t -0.0096 0.0128 0.282 0.2534

(-0.37) (0.5122) (11.4221) (11.8462)
R2 0.2678 0.2156 0.363
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while the persistent component provides only a little contribution. Such notion is con-

firmed by the portfolio sorting exercises indicating a downward-sloping term structure

of both market and average idiosyncratic skewness risk. The cross-sectional regressions

consider the effects of all the risk factors in Equation (12) jointly, hence the results are

influenced by the interrelations between the individual components of the pricing kernel.

While the coefficients associated with the transitory components of skewness risk are eco-

nomically more important, the results of the cross-sectional regressions suggest that the

long-run component of skewness risk is priced in the daily stock returns as well. Hence

the downward-sloping term structure of skewness risk is confirmed by Table 5, and the

significance of the persistent component arises through interactions among the individual

risk factors.

The results suggest that the short-run and the long-run components of volatility risk

are connected to opposite effects on subsequent returns. Coefficient associated with the

short-run component of market volatility is 0.0012 with a significant t-statistics of 5.5 in

Panel B. The coefficients associated with the short-run component of average idiosyncratic

volatility are also positive although not that statistically significant. On the other hand, the

coefficients associated with the long-run component of market and average idiosyncratic

volatility risk are −0.0014 and −0.0006 with significant t-statistics of −7.9 and −4.8 re-

spectively in Panel B. Hence we observe offsetting effects of the short-run and the long-run

components of volatility risk corresponding to no significant effect of exposure to either

source of aggregate volatility risk on subsequent stock returns (Table 4).

Lastly, the evidence from Panel B of Table 5 indicates upward-sloping term structure of

market as well as average idiosyncratic kurtosis risk. The coefficient associated with the

long-run component of market kurtosis risk is 0.64 with a significant t-statistic of 19.9, the

coefficient associated with the long-run component of average idiosyncratic kurtosis is 0.28

with a significant t-statistic of 11.4. Both effects remain significant in model [12] controlling

for market frequency-specific factors, average idiosyncratic frequency-specific factors, and

Fama-French factors.

Table 6 displays the results of SFMM (Panel A), and DFMM (Panel B) estimated using

weekly stocks data. They very closely mimic what we observe in the daily data, i.e. signifi-

30



Table 6. Cross-section of Stocks - Weekly

We report estimated coefficients from the four moment (FMM) predictive regressions defined in Section 4.
Prices of risk are estimated on weekly stock data with market (RVOL(m)

t , RS(m)
t , RK(m)

t ) and average idiosyn-

cratic (RVOL(I)
t , RS(I)

t , RK(I)
t ) moments as risk factors.

Panel A: Static Panel B: Dynamic
[1] [2] [3] [4] [5] [6]

const 0.0026 0.0027 0.0029 0.0037 0.0045 0.0044
(3.1349) (3.4573) (3.5018) (4.7208) (6.0192) (5.9532)

RVOL(m)
t -0.006 -0.0044 -0.0122 -0.024

(-1.3199) (-1.0251) (-2.5406) (-5.8391)
RS(m)

t -0.0593 -0.0623 -0.1838 -0.196
(-1.2123) (-1.4055) (-3.6369) (-3.8789)

RK(m)
t -0.2298 -0.2916 4.0725 0.903

(-1.5517) (-2.0751) (28.2325) (8.6208)
RVOL(I)

t -0.002 -0.0021 -0.0051 -0.0183
(-0.4312) (-0.446) (-1.108) (-4.1248)

RS(I)
t -0.0224 -0.0186 -0.1027 -0.0446

(-1.2577) (-1.2221) (-5.7418) (-3.2677)
RK(I)

t 0.0947 0.1107 1.3736 1.3446
(1.0216) (1.1601) (15.9887) (17.0131)

R2 0.0902 0.0666 0.1263

Table 7. Cross-section of Stocks - Weekly

We report estimated coefficients from the horizon-specific (HSM) predictive regressions defined in
Section 4. Prices of risk are estimated on weekly stock data with short- and long-term compo-
nents of the market (RVOL(s,m)

t , RVOL(l,m)
t , RS(s,m)

t , RS(l,m)
t , RK(s,m)

t , RK(l,m)
t ) and average idiosyncratic

(RVOL(s,I)
t , RVOL(l,I)

t , RS(s,I)
t , RS(l,I)

t , RK(s,I)
t , RK(l,I)

t ) moments as risk factors.
Panel A: Static Panel B: Dynamic

[7] [8] [9] [10] [11] [12]
const 0.0029 0.0029 0.0031 0.0043 0.0038 0.0038

(3.8041) (3.7744) (3.9637) (5.7994) (5.2712) (5.4787)
RVOL(s,m)

t -0.0018 -0.0012 0.0137 0.0016
(-0.5448) (-0.3724) (3.9143) (0.5175)

RVOL(l,m)
t -0.0021 -0.0015 -0.0235 -0.0179

(-0.8406) (-0.6471) (-10.5029) (-8.9381)
RS(s,m)

t -0.058 -0.0638 -0.0783 -0.1013
(-1.2604) (-1.4347) (-1.6486) (-2.1209)

RS(l,m)
t -0.0156 -0.017 -0.0188 -0.0155

(-2.483) (-2.8848) (-2.9598) (-2.8876)
RK(s,m)

t -0.2804 -0.2951 -0.1082 -0.0981
(-2.0657) (-2.2832) (-1.2455) (-1.1557)

RK(l,m)
t 0.05 0.03 0.5041 0.24

(1.3733) (0.9213) (16.1614) (8.1531)
RVOL(s,I)

t 0.0011 0.0009 -0.0003 -0.0007
(0.2957) (0.2435) (-0.0984) (-0.2155)

RVOL(l,I)
t -0.0024 -0.0017 -0.0195 -0.0209

(-0.8881) (-0.6594) (-7.1996) (-8.6641)
RS(s,I)

t -0.023 -0.0207 -0.0387 -0.0108
(-1.3472) (-1.4188) (-2.1972) (-0.818)

RS(l,I)
t -0.0052 -0.0047 -0.0036 -0.0031

(-3.4397) (-3.1482) (-2.5438) (-2.3843)
RK(s,I)

t 0.0332 0.0219 0.005 0.0042
(0.4165) (0.2771) (0.0825) (0.0701)

RK(l,I)
t 0.0014 -0.0026 0.2267 0.1929

(0.0516) (-0.1099) (8.7067) (9.2873)
R2 0.1673 0.1665 0.2312
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cant positive effect of exposure to market and average idiosyncratic kurtosis on subsequent

stock returns, and significant negative effect of exposure to market and average idiosyn-

cratic skewness on subsequent stock returns. In contrast to daily stocks data, we also

observe evidence that market volatility is negatively priced in the weekly stock returns.

Table 7 displays the results of SHSM (Panel A), and DHSM (Panel B) estimated us-

ing weekly stocks data. Panel B confirms the evidence of upward-sloping term structure

of market and average idiosyncratic kurtosis risk premia from daily stocks data. Table 7

provides evidence that the long-run component of market skewness and the long-run com-

ponent of average idiosyncratic skewness are priced in the cross-section of weekly stocks

data, while there is no robust evidence that the short-run components are priced. The co-

efficients associated with the long-run component of market skewness are −0.02 (in both

Panel A and Panel B) with significant t-statistics of −2.48 and −2.96 respectively. The co-

efficients associated with the long-run component of average idiosyncratic skewness are

−0.005 and −0.003 with significant t-statistics of −3.44 and −2.54 respectively. All these

effects remain significants while controlling for market (average idiosyncratic) and Fama-

French factors.

The evidence from weekly data does not confirm the downward-sloping term struc-

ture of skewness risk premia, although its presence is clearly indicated especially by the

portfolio sorting exercises and cross-sectional regressions using daily data. Generally, the

transitory component of risk consists of the high-frequency fluctuations propagating sub-

stantially into daily returns, however it is difficult to detect the high-frequency fluctuations

in the weekly returns. Such notion is also supported by examining frequency-specific com-

ponents of volatility risk. Table 7 indicates that the long-run components of market and

average idiosyncratic volatility risk are priced in the weekly stock returns consistently with

Table 5, while the short-run components display no significant effects contrary to the evi-

dence from daily stock returns.

The cross-sectional regression analysis applied on the daily and weekly stocks data in-

dicates that investors are willing to accept lower returns for holding assets with higher

exposure to skewness risk. The relationship holds jointly for market skewness risk and

average idiosyncratic skewness risk, thus we find strong evidence that market and average
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idiosyncratic skewness risk carry different information and that both channels of skew-

ness risk are reflected separately in the preferences of investors (Jondeau et al., 2019). The

downward-sloping term structure of skewness risk indicated by the portfolio sorting exer-

cise is confirmed in the daily stocks data. While the daily data show that investors value

predominantly the transitory component of skewness risk connected to the short-run fluc-

tuations on the financial markets, we identify no such pattern in the weekly stock returns.

We attribute this to the inability of weekly returns to capture the high-frequency fluctua-

tions which is also documented by the coefficients associated with the frequency-specific

components of market and average idiosyncratic volatility risk.

The results also indicate that investors require higher returns for holding assets with

higher exposure to market kurtosis as well as average idiosyncratic kurtosis. Both patterns

become highly pronounced in the dynamic models indicating high degree of time varia-

tion across the different sources of risk (Barroso et al., 2021). Both sources of kurtosis risk

display upward-sloping term structure indicating investors’ sensitivity to persistent fluc-

tuations related to kurtosis risk premia. The long-run components corresponding to the

persistent financial markets fluctuations also play a dominant role in pricing the volatility

risk. We are able to distinguish a significant effect of exposure to volatility risk on sub-

sequent stock returns mostly after decomposing the higher moment risks to individual

frequency-specific components.

4.2 Exchange Traded Funds data

In this Section, we report the results of the cross-sectional regressions using the daily

and weekly ETF returns. Table 8 reports the results of SFMM (Panel A), and DFMM (Panel

B) estimated using daily ETFs data. Coefficients associated with market and average id-

iosyncratic skewness are all statistically significant with the exception of market skewness

in model [3]. Hence, the evidence that investors are willing to accept lower returns for as-

sets with higher exposure to market as well as average idiosyncratic skewness extends to

daily ETFs data. The coefficient associated with average idiosyncratic kurtosis is 2.4 with

significant t-statistics of 14.8 in Panel B and the effect remains significant after controlling

for market and Fama-French factors. The coefficient associated with market kurtosis is

1.45 with significant t-statistic of 7.6 in Panel B and also remains significant in the model

with all control variables. We find no robust evidence that market volatility is priced in the
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Table 8. Cross-section of ETFs - Daily Data

We report estimated coefficients from the four moment (FMM) predictive regressions defined in Section 4.
Prices of risk are estimated on daily ETF data with market (RVOL(m)

t , RS(m)
t , RK(m)

t ) and average idiosyn-

cratic (RVOL(I)
t , RS(I)

t , RK(I)
t ) moments as risk factors.

Panel A: Static Panel B: Dynamic
[1] [2] [3] [4] [5] [6]

const 0.0008 0.0007 0.0006 0.0008 0.0005 0.0005
(3.7516) (3.158) (3.7296) (5.1152) (2.7333) (3.8408)

RVOL(m)
t 0.0002 0.0002 0.0004 -0.0007

(0.4169) (0.3325) (1.0488) (-1.9513)
RS(m)

t -0.1376 -0.0497 -0.1596 -0.1244
(-2.5896) (-0.5883) (-4.1783) (-3.1726)

RK(m)
t -0.332 0.1425 1.4505 1.8358

(-0.4683) (0.2319) (7.6132) (11.9096)
RVOL(I)

t 0.0 0.0001 -0.0026 -0.001
(0.0437) (0.1879) (-7.0209) (-2.6316)

RS(I)
t -0.0685 -0.0616 -0.1292 -0.0695

(-2.668) (-2.3692) (-5.2721) (-3.1277)
RK(I)

t -0.0825 0.001 2.4072 2.1535
(-0.3689) (0.0041) (14.8025) (16.6763)

R2 0.2616 0.2774 0.2825

Table 9. Cross-section of ETFs - Daily Data

We report estimated coefficients from the horizon-specific (HSM) predictive regressions defined in
Section 4. Prices of risk are estimated on daily ETF data with short- and long-term compo-
nents of the market (RVOL(s,m)

t , RVOL(l,m)
t , RS(s,m)

t , RS(l,m)
t , RK(s,m)

t , RK(l,m)
t ) and average idiosyncratic

(RVOL(s,I)
t , RVOL(l,I)

t , RS(s,I)
t , RS(l,I)

t , RK(s,I)
t , RK(l,I)

t ) moments as risk factors.
Panel A: Static Panel B: Dynamic

[7] [8] [9] [10] [11] [12]
const 0.0008 0.0007 0.0006 0.0006 0.0007 0.0008

(4.2794) (3.7444) (3.6681) (4.3291) (3.999) (6.0274)
RVOL(s,m)

t -0.0002 -0.0002 0.0001 0.0004
(-0.4742) (-0.4181) (0.4645) (1.5568)

RVOL(l,m)
t 0.0011 0.0011 0.0001 0.0003

(3.502) (3.6829) (0.3598) (1.1252)
RS(s,m)

t -0.1625 -0.0639 -0.1048 -0.0601
(-3.0168) (-0.7853) (-2.8633) (-1.6379)

RS(l,m)
t -0.0022 -0.001 -0.0107 -0.0195

(-0.1403) (-0.0763) (-0.6656) (-1.637)
RK(s,m)

t -1.149 -1.0168 -0.1477 -0.1304
(-1.845) (-1.9777) (-1.2326) (-1.232)

RK(l,m)
t -0.0406 -0.0338 0.3021 0.1971

(-0.7324) (-0.6273) (5.7618) (4.1915)
RVOL(s,I)

t -0.0001 -0.0001 -0.0 0.0004
(-0.2727) (-0.324) (-0.1542) (1.3991)

RVOL(l,I)
t 0.0012 0.0013 -0.0001 0.0005

(3.7773) (3.9447) (-0.3664) (1.8496)
RS(s,I)

t -0.0745 -0.065 -0.0558 -0.0551
(-3.079) (-2.3616) (-2.3634) (-2.5503)

RS(l,I)
t 0.0001 0.0013 -0.0149 -0.003

(0.0135) (0.233) (-2.3741) (-0.5668)
RK(s,I)

t -0.0168 -0.1656 0.0001 -0.0117
(-0.0695) (-0.8125) (0.0012) (-0.2214)

RK(l,I)
t -0.0958 -0.1327 0.2076 0.0926

(-1.6461) (-2.7192) (3.8162) (2.066)
R2 0.6049 0.5948 0.6516
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cross-section of daily ETF data, while the coefficient associated with average idiosyncratic

volatility is significant in both models in Panel B.

Table 9 reports the results of SHSM (Panel A), and DHSM (Panel B) estimated using

daily ETF data. The decomposition into the short-run and long-run components confirms

the downward-sloping term structure of market and average idiosyncratic skewness risk

in the cross-section of daily ETFs. Table 9 also shows that the long-run components are

dominant in terms of pricing market and average idiosyncratic kurtosis risk.

Coefficients associated with the long-run components of market and average idiosyn-

cratic volatility display significant t-statistics in Panel A, and the effects remain significant

in model [9] including market, average idiosyncratic and Fama-French factors. The posi-

tive sign of these relationships contradicts the evidence from stocks data regarding price

of aggregate as well as long-run volatility risk. We find no evidence that the transitory

nor persistent components of market and average idiosyncratic volatility risk are priced in

Panel B of Table 9.

Table 10 reports the results of SFMM (Panel A), and DFMM (Panel B) estimated using

weekly ETF data. In contrast to all the other results we find no evidence that market

or average idiosyncratic skewness risk is priced in the weekly ETFs data. Although the

coefficient associated with average idiosyncratic skewness in model [5] is −0.09 with a

significant t-statistic of −3.1, the negative effect does not persist in model [6] controlling for

market and Fama-French factors. Consistently to the daily ETFs data, Panel B of Table 10

suggests that market as well as average idiosyncratic kurtosis are positively priced, and

that average idiosyncratic volatility is negatively priced in the cross-section of weekly ETF

returns.

Table 11 reports the results of SHSM (Panel A), and DHSM (Panel B) estimated using

weekly ETF data. The results indicate that the aversion to assets with higher exposure

to market volatility highlighted by Panel A of Table 10 is associated with the persistent

component of market volatility risk complementing the results from ETFs daily data. Apart

from market volatility risk we find little evidence that the horizon-specific components of

the various sources of risk are priced in the cross-section of weekly ETF returns. The only

exception is average idiosyncratic volatility, however it displays different term structures
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Table 10. Cross-section of ETFs - Weekly Data

We report estimated coefficients from the four moment (FMM) predictive regressions defined in Section 4.
Prices of risk are estimated on weekly ETF data with market (RVOL(m)

t , RS(m)
t , RK(m)

t ) and average idiosyn-

cratic (RVOL(I)
t , RS(I)

t , RK(I)
t ) moments as risk factors.

Panel A: Static Panel B: Dynamic
[1] [2] [3] [4] [5] [6]

const 0.0031 0.0034 0.0032 -0.0009 0.0013 0.0041
(2.5768) (3.007) (3.0587) (-0.7688) (1.1847) (3.9772)

RVOL(m)
t 0.0215 0.0197 0.0132 -0.006

(1.9228) (2.1515) (1.2724) (-0.7752)
RS(m)

t 0.0079 0.0377 0.0577 0.05
(0.1613) (0.679) (1.0468) (0.9292)

RK(m)
t -0.702 -0.4446 2.4423 1.4444

(-1.7733) (-1.0618) (9.8747) (8.1348)
RVOL(I)

t 0.0129 0.02 -0.0293 -0.0193
(1.2076) (2.0838) (-2.8123) (-2.3329)

RS(I)
t -0.0327 -0.0101 -0.0917 0.0619

(-1.107) (-0.3537) (-3.0904) (2.2881)
RK(I)

t -0.3234 -0.1738 0.9127 1.7564
(-1.8637) (-0.9262) (5.828) (11.5084)

R2 0.3213 0.248 0.3872

Table 11. Cross-section of ETFs - Weekly Data

We report estimated coefficients from the horizon-specific (HSM) predictive regressions defined in
Section 4. Prices of risk are estimated on weekly ETF data with short- and long-term compo-
nents of the market (RVOL(s,m)

t , RVOL(l,m)
t , RS(s,m)

t , RS(l,m)
t , RK(s,m)

t , RK(l,m)
t ) and average idiosyncratic

(RVOL(s,I)
t , RVOL(l,I)

t , RS(s,I)
t , RS(l,I)

t , RK(s,I)
t , RK(l,I)

t ) moments as risk factors.
Panel A: Static Panel B: Dynamic

[7] [8] [9] [10] [11] [12]
const 0.0014 0.0028 0.0025 0.0013 0.0029 0.0029

(1.3797) (2.4491) (2.6895) (1.1349) (3.1754) (3.3322)
RVOL(s,m)

t 0.0011 0.0002 0.011 0.0101
(0.1675) (0.0236) (1.4135) (1.6098)

RVOL(l,m)
t 0.0205 0.0238 0.0089 0.0078

(2.9572) (3.4992) (1.3749) (1.2781)
RS(s,m)

t 0.0098 0.0135 0.0426 0.0083
(0.204) (0.2559) (0.8835) (0.1652)

RS(l,m)
t 0.0419 0.0147 0.0195 0.0061

(1.8926) (1.0373) (1.0157) (0.4475)
RK(s,m)

t -0.3404 -0.2452 -0.0955 -0.0895
(-0.9427) (-0.715) (-0.9259) (-0.8946)

RK(l,m)
t -0.0948 -0.1707 0.1163 0.0481

(-1.4729) (-2.6536) (1.8625) (0.8511)
RVOL(s,I)

t 0.0048 0.0026 0.0181 0.0126
(0.6577) (0.387) (2.8836) (1.9827)

RVOL(l,I)
t 0.0243 0.0293 0.0023 0.0105

(3.0256) (3.7598) (0.2905) (1.5226)
RS(s,I)

t -0.0048 -0.0074 0.0282 0.0063
(-0.1934) (-0.2604) (1.085) (0.2446)

RS(l,I)
t 0.0007 -0.0058 -0.0084 -0.0006

(0.0739) (-0.7207) (-1.0147) (-0.087)
RK(s,I)

t 0.0257 0.1891 -0.116 -0.0912
(0.1492) (1.066) (-1.35) (-1.0479)

RK(l,I)
t -0.084 -0.1587 0.2394 0.097

(-0.9955) (-2.2218) (3.3369) (1.5208)
R2 0.5466 0.7186 0.8491

36



in Panel A and Panel B.

The predictive cross-sectional regressions applied on the daily ETFs data confirm the

negative relationship between skewness and subsequent asset returns. Both market and

average idiosyncratic skewness are jointly priced in the cross-section of daily ETF returns.

Moreover, we confirm that market as well as average idiosyncratic skewness risk is priced

mainly through the short-run components. Hence the high-frequency fluctuations com-

prised into the transitory component of skewness risk are most strongly reflected in subse-

quent ETF returns. As is the case in the stocks dataset, we do not confirm the downward-

sloping term structure of skewness risk in the weekly data possibly due to the inability of

weekly returns to capture the high-frequency financial markets fluctuations.

5 Conclusion

We show that frequency-dependent higher moment risk is important for the cross-

section of stock and exchange traded fund returns. Short-term and long-term fluctuation of

realized market and average idiosyncratic volatility, skewness and kurtosis are priced in the

cross-section of asset returns differently. We show that market and average idiosyncratic

higher moment risks carry different information and that they enter the decision making

of investors separately. We also show that investors value the transitory and persistent

components of financial markets fluctuations differently implicating heterogeneity in term

structures over various sources of higher moment risks.

The portfolio sorting exercises uncover that skewness is a dominant factor in pricing

the cross-section of stock returns and that investors are willing to accept lower returns for

assets with higher exposure to market and average idiosyncratic skewness. Moreover, they

clearly indicate a downward-sloping term structure of market and average idiosyncratic

skewness risk denoting that investors value mostly the short-run components of skewness

risk associated with transitory fluctuations on the financial markets.

Important role of both sources of skewness risk in pricing the cross-section of stocks

and ETFs is confirmed by the predictive cross-sectional regressions. The fact that average

idiosyncratic skewness risk is priced in excess to market skewness risk documents that both

of these channels of skewness risk translate into investors’ preferences and affect future

market returns (Jondeau et al., 2019). Overall, the significant effect of average idiosyncratic
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risks on subsequent returns suggests that the asymmetric transmission channels exist on

the financial markets (Elliott et al., 2014; Barunik and Ellington, 2020a), and the investors

take their existence into consideration.

The cross-sectional regressions confirm the downward-sloping term structure of skew-

ness risk especially in the daily data, while it seems generally difficult to capture the effects

of high-frequency fluctuations in the weekly asset returns. Overall, the Fama-Macbeth

type cross-sectional regressions indicate that volatility and especially kurtosis are mostly

long-run phenomena, while skewness risk is priced predominantly through its transitory

components. In other words, we document discrepancies in the term structures across dif-

ferent sources of higher moment risk, and we stress the necessity to consider the transitory

and persistent components of higher moment risks separately.

Overall, the results of the paper provide new insights into the sources of asset’s pre-

dictability with respect to frequency decomposition of higher moment risks. We attempt

to rationalize our findings in a formal theoretical model.
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Appendix for

“Frequency-Dependent Higher Moment Risks”

Abstract

This appendix presents supplementary details not included in the main body of the
paper.
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A Proofs

Proposition 1. Hansen and Jagannathan (1991) show that solution to portfolio choice prob-
lem can be expressed in terms of Euler equation (Dittmar, 2002)

Et(Rt+1,i Mt+1 | Ωt) = 1, (A.1)

where Rt+1,i is return of asset i, and Mt+1 is the pricing kernel.

We build on the approach of Maheu et al. (2013) and Chabi-Yo (2012), and derive the
pricing kernel Mt+1 without explicitly assuming any form of utility function. We begin
by taking a Taylor expansion of an unspecified utility function U(Wt+1) depending on
aggregate wealth Wt up to the fourth order.18 Aggregate wealth in time t+ 1 is determined
in a typical manner as Wt+1 = Wt(1 + Rw

t+1), where Rw
t+1 is the net return on aggregate

wealth. U(Wt+1) is expanded around Wt(1 + Ct), where Ct is an arbitrary return

U(Wt+1) ≈
4

∑
n=0

U(n)(Wt(1 + Ct))

n!
(Wt+1 −Wt(1 + Ct))

n

=
4

∑
n=0

U(n)(Wt(1 + Ct))

n!
(Wt(Rw

t+1 − Ct))
n.

(A.2)

Without loss of generality we can assume the initial wealth is equal to 1. Taking a derivative
of the sum in Equation (A.2) yields

U′(Wt+1) ≈
3

∑
n=0

U(n+1)(1 + Ct)

n!
(Rw

t+1 − Ct)
n. (A.3)

Note that we can interpret U′(Wt+1) as the marginal utility of wealth at time t + 1.
The pricing kernel represents investors’ discounting between subsequent periods, it corre-
sponds to changes in marginal utility given the time period in which the wealth is received.
The pricing kernel, Mt+1 ≡ U′(Wt+1)/U′(Wt), can be approximated as

Mt+1 ≈
3

∑
n=0

U(n+1)(1 + Ct)

U′(1)n!
(Rw

t+1 − Ct)
n

= g0,t + g1,t(Rw
t+1 − Ct) + g2,t(Rw

t+1 − Ct)
2 + g3,t(Rw

t+1 − Ct)
3,

(A.4)

where gn,t = [U(n+1)(1+Ct)/U′(1)][1/n!] = [U(n+1)(1+Ct)/U′(1+Ct)n!][U′(1+Ct)/U′(1)].

When we assume investor decides between a pool of risky assets which yields the return
on aggregate wealth Rw

t+1, and the risk-free asset yielding R f
t , solution to the portfolio

choice can be expressed as
Et(Rw

t+1Mt+1 | Ωt) = 1. (A.5)

18Choice of N = 4 is justified in Dittmar (2002).
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Using the formula cov(X, Y) = E(XY)−E(X)E(Y), i.e. E(XY) = cov(X, Y)+E(X)E(Y),
we can decompose Equation (A.5) as

covt(Rw
t+1, Mt+1) + Et(Rw

t+1)Et(Mt+1) = 1,
Et(Rw

t+1)Et(Mt+1) = 1− covt(Rw
t+1, Mt+1),

Et(Rw
t+1) =

1
Et(Mt+1)

−
covt(Rw

t+1, Mt+1)

Et(Mt+1)
.

(A.6)

Recall that 1/Et(Mt+1) = R f
t , then Equation (A.6) becomes

Et(Rw
t+1)− R f

t = −R f
t covt(Rw

t+1, Mt+1). (A.7)

Substituting the pricing kernel Mt+1 from Equation (A.4) into Equation (A.7) we obtain

Et
(

Rw
t+1
)
− R f

t =θ1,tcovt
[
Rw

t+1, Rw
t+1 − Ct

]
+ θ2,tcovt

[
Rw

t+1,
(

Rw
t+1 − Ct

)2
]

+ θ3,tcovt

[
Rw

t+1,
(

Rw
t+1 − Ct

)3
]

,
(A.8)

where R f
t is the risk-free rate, and θn,t = −gn,tR

f
t .

At this point, it is convenient to specify the expansion point. A widely used choice
is Ct = 0 (e.g., Harvey and Siddique, 2000; Dittmar, 2002), an alternative approach is to
set Ct = Et(Rw

t+1). We employ the latter specification also used by Chabi-Yo (2012) or
Maheu et al. (2013). Chabi-Yo (2012) shows that this approach is equivalent to small noise
expansion, if we write

Rw
t+1 − Et(Rw

t+1) = εYt+1, (A.9)

then driving ε towards zero causes Rw
t+1 to approach Et(Rw

t+1). Let us simplify notation by
denoting for each i ∈ {1, ..., N}

Re
t+1,i = Rt+1,i − R f

t ,

Rt+1 = Rw
t+1 − R f

t .
(A.10)

Next, we can rewrite Equation (A.9) in terms of excess returns on aggregate wealth

εt+1 = Rw
t+1 − Et(Rw

t+1) = (Rw
t+1 − R f

t )− (Et(Rw
t+1)− R f

t ) = Rt+1 − Et(Rt+1). (A.11)

Thus far we have assumed that investors’ decision making depends on the representa-
tion of returns aggregated across investment horizons Rt+1. As we show in Section 2.2 we
are able to decompose returns to components with different levels of persistence as

Rt+1 ≡
N

∑
j=1

R(j)
t+1 + R(∞)

t+1 = R(short)
t+1 + R(long)

t+1 , (A.12)
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where R(short)
t+1 = ∑N

j=1 R(j)
t+1, R(long)

t+1 = R(∞)
t+1 = R(n>N)

t+1 .19 Applying such decomposition to
Equation (A.11), we obtain

εt+1 =
[

R(short)
t+1 − Et

(
R(short)

t+1

)]
+
[

R(long)
t+1 − Et

(
R(long)

t+1

)]
= ε

(s)
t+1 + ε

(l)
t+1. (A.13)

Let us assume, that for each i, investors invest their whole wealth into asset i, hence
Re

t+1,i and Rt+1 can be treated as interchangeable below. This allows us to express risk
premium of asset i as

Et
(

Re
t+1,i

)
= θ1,t,icovt (Rt+1, εt+1) + θ2,t,icovt

(
Rt+1, ε2

t+1

)
+ θ3,t,icovt

(
Rt+1, ε3

t+1

)
. (A.14)

As we have shown, each term inside the covariances in Equation (A.14) can be de-
composed to short-run and long-run components. Assuming orthogonality of compo-

nents at individual scales; i.e.
(

ε
(s)
t+1

)n (
ε
(l)
t+1

)n
= 0 for n ∈ {1, 2}, and

(
ε
(s)
t+1

)n
R(l)

t+1 = 0,(
ε
(l)
t+1

)n
R(s)

t+1 = 0, for n ∈ {1, 2, 3}; we can rewrite Equation (A.14) as

Et
(

Re
t+1,i

)
=θ1,t,icovt

[
R(s)

t+1 + R(l)
t+1, ε

(s)
t+1 + ε

(l)
t+1

]
+ θ2,t,icovt

[
R(s)

t+1 + R(l)
t+1,

(
ε
(s)
t+1 + ε

(l)
t+1

)2
]
+

θ3,t,icovt

[
R(s)

t+1 + R(l)
t+1,

(
ε
(s)
t+1 + ε

(l)
t+1

)3
]
= ∑

h∈{s,l}

3

∑
k=1

θ
(h)
k,t,icovt

[
R(h)

t+1,
(

ε
(h)
t+1

)n]
.

(A.15)

Recall that Rt+1 − Et(Rt+1) = εt+1, hence we can rewrite covt(Rt+1, εt+1) as

covt[Rt+1, εt+1] =Et[Rt+1εt+1]− Et[Rt+1]Et[εt+1]

=Et [(εt+1 + Et[Rt+1])εt+1]− Et[Rt+1]Et[εt+1]

=Et

[
ε2

t+1

]
+ Et [εt+1Et(Rt+1)]− Et[Rt+1]Et[εt+1]

=Et

[
ε2

t+1

]
= vart[εt+1],

(A.16)

since Et[εt+1Et(Rt+1)] = Et(Rt+1)Et(εt+1), and Et(εt+1) = 0. Analogously, we can derive
that

covt

(
Rt+1, ε2

t+1

)
= Et

(
ε3

t+1

)
,

covt

(
Rt+1, ε3

t+1

)
= Et

(
ε4

t+1

)
.

(A.17)

We have shown that covt
(

Rt+1, εn
t+1
)
= E

(
εn+1

t+1

)
for n ∈ {1, 2, 3}, which implies that

19Note that due to the equivalence in Equation (A.12), the decomposition is not restricted to two horizons.
In fact, we are able to construct components from arbitrary number of horizons by splitting the sum in
intermediate points.
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covt

[
R(h)

t+1,
(

ε
(h)
t+1

)n]
= E

[(
ε
(h)
t+1

)n+1
]

for n ∈ {1, 2, 3} and h ∈ {s, l}. Hence, we can

express Equation (A.15) as

Et(Re
t+1,i) = ∑

h∈{s,l}
θ
(h)
1,t,iEt

[(
ε
(h)
t+1

)2
]
+ ∑

h∈{s,l}
θ
(h)
2,t,iEt

[(
ε
(h)
t+1

)3
]
+ ∑

h∈{s,l}
θ
(h)
3,t,iEt

[(
ε
(h)
t+1

)4
]

,

(A.18)
where Et

[(
ε
(h)
t+1

)n]
denotes n-th centralized moment of returns on aggregate wealth and

θ
(h)
1,t,i = −

U(2)(1 + Ct)

U′(1 + Ct)

U′(1 + Ct)R f
t

U′(1)
w(h)

1,t,i, (A.19)

θ
(h)
2,t,i = −

U(3)(1 + Ct)

U′(1 + Ct)2!
U′(1 + Ct)R f

t
U′(1)

w(h)
2,t,i, (A.20)

θ
(h)
3,t,i = −

U(4)(1 + Ct)

U′(1 + Ct)3!
U′(1 + Ct)R f

t
U′(1)

w(h)
3,t,i, (A.21)

where h ∈ {s, l} and w(h)
k,t,i, k ∈ {1, 2, 3}, i ∈ {1, ..., N} are the spectral weights. For sake of

clarity, we define v(h)t = vart

(
ε
(h)
t+1

)
, s(h)t = Et

[(
ε
(h)
t+1

)3
]

/
(

v(h)t

)3/2
, k(h)t = Et

[(
ε
(h)
t+1

)4
]

/
(

v(h)t

)2
.

Then Equation (A.18) can be expressed in terms of volatility

Et(Re
t+1,i) = ∑

h∈{s,l}
β
(h)
t,i

√
v(h)t + ∑

h∈{s,l}
δ
(h)
t,i s(h)t + ∑

h∈{s,l}
K(h)

t,i k(h)t , (A.22)

where
√

v(s)t is the short-term component of volatility of returns on aggregate wealth,√
v(l)t is the long-term component of volatility of returns on aggregate wealth, s(s)t is the

short-term component of skewness of returns on aggregate wealth, s(l)t is the long-term
component of skewness of returns on aggregate wealth, k(s)t is the short-term component
of kurtosis of returns on aggregate wealth, k(l)t is the long-term component of kurtosis of
returns on aggregate wealth, and

β
(h)
t,i = θ

(h)
1,t,i

(
v(h)t

)1/2
, (A.23)

δ
(h)
t,i = θ

(h)
2,t,i

(
v(h)t

)3/2
, (A.24)

K(h)
t,i = θ

(h)
3,t,i

(
v(h)t

)2
, (A.25)
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for h ∈ {s, l}. This completes the proof.
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B Estimation of time-varying parameter regressions

We now consider a linear regression with time-varying parameters that has a Normal-

Gamma quasi-posterior distribution. Specifically, this is a univariate version of Petrova

(2019). Let

yt,T = β0(t/T) + x1,t,Tβ1(t/T) + · · ·+ xl,t,Tβl(t/T) + εt,T, εt,T v N
(

0, σ2
t,T

)
(B.26)

yt,T = xt,Tβ(t/T) + εt,T (B.27)

where xt,T ≡ (1, x1,t,T, . . . , xl,t,T) and β(t/T) ≡ (β0(t/T), β1(t/T), . . . , βl(t/T))>.

Now let λt,T ≡ σ−2
t,T . The weighted local likelihood function of the sample Y ≡ (y1, . . . , yT),

using X ≡
(
x>1 , . . . , x>T

)>
as a T × l matrix, at each discrete time point s, where we drop

the double time index for notational convenience, is given by

Ls (Y|βs, λs, X) =

(2π)−tr(Ds)/2λ
tr(Ds)/2
s exp

{
−λs

2
(Y− Xβs)

>Ds(Y− Xβs)

}
(B.28)

with

Ds = diag (ϑs,1, . . . , ϑs,T) (B.29)

ϑs,t = ζT,sws,t/
T

∑
t=1

ws,t (B.30)

ws,t =
(

1/
√

2π
)

exp
(
(−1/2)((k− t)/H)2

)
, ∀ s, t ∈ {1, . . . , T} (B.31)

ζT,s =

(
T

∑
t=1

w2
s,t

)−1

(B.32)

Now assuming βs, λs have a Normal-Gamma prior distribution ∀s ∈ {1, . . . , T}

βs|λs v N
(

β0,s, (λsκ0,s)
−1
)

(B.33)

λs v G (α0,s, γ0,s) (B.34)

We can combine Ls with the above priors such that βs, λs have Normal-Gamma quasi-
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posterior distribution ∀k ∈ {1, . . . , T}

βs|λs v N
(

β̄s, (λsκ̄s)
−1
)

(B.35)

λs v G (ᾱs, γ̄s) (B.36)

with (quasi) posterior parameters:

β̄s = κ̄−1
s

(
X>DsXβ̂s + κ0,sβ0,s

)
, β̂s =

(
X>DsX

)−1
X>Dsy (B.37)

κ̄s = κ0,s + X>DsX (B.38)

ᾱs = α0,s +
T

∑
t=1

ϑs (B.39)

γ̄s = γ0,s +
1
2

(
Y>DsY− β̄>s κ̄s β̄s + β>0,sκ0,sβ0,s

)
(B.40)

The Algorithm

1. Initialise β0,s, κ0,s, α0,s, γ0,s and compute kernel weights. Then repeat steps 2-3 ι =

1, 2, . . . , I times.

2. For every s ∈ {1, 2, . . . , T}, draw λs
s|X, y, βs−1

s from v G (ᾱs, γ̄s).

3. For every s ∈ {1, 2, . . . , T}, draw βs
s|y, X, λs

s from v N
(

β̄s, (λsκ̄s)
−1
)

.

In our case, for each regression in Section 4 we set the parameter H =
√

T to compute

the kernel weights and initialize β0,s, κ0,s, α0,s, γ0,s using OLS parameters from a linear

regression for the time-series in question. Then, we generate I=1000 simulations for each

time-period.

52



C Sorting procedure

For each 3-month (6-month) rolling window, we sort the assets into quintile portfolios

based on the factor loadings of corresponding variable, i.e. Portfolio 1 contains the assets

with the lowest values of the factor loading, Portfolio 5 contains the assets with the highest

values of the factor loading. The portfolios we form are equal-weighted. Then, we record

the average daily post-ranking portfolio returns over the next week. We repeat the proce-

dure by rolling the beta estimation window forward by one week at a time. In the end,

we have a time-series of post-ranking returns for each quintile portfolio, and we report the

time-series mean for each portfolio. The factor loadings are obtained as a result of one of

the following multivariate regressions

rt+1,i = αi + β
(m)
i RVOL(m)

t + δ
(m)
i RS(m)

t +K(m)
i RKt,

rt+1,i = αi + ∑
h∈{s,l}

β
(h,m)
i RVOL(h,m)

t + ∑
h∈{s,l}

δ
(h,m)
i RS(h,m)

t + ∑
h∈{s,l}

K(h,m)
i RK(h,m)

t ,

ri,t+1 = αi + β
(I)
i RVOL(I)

t + δ
(I)
i RS(I)

t +K(I)
i RK(I)

t ,

ri,t+1 = αi + ∑
h∈{s,l}

β
(h,I)
i RVOL(h,I)

t + ∑
h∈{s,l}

δ
(h,I)
i RS(h,I)

t + ∑
h∈{s,l}

K(h,I)
i RK(h,I)

t .
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D Additional figures and tables

Table A1. Correlations: ETFs

This table provides the correlation matrix for the realized market and average idiosyncratic realized moments
in the Panel A, correlation matrix for the frequency-decomposed realized market and average idiosyncratic
moments in the Panel B, and Panel C.

Panel A RVOL(m)
t RS(m)

t RK(m)
t RVOL(I)

t RS(I)
t RK(I)

t

RVOL(m)
t

RS(m)
t -0.041

RK(m)
t -0.049 0.174

RVOL(I)
t 0.949 -0.024 -0.076

RS(I)
t -0.045 0.765 0.137 -0.016

RK(I)
t -0.234 0.208 0.538 -0.151 0.283

Panel B RVOL(s,m)
t RVOL(l,m)

t RS(s,m)
t RS(l,m)

t RK(s,m)
t RK(l,m)

t

RVOL(s,m)
t

RVOL(l,m)
t 0.109

RS(s,m)
t -0.07 0.004

RS(l,m)
t 0.03 0.315 0.029

RK(s,m)
t 0.003 -0.014 0.177 0.006

RK(l,m)
t -0.059 -0.704 0.002 -0.049 0.044

Panel C RVOL(s,m)
t RVOL(l,m)

t RS(s,m)
t RS(l,m)

t RK(s,m)
t RK(l,m)

t RVOL(s,I)
t RVOL(l,I)

t RS(s,I)
t RS(l,I)

t RK(s,I)
t

RVOL(s,I)
t 0.93 0.138 -0.048 0.022 -0.032 -0.071

RVOL(l,I)
t 0.115 0.969 0.001 0.339 -0.015 -0.659 0.137

RS(s,I)
t -0.068 0.006 0.766 0.019 0.138 0.007 -0.033 0.005

RS(l,I)
t 0.056 0.209 0.027 0.647 0.015 0.056 0.059 0.195 0.041

RK(s,I)
t -0.13 -0.041 0.224 -0.009 0.532 0.057 -0.026 -0.039 0.297 0.005

RK(l,I)
t -0.1 -0.879 -0.002 -0.316 0.029 0.796 -0.103 -0.876 0.001 -0.172 0.062
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Table A2. Cross-section of Stocks

We are sorting on the factor loadings of corresponding variables. The length of the rolling window is
6 months, the post-ranking returns are recorded for the next week. The complete sorting procedure is
described in Apendix C. We report the average post-ranking raw returns (in bps) for each portfolio, the t-
statistics are reported in parentheses. The last column displays the difference in returns of the highest quintile
portfolio, and the lowest quintile portfolio, hence corresponds to the strategy of buying high exposure assets,
and selling low exposure assets.

Variable 1 2 3 4 5 High - Low
Market

RVOL(m)
t 1.5 2.04 1.54 1.26 0.65 -0.84

(0.79) (1.35) (1.1) (0.96) (0.48) (-0.7)

RS(m)
t 2.19 2.9 1.92 1.08 -1.12 -3.31

(2.02) (2.34) (1.31) (0.64) (-0.52) (-1.97)

RK(m)
t 1.81 1.88 1.68 1.19 0.43 -1.38

(1.24) (1.38) (1.21) (0.81) (0.24) (-1.29)

RVOL(s,m)
t 1.26 2.12 1.81 1.23 0.58 -0.68

(0.68) (1.4) (1.32) (0.92) (0.41) (-0.59)

RVOL(l,m)
t 0.39 1.44 1.52 2.02 1.65 1.26

(0.23) (1) (1.09) (1.49) (1.05) (1.48)

RS(s,m)
t 2.23 2.81 2.08 1.06 -1.2 -3.43

(2.05) (2.28) (1.41) (0.63) (-0.56) (-2.06)

RS(l,m)
t 1.5 1.64 1.85 1.79 0.21 -1.29

(0.92) (1.18) (1.35) (1.26) (0.13) (-1.48)

RK(s,m)
t 1.47 1.86 2.1 1.08 0.49 -0.99

(1) (1.37) (1.52) (0.73) (0.27) (-0.94)

RK(l,m)
t 1.47 2.12 1.45 1.51 0.44 -1.02

(0.92) (1.52) (1.05) (1.07) (0.28) (-1.24)
Idiosyncratic

RVOL(I)
t 1.28 2.49 1.84 1.22 0.16 -1.11

(0.71) (1.67) (1.3) (0.92) (0.11) (-1.04)

RS(I)
t 2.03 2.77 1.94 1 -0.76 -2.78

(1.89) (2.17) (1.34) (0.6) (-0.35) (-1.62)

RK(I)
t 1.67 2.04 1.76 1.5 0.02 -1.65

(1.23) (1.58) (1.25) (0.98) (0.01) (-1.32)

RVOL(s,I)
t 1.54 1.79 1.59 1.37 0.7 -0.83

(0.86) (1.22) (1.15) (1.01) (0.48) (-0.76)

RVOL(l,I)
t 0.35 1.42 1.88 2.38 0.98 0.63

(0.22) (1.01) (1.37) (1.68) (0.62) (0.74)

RS(s,I)
t 2.18 2.66 2.02 0.75 -0.63 -2.81

(2.03) (2.07) (1.4) (0.45) (-0.29) (-1.65)

RS(l,I)
t -0.97 1.53 1.68 2.98 1.82 2.79

(-0.55) (1.07) (1.22) (2.25) (1.18) (2.97)

RK(s,I)
t 1.85 1.97 2.02 1.39 -0.25 -2.1

(1.36) (1.53) (1.44) (0.9) (-0.13) (-1.72)

RK(l,I)
t 0.41 1.6 2.19 2.55 0.27 -0.13

(0.24) (1.14) (1.57) (1.82) (0.18) (-0.15)
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Table A3. Cross-section of ETFs

We are sorting based on the factor loadings of corresponding variables. The length of the rolling window
is 6 months, the post-ranking returns are recorded for the next week. The complete sorting procedure is
described in Apendix C. We report the average post-ranking raw returns (in bps) for each portfolio, the t-
statistics are reported in parentheses. The last column displays the difference in returns of the highest quintile
portfolio, and the lowest quintile portfolio, hence corresponds to the strategy of buying high exposure assets,
and selling low exposure assets.

Variable 1 2 3 4 5 High - Low
Market

RVOL(m)
t -0.6 -0.27 -0.37 -0.37 -0.04 0.56

(-0.35) (-0.18) (-0.26) (-0.26) (-0.03) (0.61)

RS(m)
t 0.59 0.39 -0.13 -0.27 -2.21 -2.8

(0.5) (0.29) (-0.09) (-0.17) (-1.19) (-2.52)

RK(m)
t -0.49 -0.05 -0.16 0.43 -1.38 -0.89

(-0.32) (-0.03) (-0.11) (0.3) (-0.84) (-0.91)

RVOL(s,m)
t -0.48 0 -0.22 -0.34 -0.6 -0.12

(-0.28) (0) (-0.15) (-0.25) (-0.41) (-0.13)

RVOL(l,m)
t -0.59 0.53 -0.15 0.3 -1.72 -1.13

(-0.39) (0.38) (-0.11) (0.2) (-1.08) (-1.25)

RS(s,m)
t 0.74 0.27 -0.03 -0.35 -2.27 -3.01

(0.63) (0.2) (-0.02) (-0.22) (-1.22) (-2.75)

RS(l,m)
t -0.71 -0.07 0.05 0.02 -0.93 -0.22

(-0.45) (-0.05) (0.04) (0.01) (-0.6) (-0.25)

RK(s,m)
t -0.6 -0.07 0.01 0.19 -1.17 -0.57

(-0.39) (-0.05) (0.01) (0.13) (-0.7) (-0.6)

RK(l,m)
t 0.1 0.16 0.17 -0.02 -2.06 -2.16

(0.07) (0.11) (0.12) (-0.01) (-1.31) (-2.59)
Idiosyncratic

RVOL(I)
t -0.49 0.23 0.34 -0.42 -1.3 -0.81

(-0.29) (0.15) (0.24) (-0.31) (-0.9) (-0.88)

RS(I)
t 0.63 0.17 0.27 -0.91 -1.8 -2.42

(0.56) (0.12) (0.18) (-0.58) (-0.92) (-2.05)

RK(I)
t -0.78 -0.03 0.21 0.1 -1.14 -0.37

(-0.5) (-0.02) (0.15) (0.07) (-0.7) (-0.39)

RVOL(s,I)
t 0.07 0.04 -0.22 -0.55 -0.98 -1.05

(0.04) (0.03) (-0.16) (-0.4) (-0.65) (-1.11)

RVOL(l,I)
t 0.22 0.29 0.08 -0.37 -1.86 -2.08

(0.14) (0.2) (0.05) (-0.26) (-1.16) (-2.32)

RS(s,I)
t 0.66 0.05 0.28 -0.69 -1.94 -2.6

(0.59) (0.03) (0.19) (-0.44) (-1) (-2.2)

RS(l,I)
t -1.38 0.06 0.05 -0.07 -0.31 1.08

(-0.84) (0.04) (0.04) (-0.05) (-0.2) (1.19)

RK(s,I)
t -0.84 -0.06 0.4 0.15 -1.29 -0.45

(-0.54) (-0.04) (0.28) (0.1) (-0.79) (-0.47)

RK(l,I)
t 0.78 0.55 0.14 -0.57 -2.54 -3.32

(0.51) (0.38) (0.1) (-0.4) (-1.59) (-3.82)
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