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Abstract: 
The industry consensus on the implementation of the International Financial and 
Reporting Standard 9 - Financial Instruments (IFRS9) in the field of credit risk is 
that the estimation of credit risk parameters should be conditioned in the baseline, 
upside and downside macroeconomic scenarios presumed to be representative of the 
respective state of the economy. The existing approaches to scenario generation and 
probability weights assignment suffer from arbitrary inputs, e.g. expert judgment, 
quantiles selection, severity metric, the specification of a conditioned path. We 
present a pioneering forecasting approach using a Bayesian MS-VAR which is net of 
these arbitrary components. This method allows for the consistent contemporaneous 
formulation of the baseline and alternative scenarios and endogenously ties them to 
their respective probability weights. We propose to generate representative 
scenarios as unconditional regime-specific forecasts and to calculate the probability 
weights associated with representative scenarios as unconditional lifetime transition 
probabilities. We illustrate the method on artificial as well a real data and conduct 
an empirical backtest, in which generated scenarios are compared to the actual 
development during the financial crisis. The method is challenged with the DSGE 
model and conditional forecasting. 
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1 Introduction

Macroeconomic scenario generation attracted attention after the introduction of the new

(i) accounting/provisioning International Financial and Reporting Standard 9 (IFRS9)

and (ii) regular stress-testing exercises conducted either Europe-wide under the supervi-

sion of the European Banking Authority (EBA) or in-house under the Internal Capital

Adequacy Assessment Process (ICAAP). The new regulatory requirements were a re-

sponse to the 2008-2009 financial crisis and the empirical evidence of the macroeconomic

environment being the main driver of the losses suffered by the financial and banking

sector. The IFRS9 introduced the new concept of Expected Credit Losses (ECL), which

reflects the need for forward-looking point-in-time estimates, responsive and sensitive to

the current macroeconomic environment and desirable from both regulatory and busi-

ness perspective. The inclusion of the forward-looking indicators partially answers the

wide critique of the pro-cyclical behaviour of the BASEL II regulation for the calculation

of Tier 1 capital. IFRS9 methodology imposes countercyclical behaviour, as it intends to

forecast future losses and create additional capital buffers with respect to the reporting

date ahead of a potential future downturn.

ECL is an unbiased, forward-looking and probability-weighted best estimate of credit

losses discounted to the reporting date and considered over multiple outcomes (IFRS

9.5.5.17). The forward-looking component is usually included through macroeconomic

scenarios, which also complies with the multiple outcomes requirement. However, since

it is virtually impossible to calculate credit losses over a large set of alternative scenarios,

the industry consensus is to condition the estimation of credit risk parameters (PD, LGD

etc.) to the baseline, upside and downside macroeconomic scenarios. This dimension

reduction requires the definition of a representative scenario which approximates to the

given state of the economy, represents the full set of scenarios in that state and is not

biased towards extreme events (GPPC 2.8.2.3). The concept of a representative scenario

is essential also for the scenario probability weights: since the occurrence probability of

any distinct scenario path is inherently (close to) zero, the probability weights associated
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with the representative scenario relates rather to the state of the economy than to the

distinct scenario path.

Popular methods of scenario generation include conditional forecasting (Banbura et

al., 2015; Baumeister and Kilian, 2014), Monte Carlo simulations (Jacobs, 2016) or

simpler heuristic methods. Conditional forecasts are projections of variables of interest

on the future paths of one or multiple variables. The scenario analysis conducted in a

conditional forecasting exercise in principle answers, for example, the question “what

would happen if interest rate was fixed at one percentage point for certain period” and

imposes elicit a priori restrictions on the unobserved structural shocks (Wagonner and

Zha, 1999). On the other hand, Antolin-Diaz et al. (2020) argue that only economically

meaningful shocks should be used to construct scenarios. They prefer to ask the question

”what would happen if external shock fixed the interest at one percentage point”. They

specify the conditions on observable variables and select which shocks drive the forecast,

while others are restricted to their unconditional distributions.

However, conditional forecasting is more suitable for scenario analysis in terms of

policy evaluation than for the generation of alternative scenarios. E.g. Banbura et

al. (2015) examines the effect of a 0.1% increase in GDP growth above the baseline

(unconditional) forecast. Baumeister and Kilian (2014) feed in a sequence of historical

shocks, or calibrate a single structural shock to evaluate alternative scenarios and their

impact on oil prices. Antolin-Diaz et al. (2020), among others, study the effect of the

shock corresponding to the financial crisis using the FED’s adverse scenario for GDP

and the unemployment rate. Although the last example resembles scenario generation

as we understand it, the stress testing is conducted on the asset prices and on the

aggregate level. The main drawback of conditional forecasting as such is that it requires

the addition of an external scenario for at least one variable.

Monte Carlo simulations include either Bayesian or frequency models enhanced by

bootstrapping applied on univariate (ARMA)1 or multivariate (VAR) models. With

unconditional forecast being considered as the baseline scenario, the (pth) and (1 −
1e.g. Breeden and Ingram (2010)
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pth) percentiles represent alternative scenarios. Jacobs (2016) employs an MS-VAR

model to generate stress testing scenarios. He shows that the MS-VAR model provides

more conservative scenarios than the ordinary VAR model and it also exhibits greater

accuracy in model testing, better capturing extreme historical events. He identifies a

severe scenario as an average of all paths for which all included variables crossed the

99th percentile in at least a single period. However, this method still requires analytical

and arbitrary input for the quantile selection.

Notice that Monte Carlo methods in general consist of scenario generation and sce-

nario selection. The latter part is especially arbitrary and often requires a severity

function for the selection of an appropriate scenario, e.g. Mokinski (2017) . However,

the severity function is heavily dependent on the selected metric and does not deal either

with the selection of “representative” quantile2 or with the assignment of probabilities.

With the severity distribution available, the (pth) severity quantile represents the share

of all scenarios with an equal or worse outcome. E.g. Franta et al. (2014) approxi-

mates the probability that the forecasted variable is below the stress-test scenario path,

implicitly treating the Bayesian confidence intervals (fan charts) as a severity distribu-

tion. However, the probability weights as we understand them represents rather the

probability mass around the representative scenarios.

We propose a pioneering approach to scenario generation using an MS-VAR model

which is net of arbitrary components, such as quantile selection, conditioning path spec-

ification or a severity function. Instead, we define representative scenarios as uncondi-

tional, regime-specific forecasts endogenously associated with regime probability. The

analytical input to scenario generation and the assignment of probability weights is lim-

ited to the calibration of model hyper parameters. The choice of a Markov-switching

type of model is essential and especially useful for IFRS9 purposes, since it allows for

the contemporaneous formulation of the baseline and alternative scenarios and naturally

2The selection of the 99th quantile is natural for stress testing which is expected to capture extreme

events. On the other hand, the definition of representativeness is vague and results in an inherently

arbitrary selection of quantiles.
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ties them to their respective probability weights as required by the Standard.

The philosophical foundation of the approach lies in the interpretation of observable

history. At first, let us assume the existence of an unknown but finite number of M

regimes unique in their macroeconomic properties associated with a strictly positive

probability of occurrence. Then, we interpret the historical time series as a sequence

formed by these regimes. We limit the number of regimes to M = 3, and interpret

them as baseline, upside and downside states of the economy. Due to the specific nature

of the threshold model family (Tong, 1980), such MS-VAR reduces into three plain

vanilla VAR models once the regimes are known. Then, with three sets of parameters

in hand, the representative scenarios are obtained through three separate unconditional

forecasting exercises. Such regime-specific models also capture non-linearities in the

business cycle. This means that the representative scenarios are conditioned purely to

data-driven regimes rather than an external scenario path or quantile selection, and are

not biased towards extreme events.

We propose to derive the probability weights of representative scenarios from the

limiting distribution of the estimated transition probability matrix, i.e. to associate

the average occupancy time for a given state of the economy with the representative

scenario. This endogeneity between the representative scenarios and the probability

weights is believed to provide results superior to those of separate models.

The main goal of the benchmarking analysis is to compare the proposed regime-

switching to “established” scenario generation methods, i.e. the primary focus is on the

scenario generation method and the secondary focus is on the model type3. We employ

conditional forecasting as in, for example, Baumiester and Kilian (2014) to generate

alternative scenarios through the small open economy DSGE model of Schmitt-Grohe

and Uribe (2003). We select the most extreme historical developments of GDP growth as

alternative scenario paths and a pattern for the other variables. For the model evaluation

and testing, we leverage the only closed period of economic stress during the financial

3To challenge the performance of MS-BVAR to another regime-switching model is outside the scope

of this paper.
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crisis in 2007-2008. Such a set-up of the backtest allows the direct comparison of the

examined scenario generation methods in terms of their ability to capture and forecast

possible economic events.

The paper is organized as follows: Section 2 covers the set-up of the MS-VAR model,

describes the estimation algorithm together with the setting of the prior distributions,

and presents the approach to scenario generation and probability weight assignment.

Section 3 is dedicated to the benchmark DSGE model and the data preparation process,

due to its naturally rigid structure, which imposes relatively strict requirements on data.

The fourth section provides details on the estimation of both models and illustrates the

methods employed in the empirical examples. Firstly we demonstrate the suitability of

the MS-VAR model in terms of regime identification performance using artificial data,

and then we compare the scenarios of MS-VAR and benchmark conditional forecasting

through a DSGE model.

2 Bayesian Markov-switching VAR model

2.1 Model Setting

Consider the following three-regimes MS-VAR model according to Hamilton (1994) or

Geweke (2005):

Y t = cSt +

L∑
l=1

BStY t−l + εt, εt ∼ N(0,ΩSt), (1)

where St = 1, 2, 3 is an unobserved, latent discrete variable indicating structural shifts

and lag degree L = 2. It is generated by a discrete-state, homogeneous, irreducible and

ergodic first order Markov chain:

PR[St = i|St−1 = j] = pij (2)

The probability measure pij ∈ (0, 1) refers to the probability of transition to regime i at

time t, given that the regime at the previous time (t− 1) was j and also determine the

persistence of each regime. The transition probabilities for the specific case of M = 3
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regimes are summarized in a transition probability matrix P :

P =


p11 p12 p13

p21 p22 p23

p31 p32 p33

 (3)

The likelihood function of the MS-VAR model is a weighted average of the likelihoods

of each considered regime conditional on information It−1 known at time (t − 1), with

weights given by their respective probability of materialization f(St = i|It−1):

f(Y t|It−1) =
t∑
i=0

f(Y t|st = i, It−1)× f(St = i|It−1) (4)

The model is estimated using extended Gibbs sampling suitable for MS-VAR models,

e.g. Blake and Mumztaz (2017) or Osmundsen et. al. (2019). Before it is initiated, (i) a

Hamilton (1994) filter is applied to calculate the probability terms Pr[St = i|It], (ii) the

latent state variable S̃t = {S1, S2, S3} is sampled by backward recursion, and (iii) the

transition probability matrix P is sampled from its density. The Gibbs sampler then

samples from these conditional posterior distributions:

1. bSt from H(bSt |ΩSt , S̃t,P ,Y t)

2. ΩSt from H(ΩSt |bSt , S̃t,P ,Y t)

3. P from H(P |bSt ,ΩSt , S̃t,Y t)

4. S̃t from H(S̃t|bSt ,ΩSt ,P ,Y t),

with bSt = {cSt ;BSt} containing intercepts and a matrix of coefficients. In more detail:

1. Set priors. We apply the natural conjugate Normal inverse Wishart prior for the

matrix of parameters bSt and covariance matrix ΩSt , S = {1, 2, 3}. Following

Banbura et al. (2007), Banbura et al. (2015), Blake and Mumtaz (2017) or Chiu

et al. (2016), the prior is implemented via artificial dummy observations Y D and

XD appended to the regular sample such that Y ∗ = [Y ,Y D] and X∗ = [X,XD].

Regressing XD on Y D yields the prior mean and the prior scale matrix:

b0 = (X ′DXD)−1(XDY D) (5)
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S = (Y D −XDb0)′(Y D −XDb0). (6)

Denoting TD as the length of these artificial data, K as the number of regressors

in each equation and b̃0 = vec(b0), the prior is set such that:

p(b|Ω) ∼ N(b̃0,Ω⊗ (X ′DXD)−1) (7)

p(Ω) ∼ IW (S, TD −K). (8)

If we factorize the transition probability matrix into columns such that P =

{P1, P2, P3}, the conjugate prior for each column with probabilities summing to

one is the Dirichlet distribution with M parameters αi and PDF:

f(x1, ..., xM−1, α1, ..., αM ) =
M∏
i=1

xαi−1
i , (9)

where xM = 1 −
M−1∑
i=1

xi. Mean µ is given by µ = αi
α and variance σ = αi(α̃−αi)

α̃2(α̃−αi) ,

where α̃ =
M∑
i=1

αi. The parametrization of the Dirichlet distribution ensures that

the transition from each regime separately sums to one.

2. Run the Hamilton (1994) Filter.

3. Draw the state variable S̃t by backward recursion. In the three-regimes MS-VAR,

the probability-based algorithm for the transition from the state St−1 = j to the

state St = {1, 2, 3} is:

u < Pr[St+1 = 1|St] = Pr[St=1|St+1=j]
3∑
i=1

Pr[St=1|St+1=j]

−→ Regime 1

u < Pr[St+1 = 2|St] = Pr[St=2|St+1=j]
3∑
i=2

Pr[St=2|St+1=j]

−→ Regime 2

u < Pr[St+1 = 3|St] = Pr[St=3|St+1=j]
Pr[St=3|St+1=j] = 1 −→ Regime 3,

where u is a random draw from uniform distribution u ∼ U(0, 1).
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4. Draw the transition probability matrix P from its conditional posterior density

H(P j |St) ∼ D(αj1 + ηj1, αj2 + ηj2, αj3 + ηj3),

where ηij refers to the number of empirical (actual) transitions from j to the state

i, i.e. empirical transition matrix η:

η =


η11 η12 η13

η21 η22 η23

η31 η32 η33

 (10)

The matrix η is constructed using the current draw of the state variable S̃t =

{S1, S2, S3} from its conditional distribution H(S̃t|bSt ,ΩSt ,P ,Y t) and thus en-

compasses all the information currently available in the data and other parame-

ters. Therefore, the conditional posterior distribution H(P j |St) for the jth column

j = {1, 2, 3}, depends only on the state variable St.

5. The data are partitioned conditional on the current draw of S̃t into the respective

regimes i = 1, 2, 3. The meaningful model estimation is ensured by retaining only

such draws of S̃t satisfying ni ≥ ncrit for ∀i = 1, 2, 3, with ncrit denoting the

minimum acceptable number of observations for each regime i.

6. Initiate the Gibbs sampler in each regime to draw the VAR parameters from their

conditional posterior densities:

H(bSt |ΩSt , S̃t,P ,Y t) ∼ N(vec(B∗St),ΩSt ⊗ (X∗
′
StX

∗
St)
−1) (11)

H(ΩSt |bSt , S̃t,P ,Y t) ∼ IW (S∗St , T
∗), (12)

where

B∗St = (X∗
′
StX

∗
St)
−1(X∗

′
StY

∗
St) (13)

S∗
St = (Y ∗

′
St −X

∗
StbSt)(Y

∗′
St −X

∗
StbSt) (14)

and T ∗ is the length of Y ∗. Note that (i) the draws of the VAR parameters are

conditioned on the already drawn matrix P and vector S̃t and that (ii) at this point,
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the regimes are known, and thus this problem reduces to the three conventional

VAR models applied to the respective observations X∗St and Y ∗St .

7. Repeat x-times to obtain the empirical marginal posterior distributions.

Each iteration of the Gibbs sampler triggers the stability check consisting of the

eigenvalue decomposition of matrix bSt . The draw is considered stable only when all

eigenvalues of bSt are non-explosive roots within the unit circle. Such a draw is saved and

the algorithm proceeds into the next iteration. To ensure consistent model properties,

rejection sampling is employed such that only draws satisfying det(Ω3) >= det(Ω2) are

retained. This condition ensures that the third regime exhibits higher overall volatility,

and is intended to impose identification restriction on the third regime as a downside

scenario.

2.2 Prior Distributions

The prior for each row (state) of the transition probability matrix is the Dirichlet dis-

tribution p(P ) ∼ D(3, 3, 3), implying the prior transition probability matrix and the

starting value to initiate the Gibbs sampler:

P =


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 (15)

with prior variance of 0.022.

The artificial dummy observations Y D and XD appended to the regular sample such

that Y ∗ = [Y ,Y D] and X∗ = [X,XD] are generated satisfying:

Y D =



diag(χσ)
τ

0N×N

0N×N

diag(σ)

δµ


,XD =



0N×1
diag(σ)

τ 0N×N(L−1)

0N×(N+1)
diag(σ2d)

τ

( 1
λc

)N×1 0N×NL

0N×(NL+1)

δ (µδ)1×L


(16)
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The prior is parametrized such that λc=10000, the decay parameter d = 1, hyperparam-

eter τ = 0.6, lag degree L = 2 and vectors χ = {χ1, χ2, ..χN} and σ = {σ1, σ2, ...σN} for

the variables indexed over i = 1, 2, ...N are obtained from the AR(1) process:

vec(Y t) = (IN ⊗ Y t−1)vec(b) + vec(ut) , ut ∼ N(0, σi) (17)

such that b is factorized into b = {b0, χ}. The last row of 16 expresses the prior belief

about the common stochastic trend, i.e. co-integration. Denoting µ as a [1×N ] vector

of sample means, the artificial dummy observations imply that the sample mean of each

variable i is the linear combination of every other variable at all lags, including itself:

δµ = [δ δµ δµ] (18)

The choice of the co-integration in this MS-VAR model is crucial as (i) the data consist

mainly of the GDP and its components, due to the (ii) “mild” mean-reversion prop-

erty caused by the application of the one-sided HP filter and (iii) the presence of four

co-integration relationships indicated by the Johansen test4. The purpose of the co-

integration prior is to tie the explanatory variables together5 and to reduce the potential

explosion of forecasts. The value of δ is set to δ = 1.5, and note that the co-integration

prior is implemented more tightly with δ →∞. Finally, the ncrit = 20.

2.3 Generating Scenarios

Let us postulate that at each point in time t = 1, 2, ...T there exists an unknown, but

finite number of M unique regimes associated with the strictly positive probability of

materialization p, and typified by their imposition of unique macroeconomic conditions.

At each point in time t, only one of the M regimes can materialize, on account of

its associated probability. Next, imagine that the data generating process behind the

historically observed macroeconomic time series is an unknown sequence formed by these

regimes uniquely materialized at each point in time t = 1, 2, ...T .

4For the data preparation process please refer to section 3.
5Imposing relative tightness of the model similar to the decision rules in DSGE models (Dib et al.,

2008)
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Such an interpretation of history and problem formulation allows us to endogenously

generate regime-specific unconditional, i.e. mean, forecasts that could be interpreted as

representative scenarios for a given regime or state of the economy. This is due to the re-

duction of M-regimes MS-VAR model into M plain vanilla VAR models once the regimes

are known, which allows for the calculation of regime-specific unconditional forecasts or

scenarios which are, by definition, the most representative for a given state. By the

representative scenario, we understand a distinct scenario path which approximates a

given state of the economy, is representative of the full set of scenarios in a given regime

and is not biased towards extreme events.

Compared to other approaches, the scenarios are conditioned purely on data-driven

macroeconomics regimes rather than on an arbitrary external scenario path, and the

problem of scenario or quantile selection is thus mitigated even without a severity func-

tion. Moreover, the sets of parameters unique for each regime take account of non-

linearities in the different stages of the business cycle. For the purposes of IFRS9, we

select M = 3, mimicking the baseline, upside and downside state of the economy. The

representative scenario path for regime i = 1, 2, 3 and with lag degree L = 2 up to

forecasting horizon k is obtained as an unconditional forecast:

Ŷ t+k|(St = i) = ĉSt +

L∑
l=1

B̂StY t+k−l (19)

Regime identification in the MS-VAR model can be imperfect, as there still exists

estimation uncertainty due to (i) the unknown number of the true regimes, (ii) the un-

known macroeconomic properties of the true regimes and (iii) the imperfect granularity

of the time periods t. Consequently, (i) regimes, i.e. the latent state variable St, are

identified only with the associated probability, as demonstrated in Figure 2, (ii) and

the state-dependent matrix of VAR coefficients BSt and covariance matrix ΩSt exhibit

estimation uncertainty, as (iii) the transition probability matrix P .

Therefore, unique regimes, as estimated by the MSVAR model, can actually be

composed of multiple true regimes or be “under-identified”, when the properties of one

true regime are assigned to multiple estimated ones. This might results in the absence
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of clearly separated, stable, internally consistent and easily interpretable scenario paths.

That is to say, one scenario may represent higher volatility and fit both an upside and

a downside peak, while another may be a volatility scenario evolving around the zero

mean. Consequently, the model does not ensure distinctly separated scenarios at each

point in time.

On the other hand, the demand for distinctly separated scenario paths is also ar-

bitrary and lacks rigorous statistical foundations. Therefore, this is not perceived as

model misbehaviour, but rather as a feature due to the data generating process being

composed of an unknown number of regimes with unknown properties. However, this is

consistent with our interpretation of the history.

2.4 Probability weights

The concept of a representative scenario is essential also for the calculation of probability

weights, since the probability of any distinct scenario path is inherently (close to) zero

and thus unusable for IFRS9 purposes. Instead, the probability weights associated with

the representative scenario relate rather to the respective state of the economy, i.e. the

regime, than to the distinct scenario path. Such probability weights can be derived from

the model transition matrix P as unconditional transition probabilities, i.e. limiting

(or steady state) distribution. This approach provides fixed and strictly positive lifetime

transition probabilities that are independent of the initial state (Geweke, 2005), and thus

the scenario probability weights in the ECL calculations are time and state independent.

Rigorously, the transition probability matrix P is associated with the latent state

variable St = 1, 2, 3. A necessary and sufficient condition for the existence of single

uniquely determined limiting distribution with strictly positive probability weights is

that the St is generated by a discrete-state, homogeneous, irreducible and ergodic first

order Markov chain:

PR[St = i|St−1 = j] = pij (20)

Homogeneity means the existence of the single Markovian transition probability ma-

trix, which application is valid at any point in time and which probabilities from any
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initial state i = 1, 2, ..s to state j = 1, 2, ..s sum to one:
s∑
j=1

pij = 1. Irreducibility implies

pij < 1 for i = j or equivalently diag(P ) < 1, thus the non-existence of an absorbing

state defined as:

pij =


1, for i = j,

0, for i 6= j.

(21)

This lifetime accessibility condition also restricts the peculiar structure of transition ma-

trices such as cycles among states, separations or non-accessible states (Geweke, 2005).

Note that irreducibility is indeed a necessary condition, as the existence of the absorbing

state does not violate ergodicity, because aperiodicity means the existence of at least

one recurrence path within two transition periods, not every possible path.

Ergodicity, i.e. a finite recurrence time and period of one, states that at any point in

time t = 1, 2...∞, the initial state i is reachable from any other state j (including state

i) within two consecutive transition periods.

An irreducible Markov chain has a stationary distribution iff the Markov chain is

ergodic. If the Markov chain is ergodic, the stationary distribution is unique. Thus, when

all listed conditions are satisfied, there exists a uniquely determined limiting stationary

distribution with strictly positive probabilities for each state embodied in a stationary

[M × 1] vector π satisfying:

Pπ = π (22)

Denoting δi as an [M × 1] zero-one indicator vector for state i, the limiting distribution

is obtained such that (Hamilton, 1994):

lim
n→∞

P nδi = π for ∀ i (23)

That is to say, irrespective of the initial state, an irreducible and ergodic Markov chain

always converges to its stationary limiting distribution in the infinite time horizon

(Geweke, 2005). It is sufficiently clear that (22) is the characteristic equation of the

transition matrix P . Let us rewrite it in the standard form with λ denoting eigenvalues:

Pπ = λπ (24)
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The basic algebraic property of Markovian matrices is that their first eigenvalue is always

λ1 = 1. Then, the right eigenvector π associated with the eigenvalue λ1 = 1 is a steady-

state vector π, i.e. limiting distribution, if it is normalized to eπ = 1, where e is an

[1×M ] vector of ones, i.e. the elements of π sum exactly to one (Olver and Shakiban,

2006). Vector π also represents the unconditional lifetime probabilities of each considered

state and be can thought of as an average occupancy time (Guidolin, 2011). Therefore,

it is straightforward to apply these probabilities as scenario weights and combine them

with forecasts and the scenario-dependent values of risk parameters in the calculation

of ECL.

3 DSGE Model

Model set up

The core of this DSGE model and solution method is the replication of Schmitt-Grohe

and Uribe (2003), to be precise, the model with a stochastic discount factor and with

minor adjustments is parameterized as in Mendoza (1991). Specifically, we use te period

utility function

U(Ct, Nt) =

(
eε
c
tCt − eε

l
nN
−φ
t

φ

)1−γ
− 1

1− γ
(25)

extended with the consumption preference and the labour supply shock εct and εnt re-

spectively defined as AR(1) processes:

εct = ρcε
c
t−1 + εct , εct ∼ N(0, σ2

c ) (26)

εnt = ρnε
n
t−1 + εnt , εnt ∼ N(0, σ2

n). (27)

The endogenous discount factor is

β(Ct, Nt) =
(

1 + Ct −
Nφ
t

φ

)−ψn
(28)

an the production technology has the standard Cobb-Douglas form with the constant

returns to scale

Yt = eatKα
t N

1−α
t , (29)
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where

at = ρaat−1 + εat , ε
a
t ∼ N(0, σ2

a) (30)

is the TFP shock process defined as AR(1) included in levels, i.e. the aggregate level

of technology. The law of motion of capital is extended with investment-specific shock

such that

Kt+1 = ebtIt + (1− δ)Kt (31)

bt = ρbbt−1 + εbt , ε
b
t ∼ N(0, σ2

b ). (32)

The introduction of additional shocks to the model is required for the purposes of

the Bayesian estimation and due to the relative tightness of the model behaviour caused

by the decision rules in the DSGE model (Dib at al., 2008), which can provide a good fit

to data only when enough shocks are specified (Smets and Wouters, 2007). Therefore,

additional sampling variability is introduced to the core model through measurement

errors in the observation equations discussed below.

The model is solved on levels providing an analytical solution for the deterministic

steady state and allowing for higher order approximation and thus greater precision

when compared to log-linearization. For a detailed derivation and analytical solution of

the model, please refer to Appendix A.

Linking the model to the data

Following mainly Adjemian et al. (2011), Griffoli (2008), Ireland (1999) and Pfeifer

(2013), the data transformations and the specification of the observation equations nec-

essary for linking the model to the data corresponds to the non-linear model for log-

linearization. Examining the properties of the general model shock process st such that

st = ρsst−1 + εst , where εst ∼ N(0, σ2
s),

we find that its level form St = est is the fluctuation around an unspecified trend.

The model is therefore stationary and describes the behaviour of the economy along its

balanced growth path. Consequently, the general model variable Zt corresponds to the
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stationary and per capita values. Zt is the intensive form of the empirically observed

variable Zdatat obtained as Zt =
Zdatat

Lt
, where Lt is the two-sided HP-filtered overall

labour force Ldatat . The filtration corrects for undesired fluctuations due to measurement

errors or statistical revisions able to create a spurious economic cycle. Zdatat represents

the level variable of the seasonally adjusted time series at constant prices. Seasonal

adjustment is the necessary condition for the successful estimation of any macroeconomic

model preventing the existence of an undesired spurious economic cycle in the data.

Current prices, i.e. real terms, account for the absence of the deflator in the model.

The model relevant empirical variable zobst is obtained by the application of the

causal one-sided HP-filter, as in Stock and Watson (1999), to the logarithm of Zt,

zt = log(Zt). The logarithmic transformation ensures scale invariant deviations from

the steady state, and the causal one-sided, i.e. backward-looking HP-filter does not con-

tradict the backward-looking state space representation of DSGE models and forecasting

exercises unlike its commonly used two-sided counterpart (Pfeifer, 2013). The filtration

provides empirical data for the model variables zobst = {yobst , cobst , iobst , nobst , tbobst , caobst }.

i.e observed output, consumption, investments, hours worked, trade balance and cur-

rent account respectively. The observed variables in zobst represent deviation from their

respective steady state ZSSt and possess an asymptotically zero mean. For the exact

matching of the model market clearing equation with its empirical counterpart, the

model private consumption variable contains both private and government consump-

tion. Note that the national accounting methodology adopted in the Czech Republic

distinguishes between government consumption and investments, which allows for mod-

ification devoid of the introduction of bias. Additional transformation is applied to the

ratio variables:

ca yobs =
(caobst
yobst

)
−
(caobst
yobst

)
(33)

and

tb yobs =
( tbobst
yobst

)
−
( tbobst
yobst

)
. (34)

Then, defining model variable ẑt = zobs as a deviation zt from its respective steady

state zSSt , the observation equation with the additional measurement error εzt ∼ N(0, σ2
z)
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is:

ẑt = zt − zsst + εzt (35)

Prior distributions

The setting of the prior distributions follows the original calibration of Mendoza (1991)

used as the prior means, partially adjusted for monthly data frequency in the case of

the interest rate and capital depreciation parameter. A relatively loose setting with

high standard deviations allows for variation across the subspace of potential values

and the extraction of the maximum information contained in the data. The selection

of the priors follows the conventions of the DSGE literature, e.g. Buriel et al. (2007),

Griffoli (2008), Hristov (2016), Pfeifer (2013) and Smets and Wouters (2007). The

inverse Gamma distribution with infinite standard deviation is applied for the shocks, the

Beta distribution is used for the parameters restricted to the interval [0, 1], the Gamma

distribution is used as a more informative prior to bind the posterior mean closer to the

prior mean, and the Normal distribution is considered to be a non-informative prior to

be applied when no prior information about the parameters is known.

Tables 2 to 4 in Appendix B summarize the estimation results, listing the actual

setting of the prior for each estimated parameter, shock, and pairwise correlations, to-

gether with its posterior counterpart including Highest Probability Density Intervals,

the Bayesian equivalent of the confidence intervals.

4 Scenario Generation: A case Study

4.1 Data and model estimation

For the estimation of both models we use the Czech headline macroeconomic time series

with a monthly frequency on GDP, consumption, investments, total hours worked, the

trade balance and current account from the Moody’s Analytics’ branch Economy.com.

The data spans the period from 01-1996 to 12-2006, providing 132 observations in to-

tal. The choice of the in-sample period for model estimation stems from the desire to
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perform an empirical backtest of a forecasted alternative scenario, and the last period

of macroeconomic stress was experienced during the financial crisis in 2007-20086. The

comprehensive expanding window backtest is not feasible due to the extreme computa-

tional demands mainly of the DSGE model.

The data preparation process in ruled primarily by the rigid nature of the DSGE

model and its extensive but precise requirements on data structure. For comparability

in the benchmarking analysis, the data preparation process and applied transformations

are the same for both models with the exception of the current account to GDP ratio,

which is excluded from the MS-VAR model estimation due to undesired volatility causing

over-fitting of the MS-VAR model to the volatility-driven regimes7. Table 1 shows the

descriptive statistics of the included time series, and Figure 1 depicts their historical

development.

Table 1: Descriptive Statistics (deviations from SS)

Mean Std. dev. 5th perc. 95th perc. min max

Output 0.43 0.8 -0.77 2.07 -1 2.39

Consumption 0 0.52 -0.93 0.77 -1.33 1.03

Investments 0.68 2.39 -2.96 5.84 -3.86 6.4

Trade Balance 0 1.52 -2.17 3.14 -2.59 4.16

Current Account 0 0.13 -0.2 0.21 -0.27 0.26

Hours Worked 0.08 0.7 -1.4 1.22 -1.77 1.62

6The data for the Covid-19 economic downturn are not fully available yet.
7For details on the data preparation, please refer to the section obs:eq.

18



Figure 1: Final data for the estimation

The DSGE model is estimated with an RWMH algorithm using 6 MH blocks with

500 000 draws each and a burn ratio of 0.9. Multiple MH chains are initiated to increase

the robustness of the results, randomly picking the starting values around the posterior

mode rather than the mode itself. For the setting of the prior, please refer to the 3. The

MS-VAR model is estimated with the algorithm described in 2.1 using 100 000 draws

with a burn ratio of 0.8 and the very same data as for the DSGE model. For the detailed

estimation results for both models, please refer to Appendix B.

4.2 Example 1: Regime Identification Performance on Artificial Data

with the MS-VAR model

Due to the nontrivial model definition and specification, the performance of the MSVAR

model is tested before the forecasting exercise in an empirical simulation using artificial

data. Following Blake and Mumtaz (2017), the artificial data of 300 observations in
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total are generated using the regime-specific pre-specified VAR parameters BSt and

the covariance matrices ΣSt for each regime S̃ = 1, 2, 3, and the probability transition

matrix P true. Vector S̃true containing true regimes is generated only with the transition

probability matrix P true by the comparison of the transition probability ptrueij with the

random draw u ∼ U(0, 1). Figure 2 depicts the model performance in terms of the correct

regime-identification of each regime i = {1, 2, 3}. Note that thanks to the artificial data,

the true regime is always known and the probability of each regime as identified by the

model is compared to the true value. This shows that the model is quite responsive even

to less persistent regimes and predicts false changes only in a limited number of cases.

Figure 2: MSVAR - Regimes Probability on Artificial Data

4.3 Example 2: Scenario generation with the MSVAR model

Figure 3 depicts historical regimes between 1996 and 2007 as identified by the MS-VAR

model. The assignment of regimes to baseline, upside and downside scenarios is twofold.

The technical aspect comes from the estimation algorithm and the requirement of the
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third regime being associated with the increased volatility typical for downturn periods.

The expert assignment is based on the persistence, average occupancy time, volatility

and the historical development of GDP, consumption and investments. In other words,

it is not only the direction, but also the volatility and magnitude that govern the regime

identification.

The baseline regime contains 80 periods, i.e. 60% of all available observations and

the alternative scenarios amount to 28 and 22 (21% and 17%) historical periods for

the upside and downside regime respectively. The upside regime covers primarily the

period around the dot-com bubble in early 00’s and a few periods in the late 2006. The

downside regime covers the downturn after the dot-com bubble as well as the period

between 2003 and 2005 characterised by increased volatility and the change in foreign

country position.
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Figure 3: MSVAR - Regimes Probability on Historical Data

The set of Figures in 4 depicts scenarios generated by the MS-VAR model as uncon-

ditional, regime-specific forecasts with forecasting horizon k = 60 months and L = 2:

Ŷ t+k|(St = i) = ĉSt +
L∑
l=1

B̂StY t+k−l (36)

The separation of the scenarios in output and investments and the inherently highest

volatility in the third regime support the identification of the regimes as baseline, upside
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and downside scenarios. However, the forecasts of consumption lack direct interpreta-

tion: while the first regime si truly the baseline, as it mimics the historical realization,

and the second can be considered upside thanks to the initial peak, the third scenario

deviates from conventions. After an initial period of high volatility, the forecast leaves

the subspace of historical data and fails to converge. However, it is still interpretable

as a stabilization policy, since the consumption model variable encompasses government

expenditures and the deviation is less than 1 percentage point. On the other hand,

despite the absence a precedence for the crisis, investments manage to capture partially

the crisis downturn 24 periods ahead. Relatively mild scenarios for output are not con-

sidered to be a weakness, since the model is not expected or even supposed to capture

the extreme macroeconomic stress induced by the financial crisis, but, rather, to provide

representative scenarios.

Figure 4: MSVAR - Scenario Forecasts
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Finally, we present the estimated transition probability matrix P̂ and its limiting

distribution π, i.e. the probability weights of the baseline, upside and downside scenario

respectively. Notice that the scenario weights roughly correspond to the relative share

of historical observations in the individual regimes. The estimated transition matrix is

consistent with macroeconomic theory and empirical observations. The baseline regime is

naturally the most persistent, and migrations to alternative states are almost perfectly

symmetric. The same applies to the persistence of alternative states, implying that

(extreme) upturn and downturn periods are of the same length. The higher migration

probability from the downside straight to the upside rather than the baseline regime

is also consistent with the empirically observed sharp recovery following crises. In the

reverse case, the baseline regime is more likely to follow the upside before the crisis hits,

i.e. there is a cool-down period.

P̂ =


0.883 0.059 0.058

0.157 0.764 0.079

0.140 0.121 0.738

 , π̂ =


0.5604

0.2413

0.1982

 . (37)

Overall, the method provides relatively well-behaved scenarios with respect to the

desired properties such as scenario separation, representativeness, relatively smooth sce-

nario paths and, especially, economic interpretability. Data-driven regimes identification

and scenario generation comes at the expense of less control over the scenario paths.

4.4 Example 3: Scenario generation with the DSGE model

In line with the conventions of scenario analysis, a baseline scenario is represented by an

unconditional forecast, while upside and downside scenarios are constructed as condi-

tional forecasts fitting a prescribed future path, as in Banbura et al. (2015) or Baumeister

and Kilian (2014). The initial paths of stressed variables are specified according to the

maximum historical upside and downside peaks in GDP, as in the FED CCAR 2018

stress testing methodology, and later convergence is determined endogenously by the

model. Also note that this method, unlike the MS-VAR model, does not require regime

identification, and only a single set of parameters is available. The consequences are
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twofold: A researcher has better control over the alternative scenarios, but the model

does not take account of the non-linearities in the business cycle, i.e. the response is the

same in all scenarios.

The set of figures in Figure 5 depicts the baseline and alternative scenarios for output,

consumption and investments. The baseline forecast for all variables quickly converges

to the unconditional mean due to the rigid structure of the model, although for consump-

tion it is characterized by the initial steep fall present also in the alternative scenarios.

Since the alternative scenario paths are generated according to the peak and bottom

of the historical GDP, the downside scenario in particular tends to capture better the

initial cool-down before the financial crisis. However, from the perspective of 2007 such

a development could be considered extreme, not representative. On the other hand,

note that unlike the MSVAR model, the DSGE failed to generate investment scenar-

ios based on the empirical evidence taht it had volatility of output three times greater

and the scenarios are very mild in both alternative regimes instead. In favour of this

approach is the general gradual convergence of alternative paths towards the baseline.

Overall, the method seems viable, but compared to MS-VAR it bears additional costs:

(i) a cumbersome model solution and estimation, (ii) a rigid structure, (iii) extreme

computational demands, (iv) excessive analytical expertise and (v) the determination of

an alternative path of at least one variable which still does not guarantee the desired

scenario properties. Moreover, the method does not mitigate the assignment of scenario

probabilities.
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Figure 5: DSGE - Scenario Forecasts

Technically, conditional forecasts depend on (i) the order of the shocks, (ii) the selec-

tion of the prescribed variable and (iii) controlled shocks. Here, a conditional forecasting

exercise is conducted by exogenizing the path of GDP, while controlling the TFP shock.

The order of shocks is consistent with the original model. Forecasts paths are generated

using 50 000 MCMC draws.

5 Conclusion

Scenario generation is an integral part of both the academic and business environment

and has become a necessary everyday activity of financial institutions, corporates, gov-
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ernment organization and other stakeholders for planning, provisioning or assessing the

health of a financial system. The literature on this subject is still relatively scarce and

consists primarily of stress testing exercises and the coverage of extreme events, while the

generation of representative scenarios for IFRS9 purposes is omitted. At the same time,

the existing scenario generation approaches are either inappropriate for representative

scenarios or suffer from excessive expert judgment. There is also a desire to associate a

scenario with probability.

Our pioneering approach leverages the well-established framework of the Markov-

switching model, but sets up the a philosophical foundation to scenario generation.

We specify a representative scenario as an unconditional regime-specific forecast which,

thanks to the separate sets of parameters, accounts for the non-linearities in the business

cycle. The representative scenarios are naturally associated with the probability weights

related to the respective state of the economy and derived from the model transition ma-

trix. Both scenarios and probabilities are purely data driven, and the analytical input is

limited solely to the setting up of priors and the calibration of model hyper parameters.

The method also allows for the incorporation of prior beliefs or macroeconomic theory ei-

ther through regime-sampling restrictions, priors, or the a priori specification of baseline

and alternative regimes in historical data without compromising data-driven scenarios.

Further improvements could be achieved using a structural VAR or different regime-

switching underlying model, e.g. a regime-switching DSGE. Further research is also

needed into the calculation of probability weights: the natural extension is to consider

a time-varying transition probability matrix and the conditioning of the probabilities to

the current state of the economy.

In the empirical examples we demonstrate outstanding model performance in terms

of regime identification on artificial as well as real data. We show that the generated

scenarios are economically interpretable and possess most of the desired properties, such

as scenario separation, representativeness, or a volatility driven crisis regime. The gen-

erated scenarios are, indeed, not extreme but rather representative given the historical

data. Once the model is calibrated, its relative simplicity compared to other robust
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methods, the intuitive interpretation of the set-up and scenarios, and its possible ad-

justments to te requirements research questions make it perfectly suitable for academic

and business purposes.
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Fernández-Villaverde, Jesús, The Econometrics of DSGE Models, SERIEs, 1/1 (2010),

3–49
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7 Appendix A: DSGE Model

7.1 Model

Following the Schmitt-Grohe and Uribe (2003) and Mendoza (1991), the domestic econ-

omy is populated by an infinite number of identical and eternal households. Preferences

are unitary and non-separable in both labour and consumption:

U(Ct, Nt) =

(
eε
c
tCt − eε

l
nN
−φ
t

φ

)1−γ
− 1

1− γ
. (38)

Ct is the per capita composite consumption index, γ is the intertemporal elasticity of

substitution between consumption and labour, Nt is the per capita labour supply and φ

is the corresponding Frisch labour supply elasticity. Preferences are extended with the

consumption preference and the labour supply shock, εct and εnt respectively, defined as

AR(1) processes:

εct = ρcε
c
t−1 + εct , where εct ∼ N(0, σ2

c ) (39)

εnt = ρnε
n
t−1 + εnt , where εnt ∼ N(0, σ2

n) (40)

Households maximize their utility with respect to their budget constraint:

Ct + It + TBt ≤ Yt −
Φ

2
(∆Kt+1)2, (41)

where It are gross investments, bt is the investment specific shock, Yt is output or GDP,

TBt is the trade balance and Φ(∆Kt+1) is the function capturing investment adjustment

costs parametrized such that Φ(0) = Φ′(0) = 0, and Kt+1 is one-period-ahead predeter-

mined capital stock. There exists a market with foreign assets At available to households

of the domestic economy, paying (or receiving) a foreign interest rate r∗t . One can think

of this asset as foreign bonds and its holding as an international lending position or

foreign debt:

At+1 = TBt +At(1 + rt). (42)

Production technology in this economy is represented by the standard Cobb-Douglas

production technology with constant returns to scale and composed of the capital Kt
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and labour Nt services:

Yt = eatKα
t N

1−α
t , (43)

where

at = ρaat−1 + εat , where εat ∼ N(0, σ2
a) (44)

is the TFP shock process defined as AR(1) included in the levels, i.e. the aggregate level

of technology. The law of motion of capital is also in standard form:

Kt+1 = ebtIt + (1− δ)Kt, (45)

with added investment-specific shock:

bt = ρbbt−1 + εbt , where εbt ∼ N(0, σ2
b ). (46)

The evolution of foreign debt is obtained by the substitution of (42) into the budget

constraint (41):

At = (1 + rt−1)At−1 − Yt + Ct + It + Φ(∆Kt+1)2. (47)

Note that foreign debt is decreasing in domestic output and increasing in consumption,

investments, interest costs and capital adjustment costs. Substituting (43) and (45) into

(47) leads to the final constraint for households optimization:

At =
(

(1+rt−1)At−1−AtKα
t N

1−α
t +Ct+e−btKt+1−(1−δ)e−btKt+

Φ

2
(∆Kt+1)2

)
. (48)

At last, stochastic endogenous discount factor (EDF) θ is defined:

θt+1 = β(Ct, Nt)θt (49)

with

β(Ct, Nt) =
(

1 + Ct −
Nφ
t

φ

)−ψn
. (50)

When they are all combined, the stochastic utility maximization problem is:

max
Ct,Nt,At,θt+1,Kt+1

: U(Ct, Nt) s.t. BC and EDF.
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This optimization problem is solved by solving the Lagrangian function

L = Et
∞∑
t=0

θt

[(
eε
c
tCt − eε

n
t N

φ

t
φ

)1−γ
− 1

1− γ
− ηt

(
θt+1 −

(
1 + Ct − Nφ

t
φ

)−ψn
θt

)

−λt
(
−At+(1+rt−1)At−1−eatKα

t N
1−α
t +Ct+e−btKt+1−(1−δ)e−btKt+

Φ
2

(
∆Kt+1

)2
)]

The first order conditions for this optimization problem are:

∂L
∂Ct

: θt

[(
eε
c
tCt − eε

n
t Nφ

t
φ

)−γ
− λt − ηt(−ψn)

(
1 + Ct − Nφ

t
φ

)−ψn−1
]

= 0

∂L
∂Nt

: θt

[(
eε
c
tCt − eε

n
t Nφ

t
φ

)−γ
( − Nφ−1

t ) + λt(1 − α)eat
(Kt

Nt

)α
− ηt(−ψn)

(
1 + Ct −

Nφ
t
φ

)−ψn−1
(−Nφ−1

t )

]
= 0

∂L
∂At

: θtλt = θt+1λt+1(1 + r)

∂L
∂θt+1

:

(
eε
c
t+1Ct+1 −

e
εnt+1N

φ

t+1

φ

)1−γ
− 1

1− γ
− ηt+1

(
1 + Ct − Nφ

t
φ

)−ψn
− ηt

∂L
∂Kt+1

: −θtλt
(

e−bt + Φ(∆Kt+1)
)
− θt+1λt+1

(
− (1 − δ)e−bt+1 − eat+1α

(
Nt+1

Kt+1

)1−α
+

Φ(∆Kt+2)
)

By evaluating the first order conditions at t = 0 and substituting (49) for θt+1, we can

rewrite them as:

Ct : λt =
(

eε
c
tCt − eε

n
t Nφ

t
φ

)−γ
− ηt(−ψn)

(
1 + Ct − Nφ

t
φ

)−ψn−1
(51)

Nt : λt(1−α)eat
(
Kt
Nt

)α
= (−eε

n
t Nφ−1

t )

[
−
(

eε
c
tCt− eε

n
t Nφ

t
φ

)−γ
+ηt(−ψn)

(
1+Ct−Nφ

t
φ

)−ψn−1
]

(52)

At : λt =
θt+1

θt
λt+1(1 + r) = λt+1(1 + r)

(
1 + Ct −

Nφ

φ

)−ψn
(53)

θt+1 : ηt = −

(
eε
n
t+1Ct+1 −

e
εnt+1N

φ

t+1

φ

)1−γ
− 1

1− γ
+ ηt+1

(
1 + Ct − Nφ

t
φ

)−ψn
(54)
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Kt+1 : λt

(
1 + ebtΦ(∆Kt+1)

)
= λt+1

(
1 + Ct −

Nφ
t

φ

)ψn ebt

ebt+1

(
(1− δ) + ...

...+ eat+1+bt+1α

(
Nt+1

Kt+1

)1−α
+ ebt+1Φ(∆Kt+2)

)
. (55)

Lagrange multipliers λ and η represent ... To close up the model, the foreign sector

in this small open economy model is represented by the balance of trade (TB) and

the evolution of the current account (CA). Dividing the household budget constraints

outlined in (41) by the domestic output Yt and rearranging the formula, the definition

of the trade balance to output ratio is given by:

TBt
Yt

= 1−
Ct + It + Φ

2 (∆Kt+1)2

Yt
. (56)

The current account is by definition given by the change in the foreign debt At, and thus

the current account to output ratio is:

CAt
Yt

=
At−1 −At

Yt
. (57)

The purpose of defining the trade balance and the current account as ratios is to induce

stationarity properties in the model. Finally, domestic agents face an interest rate which

is identical to the world interest rate:

rt = r̄t (58)

7.2 Steady State and Analytical solution

To find the analytical solution of the model, the deterministic steady state is calculated

from the model equations. Firstly, (i) the variables uniquely determined only by the

model parameters are calculated, then (ii) the capital-labour ratio is found, allowing us

to express (iii) the remaining variables directly dependent on those inputs. Firstly, debt

evolution has to be pinned down to its equilibrium value:

A = Ā. (59)
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From (58) it is clear that:

r = r̄. (60)

The above derived FOC provides an optimality condition for the factors of production

and marginal utility variables λ and η. It is useful to derive the capital-labour ratio,

by equalizing (53) and (54) through the definition of the endogenous discount factor

β(Ct, Nt):

1 + r = α

(
N

K

)1−α
+ 1− δ

r + δ = α

(
N

K

)1−α

K

N
=

(
α

r + δ

) 1
1−α

. (61)

Then, by equalizing consumption FOC (51) and labour FOC (52) through the marginal

utility λ and simultaneously pre-multiplying (52) by the factor of (−1), both right-hand-

sides can be eliminated, except (−Nφ−1), to obtain:

Nφ−1 = (1− α)

(
K

N

)α
.

With the capital-labour ratio (61) in hand, it is straightforward that:

N =

[
(1− α)

(
α

r + δ

) α
1−α
] 1
φ−1

(62)

K = N

(
α

r + δ

) 1
1−α

(63)

and the steady state output is obtained from the production function (43):

Y = KαN1−α. (64)

In the steady state, equilibrium investments have to cover the depreciation of the capital

stock exactly. From the law of motion of capital (45), it is:

I = δK. (65)
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From (42) it follows that in the steady state TB = rA, and thus consumption can be

derived from the market clearing condition (41) reduced to:

C = Y − I − rA. (66)

From (54) comes the relationship for η:

η =

−

(
Ct − N

−φ
t
φ

)1−γ
− 1

1− γ

1−
(

1 + Ct −
Nφ
t

φ

)−ψn . (67)

Now we have all necessary components to pin down the steady state value for λ, directly

from (51):

λ =
(
C − Nφ

φ

)−γ
− η(−ψn)

(
1 + C − Nφ

φ

)−ψ−1
. (68)

The steady state trade balance to output ratio is:

TB

Y
= 1− C + I

Y
. (69)

The last remaining things are the current account and the trade balance to output ratio

and the shock processes:

CA

Y
=
TB

Y
= at = bt = eε

c
t = eε

n
t = 0. (70)

8 Appendix B

The following set of Tables 2 to 4 summarizes the prior and posterior distribution of

DSGE model parameters.
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Table 2: Prior and Posterior distributions of Parameters

Prior Posterior

Dist. Mean Stdev. Mean Stdev. 5% HPD 95% HPD

γ Gamma 2 0.2 2.261 0.1514 2.0837 2.5920

φ Gamma 2 0.1 1.985 0.0536 1.9114 2.0850

ρa Beta 0.8 0.1 0.955 0.0071 0.9438 0.9667

ρb Beta 0.8 0.1 0.972 0.0111 0.9546 0.9897

ρc Beta 0.7 0.2 0.960 0.0110 0.9414 0.9778

ρn Beta 0.7 0.2 0.979 0.0077 0.9679 0.9908

δ Beta 0.1 0.08 0.017 0.0030 0.0121 0.0216

ψl Normal 0.4 0.2 0.765 0.0848 0.6132 0.8670

α Beta 0.3 0.1 0.180 0.0107 0.1629 0.1978

Φ Normal 0.4 0.4 0.548 0.1084 0.3622 0.7174

Table 3: Prior and Posterior Distributions of Standard Deviations of Structural Shocks

Prior Posterior

Dist. Mean Stdev. Mean Stdev. 5% HPD 95% HPD

σa Inverse Gamma 0.005 Inf 0.002 0.0001 0.0016 0.0020

σb Inverse Gamma 0.005 Inf 0.003 0.0007 0.0018 0.0039

σc Inverse Gamma 0.005 Inf 0.002 0.0002 0.0014 0.0020

σn Inverse Gamma 0.005 Inf 0.003 0.0002 0.0030 0.0038

σy Inverse Gamma 0.005 Inf 0.001 0.0001 0.0007 0.0010

σtb Inverse Gamma 0.005 Inf 0.015 0.0009 0.0131 0.0161

σh Inverse Gamma 0.005 Inf 0.001 0.0001 0.0006 0.0008

(Continued on next page)
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Table 3: (continued)

Prior Posterior

Dist. Mean Stdev. Mean Stdev. 5% HPD 95% HPD

σcay Inverse Gamma 0.005 Inf 0.001 0.0000 0.0006 0.0007

Table 4: Prior and Posterior distributions for Correlation of Structural Shocks

Prior Posterior

Dist. Mean Stdev. Mean Stdev. 5% HPD 95% HPD

corr(εa, εb) Beta 0.5 0.3 0.240 0.0673 0.1283 0.3444

corr(εa, εc) Beta 0.0 0.3 -0.193 0.0612 -0.2859 -0.0737

corr(εa, εn) Beta 0.0 0.3 0.895 0.0191 0.8644 0.9264

corr(εb, εc) Beta 0.0 0.3 0.812 0.0416 0.7488 0.8830

corr(εb, εn) Beta 0.0 0.3 0.269 0.0574 0.1747 0.3580

corr(εc, εn) Beta 0.0 0.3 -0.061 0.0642 -0.1768 0.0410

The following set of Tables 5 to 7 summarizes the estimated coefficients of the MS-

VAR model for each regime.

Table 5: MS-VAR Coefficients for Baseline Regime

Output Consumption Investments Hours Worked Trade balance

Constant -0.001 -0.019 0.075 0.001 -0.045

(Continued on next page)
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Table 5: MS-VAR Coefficients for Baseline Regime

Output Consumption Investments Hours Worked Trade balance

(0.004) (0.012) (0.057) (0.001) (0.022)

Output (-1) 1.770 -0.153 -0.106 -0.001 -0.681

(0.044) (0.139) (0.652) (0.016) (0.253)

Consumption (-1) -0.025 1.627 0.277 -0.008 -0.159

(0.027) (0.07)8 (0.367) (0.009) (0.140)

Investments (-1) 0.005 -0.044 1.619 0.003 0.070

(0.005) (0.014) (0.064) (0.002) (0.025)

Hours Worked (-1) 0.119 -0.127 -0.798 1.970 -0.126

(0.045) (0.129) (0.588) (0.013) (0.219)

Trade Balance (-1) 0.012 -0.002 -0.052 0.005 1.498

(0.011) (0.034) (0.159) (0.004) (0.061)

Output (-2) -0.809 0.146 0.065 0.014 0.782

(0.043) (0.135) (0.636) (0.016) (0.248)

Consumption (-2) 0.013 -0.744 -0.439 0.009 0.045

(0.028) (0.078) (0.365) (0.009) (0.139)

Investments (-2) -0.002 0.037 -0.826 -0.002 -0.054

(0.004) (0.013) (0.061) (0.002) (0.023)

Hours Worked (-2) -0.108 0.117 0.685 -1.005 0.141

(0.045) (0.131) (0.592) (0.013) (0.222)

Trade Balance (-2) -0.008 0.006 0.146 -0.007 -0.587

(0.010) (0.033) (0.156) (0.004) (0.060)
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Table 6: MS-VAR Coefficients for Upside Regime

Output Consumption Investments Hours Worked Trade balance

Constant 0.108 0.007 -0.342 0.011 0.095

(0.018) (0.019) (0.148) (0.008) (0.070)

Output (-1) 1.900 0.015 0.459 -0.007 1.993

(0.101) (0.101) (0.739) (0.040) (0.376)

Consumption (-1) -0.144 1.749 -1.399 -0.014 -1.629

(0.087) (0.089) (0.674) (0.034) (0.335)

Investments (-1) 0.017 0.090 0.952 -0.006 -0.281

(0.014) (0.014) (0.105) (0.005) (0.052)

Hours Worked (-1) 0.072 0.777 -0.666 1.948 -3.652

(0.120) (0.120) (0.839) (0.047) (0.448)

Trade Balance (-1) -0.075 0.121 -0.461 0.005 1.068

(0.031) (0.031) (0.218) (0.012) (0.114)

Output (-2) -0.986 -0.263 0.626 0.011 -1.344

(0.097) (0.095) (0.697) (0.038) (0.357)

Consumption (-2) 0.067 -0.725 1.181 0.000 0.968

(0.069) (0.067) (0.505) (0.027) (0.258)

Investments (-2) -0.006 0.013 -0.287 -0.001 -0.028

(0.013) (0.013) (0.094) (0.005) (0.048)

Hours Worked (-2) -0.087 -0.848 0.763 -0.992 3.882

(0.118) (0.119) (0.83)0 (0.046) (0.446)

Trade Balance (-2) 0.090 0.019 0.147 -0.006 -0.499

(0.026) (0.028) (0.206) (0.011) (0.101)
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Table 7: MS-VAR Coefficients for Downside Regime

Output Consumption Investments Hours Worked Trade balance

Constant 0.063 0.327 0.049 0.024 0.051

(0.018) (0.051) (0.285) (0.011) (0.059)

Output (-1) 1.278 -0.357 -3.236 -0.117 1.318

(0.165) (0.447) (2.72) (0.107) (0.522)

Consumption (-1) -0.064 1.354 1.172 0.01 -0.155

(0.025) (0.063) (0.402) (0.015) (0.075)

Investments (-1) 0.022 0.018 0.912 -0.004 0.088

(0.014) (0.014) (0.105) (0.005) (0.052)

Hours Worked (-1) -0.562 -0.83 -1.227 1.788 0.075

(0.106) (0.278) (1.699) (0.066) (0.343)

Trade Balance (-1) -0.017 0.118 -0.465 0.012 1.062

(0.042) (0.108) (0.646) (0.025) (0.129)

Output (-2) -0.466 -0.35 3.558 0.097 -1.671

(0.153) (0.412) (2.516) (0.098) (0.48)

Consumption (-2) -0.005 -0.871 -1.56 -0.026 0.09

(0.029) (0.071) (0.469) (0.017) (0.089)

Investments (-2) 0.014 -0.028 -0.272 0.002 0.053

(0.008) (0.022) (0.126) (0.005) (0.024)

Hours Worked (-2) 0.48 0.499 0.316 -0.867 0.099

(0.074) (0.201) (1.185) (0.047) (0.24)

Trade Balance (-2) -0.003 -0.047 0.44 -0.017 -0.119

(0.041) (0.107) (0.642) (0.025) (0.126)
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