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Abstract

The cryptocurrency (CC) market is volatile, non-stationary and non-continuous. This poses

unique challenges for pricing and hedging CC options. We study the hedge behaviour and

effectiveness for a wide range of models. First, we calibrate market data to SVI-implied volatility

surfaces, which in turn are used to price options. To cover a wide range of market dynamics,

we generate price paths using two types of Monte Carlo simulations. In the first approach,

price paths follow an SVCJ model (stochastic volatility with correlated jumps). The second

approach simulates paths from a GARCH-filtered kernel density estimation. In these two markets,

options are hedged with models from the class of affine jump diffusions and infinite activity

Lévy processes. Including a wide range of market models allows to understand the trade-off in

the hedge performance between complete, but overly parsimonious models, and more complex,

but incomplete models. Dynamic Delta, Delta-Gamma, Delta-Vega and minimum variance

hedge strategies are applied. The calibration results reveal a strong indication for stochastic

volatility, low jump intensity and evidence of infinite activity. With the exception of short-dated

options, a consistently good performance is achieved with Delta-Vega hedging in stochastic

volatility models. Judging on the calibration and hedging results, the study provides evidence

that stochastic volatility is the driving force in CC markets.
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1 Introduction

Consider the problem of hedging contingent claims written on cryptocurrencies (CC).

The dynamics of this new expanding market is characterized by high volatility, as is evident

from the Cryptocurrency volatility index VCRIX (see Kim et al. (2021)) and large price jumps

(Scaillet et al., 2018). We approach hedging options written on Bitcoin (BTC) with models

from the class of affine jump diffusion models and infinite activity Lévy processes. Similarly to

Branger et al. (2012), we assess the hedge performance of implausible, yet complete as well as

plausible, but incomplete asset pricing models. Since April 2019, contingent claims written on

BTC and Ethereum (ETH) have been actively traded on Deribit (www.deribit.com). The

Chicago Merchantile Exchange (CME) introduced options on BTC futures in January 2020.

In contrast to traditional asset classes such as equity or fixed income, the market for CC

options has only recently emerged and is still gaining liquidity, see e.g. (Härdle and Trimborn,

2015) for an early description of the market. Despite growing market volume, cryptocurrency

markets continue to exhibit high volatility and frequent jumps, posing challenges to valuation

and risk management. From the point of view of market makers and in the interest of financial

stability, it is of high priority to understand and monitor risks associated with losses.

As the option market is still immature and illiquid, in the sense that quotes for many

specific strikes or maturities are not directly observable or may be stale, we derive options

prices by interpolating prices from stochastic volatility inspired (SVI) parametrized implied

volatility (IV) surfaces (Gatheral, 2004). In order to capture a variety of market dynamics, the

BTC market is imitated with two different Monte Carlo simulation approaches. In a parametric

price path generation approach, we assume that the data-generating process is described

by the SVCJ model. The second scenario generation method is based on GARCH-filtered

Kernel-density estimation (GARCH-KDE) close to actual market dynamics. Under each of

the two different market simulation methods, options are hedged where the hedger considers

models of different complexity. This deliberately includes models that are “misspecified” in

the sense that relevant risk factors may be omitted (Branger et al., 2012). On the other hand,

those models are possibly parsimonious enough to yield a complete market. It is known that,

when comparing the hedge performance to a more realistic, albeit incomplete market model,

the simpler model may outperform the complex model (Detering and Packham, 2015). In our

context, a model is “misspecified” if it contains fewer or different parameters than the SVCJ
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model. Specifically, as models included in the class of SVCJ models, we consider the Black and

Scholes (1973) (BS) model, the Merton (1976) jump-diffusion model (JD), the Heston (1993)

stochastic volatility model (SV), the stochastic volatility with jumps model (SVJ) (Bates,

1996) and the SVCJ model itself. Infinite activity Lévy hedge models under consideration

are the Variance-Gamma (V G) model (Madan et al., 1998) and the CGMY model (Carr and

Geman, 2002). Options are hedged dynamically with the following hedge strategies: Delta

(∆), Delta-Gamma (∆ − Γ), Delta-Vega (∆ − V) and minimum variance strategies. To gain

further insights, we separate the full time period, ranging from April 2019 to June 2020, into

3 different market scenarios with a bullish market behavior, calm circumstances with low

volatility and a stressed scenario during the SARS-COV-2 crisis. In addition to evaluating

the hedge performance, we aim to identify BTC risk-drivers such as jumps. This contributes

to the understanding of what actually drives fluctuations on this market.

A number of papers investigate the still young market of CC options. Trimborn and

Härdle (2018) describe the CC market dynamics via the cryptocurrency index CRIX. Madan

et al. (2019) price BTC options and calibrate parameters for a number of option pricing

models, including the Black-Scholes, stochastic volatility and infinite activity models. Hou

et al. (2020) price CRIX options under the assumption that the dynamics of the underlying

are driven by the (SVCJ) model introduced in Duffie et al. (2000) and Eraker et al. (2003).

To the best of our knowledge, hedging of CC options has not yet been investigated in this

depth and detail. The aspect of risk management and the understanding of the dynamics of

CCs is therefore a central contribution of this study.

The remainder of the paper is structured as follows: Section 2 describes the methodology,

decomposed into market scenario generation, option valuation and hedge routine. The hedge

routine presents the hedge models and explains the model parameter calibration and hedge

strategy choices. In Section 3, we present and evaluate the results of the hedge routine and

in Section 4, we conclude. The code is available as quantlets, accessible through Quantlet

under the name hedging_cc.

2 Methodology

In this section, we introduce the methodology, comprising market scenario generation,

option valuation and hedging.

2
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behavior µ̂ σ̂ min q25 q50 q75 max

bullish 8823.83 2208.78 4145.06 7640.94 9518.80 10420.47 12609.38

calm 8080.81 756.55 6587.22 7341.74 8116.72 8660.65 9563.69

covid 7895.68 1497.13 4921.88 6757.84 7607.16 9351.92 10346.00

Table 2.1: Summary statistics of the bullish, calm and covid market segment

hedging_cc

2.1 Market generation

We describe how to generate synthetic market data, which serves as the input for the

remainder of the analysis. The principal goal of synthetic scenario generation is to imitate the

BTC market behavior, especially retaining its statistical properties. Monte Carlo simulation

provides the flexibility to create a large amount of plausible scenarios. In addition, we consider

two simulation methods capturing different statistical properties. They represent a trade-off

between a parametric model with valuable and traceable risk-factor information and a flexible

non-parametric closer-to-actual-market approach. The parametric model is simulated under

the risk neutral measure Q with a forward looking perspective. The non-parametric simulation

relates to the past market behavior performed under the physical measure P. The time frame

under consideration is from 1st April 2019 to 30th June 2020. The BTC market behavior

in this time period is time-varying. This makes it convenient to segregate the time frame

into three disjoint market segments from April to September 2019 (bullish), October 2019 to

February 2020 (calm) and March to June 2020 (Covid), respectively. Bearing in mind that

we are going to hedge 1-month and 3-month options, the minimal segment length is chosen

to exceed three months. A graphical representation of the BTC closing price trajectory is

illustrated in Figure 2.1 with the corresponding summary statistics in Table 2.1. The first

interval is labeled as the bullish segment, because, to a great extent, the market behaves

upward-trending. The second period labeled as the calm period. With an overall standard

deviation σ̂ = 756.55, price movements are more stagnant compared to the bullish segment.

The last segment is the Corona Crisis or stressed scenario, where financial markets, especially

CC markets, experienced high volatility. A notable mention is the behavior of the BTC on

12th March 2020, where its price dropped by nearly 50%.

We now turn to a formal mathematical framework. Let the BTC market to be a continuous-

time, frictionless financial market. Borrowing and short-selling are permitted. The constant

3
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Figure 2.1: BTC closing price from 1st April 2019 to 30th June 2020, where

the blue trajectory represents the bullish market behavior, the black path

the calm period and red path the stressed scenario during the Corona Crisis.

LoadBTC

risk-free interest rate r ≥ 0 and the time horizon T < ∞ are fixed. On a filtered probability

space (Ω,F , (Ft)t∈[0,T ]
,P), the asset price process and the risk-free asset are defined by

adapted semimartingales (St)t≥0 and (Bt)t≥0, where B0 = 1 and Bt = ert, t ≥ 0, respectively.

The filtration is assumed to satisfy the usual conditions (e.g. Protter (2005)). To ensure

the absence of the arbitrage, we assume the existence of a risk-neutral measure Q. We

consider an option writer’s perspective and short a European call option. The price of the

option with strike K and time-to-maturity (TTM) τ = T − t at time t < T is C(t, τ,K).

For multiple-instrument hedges, we further assume the existence of a liquidly traded call

option suitable for hedging C2 (t, τ,K2), where K2 ≠ K. The dynamic hedging strategy

ξ = (ξ0, ξ1) = (ξ0(t), ξ1(t)))0≤t≤T is an F -predictable process, where ξ0(t) and ξ1(t) denote the

amounts in the risk-free security and the asset, respectively. The resulting portfolio process

Π = (Πt)t≥0 is admissible and self-financing. The evolution of the value process Π is reviewed

in detail in Appendix A.1, A.2 and A.3.

The finite time horizon T is partitioned into T = {0, δt,2δt, . . . ,mδt = T}, where m ∈ N

denotes the m-th trading day and δt = 1
365 . Scenarios are N = 100000 trajectories of the asset

price process S(t) = (St,i), where i = 1, . . . ,N and t = 0,1, . . . T . The parametric scenario

generation approach assumes that the dynamics of the asset price process St and the volatility

process Vt are described by the SVCJ model introduced in Duffie et al. (2000). This particular

4
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choice is motivated by the methodology in Hou et al. (2020), where the model is applied to

pricing options on the CRIX. A high degree of free parameters enables to model various market

dynamics. Precisely, the model dynamics are

dSt
St

= µδt +
√
VtdW

s
t +Zst dNt

dVt = κ (θ − Vt) δt + σv
√
VtdW

v
t +Zvt dNt

Cov {dW s
t , dW

v
t } = ρδt

(1)

where W s
t ,W

v
t are two standard Wiener processes correlated with correlation coefficient ρ.

The mean reversion speed is denoted by κ, θ is the mean reversion level and σv the scale of Vt.

The model allows for contemporaneous arrivals of jumps in returns and jumps in volatility

goverened by the Poisson process Nt = N s
t = Nv

t with constant intensity λ = λs = λv. Jump

sizes in volatility Zvt are exponentially distributed Zvt ∼ ε (µv) and jumps sizes in asset prices

are conditionally normally distributed

Ξ
def= Zst ∣Zvt ∼ N (µs + ρjZvt , σ2

s) (2)

where µs is the conditional mean jump size in the asset price given by

µs =
exp{µs + (σs)

2

2 }

1 − ρjµv
− 1

In detail, µs is the unconditional mean, σs the jump size standard deviation and ρj is the

correlation coefficient between jumps. From an empirical point of view, in most markets,

jumps occur seldomly and are difficult to detect, and, as a consequence, the calibration of ρj

is unreliable (Broadie et al., 2007). We follow the recommendation of Broadie et al. (2007),

Chernov et al. (2003), Eraker et al. (2003), Eraker (2004) and Branger et al. (2009) and

set ρj = 0. Furthermore, the risk premium is set to zero, so that µ = r and P = Q. The

resulting paths are simulated according to the Euler-Maruyama discretization of (1) suggested

in Belaygorod (2005). The corresponding model parameters are re-calibrated daily according

to the methodology described in section 2.3.2.

Compared to the empirical price process, the SVCJ may appear quite restrictive: aside

from being an incomplete market model, the price dynamics are limited by the specification of

the stochastic volatility component as well as the jump intensity and size. The nonparametric

method loosens the assumptions by generating scenarios using GARCH-filtered kernel density

5
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estimation (GARCH-KDE) as in e.g. McNeil and Frey (2000). Let (rt) denote BTC log-

returns and (σ̂t) the estimated GARCH(1,1) volatility (Bollerslev, 1986). The kernel density

estimation is performed on "de-garched" residuals

ẑt =
rt
σ̂t
. (3)

The rationale is to capture the time-variation of volatility by the GARCH filter and perform

kernel density estimation on standardised residuals. The estimated density function is

f̂h(z) =
1

nh

n

∑
t=1

K ( ẑt − z
h

) , (4)

where K denotes the Gaussian Kernel. The resulting generated paths are

S(T ) = S(0) exp [
T

∑
t=1

σ̂tẑt] (5)

Throughout this paper, the parametric and the nonparametric method are referred to as the

SVCJ and GARCH-KDE framework, respectively.

2.2 Valuation

This section describes how option prices are derived from the market IV quotes. As the

market for CC claims, during the time period of our dataset, is still relatively immature with

only a limited number of actively traded options on Deribit and the Chicago Mercantile

Exchange, arbitrage-free option prices are derived through the stochastic volatility inspired

(SVI) parameterization of the volatility surface of Gatheral and Jacquier (2014). Let σBS(k, τ)

denote the BS IV with log-moneyness k = log (K/S0) and total implied variance w(k, τ) =

σ2
BS(k, τ)τ . For a fixed τ , the raw SVI parameterization of a total implied variance smile as

initially presented in Gatheral (2004) is

w (k;χR) = a + b{ρ(k −m) +
√

(k −m)2 + σ2} . (6)

In the parameter set χR = {a, b, ρ,m,σ}, a ∈ R governs the general level of variance, b ≥ 0

regulates the slopes of the wings, ρ ∈ [−1,1] controls the skew, m ∈ R enables horizontal

smile shifts and σ > 0 is the ATM curvature of the smile (Gatheral and Jacquier, 2014).

For each maturity, the smile is recalibrated daily. The implied volatility is obtained by a

simple root-finding procedure, whereas the parameters χR are calibrated according to the

optimization technique explained in Section 2.3.2. In addition, the calibration is subject

6
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to non-linear constraints prescribed in Gatheral and Jacquier (2014). These constraints

ensure convexity of the option price which rules out butterfly arbitrage. Calendar spread

arbitrage is avoided by penalizing fitted smiles which induce a decrease in the level of the total

implied variance for a given strike level. For interpolation, the ATM total implied variance

θT = w(0, T ) is interpolated for t1 < T < t2 as in Gatheral and Jacquier (2014). The resulting

option price C(T,K) is a convex combination

αT =
√
θt2 −

√
θT√

θt2 −
√
θt1

∈ [0,1]

C(T,K) = αTC(t1,K) + (1 − αT )C(t2,K).
(7)

2.3 Hedge routine

This section describes the models selected to hedge BTC options as well as the model

parameter calibration procedure. Given these model classes, hedge strategies are chosen for

the hedge routine.

2.3.1 Hedge models

For hedging purposes, the choice of a hedge model faces the trade-off between sufficient

complexity to describe the actual market dynamics and market completeness (Detering and

Packham, 2015). In practice, a trader may therefore initiate hedging with an evidently

wrong but simple model, such as the complete BS option pricing model. A lower number of

parameters provides a parsimonious setup with potentially manageable explanatory power. In

our setting, a European option is hedged employing models of increasing complexity. In the

following, the model granularity is gradually extended by the addition of risk-factors such

as local volatility, jumps, stochastic volatility and others. This covers the empirical finding

of the previous literature on CC’s, e.g. (Kim et al., 2021; Scaillet et al., 2018). Accordingly,

the hedge models selected encompass affine jump diffusion models and infinite activity Levy

processes.

The class of affine jump diffusion models covers well-known models nested in (1). Due to

its popularity in the financial world, the simple but complete BS option pricing is selected as

a hedge model. The volatility is constant with Vt = σ and there are no discontinuities from

jumps N s
t = Nv

t = 0. A slightly more complex model is the JD model. It assumes constant
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volatility with Vt = θ, σV = 0 and extends the BS model by allowing for jumps in returns, but

with Nv
t = 0. The jump size is log ξ ∼ N (µs, δ2

s) distributed.

Evidence for stochastic volatility motivates the choice of the SV model. The jump

component is excluded with λ = 0 and N s
t = Nv

t = 0. We also examine the SVCJ model itself

as a model used for hedging. It serves as the most general model and its hedge performance

provides a meaningful insight for the comparison of the SVCJ and GARCH-KDE framework,

while in the SVCJ framework, it provides “anticipated” hedge results (cf. Branger et al. (2012)).

Due to the jump scarcity and latent nature of the variance process Vt, we also consider the

SVJ model for hedging. In this model, the jump component in the variance process Vt is

dropped while keeping the jump component in the spot process St, i.e. Nv
t = 0.

In contrast to affine jump processes, there exists a well-established class of processes that

do not entail a continuous martingale component. Instead, the dynamics are captured by a

right-continuous pure jump process, such as the Variance Gamma (VG) model (Madan et al.,

1998). The underlying St evolves as

dSt = rSt−dt + St−dXVG
t

XVG
t = θGt + σWGt ,

(8)

with the characteristic function of the VG-process XVG
t given by

ϕVG(u;σ, ν, θ) = (1 − iuθν + 1

2
σ2νu2)

−1/ν

, (9)

where r is the risk-free rate, Wt is a Wiener process and Gt is a Gamma process. The overall

volatility level is represented by σ; θ governs the symmetry of the distribution and therefore

controls the implied volatility skew; ν controls for tails, kurtosis and thus regulates the shape

of the volatility surface. An alternative representation of the V G process pleasant for practical

interpretation has the characteristic function

ϕVG(u;C,G,M) = ( GM

GM + (M −G)iu + u2
)
C

(10)

where C, G, M > 0. The detailed link between (9) and (10) is described in Appendix A.4. An

increase in G (M) increases the size of upward jumps (downward jumps). Accordingly, θ, M

and G account for the skewness of the distribution. An increase in C widens the Levy-measure.

An extension of the VG model is the CGMY model by Carr and Geman (2002). On a finite

time interval, the additional parameter Y permits infinite variation as well as finite or infinite

8



activity. Formally, in (8) the source of randomness is replaced by a CGMY process XCGMY
t

with the characteristic function

ϕCGMY (u;C,G,M,Y ) = exp [CtΓ(−Y ) {(M − iu)Y −MY + (G + iu)Y −GY }] (11)

The XV G
t -process in the representation (9) is a special case of the CGMY process for Y = 1.

On a finite time interval, the behavior of the path depends on Y . For Y < 0, there is a finite

number of jumps, else infinite activity. In case of Y ∈ (1,2], there is also infinite variation.

2.3.2 Calibration routine

The model parameters are calibrated following to the FFT option pricing technique of

Carr and Madan (2001). The price of a European-style option C (K,T ) is given by

C(K,T ) = 1

π
e−α log(K)∫

∞

0
e−iv log(K) ρ(v)dv

ρ(v) = ϕT (v − (α + 1)i)
α2 + α − v2 + i(2α + 1)v ,

(12)

where cT (k) denotes the α-damped option price cT (k) = eαkCT (k) and ϕcT (t) its characteristic

function. The ill-posed nature of calibration can lead to extreme values of the model parameters.

This is avoided by employing a Tikhonov L2-regularization (Tikhonov et al., 2011). At the

cost of accepting some bias, this penalizes unrealistic values of the model parameters by giving

preference to parameters with smaller norms.

Calibration is performed by the optimizer

θ∗ = argmin
θ∈Θ

R(θ)

R(θ) =
¿
ÁÁÀ 1

n
∑
i

{IVModel(hi, θ) − IVMarket((Ti,Ki))}2 + θ⊺Γθ

(13)

where Γ is a diagonal positive semi-definite matrix. The matrix Γ corresponds to the Tikhonov

L2-regularization, which gives preference to parameters with smaller norms. The entries in

the matrix Γ are chosen individually for each parameter to ensure that they maintain the

same reasonable order of magnitude.

The parameter space Θ ⊂ Rd of each model in scope is subject to linear inequality

constraints. Given that the objective is not necessarily convex, it may have multiple local

minima. In order to explore the entire parameter space, simplex-based algorithms are more

9



appropriate than local gradient-based techniques. In our case, we employ the Sequential

Least Squares Programming optimization (Kraft, 1988) routine. We adjust for time effects by

calibrating parameters on the IV surface instead of option prices. As deep out-of-the-money

or deep in-the-money instruments do not provide valuable input for calibration in our case,

the ∆25 criterion is imposed: all claims whose ∆BS is smaller than 0.25 or larger than 0.75 in

terms of the absolute value, that is 0.25 < ∣∆Market∣ < 0.75, are disregarded.

2.3.3 Hedging strategies

To protect against broad market movements, we examine hedging with market-risk-related

sensitivities (∆,Γ,V) = (∂C∂S ,
∂2C
∂2S

, ∂C∂σ ). The goal is to protect the position against first-order

changes in the underlying S = {St, t ∈ T}, second-order changes (i.e., first-order changes in ∆)

and to changes in σ, respectively. To achieve ∆ − Γ- or ∆ − V-neutrality, an additional liquid

option C2(S(t), T,K1) with strike K1 ≠K is priced from the SVI parameterized IV surface,

as explained in Section 2.2. For performance comparison of linear and non-linear effects, the

dynamic ∆- and ∆−Γ-hedging strategies are applied to all hedge models. The ∆−V-hedge is

only considered for affine jump diffusion models, since V is not a risk-factor of the infinite

activity Lévy-processes under consideration. The technical aspects of the dynamic hedging

strategies are described in Appendices A.2 and A.3.

Models that incorporate jumps are incomplete and difficult to hedge. Jumps and infinite

activity Lévy processes are therefore often hedged with quadratic variance-related hedging

strategies. Under the assumption of symmetric losses and gains, the aim is to find the strategy

ξ∗ under Q that minimizes the hedging error in terms of the mean-squared error (Föllmer

and Sondermann, 1985)

(Π(0), ξ∗(t)) = argmin
Π(0),ξ1(t)

EQ [(CT −Π(0) − ∫
T

0
ξ1(u)dS(u))

2

] . (14)

Table 2.2 summarizes the hedging strategies applied to the respective hedge models. The

calibrated model parameters are used to compute hedging strategies ξ(t) for each model.

Each model’s hedge performance is evaluated by indicators derived from the relative

Profit-and-Loss (PnL)

πrel = e−rT
ΠT

C {S0,K,T} . (15)

In a perfect hedge in a complete market we have πrel = 0. However, in practice, due to

model incompleteness, discretization and model uncertainty, πrel ≠ 0. We evaluate the hedge

10



model tailored hedge strategy comparison

Black-Scholes ∆BS ∆ − ΓBS , ∆ − VBS
SV ∆ − VHeston MV, ∆Heston, ∆ − ΓHeston

JD MV ∆JD, ∆ − ΓJD, ∆ − VJD
SVJ MV ∆SV J , ∆ − ΓSV J , ∆ − VSV J
SVCJ MV ∆SV CJ , ∆ − ΓSV CJ , ∆ − VSV CJ
VG MV ∆V G, ∆ − ΓV G

CGMY MV ∆CGMY , ∆ − ΓV G

Table 2.2: Hedge strategy summary, where a tailored hedge refers to the

proposed hedge model and strategy comparison refers other hedges applied

for comparison.

performance with the relative hedge error εhedge as applied in e.g. Poulsen et al. (2009),

defined as

εhedge = 100
√

Var (πrel). (16)

The rationale behind εhedge is that standard deviation represents a measure of uncertainty. A

sophisticated hedge strategy reduces or ideally eliminate uncertainty (Branger et al., 2012).

The tail behavior is evaluated by the expected shortfall

ESα = E [πrel ∣ πrel > F−1
πrel

(α)] . (17)

3 Empirical results

3.1 Data

Models are calibrated on the market prices of European-style Deribit options written

on BTC futures. Quotes and BTC prices are provided by Tardis.dev and the Blockchain

Research Center BRC. The number of liquidly traded instruments varies significantly with

maturity. Therefore, the data is filtered with liquidity cut-offs. All claims without trading

volume are disregarded. In addition, the ∆25-criterion is imposed.

3.2 Scenario generation results

For the GARCH-KDE approach, the estimated residual distributions f̂h(z) in (4) are

displayed in Figure 3.1. The empirical moments and quantiles are listed in Table 3.1. Figure
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period mean std skew kurt q25 q50 q75

BULLISH 0.13 0.99 0.17 0.87 -0.44 0.15 0.66

CALM -0.02 0.74 0.34 0.12 -0.51 -0.06 0.38

COVID 0.05 0.70 -0.04 0.23 -0.34 0.04 0.47

Table 3.1: Summary statistics of estimated historical densities Ẑt defined

in (3) for a respective scenario. hedging_cc

A.1 illustrates the GARCH(1, 1) estimates of BTC returns. As a consequence from de-garching,

all three distributions are roughly symmetric and mean-zero. Deviations are direct results

from market moves: the upward-moving market behavior in the bullish period leads to a

left-skewed residual distribution. High drops in the stressed period result in a negatively

skewed distribution.

SVCJ paths are simulated with daily re-calibrated parameters summarized in Table 3.7.

Figure 3.1: Estimated residual density f̂h(z) in (4) during bullish market

behavior, calm period and the stressed scenario during the Corona Crisis for

h = 0.2 hedging_cc

Selected statistical properties of both scenario generation approaches are given in Table 3.2.

We observe differences in tails, extreme values and standard deviation. Discrepancies in σ̂

are natural consequences from different methodological assumptions. The SVCJ approach

assumes volatility to be stochastic, whereas GARCH-KDE models σt with GARCH(1,1).

Severe discrepancies in path extremes result from the SVCJ model assumptions on return

jump size ΞSV CJ in (2). In the calibration routine, the L2-regularization is applied to control

extreme parameter values. Yet, estimated return jump sizes can be very large. Resulting

Euler discretized paths contain trajectories with extreme moves of the underlying. These are

12
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framework µ̂ σ̂ min q1 q50 q99 max

SV CJBULLISH30 4087.32 343.05 1352.90 3411.83 4065.04 5177.02 15819.48

SV CJCALM30 8369.33 1650.21 646.68 3475.29 8367.51 13092.95 26271.20

SV CJCOVID30 9800.32 1269.66 1435.49 5406.93 9804.85 13341.72 41464.61

KDEBULLISH30 4393.95 606.01 2089.55 3237.62 4277.65 6248.48 10209.30

KDECALM30 8359.21 746.38 4545.46 6608.25 8349.06 10524.45 15611.32

KDECOVID30 9933.81 836.48 5579.96 8007.32 9848.62 12365.51 16863.17

SV CJBULLISH90 4087.50 657.29 419.77 2961.11 4001.56 6336.31 56189.20

SV CJCALM90 8367.54 2982.34 37.40 2488.41 8124.74 18415.20 118249.15

SV CJCOVID90 9796.71 2456.05 119.85 3620.50 9682.93 17545.53 115020.35

KDEBULLISH90 5116.43 1419.86 1325.30 3038.41 4762.11 9988.82 28593.53

KDECALM90 8345.58 1407.72 3034.41 5341.07 8274.30 12590.88 22406.78

KDECOVID90 10718.15 3457.73 1560.16 4729.19 10007.73 23519.87 81081.55

Table 3.2: Summary statistics of scenario generations framework per market

segment and maturity hedging_cc

segment µ̂ σ̂ min q1 q50 q99 max

bullish -0.03 0.18 -0.39 -0.37 -0.00 0.46 0.61

calm -0.23 0.24 -0.44 -0.43 -0.34 0.53 0.58

covid -0.28 0.17 -0.49 -0.48 -0.33 0.11 0.67

Table 3.3: Summary statistics of calibrated SVCJ jump size Ξ per market

segment. hedging_cc

e.g. extremely low and high prices during the calm and stressed scenario displayed in Table

3.2. On the market, the BTC price evolution has shown that these moves are not entirely

impossible, yet very unlikely.

3.3 Option pricing

Option prices are obtained at every day of the hedging period. This is necessary for the

calculation of the initial value of the hedging portfolio and to perform multi-asset dynamic

hedging. Each option is priced according to the IV surface on the given day. If the option is

not traded for the given strike or maturity, the SVI parametrized IV surface is interpolated in

an arbitrage-free way. For illustration, we take a look at CC option prices at the beginning

of each market period. Figure 3.2 displays the SVI parametrized interpolated IV surfaces

for SVI parameters listed in Table A.1. The resulting option prices used in the hedging

routine are displayed in Table 3.4. Recall that for a given IV surface the SVI parameters
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F0 1 M 3 M

BULLISH 4088.16 206.38 417.87

CALM 8367.51 838.01 1449.82

COVID 9804.85 610.36 1201.46

Table 3.4: Interpolated option prices for initial underlying price F (0) and

strike KATM for maturities T = {1 M,3 M}. hedging_cc

related by the formula (6) are calibrated for each TTM. The temporal dynamics of the SVI

parameters provide the following insights: parameter a increases with TTM, which aligns

with the increase of the ATM total variance as TTM rises. Parameter σ decreases with TTM,

indicating decrease of the ATM curvature. Increasing values of parameter b indicate higher

slopes of the wings as TTM increases. Skewness, expressed in terms of the parameter ρ, varies

across market segments. Usually negative values of ρ indicate a preference for OTM puts over

OTM calls. In the bullish period, skewness is close to zero across most maturities.
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(c)

Figure 3.2: Market IVs in red and interpolated IV surface in blue on (a)

1st April 2019 (b) 1st October 2019 (c) 1st February 2020. Fitted smiles with

very short maturities of τ ≤ 1 week are excluded from plots, because they are

not relevant for the hedging routine. If interested, calibrated SVI parameters

shorter maturities are available in Table A.1. hedging_cc
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period / maturity ≤ 1 W (1 W,2 W] (2 W,3 M] (3 M,6 M] (6 M,9 M]

bullish 2.77 1.72 4.61 7.14 2.53

calm 2.53 2.24 3.75 4.28 3.18

crisis 3.00 3.03 4.44 5.58 5.33

Table 3.5: Overview of average maturity counts of all options in a daily IV

surface fullfiling the ∆25-selection criteria. hedging_cc

3.4 Calibration results

In each period, calibration is performed daily using instruments satisfying the ∆25-criterion.

For an overview, average numbers of options per maturity range used for calibration are

summarized in Table 3.5. As a consequence of the ∆25-criterion, more longer-dated options

are selected. Average parameter values per period are summarized in Table 3.7. Section 3.4.1

and 3.4.2 provide a detailed perspective on the dynamics of the calibrated parameters.

Calibration is carried out on the market’s mid IVs. Of course, ignoring bid-ask spreads

and the possibility of stale prices may produce arbitrage opportunities as well as spikes in

parameters and calibration errors. However, this is considered a minor issue and ignored.

RMSE’s for the models are illustrated in Appendix A.8. Naturally, the model fit improves

with increasing model complexity. Hence, the BS model has the highest values of RMSE on

average while the SVCJ model has the lowest.

3.4.1 Affine jump diffusion models

The calibrated parameter σBS provides meaningful insights into market expectations.

Levels vary in the range σBS ∈ [50 %,175 %]. Summary statistics for this parameter is

provided in Table 3.6. Due to the volatile nature of the CC markets, levels of σBS are

generally higher than in traditional markets (Madan et al., 2019). In comparison, the VIX

index in the time period 1990-2021 ranges between 9.5% and 60%, with the 95%-quantile at

33.5%. Figure 3.3 plots the dynamics of σBS over the entire time frame. In the bullish period,

volatility levels rise up to 120%. In the calm period, as expected, the levels are lower than in

the other two periods with σBS ∈ [0.61,0.91].

Figure 3.4 plots the calibrated parameters σJD and λJD of the JD model over time.

In general, levels of σJD are lower than σBS , clearly visible during the calm and stressed

scenario. As the JD model is an extension of the BS model, higher levels of σBS are partially
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behavior average σBS std. dev. min q25 q50 q75 max

bullish 0.84 0.16 0.50 0.72 0.85 0.97 1.20

calm 0.68 0.06 0.61 0.64 0.66 0.70 0.89

stressed 0.78 0.21 0.57 0.63 0.73 0.87 1.75

Table 3.6: Summary statistics of daily σBS calibration. hedging_cc

Apr Jul Oct Jan
2020

Apr Jul

date

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Figure 3.3: Daily calibration σBS segregated by market segment in chrono-

logical order. Volatility levels are very high compared to equities or indices

such as S & P 500 hedging_cc

compensated by the jump component. On many days σJD is close to σBS . The reason for

this are generally low values of the yearly jump intensity λJD and jump size µy. On average,

the JD model expects less than one jump in returns per year.

The evolution of λJD is compared to the jump intensities of extended models λSV J and

λSV CJ in Figure Appendix A.2. Throughout, yearly jump intensities are low with mostly

λSV (C)J ≤ 2.5. We observe contrasting levels of λSV CJ and λJD. They are not directly

comparable, as the jump intensity λSV CJ contributes to simultaneous jumps in returns and

stochastic volatility, while λJD and λSV J corresponds solely to jumps in returns. For example,

levels of λSV CJ in the calm period are high whereas λSV J is close to zero.

The plausibility of the stochastic volatility assumption is analyzed by the evolution and

levels of σv. In most periods, levels of σv are higher compared to traditional markets. In

the broad picture, the evolution of σv does not depend to model choice a shown in Figure
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Apr Jul Oct Jan
2020

Apr Jul

date
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Figure 3.4: Interplay between σJD and λJD segregated by market segment

in chronological order. Mostly, for high levels of σJD we observe low levels of

λJD and vice versa. hedging_cc

Appendix A.3. Table A.2 summarizes statistical properties of this parameter by model and

market segment. In the bullish and calm period, indication for stochastic volatility is strong

with vol-of-vol levels at q50 ≥ 80% and q50 ≥ 75%, respectively. In the stressed period, levels of

σvSV (C)J remain high for q50 ≥ 73%.

Empirical evidence suggests that In traditional markets the correlation parameter ρSV (CJ)

is usually negative. Specifically, when prices fall, volatility increases. However, across all three

market segments and models, ρSV (CJ) is mainly positive and close to zero as illustrated in

Figure Appendix A.4. Hou et al. (2020) name this phenomenon the inverse leverage effect in

CC markets. This relationship in the CC markets is also supported by the correlation between

the CRIX and the VCRIX under the physical measure P. Pearson’s correlation coefficient

ρpearson is ρpearson = 0.51 in the bullish and ρpearson = 0.64 in the calm period, respectively.

In the stressed segment, correlation is negative with ρpearson = −0.73.
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period κ ρ V0 θ σ λ µy σy µv

BSbullish - - - - 0.84 - - - -

BScalm - - - - 0.68 - - - -

BScovid - - - - 0.78 - - - -

Mertonbullish - - - - 0.17 0.11 0.0 0.82 -

Mertoncalm - - - - 0.42 0.72 0.0 0.55 -

Mertoncovid - - - - 0.48 0.40 0.0 0.69 -

SVbullish 0.75 0.16 0.76 0.42 0.82 - - - -

SVcalm 1.60 0.17 0.35 1.10 0.68 - - - -

SVcovid 1.43 0.01 0.63 0.95 0.56 - - - -

SV Jbullish 0.72 0.15 0.75 0.42 0.80 0.16 0.01 0.0 -

SV Jcalm 1.28 0.18 0.33 1.05 0.68 0.37 0.01 0.0 -

SV Jcovid 0.98 0.14 0.50 0.74 0.72 0.86 -0.15 0.0 -

SV CJbullish 0.51 0.14 0.74 0.09 0.88 0.31 -0.04 0.0 0.45

SV CJcalm 0.75 0.28 0.30 0.38 0.83 0.85 -0.30 0.0 0.99

SV CJcovid 0.61 0.22 0.52 0.18 0.89 1.04 -0.35 0.0 0.54

Table 3.7: Average calibrated parameters of affine jump diffusion models

per market segment. hedging_cc

market segment C G M Y

CGMYbullish 4.24 22.21 24.79 1.20

CGMYcalm 10.37 7.67 9.30 0.14

CGMYcovid 7.94 11.38 17.24 0.68

Table 3.8: Average calibrated parameters of the CGMY model segregated

by market segment. hedging_cc

3.4.2 VG and CGMY

The prospect of infinite variation is evaluated by the calibration of the CGMY model

with average calibrated parameters in Table 3.8. Precisely, we are interested in the evolution

of the infinite activity parameter YCGMY portrayed in Figure 3.5. In each market segment,

as Y > 0 widely, there is strong evidence for infinite activity. In the bullish period, for

YCGMY ∈ (1,2] largely, there is also evidence for infinite variation (Carr and Geman, 2002).

The bullish period catches high magnitudes of jump size direction increase parameters

GCGMY and MCGMY , reflecting the nature of this market segment. Similarly, the increase in

decreased jump size parameter MCGMY is mainly higher in the stressed scenario. A graphical
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Apr Jul Oct Jan
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Apr Jul
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Figure 3.5: Daily calibration of YCGMY segregated by market segment. As

YCGMY > 0, there is strong indication for infinite activity. For YCGMY ∈ (1, 2]

in the bullish segment, there is evidence for infinite variation. hedging_cc

illustration is given in Figure Appendix A.6. The VG is calibrated under representation (9).

Overall, volatility levels of σV G are comparable to σBS , as illustrated in Figure Appendix A.5.

3.5 Hedge results

At the beginning of each market period, we short at-the-money options with maturities

of one and three months at the option prices listed in Table 3.4. As outlined earlier, the

price process is simulated in both SVCJ and the GARCH-KDE setting. The exposure in

each option is dynamically hedged using the strategies summarized in Table 2.2. The hedge

performance is evaluated in terms of πrel with regard to the median q50, hedge error εrel,

tail measures ES5% and ES95% as well as extremes with results in Table 3.9 to Table 3.20.

For a concise graphical representation, the best performing hedge strategies across models

are compared in boxplots displayed in Figure 3.6 to Figure 3.11. For each model, the best

performing strategy is selected according to ES5%.

These are the main findings: First, with some exceptions, using multiple instruments for

hedging, i.e., Delta-Gamma and Delta-Vega hedges, when compared to a simple Delta-hedge

lead to a substantial reduction in tail risk. Hence, whenever liquidly traded options are

available for hedging, they should be used. The calm and COVID periods in the GARCH-
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KDE approach are exceptions for the short-maturity option as well as the calm period and

GARCH-KDE approach for the long-date option – here, no significant improvement is achieved

by including a second hedge instrument. In the GARCH-KDE approach, paths are simulated

from return residuals Ẑt, that are correlated with St, whence on short time intervals the

option is most sensitive to the underlying itself. In any case, no deterioration takes place

when using a second security for hedging.

Second, for short-dated options, no substantial differences occur in the optimal hedging

strategies across models. The sole exception is worse performance of the VG- and CGMY-

models in calm period when price paths are generated in the SVCJ model.

Third, turning to the long-dated option, although not always best performing, it can be said

that stochastic volatility models perform consistently well. Amongst the stochastic volatility

model, the Heston model as the simplest model, does not underperform and sometimes even

is the best. It refers to the fact that under stochastic volatility, the ∆SV − VSV hedge is

a replicating strategy with best possible hedge results (Kurpiel and Roncalli, 1999). As

calibrated jump intensities λSV J and λSV CJ are low, the SVJ or SVCJ are oftentimes similar

to the SV leading to comparable hedge results.
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∆BS ∆ − ΓBS ∆ − VSV ∆ − ΓJD ∆ − VSV J ∆ − VSV CJ ∆ − ΓV G ∆ − ΓCGMY

Min -3.35 -2.58 -2.62 -2.48 -2.63 -2.59 -2.51 -2.53

ES5% -1.75 -1.34 -1.32 -1.21 -1.32 -1.27 -1.24 -1.27

ES95% 1.17 1.49 1.51 1.65 1.5 1.57 1.64 1.61

Max 3.31 5.32 5.29 5.33 5.28 5.35 4.77 5.05

πrel 63.14 59.55 59.39 60.43 59.40 59.75 60.97 60.87

Table 3.9: Hedge performance measures under GARCH-KDE simulation

in the bullish segment with the best and the worst in worst performing

strategy.

∆BS ∆ − VBS ∆ − VSV ∆ − ΓJD ∆ − VSV J ∆ − VSV CJ ∆ − ΓV G ∆ − ΓCGMY

Min -11.35 -9.46 -9.65 -9.69 -9.65 -9.58 -8.13 -8.07

ES5% -1.48 -1.16 -1.16 -1.06 -1.16 -1.12 -1.08 -1.10

ES95% 1.02 0.98 0.98 1.11 0.98 1.04 1.12 1.10

Max 18.69 20.15 20.46 20.51 20.46 20.58 22.56 24.47

πrel 56.12 50.7 50.2 51.36 49.86 50.37 52.32 52.56

Table 3.10: Hedge performance measures under SVCJ simulation in the

bullish segment with the best and the worst in worst performing strategy.

-2 -1 0 1 2
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(a)
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Figure 3.6: Boxplot hedge performance comparison of πrel for T = 1 M

under (a) GARCH-KDE and (b) SVCJ market simulation. For illustrative

purposes πrel is truncated at q5% and q95%. The vertical axis portrays ∆BS

hedge results compared to the best performing strategy of a given hedge

model. The best performing strategy is selected for the minimal ES5%.

hedging_cc
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∆BS ∆BS MVSV ∆JD MVSV J MVSV CJ ∆V G ∆CGMY

Min -0.94 -0.94 -1.01 -1.07 -1.03 -1.1 -1.16 -1.18

ES5% -0.16 -0.16 -0.17 -0.19 -0.15 -0.15 -0.2 -0.2

ES95% 1.04 1.04 1.05 1.03 1.07 1.09 1.08 1.08

Max 1.77 1.77 1.81 1.8 1.91 1.86 1.8 1.81

πrel 25.44 25.44 25.52 25.97 25.78 26.01 26.8 26.87

Table 3.11: Hedge performance GARCH-KDE calm with the best and

worst performing strategy.

∆BS ∆ − ΓBS ∆ − VSV ∆ − ΓJD ∆ − VSV J ∆ − VSV CJ ∆ − ΓV G ∆ − ΓCGMY

Min -8.07 -4.45 -4.45 -5.07 -4.45 -4.46 -5.04 -6.24

ES5% -2.20 -1.01 -1.00 -1.01 -0.96 -1.01 -1.19 -1.14

ES95% 1.13 1.12 1.12 1.13 1.09 1.13 1.15 1.17

Max 8.81 8.86 8.88 12.07 8.88 9.69 8.73 9.95

πrel 67.72 43.78 43.66 44.58 42.29 44.34 48.69 48.24

Table 3.12: Hedge performance SVCJ textitcalm segment with the best

and worst performing strategy.
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Figure 3.7: Boxplot hedge performance comparison of πrel for T = 1 M

under (a) GARCH-KDE and (b) SVCJ market simulation. Under GARCH-

KDE, more complex hedge strategies lead to no significant performance

improvement. Ẑt is estimated from returns, that are correlated with St.

Enhancements from more complex hedges are visible under SVCJ generation,

where ∆ − VSV J is best-performing.

hedging_cc
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∆BS ∆BS MVSV ∆JD MVSV J MVSV CJ ∆V G ∆CGMY

Min -1.39 -1.39 -1.28 -1.38 -1.29 -1.23 -1.39 -1.39

ES5% -0.49 -0.49 -0.46 -0.55 -0.51 -0.39 -0.48 -0.48

ES95% 0.88 0.88 0.89 0.83 0.87 0.96 0.88 0.88

Max 1.37 1.37 1.39 1.33 1.38 1.54 1.44 1.43

πrel 30.21 30.21 29.52 30.3 30.08 30.78 29.62 29.56

Table 3.13: Hedge performance GARCH-KDE covid with the best and

worst performing strategy.

∆BS ∆ − ΓBS ∆ − VSV ∆ − ΓJD ∆ − ΓSV J ∆ − ΓSV CJ ∆ − ΓV G ∆ − ΓCGMY

Min -16.51 -10.93 -10.88 -14.36 -14.92 -29.05 -24.66 -17.07

ES5% -3.13 -1.64 -1.72 -1.76 -1.76 -1.84 -1.85 -1.75

ES95% 1.08 0.98 1.01 1.09 1.08 1.11 1.00 1.06

Max 7.74 8.92 7.00 21.48 14.13 20.24 11.11 11.54

πrel 88.09 56.03 57.62 60.19 60.53 63.85 61.3 58.33

Table 3.14: Hedge performance SVCJ covid with the best and worst

performing strategy.
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Figure 3.8: Boxplot hedge performance comparison of πrel for T = 1 M

under (a) GARCH-KDE and (b) SVCJ market simulation. For illustrative

purposes πrel is truncated at q5% and q95%. The vertical axis portrays ∆BS

hedge results compared to the best performing strategy of a given hedge

model. The best performing strategy is selected for the minimal ES5%. For

short-dated options, more complex hedge strategies lead to minor hedge

improvements.
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∆BS ∆ − ΓBS ∆ − VSV ∆ − ΓJD ∆ − VSV J ∆ − VSV CJ ∆ − ΓV G ∆ − ΓCGMY

Min -6.55 -6.36 -6.35 -6.32 -6.35 -6.34 -6.36 -6.37

ES5% -2.38 -1.99 -1.95 -1.96 -1.97 -1.95 -1.98 -1.99

ES95% 2.43 2.83 2.8 2.85 2.81 2.81 2.83 2.83

Max 11.46 11.73 11.74 11.76 11.00 11.73 11.72 11.71

πrel 101.91 101.76 100.30 101.77 101.02 100.72 101.75 101.75

Table 3.15: Hedge performance GARCH-KDE bullish with the best and

worst performing strategy.

∆BS ∆ − ΓBS ∆ − VSV ∆ − ΓJD ∆ − VSV J ∆ − VSV CJ ∆ − ΓV G ∆ − ΓCGMY

Min -14.67 -11.58 -11.57 -11.51 -11.55 -9.30 -11.6 -11.6

ES5% -1.10 -0.64 -0.63 -0.62 -0.63 -0.62 -0.63 -0.63

ES95% 0.84 0.64 0.62 0.66 0.62 0.64 0.65 0.65

Max 10.14 11.42 11.29 11.34 11.26 9.02 11.27 11.27

Hedge error 44.14 26.5 25.86 26.45 25.89 25.26 26.55 26.39

Table 3.16: Hedge performance SVCJ bullish with the best and worst

performing strategy.
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Figure 3.9: Boxplot hedge performance comparison of πrel for T = 3 M

under (a) GARCH-KDE and (b) SVCJ market simulation. For illustrative

purposes πrel is truncated at q5% and q95%. The vertical axis portrays ∆BS

hedge results compared to the best performing strategy of a given hedge

model. The best best performing strategy is selected for the minimal ES5%.

Noticeable enhancement through multiple instrument hedges is achieved

under SVCJ generation. hedging_cc
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∆BS ∆BS MVSV ∆JD MVSV J ∆SV CJ ∆V G ∆CGMY

Min -0.29 -0.29 -0.27 -0.28 -0.25 -0.25 -0.28 -0.28

ES5% 0.18 0.18 0.20 0.15 0.19 0.20 0.19 0.19

ES95% 0.76 0.76 0.76 0.73 0.77 0.75 0.75 0.75

Max 1.04 1.04 1.06 1.05 1.12 1.07 1.12 1.12

πrel 13.59 13.59 13.11 13.53 13.82 12.82 13.18 13.18

Table 3.17: Hedge performance GARCH-KDE calm with the best and

worst performing strategy.

∆BS ∆ − ΓBS ∆ − VSV ∆ − VJD ∆ − VSV J ∆ − VSV CJ ∆ − ΓV G ∆ − ΓCGMY

Min -12.63 -8.68 -12.75 -6.32 -7.79 -12.75 -12.73 -12.74

ES5% -1.56 -0.85 -0.71 -0.79 -0.78 -0.89 -0.96 -0.97

ES95% 0.88 0.82 0.69 0.77 0.79 0.88 0.89 0.90

Max 7.74 5.19 7.79 4.15 7.78 8.99 8.97 9.25

Hedge error 53.39 33.36 28.28 31.01 31.26 36.05 38.82 39.09

Table 3.18: Hedge performance SVCJ calm with the best and worst

performing strategy.
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Figure 3.10: Boxplot hedge performance comparison of πrel for T = 3 M

under (a) GARCH-KDE and (b) SVCJ market simulation. For illustrative

purposes πrel is truncated at q5% and q95%. The vertical axis portrays ∆BS

hedge results compared to the best performing strategy of a given hedge

model. The best best performing strategy is selected for the minimal ES5%.

Under GARCH-KDE simulation, differences for longer-dated options are small.

Noticable enhancement through multiple instrument hedges is achieved under

SVCJ generation with outstanding ∆ − V-hedging results. hedging_cc
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∆BS ∆ − ΓBS ∆ − VSV ∆ − ΓJD ∆ − ΓSV J ∆ − ΓSV CJ ∆ − ΓV G ∆ − ΓCGMY

Min -4.36 -2.69 -2.64 -2.64 -2.44 -2.58 -2.7 -2.71

ES5% -1.56 -0.8 -0.76 -0.77 -0.70 -0.78 -0.83 -0.84

ES95% 0.6 0.93 0.9 0.97 1.11 1.00 0.91 0.9

Max 3.88 3.33 3.32 4.52 4.57 4.45 4.49 4.55

πrel 50.06 34.48 33.09 34.57 40.02 37.4 34.63 34.67

Table 3.19: Hedge performance GARCH-KDE covid with the best and

worst performing strategy.

∆BS ∆ − ΓBS ∆ − VSV ∆ − ΓJD ∆ − ΓSV J ∆ − ΓSV CJ ∆ − ΓV G ∆ − ΓCGMY

Min -13.53 -7.89 -7.9 -14.3 -11.76 -11.75 -20.99 -11.72

ES5% -2.77 -1.18 -1.26 -1.34 -1.36 -1.39 -1.26 -1.25

ES95% 0.87 0.71 0.68 0.78 0.94 0.93 0.73 0.73

Max 13.48 10.78 10.77 13.60 13.66 13.6 13.67 13.65

Hedge error 88.42 38.24 39.34 43.95 48. 49.06 42.99 41.27

Table 3.20: Hedge performance SVCJ covid with the best and worst

performing strategy.

-2 -1 0 1 2

CGMY D.-Gamma

VG D.-Gamma

SVCJ D.-Gamma

SVJ D.-Gamma

Merton D.-Gamma

Heston D.-Vega

BS D.-Gamma

BS Delta

KDE_COVID_9804_90

(a)

-2 -1 0 1 2

CGMY D.-Gamma

VG D.-Gamma

SVCJ D.-Gamma

SVJ D.-Gamma

Merton D.-Gamma

Heston D.-Vega

BS D.-Gamma

BS Delta

SVCJ_COVID_9804_90

(b)

Figure 3.11: Boxplot hedge performance comparison of πrel for T = 3 M

under (a) GARCH-KDE and (b) SVCJ market simulation. For illustrative

purposes πrel is truncated at q5% and q95%. The vertical axis portrays ∆BS

hedge results compared to the best performing strategy of a given hedge

model. The best best performing strategy is selected for the minimal ES5%.

Multiple-hedge strategies lead to remarkable hedge performance improvement.
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4 Conclusion

We provide hedge results for hedging CC options in diverse market behavior segments

under differing market generation approaches. First, multiple-instrument hedging strategies

lead to considerable uncertainty and tail risk reduction. As short-dated options are less

sensitive to volatility or higher-order sensitivities, differences across strategies and model

choice are less pronounced. For longer-dated options, persistently good hedge results are

achieved for hedging with stochastic volatility models. The calibration results show low jump

intensities and point towards stochastic volatility. In conclusion, the hedge routine results

indicate that stochastic volatility is the main CC risk driver.
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A Appendix

A.1 Hedge routine

We illustrate the dynamic hedging routing on a single instrument self-financed hedging

strategy ξ and apply it analogously for all other hedging strategies considered in this study.

At time t = 0 and for B(0) = B0,i = 1 the value of the portfolio for the self-financed strategy ξ

is
V (0) = C (0, S(0)) = ξ(0)S(0) + {C (0, S(0)) − ξ(0)S(0)}B(0)

M(0) = C (0, S(0)) − ξ(0)S(0)
(18)

where B(t) is a risk-free asset and M(t) the money market account vector. The value of the

portfolio at time t > 0 is

M(t) =M(t − dt) + {ξ(t − dt) − ξ(t)} S(t)
B(t)

V (t) = ξ(t − dt)S(t) +M(t − dt)B(t − dt)erdt = ξ(t)S(t) + V (t) − ξ(t)S(t)
B(t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=M(t)

B(t) (19)

At maturity T , the final PnL distribution vector is

V (T ) = ξ(T − dt)S(t) +M(T − dt)B(t) (20)

A.2 Dynamic ∆−hedging

The option writer shorts the call C(t), longs the underlying S(t) and sends the remainder

to a money market account B(t) for which

dB(t) = rB(t)dt

At time t, the value of portfolio V (t) is

V (t) = −C(t) +∆(t)S(t) + {C(t) −∆(t)S(t)}
B(t) B(t) (21)

The changes evolve through

dV (t) = −dC(t) +∆(t)dS(t) + {C(t) −∆(t)S(t)} rdt (22)
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A.3 Dynamic ∆ − Γ−hedging

We will explain the ∆ − V hedge in detail. The ∆ − Γ- hedge is performed accordingly.

This strategy eliminates the sensitivity to changes in the underlying and changes in volatility.

The option writer shorts the call option C, takes the position ∆ in the asset and Λ in the

second contingent claim. At time t, the value of the portfolio is

V (t) = −C(t) +ΛC1(t) +∆S(t) (23)

with the change in the portfolio V (t)

dV (t) = ∆(t)dS + {C(t) −∆S(t) −ΛC2(t)} rdt − dC(t) +ΛdC2(t) (24)

That is
dV (t) = (C(S,V, t) −∆S(t) −ΛC2(S,V, t)) rdt

−
⎛
⎝
∂C

∂t
+ 1

2

∂2C

∂S2
V S2 + 1

2

∂2C

∂V 2

2

V + ∂2C

∂V ∂S
ρV S

⎞
⎠
dt

+Λ
⎛
⎝
∂C2

∂t
+ 1

2

∂2C2

∂S2
V S2 + 1

2

∂2C2

∂V 2

2

V + ∂2C2

∂V ∂S
ρV S

⎞
⎠
dt

+ (Λ
∂C2

∂S
− ∂C
∂S

+∆)dS + (Λ
∂C2

∂V
− ∂C
∂V

)dV

(25)

For the choice of
∆ = ∂C

∂S
−Λ

∂C2

∂S

Λ = ∂C/∂v
∂C2/∂v

the portfolio is ∆ − V hedged. Analogously, for the choice of

∆ = ∂C
∂S

−Λ
∂C2

∂S

Λ = ∂
2C

∂2S

this is a ∆ − Γ hedge. For comparison, these hedges are applied to all models in the class of

affine jump diffusion models.

A.4 Alternative representation of the VG process

The alternative representation of the VG process has the characteristic function

ϕVG(u;C,G,M) = ( GM

GM + (M −G)iu + u2
)
C

(26)
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where C,G,M > 0 with

C = 1/ν

G =
⎛
⎝

√
1

4
θ2ν2 + 1

2
σ2ν − 1

2
θν

⎞
⎠

−1

M =
⎛
⎝

√
1

4
θ2v2 + 1

2
σ2ν + 1

2
θν

⎞
⎠

−1

(27)

An increase in G increases the size of upward jumps, while an increase in M increases the size

of downward jumps. Accordingly, θ, M and G account for the skewness of the distribution. C

governs the Levy-measure by widening it with its increase and narrowing it with its decrease.

A.5 Garch estimation

Figure A.1: Estimated GARCH(1,1) volatility σ̂t during bullish market

behavior, calm period and stressed scenario. hedging_cc
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A.6 Parameter calibration plots
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Figure A.2: Daily calibrated jump intensity λJD, λSV J and λSV CJ segre-

gated chronologically by market segment. In all market segments, yearly

jump intensity is generally λ ≤ 2. hedging_cc
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Figure A.3: Daily calibrated volatility of volatility σvSV
, σvSV J

and σvSV CJ

plotted in chronological order by market segment. For illustrative purposes,

extremes are disregarded. Information on extremes is provided in Table A.2.

Regardless of the model choice, levels of σv are high. This provides strong

indication for stochastic volatility. hedging_cc
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Figure A.4: Daily calibrated correlation parameter ρSV , ρSV J and ρSV CJ

plotted in chronological order by market segment. For illustrative purposes,

extremes are disregarded. As generally ρ > 0, there is a strong indication for

an inverse leverage effect. hedging_cc
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Figure A.5: Daily calibration of σV G plotted against σBS . Both models

capture comparable volatility levels. hedging_cc
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Figure A.6: (a) Evolution of GCGMY and (b)MCGMY segregated by market

segment. High magnitudes for both parameter values are observed during the

bullish and stressed scenario. For illustrative purposes, extremes are excluded

from this graph. hedging_cc
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A.7 Tables

TTM a b ρ m σ penalty

0.01 0.17 0.10 0.00 0.00 1.00 24.53

0.03 0.003 0.01 0.15 0.01 0.17 0.00001

0.07 0.01 0.04 0.00 -0.01 0.08 0.000004

0.24 0.02 0.10 -0.11 -0.01 0.45 0.001

0.49 0.01 0.17 -0.02 0.04 0.77 0.002

0.74 0.14 0.09 0.00 0.01 0.93 0.03

0.01 0.001 0.05 -0.13 0.02 0.08 0.09

0.03 0.01 0.05 -0.39 0.01 0.16 0.01

0.07 0.01 0.10 -0.02 0.12 0.32 0.02

0.16 0.06 0.15 -0.50 -0.17 0.54 0.01

0.24 0.04 0.19 -0.27 -0.10 0.76 0.03

0.49 0.18 0.21 0.23 0.38 1.00 0.01

0.02 0.004 0.02 0.50 0.02 0.01 0.03

0.04 0.003 0.05 -0.07 -0.03 0.11 0.01

0.07 0.01 0.08 -0.09 -0.05 0.15 0.02

0.15 0.02 0.13 0.19 0.07 0.29 0.04

0.40 0.06 0.20 -0.15 -0.21 0.56 0.01

0.65 0.14 0.18 0.16 -0.12 0.88 0.02

Table A.1: Calibrated SVI parameters at the beginning of the bullish, calm

and stressed segment. hedging_cc
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SV SVJ SVCJ

µ̂ 0.82 0.78 0.87

σ̂ 0.32 0.33 0.35

min 0.00 0.00 0.00

q25 0.62 0.62 0.69

q50 0.84 0.81 0.92

q75 1.04 0.99 1.06

max 1.49 1.57 2.43

µ̂ 0.68 0.72 0.90

σ̂ 0.30 0.36 0.37

min 0.00 0.00 0.00

q25 0.50 0.56 0.70

q50 0.75 0.79 1.02

q75 0.90 0.95 1.19

max 1.43 1.40 1.44

µ̂ 0.56 0.72 0.84

σ̂ 0.49 0.66 0.45

min 0.00 0.00 0.00

q25 0.27 0.29 0.61

q50 0.50 0.73 0.88

q75 0.78 1.01 1.04

max 3.83 6.33 3.83

Table A.2: Summary statistics of σv for all 3 market segments and models.

hedging_cc
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A.8 RMSE
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Figure A.7: RMSE and mean-confidence intervals of the (a) BS, (b) JD

and (c) SV model. hedging_cc
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Figure A.8: RMSE and mean-confidence intervals of the (a) SVJ, (b) SVCJ,

(c) VG and (d) CGMY model. hedging_cc
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