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Abstract

The role of the patent system in the pharmaceutical sector is highly debated also due
to its strong public health implications. In this paper we develop an evolutionary,
agent-based model of the pharmaceutical industry to explore the impact of different
configurations of the patent system upon innovation and competition. The model is
able to replicate themain stylized facts of the drug industry as emergent properties. We
perform policy experiments to assess the impact of different IPR regimes changing the
breadth and length of patents. Results suggest that enlarging the extent and duration
of patents yields adverse effects in terms of innovation outcomes, as well as of market
competition and consumer welfare. Such general conclusions hold even if one takes
into account the possible positive effects on R&D intensity and information disclosure
triggered by patents.
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1 Introduction

In this paper we develop an evolutionary, agent-based model to study the role of patents
on innovation, technological diffusion and industry dynamics, with explicit reference to
the pharmaceutical sector.

The structure of the contemporary patent system led a large number of scholars to flag
its deep disfunctionalities (Jaffe and Lerner, 2004; Stiglitz, 2007; Bessen et al., 2008; Boldrin
et al., 2008; Cimoli et al., 2014). They concern both the effectiveness of patent rights in
promoting innovation and an increasing awareness of the large inefficiencies and social
costs imposed by extending the scope and stringency of protection (Heller and Eisenberg,
1998; Dosi et al., 2006; Baker et al., 2017). The ensuing policy debate on how to reform
patent systems yielded various proposals for a radical institutional restructuring (see e.g.
Dosi and Stiglitz, 2014; Baker et al., 2017; de Rassenfosse and Higham, 2021) or even the
complete abolishment of intellectual property rights (Boldrin and Levine, 2013).

The discussion about patents is particularly relevant in the pharmaceutical sector (Ors-
enigo et al., 2006; Coriat and Orsenigo, 2014) and has gained even further attention in
light of the current COVID-19 pandemics, which has again placed at the center of the pub-
lic debate the role of innovation, its appropriability for private firms and the worldwide
availability of vaccines during a health crises (Sampat and Shadlen, 2021; Dosi, 2021).

The discovery and development of new drugs is often depicted as a domain requiring
patent protection due to the high R&D costs and the purported relative ease of product
imitation (not surprisingly this view is supported especially by the industry itself, see e.g.
the latest takes by the PhRMA and EFPIA associations)1. Proponents of this view point
to the long, costly and highly uncertain search processes preceeding the discovery of new
drugs as motivations for strong patent protection. In this perspective, the patent system,
is essential in order to protect innovative firms from imitators that may enter the market
with relatively smaller investments (Scherer, 2010).

The actual uncertainty and costs associatedwith the discovery of newdrugs is of course
an empirical matter. What we know is that the numbers often flagged are vastly inflated
(Angell, 2005). Moreover, the pharmaceutical sector is also characterized by large public
funding of basic research (as well as on government subsidies) and, on the demand side, by
the key role of public demand stemming from national healthcare systems. In this respect,
patents make the public paying twice for medical innovations: first by financing research
and taking the risk in the early stage of product discovery2 and, second, via public procure-

1See for instance: https://innovation.org/about-us/commitment/innovation-fragility/world-ip-day-
intellectual-property-protections-spur-innovation;
https://www.efpia.eu/about-medicines/development-of-medicines/intellectual-property.

2For instance, Cleary et al. (2018) finds that in the period 2010-2016 all the New Chemical Entities (NCE)
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ment of drugs payed at monopolistic prices (Lazonick and Mazzucato, 2013; Mazzucato
et al., 2020). In fact, as discussed in Dosi (2021), there is a long-term decrease in private
R&D investment in basic science (Arora et al., 2018). Nowadays, most pharmaceutical firms
are likely to lack the basic internal knowledge in key areas such as vaccine development (so
among the newly approved chemical entities since 2000, less than 6% regarded antibiotics
or antivirals Walker, 2017).3

Thepatent system is alsoperversely affecting thedirectionof innovation towardsfinding
treatments for diseases that guarantee high returns in the short term, while neglectingmore
risky or less remunerative research investments (e.g. diseases affecting poor countries,
Lanjouw and Cockburn, 2001; Kremer, 2002; Orsenigo et al., 2006; Budish et al., 2015).4

Not too surprisingly, many studies based on firm surveys found that patents are con-
sidered by R&Dmanagers as an essential tool to reap the benefits of innovation (Mansfield
et al., 1981; Mansfield, 1986; Levin et al., 1987; Cohen et al., 2002). However, this is a totally
different issue from whether such monopolistic profits have been necessary conditions for
sustained rates of innovation. Historically, sustained rates of innovation occurred under
regimes of loose or non-existent IPR,with profits stemming from innovative lead times, and
complementary assets such as manufacturing capabilities (Coriat and Orsenigo, 2014; Dosi
et al., 2021). Indeed the secular history of the pharmaceutical industry shows that patent
protection was not necessary for the whole flow of major pharmaceutical innovations: see
the fascinating reconstruction in Sneader (2005). A striking example is represented by the
penicillin, which after being discovered in the UK, was industrialized in the US under the
guidance of the Federal Office of Scientific Research and Development, which retained all
patents (Best and Bradley, 2020; Gross and Sampat, 2021).

Dosi et al. (2021) report evidence on the long-term trends in patenting activities from
pharmaceutical firms, suggesting that patents act as legal barriers protecting intellectual
monopolies rather than being an incentive to innovative efforts. The foregoing account,
in our view, summarizes the first order role of IPR in terms of rates and directions of
innovative activities. One may also take a finer econometric look exploiting inter-country
or inter-temporal differences in IPRprotection and try to identify the effects of strengthening
(or relaxing) patent regimes on different dimensions of innovation: even at this level the
evidence remains hardly conclusive.5

approved by the Federal Drug Administration (FDA) received public funding, to different degrees, by the
National Institutes of Health (NIH).

3In fact, big pharma’s expenditure in basic R&D has been at low levels in the last decades (Light and
Lexchin, 2005).

4In a recent work, Budish et al. (2016) find that fixed patent duration may distort research investment
towards short-term projects in areas with shorter clinical trials and commercialization lags.

5Qian (2007) presents a cross-country study for countries that established patent laws for drugs during the
1978-2002 and finds no substantial effects upon domestic measures of innovation. Arora et al. (2008) use survey
data for the US manufacturing sector and mainly find positive profit and R&D premiums in pharmaceuticals
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From the viewpoint of theoretical modelling, to the best of our knowledge, there are no
models tailored to the pharmaceutical industry that extensively explore the role of patents,
with the partial exception of the pharma history-friendly model by Malerba and Orsenigo
(2002) and Garavaglia et al. (2013), modelling the aforementioned empirical evidence.6

In thiswork, we fill this gap by developing a novel agent-basedmodel of the drug indus-
try, in order to study the impact of different degrees of patent protection upon innovation
and sectoral performances. This is rooted in a long tradition of evolutionary simulation
models of firm dynamics (Silverberg et al., 1988; Dosi et al., 1995; Winter et al., 2000, 2003;
Dosi et al., 2016) and shares some similarities with history-friendly models (Malerba et al.,
1999, 2001; Landini et al., 2017; Landini and Malerba, 2017), particularly the ones already
mentioned on the pharmaceutical industry (Malerba and Orsenigo, 2002; Garavaglia et al.,
2013).7

The model embeds an artificial industry populated by firms that compete in different
submarkets corresponding to various therapeutic categories (e.g. analgesics, antibiotics).
Firms invest in R&D in order to develop new products and gain market shares. Innovation
may occur locally, in the form of quality improvements of the current drug submarket,
or may result in product diversification as firms branch into other existing submarkets.
Moreover, in rare cases, firm may discover a new submarket and enter in an unexplored
therapeutic category. Innovations are protected by patents that allow innovative companies
to exclude competitors from areas of the product space surrounding their newly discovered
drugs. The patent system is characterized by its breadth, which determines the extent of
the infringement area, and by its length, i.e. the duration of protection. The imitation
of products whose patents have expired is relatively easier thanks to the disclosure of
information promoted by the patent system.

The parameters of the model are chosen in line with the key observable variables. The
model in its baseline and in all its variants generates, as emergent properties, the broad
range of empirical regularities of the pharmaceutical industry (Bottazzi et al., 2001; Bottazzi
and Secchi, 2005; Scherer, 2010; Malerba and Orsenigo, 2015). More specifically, we are

associated to patented products. Williams (2013) and Sampat and Williams (2019) document negative effects
on follow-on innovations associated to patented products.

6Evolutionary models have investigated the effects of intellectual property rights in the context of either
complex product industries (Vallée and Yıldızoglu, 2007; Marengo et al., 2012) or in a science-based techno-
logical regime (Winter, 1993). They find adverse effects on innovation, product quality and consumer welfare
associated to patents. Here we cannot discuss at any length the relationships between the evolutionary model
of this paper and those of the "equilibrium" genre, which in fact postulate a positive relations, possibly of a
non-linear form, between patent protection and innovation (cf. Fudenberg et al., 1983; Acemoglu and Akcigit,
2012; Aghion et al., 2015, among quite a few others).

7Differently from history-friendly models, our work is not focused on matching broad historical trends.
Also, they have not been adopted to study the role of patents. Our strategy, instead, is to calibrate the model
in order to replicate current statistical regularities of the industry and, then, to run counterfactual policy
experiments imposing different patent regimes.
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able to replicate a set of stylized facts including: (i) the increasing size of the industry
and an increasing product variety; (ii) ubiquitous heterogeneity along various dimensions;
(iii) the emergence of an "oligopolistic core" of leading firms; (iv) right-skewed firm size
distributions; (iv) tent-shaped growth rates densities; (v) serial correlation in firm growth
rates; (vi) positive relation between firm size and the number of active submarkets.

On the grounds of our empirically validated baseline, we then run different policy ex-
periments allowing for various degrees of patent breadth and length to study their impact
on innovation and industry dynamics. Our results suggest that a more stringent patent
regime hampers innovation (i.e. higher number of blocked innovations and an overall
decrease in product variety), while it increases market concentration and prices. In a
nutshell, the model shows that strengthening the patent system restricts the exploration
of technological opportunities and leads to a substantial fall in innovation rates and new
drug discoveries. As second-order effects, tighter intellectual property rights favour the
emergence of monopolistic firms dominating different submarkets with associated wel-
fare losses for consumers. Finally, such negative impacts of patents hold also when we
strengthen their possible positive effects on R&D intensity and information disclosure.
Conversely, weaker IPRs can thus foster innovation, drug discoveries and competition in
the pharmaceutical industry.

The remainder of the paper is organized as follows. In Section 2 we present the model.
Results are reported and discussed in Section 3. Finally, Section 4 concludes.

2 The model

Themodel includes# firms (indexed by 8) located in different parallel submarkets (indexed
by 9), each representing a different therapeutic area, along which they compete via the
discovery and development of new products.8 Submarkets emerge endogenously as a
result of innovation activities and are modelled as bi-dimensional, open-ended product
lattices with coordinates G and H being two discrete measures of product quality. Thus, a
given product in the submarket 9, produced by firm 8, at time C can be described by the
pair: G 9

8 ,C
, H

9

8 ,C
. At any point in time, firms are fully characterized by: (i) the location of

their products in the product space (at maximum one product per submarket); (ii) R&D
investments; (iii) prices; (iv) market demand and total sales.

The model features a patent system that guarantees innovative firms the right to ex-
clude competitors from the area in the neighborhood of the newly discovered product.

8In the empirical literature, therapeutic markets are identified using different classification systems. They
may based on clinical symptoms or on the combination between the organ on which drugs act and/or their
therapeutic and chemical characteristics (Pammolli et al., 2011).
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Patented products, after the expiration of patent rights, can be easily imitated as a result of
information disclosure effects. Via both mechanisms, the patent system feeds back to the
innovation process, affecting both its rate and direction, as well as the dynamics of market
power and competition.

In the next sections we provide a detailed description of the model by presenting the
sequence of events as well as the rules and equations regulating firm behaviour andmarket
selection.

2.1 Timeline of events

Within each time step events proceed as follows:

1. Firms set their R&D expenditures and allocate them to different types of search
activities following adaptive behaviours.

2. The innovation process takes place. Firms may: (i) discover new products (or copy
existing ones) in a submarketwhere they are already active; (ii) branch into an existing
submarket where they are not yet operating; (iii) discover a new submarket.

3. Intellectual property rights are at work: firms that moved into areas protected by a
patent are forced to stick to their old products. Instead, if there is no violation, firms
are allowed to patent the newly discovered product.

4. Market competition opens: firms set prices and sell their products. At the end
of this process, firm-specific sales are computed in each submarket and profits are
determined.

5. Entry and exit start: firms exit from submarkets when market shares are below a
minimum threshold. A firm dies when leaving all the submarkets. Entrants replace
dying firms.

2.2 R&D and innovation

Firms are assumed to invest a constant share (B'�) of their past sales in R&D:9

'�8 ,C = B
'� B0;4B8 ,C−1 , (1)

9The assumption of invariant R&D shares is common to several evolutionarymodels (see e.g. Chiaromonte
and Dosi, 1993; Dosi et al., 2010) and is corroborated by an ample empirical evidence (see among many others
Mansfield, 1968; Freeman, 1982, and the general discussion in Kay, 1979). Past sales of course correlate with
market size, profits and, generally, cash flows. On firms’ R&D decisions in the pharmaceutical sector see also
Grabowski and Vernon (2000); Arora et al. (2009) and Dubois et al. (2015). We set the R&D share to 10% in
line with the empirical data (see Section 3). In Section 3.3.1, we present policy experiments allowing firms to
adjust their shares in response to incentives provided by the patent system.
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where B'� ∈ (0, 1). Firms perform three different search activities that broadly reflect the
types of discoveries made by pharmaceutical companies: (A) they invest to improve the
quality of their products, for instance, in order to achieve better therapeutic efficacy of
their currently produced drugs; (B) they strive to branch into existing submarkets where
they are not yet operating, i.e. they try to differentiate their portfolio of products towards
different therapeutic areas; (C) finally, a share of research efforts is devoted to the discovery
of new drugs for unmet therapeutic needs, resulting in the emergence of a totally new
submarket. Accordingly, firms split their total R&D expenditure along these three search
activities (labelled using letters �, � and �):

'��
8,C = B

�'�8 ,C , (2)

'��
8,C = B

�'�8 ,C , (3)

'��
8,C = (1 − B

� − B�)'�8 ,C , (4)

where B� , B� ∈ [0, 1] and (B� + B�) ≤ 1.
We model innovation as a two-step stochastic process. At each time period, a Bernoulli

draw determines whether the firm is successful in one or more innovation activities. This
step accounts for the inherent uncertainty encountered in the discovery and development
of new drugs during both the pre-clinical and clinical phases. For instance, innovation
failures may result either from lack of success in isolating chemical molecules in laboratory
or from non-favourable evidence during clinical trials (Scherer, 2010).10 Hence, the prob-
ability of being successful in introducing a new product is positively influenced by R&D
expenditures:

?�8,C = ?<0G
�(1 − 4−�

�'��
8,C ), (5)

?�8,C = ?<0G
�(1 − 4−�

�'��
8,C ), (6)

?�8,C = ?<0G
�(1 − 4−�

�'��
8,C ), (7)

with ?<0G�, ?<0G�, ?<0G� ∈ (0, 1) and ��, ��, �� > 0. The exponential parameters (��,
��, ��) account for industry-wide factors that positively affect innovation probabilities.
They shall be interpreted as proxies of the quality of the innovation system underlying
each type of innovation. Most importantly, these include public funding of basic science as
well as other direct and indirect forms of government support which fundamentally shape
firms’ search capabilities and innovation success in the pharmaceutical industry.11

10DiMasi et al. (2003) document attrition rates in clinical trials respectively of 29% for Phase I, 56% for Phase
II and 31% for Phase III. Pammolli et al. (2011) find increasing attrition rates over time across both pre-clinical
and clinical phases for the period 1990-2004.

11In this version of the model we restrain from directly introducing the government sector. Therefore, the
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Structural degrees of uncertainty associated to different innovation activities impose
different upper bounds ?<0G to each type of innovation. For instance, there is much more
uncertainty involved in the discovery of drugs for untreated diseases (i.e. resulting in the
emergence of new submarkets) than in achieving incremental quality enhancement in an
already existing therapeutic area. For this reason, we assume that: ?<0G� ≥ ?<0G� >

?<0G� . Here firms are also assumed to invest less in more uncertain research activities,
that is: B� ≥ B� > B� . An obvious extension of the model would involve the differentiation
across types of firms, e.g. "radical explorers" vs. "imitators" and study the evolution of
such an ecology of firms. And another one would be the formal account of the falling
propensity of pharmaceutical firms to invest in uncertain radical search revealed by the
evidence discussed above. We leave it to future refinements.

If a firm is successful in the first step, it will introduce a new product in the market. The
second step of the innovation process determines the characteristics of the drugs, that is, the
submarket (therapeutic field) and its coordinates in the product space (quality). In actual
fact, this second stage ought to capture also the complex and partially random process of
molecular screening that lies behind the discovery of new drugs and the determination of
their therapeutic use and efficacy (Scherer, 2010).

Let us now discuss the second step of the process for each type of innovation.
Quality improvements within submarket (type A). The innovative firm will achieve quality

enhancements in a given submarket either by developing newdrugs or by imitating higher-
quality products from competitors. First, it will randomly pick with uniform probability
one of the submarkets where it already operates (let us label the selected submarket with
9∗). Thus, the drug produced by the firm in that specific submarket at C − 1 is characterized
by the coordinates: G 9

∗

8 ,C−1 , H
9∗

8 ,C−1. Define the � as the set of existing goods (with higher
overall quality) produced by competitors at C − 1 in 9∗. Also, define ( as a search area in a
neighborhood of G 9

∗

8 ,C−1 , H
9∗

8 ,C−1, where:

( = {(0, 1) | 0 + 1 > G
9∗

8 ,C−1 + H
9∗

8 ,C−1; 0 + 1 ≤ G 9
∗

8 ,C−1 + H
9∗

8 ,C−1 + :
9∗

8 ,C−1}. (8)

The innovative firm will draw a new product belonging to the space � ∪ (. Intuitively, the
firm may explore a search area in a neighborhood of its product or may copy one of the
existing products from competitors with higher quality.12

The extent of the search area is regulated by the firm-specific variable : which evolves

role of public universities, research labs and other public policies (other than the patent system) is accounted
by the exogenous parameters. We leave for future extensions the explicit modelling of public actors, as well as
the analysis of different government interventions.

12Similar search rules have been introduced in other evolutionary models of innovation (see e.g. Fagiolo
and Dosi, 2003; Silverberg and Verspagen, 2005).
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according to:

:
9∗

8 ,C−1 =
:̂

1 − 4−�: (G
9∗
8 ,C−1+H

9∗
8 ,C−1)

, (9)

with :̂, �: > 0. The intuition is that the scope for larger quality improvements decreases for
firms that are close to the frontier, that is, the higher are G and H the lower is the extent of
the local search area explored by the firm. The parameter :̂ regulates the dimension of the
area as a proxy of technological opportunity for firms at the frontier, while �: influences
the speed at which opportunities are exhausted as the frontier is approached (as such, both
parameters can be seen as being affected by the pre-existing advances in basic science, for
which public research plays a dominant role).

Finally, the draw of the new product in � ∪ ( is modelled with a transition probability
matrix. The probability to discover a product with coordinates (0, 1) in � ∪ ( is defined as:

%A>1(0, 1) = 3(0, 1)∑
(ℎ,6)∈�∪( 3(ℎ, 6)

,

where: 3(ℎ, 6) =
1 + �14G?8A43?0C(ℎ, 6)

1 + �0(ℎ + 6 − G 9
∗

8 ,C−1 − H
9∗

8 ,C−1)
,

(10)

where �0 , �1 ≥ 0 and 4G?8A43?0C(ℎ, 6) is an indicator function being 1 if there is an expired
patent associated to the product (ℎ, 6).

Therefore, the probability associated to a potential new product inversely depends on
its distance from the current product, that is, achieving radical quality jumps in a submarket
is harder than introducing incremental enhancements. At the same time, products that
have been patented and whose patent has already expired are more likely to be copied as
a result of information disclosure effects, thus, accounting for the arrival of generic drugs.

If the foregoing process is successful, that is if the new drug is "better" than the previous
one, the firm updates its coordinates in submarket 9∗ and replaces its old product.

Penetrating into other existing submarkets (type B). Firms might also enter in an existing
submarket with a new drug and thus to diversify their product portfolio. Define � as
the number of existing submarkets at C − 1. Then, for the would-be innovative firm, the
probability of entering in submarket 0 ∈ [1, �] is defined as:

%A>1(0) = 3(0)∑
1∈[1,�] 3(1)

,

where: 3(1) =


1 +Ψ#4G(1) if the firm is not already present in 1

0, otherwise ,

(11)
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whereΨ ≥ 0 and #4G(1) is the number of products in 1 with an expired patent associated.
Hence, there is higher likelihood to enter submarkets that have a large number of prod-

ucts with expired patents, again, reflecting disclosure effects (mediated by the parameter
Ψ). Finally, after picking the new submarket (let us label it with 9#�, ), the firmwill simply
randomly draw a point in the space spanned by [1, - 9#�,

C−1 ] and [1, .
9#�,

C−1 ], where - 9#�,

C−1 and
.
9#�,

C−1 represent the quality frontiers in submarket 9#�, at time C−1. The new product will
be added to the set of products of the firm.

Discovery of new submarkets (type C). The innovation is radical and the firm will open
a new submarket. This corresponds to a scenario where a firm finds a new drug in an
unexplored therapeutic area. Define � as the number of existing submarkets at C − 1, then
the firmwill open the new bi-dimensional space �+1. The initial product in this submarket
will be randomly drawn in the area spanned by [1, -8=8C] and [1, .8=8C], where -8=8C
and .8=8C characterize the initial dimension of each new submarket. The innovative firm
will be the first mover and add the new product to its portfolio. In subsequent periods,
second-movers will be allowed to join the new submarket (via branching, i.e. innovation
type B).

2.3 The patent system

Patents grant the right to exclude competitors from moving into a neighboring area of the
patented product. Given product coordinates G 9 and H 9 , the area of violation is defined as:

+ = {(0, 1) | G 9 − %0C1A < 0 < G 9 + %0C1A; H 9 − %0C1A < 1 < H 9 + %0C1A}, (12)

where %0C1A is a policy parameter which regulates the extent of the area, accounting for
the breadth of the patent system. The length of patent rights is determined by the %0C;4=
parameter which in our baseline scenario is set to 20 time steps, in line with the observed
duration of patents. A newly discovered product is patented only if it does not infringe
an existing patent. If, instead, it falls into a "forbidden" area, the innovating firm is not
allowed to start its production and it is forced to stick to its old product.13 Once a patent
is granted, the patenting firm keeps its exclusion rights until the patent expires. While
products whose patent has expired cannot be patented again, we allow for the possibility
of "me-too" patenting in their neighboring area (DiMasi and Faden, 2011).

13In this version of the model we avoid introducing litigation costs. Insofar as they imply a net welfare loss,
our results will provide a conservative assessment (downward-biased) of the impact of patents.
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2.4 Pricing and market dynamics

Firms set the prices for their products according to markup rules. In each submarket, the
price charged is given by:

?
9

8 ,C
= (1 + < 9

8 ,C
)D2, (13)

where D2 are unit production costs (supposed to be exogenous for simplicity) and< is a
submarket- and firm-specific markup.14 This implies that firms face identical and invariant
unit costs as we do not model process innovation.

When a firm enters in a new submarket, the initial markup is drawn from a uniform
distribution defined over [<<8= , <̂], which also might reflect firms’ earlier fixed R&D costs.
Markups are updated at any time step according to the dynamics of market power. More
specifically, we assume a discontinuous adjustment in the form:

<
9

8 ,C
=


<8={< 9

8 ,C−1 + E
9

8 ,C
; <<0G}, for 6(B0;4B)9

8 ,C−1 ≥ �

<
9

8 ,C−1 , for � < 6(B0;4B)9
8 ,C−1 < �

<0G{< 9

8 ,C−1 − E
9

8 ,C−1; <<8=}, for 6(B0;4B)9
8 ,C−1 ≤ �,

(14)

where: � > 0; � < � and <<0G > <<8= > 0. The parameters <<0G and <<8= impose
respectively upper and lower bounds on markups. In particular, the parameter <<0G

might also be influenced by price regulation by public authorities, wherever price controls
are adopted (notably not in the USA). The term 6(B0;4B) stands for the growth rates of
sales experienced by the firm in submarket 9, while � and � represent thresholds above (or
below) which the firm will adjust its markup and E is the (stochastic) adjustment from a
uniform distribution with support [E<8= , E<0G]. Intuitively, markup adjustments occur as a
response to sufficiently large variations in market shares, as proxied by past sales growth.15

Total demand in each submarket (� 9) evolves according to a logistic function of time
(starting from the time of first discovery of the submarket):16

� 9 =
�<0G

1 + 4−��(C−C
9

0)
, (15)

with�<0G , �� > 0. The term C
9

0 stands for the timewhen the submarketwas first discovered,

14As a simplifying assumption, we normalize D2 to 1.
15Our markup adjustment rule intends to catch the intuition that firms enjoying market power tend to

increase prices, "as much as the buyer can take" (Orsenigo et al., 2006). Since we do not observe in the data the
parameters in Equation 14, we calibrate them in order to match median firm profitability observed in the EU
R&D Investment Scoreboard Top 100 pharmaceutical companies, 2016-2019.

16As the pharmaceutical sector is characterized by demand elasticities across therapeutic areas close to zero
(Orsenigo et al., 2006), separating demand across submarkets is a relatively mild assumption.
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�<0G is the maximum level of demand and �� accounts for the speed of saturation.17
Total demand is allocated to individual firms via a process of market selection. More

specifically, we use a quasi-replicator dynamics to determine firms market shares ( 5 ) ac-
cording to their competitiveness (or fitness, 5 8C), defined as:18

5 8C
9

8 ,C
= I(G 9

8 ,C
+ H 9

8 ,C
) + (1 − I)1/? 9

8 ,C
. (16)

Thus, in each submarket 9, product fitness is measured as a weighted average of overall
quality and the inverse of price, where I ∈ [0, 1] defines their relative weights.19 Then,
market shares are computed as:

5
9

8 ,C
= 5

9

8 ,C−1(1 + �
5 8C

9

8 ,C
− ¯5 8C 9C
¯5 8C 9C

), (17)

with � > 0. The variable ¯5 8C represents the weighted average fitness in submarket 9
while the parameter � accounts for the strength of competition and market selection.20 In
economic terms, the quasi-replicator equation implies that firms that are more efficient
than the average (i.e. those producing high-quality drugs and charging low prices) will
expand relatively to their competitors in the same submarket. When a firm discovers a
new submarket its initial market share is set to one, while, as a firm enters in an existing
submarket, it starts with a near-zero market share ( 5 <8=).

Firms total sales are then computed aggregating sales from each product:

B0;4B8 ,C =
∑
9∈%8 ,C

5
9

8 ,C
�
9

C , (18)

where % is the set of submarkets where firm 8 operates at time C. Accordingly, total net
profits are computed subtracting R&D costs ('�) and production costs (&8 ,CD2) from total
sales:

Π8 ,C = B0;4B8 ,C − '�8 ,C −&8 ,CD2, (19)

17For simplicity, we assume that �<0G and �� are uniform across submarkets, that is, demand dynamics
is identical in different therapeutic fields. In future versions of the model we plan to allow for heterogeneous
demand trajectories and study possible interactions with patent regimes.

18For an in-depth presentation of replicator dynamics of this type see Dosi et al. (1995) andDosi et al. (2016).
19It is widely recognized that price competition has a limited role in the Pharmaceutical industry while

product innovation remains the dominant driver of market success (Orsenigo et al., 2006). For this reason,
we set the parameter I to 0.8 in our baseline parametrization, attributing larger relevance to product quality
vis-à-vis prices.

20Specifically, the variable ¯5 8C is computed as: ¯5 8C 9C =
∑
8∈�9 ,C 5 8C

9

8 ,C
5
9

8 ,C−1, where �9 ,C is the set of firms
competing in submarket 9 at time C.
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where &8 ,C stands for production volumes by firm 8 at time C.21

2.5 Entry and Exit

At the end of each time step, firms abandon less profitable submarkets. Specifically, we
assume that they leave a submarketwhen theirmarket share is below aminimum threshold
( 5 <8=). When a firm exits from all the submarkets it is considered dead and replaced by
an entrant, thus keeping fixed the total number of firms. Entrants first randomly draw a
submarket and then pick their initial location in the product landscape by adding a discrete
uniform shock (with support: [�, $]) to the weighted averages of incumbents’ G and H.22

The patent system also feeds back to the process of entry and exit. If the product
introduced by entrant falls into the area protected by a patent (cf. Eq. 12), the firm cannot
start production and is forced to leave the market, i.e. it is replaced by another entrant in
the next step.

3 Results

As typical with evolutionary agent-based models, there are no closed-form analytical solu-
tions, and the results are analyzed by means of Monte Carlo simulations (50 runs), in order
to average out the effects of different realizations of random shocks (Fagiolo et al., 2019).
We initialize the model with 100 identical firms randomly located in a single submarket.
We simulate the model for 300 time steps and always discard the first 100 observations to
potentially remove the transient phase of the model.

Model parameters are calibrated, whenever possible, using empirical data. In partic-
ular, as already mentioned in Section 2, the R&D investment share parameter, B'� , is set
equal to 10%, in line with top 100 pharmaceutical companies median R&D intensity in the
EU Industrial R&D Investment Scoreboard (years 2016-2019). Furthermore, patent length
(%0C;4=) is set equal to 20 periods from filing date, in line with European and US patent
law (we assume that each time step correspond to a year). As reliable data on markups are
lacking, we impose values for parameters in the markup adjustment rule (<<0G , <<8= , �,
�) in order to obtain a median profitability of 14% consistent with that observed for top 100
pharmaceutical companies in the EU Industrial R&D Investment Scoreboard. Moreover,
data from the Business Enterprise Research and Development Survey run by US National
Science Foundation show that pharmaceutical firms devote a much lower share of their

21Production volumes are simply computed as: &8 ,C =
∑
9∈%8 ,C

B0;4B
9

8 ,C

?
9

8 ,C

.

22The initial market share of the entrant is 5 <8= and the initial markup charged on its product is draw from
an uniform distribution with support [<<8= , <̂].
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Figure 1: Baseline run: time series of main industry-level variables
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total R&D to basic research, as compared to applied research and development. Although
we cannot directly calibrate these shares due to the lack of an explicit modeling of the devel-
opment phase in our framework, we tried to embed this information by simply assuming a
relatively lower share of innovation activities allocated to the investigation of undiscovered
therapeutic areas (B�). Finally, a higher relative weight, I = 0.8, is given to quality, with
respect to price, in the definition of firms’ fitness. This is in line with evidence suggesting a
low demand elasticity with respect to price changes in the pharmaceutical sector (Orsenigo
et al., 2006). The baseline parametrization is reported in Table A.1.

In the next sections, we assess how the model fares in a typical simulation, considering
the emergent results for a baseline run (see Section, 3.1). We then empirically validate the
model (cf. Section 3.2), i.e. we investigate its ability to reproduce empirical regularities.
Finally, we perform an ensemble of policy experiments regarding the patent system (see
Section 3.3).

3.1 Emergent results for a baseline run

Let us start by presenting results for a baseline run of the model. Figure 1 shows the
dynamics of some industry-level variables. Consistently with the historical evidence (Bot-
tazzi et al., 2001; Scherer, 2010; Malerba and Orsenigo, 2015), the model generates growth
in total sales and R&D spending as a result of new demand opportunities arising from
the discovery of new submarkets. The total variety of products available to consumers
also increases over time as the industry grows. Moreover, profitability and prices display
medium-run fluctuations reflecting shakeouts in the market driven by the emergence of
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Figure 2: Baseline run: firms’ position and size in a single submarket
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Notes: The figure shows firms’ position in the product space and size at three different time steps in submarket
1. Bigger dots represent firms characterized by larger size.

submarkets, as well as by the entry of new firms in product areas previously protected by
patents.

The regular patterns at the industry-level mask the continuous processes of learning
and selection at the microeconomic level, wherein firms try to develop new drugs in order
to increase their product portfolios and gain market share in different markets. Such an
ongoing process of differentiation leads to the emergence of a core group of leader firms.
Within a single submarket, as depicted in Figure 2, firms spread over time along the product
space and move sequentially to products with higher quality as a result of their innovation
activities. Figure 3, instead, shows the dynamics ofmarket shares in each submarket and for
the industry as a whole. Firms that move to new submarkets enjoy a first-mover advantage
and become leaders in the new therapeutic areas, until, eventually, the entry of competitors
overturns their leadership.

Finally, we report some evidence on how patents affect innovation and technological
diffusion in Figure 4, which describes the evolution of the areas protected by patents in a
single submarket as well as the products whose patent has expired. As firms introduce and
patent newdrugs, some areas (in red) of the product spacewill become inaccessible to other
firms. The dimension of the protected areas is entirely dependent on the breadth of the
patent system which, therefore, shapes both the rate and direction of product innovation.
Nevertheless, as patents expire (green points in the space), the underlying products can be
easily imitated, thus, favouring innovation diffusion.
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Figure 3: Baseline run: dynamics of market shares in each submarket and in the global
industry
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Figure 4: Baseline run: patterns of patent protection in a single submarket
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Notes: The figure shows the evolution at three different time steps in submarket 1 of the areas protected by the
patent system (in red), as well as of the products with expired patents (in green). Areas in grey represent free
and discovered points of the product space.

3.2 Empirical regularities of the pharmaceutical industry

Let us now explore in more detail the performance of the model in reproducing the empir-
ical regularities that characterize the pharmaceutical industry (as documented in Bottazzi
et al., 2001; Bottazzi and Secchi, 2005; Scherer, 2010; Malerba and Orsenigo, 2015). This is
akin to validating the model, following a well-established procedure in the ABM literature
(Windrum et al., 2007).23 The snapshot of the results provided by Table 1 shows that the
model appears to be successful in replicating a relatively large set of stylized facts.

Table 2 reportsMonte Carlo averages for a group of industry-wide variables. As already
mentioned, the size of the industry sales and R&D spending, as well as the total number of
products grow endogenously over time as a result of firms innovation activities (Scherer,
2010; Malerba and Orsenigo, 2015). At the same time, consistently with the historical
evidence (Malerba and Orsenigo, 2015), the model generates the emergence of a relatively
stable "oligopolistic core" of large firms (cf. Figure 3 for a baseline run, and Table 2 for the
MC average market concentration).

Heterogeneity is an emergent outcomeof themodel as firmsdiffer in terms of the quality
and number of their products, as well as the prices they charge (Malerba and Orsenigo,
2015; Coad, 2019). In turn, this ultimately drives also large differences in size, profits and
innovativeness, as visible in Figure 5 for a typical run.

We also check whether our model replicates the real-world distributional properties of
firm size and growth rates. Figure 6 shows that the rank-size plot for the distribution of

23For recent works in the fields of validation and calibration of ABMs see e.g. Lamperti (2018) and Guerini
and Moneta (2017). A survey of the literature is provided by Fagiolo et al. (2019).
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Table 1: Summary of stylized facts replicated by the model

Stylized fact Related literature

SF 1 Increasing industry size, R&D and product variety Scherer (2010); Malerba and Orsenigo (2015)
SF 2 Emergent firm heterogeneity Scherer (2010); Malerba and Orsenigo (2015)
SF 3 Emergence of an "ologipolistic core" of leaders Scherer (2010); Malerba and Orsenigo (2015)
SF 4 Right-skewed distributions of firm size Bottazzi et al. (2001); Bottazzi and Secchi (2005)
SF 5 Fat-tailed distributions of firm growth rates Bottazzi et al. (2001); Bottazzi and Secchi (2005)
SF 6 Serial correlation in firm growth rates Bottazzi et al. (2001); Bottazzi and Secchi (2005)
SF 7 Positive relation between firm size and diversification Bottazzi et al. (2001); Bottazzi and Secchi (2005)

Table 2: Monte Carlo summary statistics for the baseline scenario: industry-level variables.

Number of
submarkets

Share of within-submarket
innovations blocked

Share of jumps
across submarkets blocked

Number of
non-blocked products

22.4 0.44 0.32 1700
(1.45) (0.0068) (0.0039) (98.79)

Mark-up
(average)

Profitability
(median)

Market concentration
(average HHI)

Yearly industry
sales growth

0.29 0.14 0.24 0.01
(0.0088) (0.0029) (0.0283) (0.0003)

Notes: The Table reportsMonte Carlo averages and standard errors (in brackets) of industry-level variables for our baseline
scenario. Variables are respectively: (i) the number of submarkets discovered; (ii) the share of innovations (typeA) blocked;
(iii) the share of innovations (type B) blocked; (iv) the total number of products (non-blocked) discovered; (v) the average
markup, weighted by market shares; (vi) median profitability; (vii) tmarket concentration (average Herfindal index); (viii)
the yearly average growth of industry sales.

Figure 5: Baseline run: heterogeneity over time
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Notes: The figure shows the evolution over time of emergent heterogeneity among firms, captured by the
variance within each time step, for different indicators.
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Figure 6: Size and growth rates distributions

Notes: The figure shows simulated distributions of firm size (panel A) and growth rates (panel B) obtained
pooling mean-normalized data from 50 Monte Carlo runs.

Table 3: Growth rates autocorrelation estimates

AR(1) AR(2) AR(3)

0.336∗ 0.214∗ 0.078
(p=0.067) (p=0.054) (p=0.134)

0.399∗∗ 0.378∗∗
(p=0.014) (p=0.014)

0.274∗∗
(p=0.013)

Notes: The table reports average Monte Carlo
coefficients and p-values from the estimation
of AR models for firm sales growth rates.
Specifically, we estimate the pooledOLSmodel
consistently with Bottazzi and Secchi (2005):
68 ,C =

∑!
;=1 ); 68 ,C−; + &8 ,C . We allow for up to

three lags (! = 3).
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 7: Firm size and diversification

Notes: The figure plots in a log-log scale the average firm size versus the number of active submarkets (i.e.
those where firms operate).

firm size reveals a right skewed shape where few large firms coexist with several smaller
businesses, consistently with previous findings in the empirical literature (Bottazzi et al.,
2001; Bottazzi and Secchi, 2005; Dosi, 2007).24 The distribution of firms growth rates
displays the typical Laplacian shape, widely observed in empirical data, suggesting that
firm growth is a relatively lumpy process driven by rare large events. At the same time,
in tune with the empirical evidence (Bottazzi et al., 2001; Bottazzi and Secchi, 2005; Dosi,
2007), growth rates appear to be serially correlated (cf. Table 3) suggesting the presence of
self-reinforcing patterns in growth dynamics.

Finally, we investigate the patterns of diversification in relation to firm size. Various
empirical studies documented a positive and log-linear relation between firm size and the
number of submarkets where the firm operates (Bottazzi et al., 2001; Bottazzi and Secchi,
2005). Our model is able to replicate this evidence, as highlighted in Figure 7, which plots
the average log of firm size versus the log number of active submarkets. Indeed, large firms
are more likely to diversify in new therapeutic areas compared to smaller competitors,
according to a sort of branching process whereby the existing knowledge bases lead the

24In investigating the size distribution we use the following normalization to remove time trends from
the data (Bottazzi et al., 2001): B8 ,C =

B0;4B8 ,C
1
#

∑#
8=1 B0;4B8 ,C

. Accordingly, firm growth rates are computed as: 68 ,C =

log B8 ,C − log B8 ,C−1.
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discovery of contiguous fields of application.
Taken together, the validation results show that our model is able to match a broad set

of stylized facts both generic and specific to the pharmaceutical industry, thus providing an
empirically validated setting which allows us to use the model as a "laboratory for policy
experiments" on the role of patents in the pharmaceutical industry. This is the object of
analysis in the next section.

3.3 Patents, innovation and market competition

The central policy question of our work is how the patent system affects innovation and
competition in the pharmaceutical industry. We tackle this issue by running a set of policy
experiments variating over our baseline scenario. We shock at C = 100 the two main
parameters that regulate the appropriability conditions guaranteed by the patent system:
%0C1A and %0C;4=. The former affects the extent of patent protection in each submarket’s
product space, while the latter influences its duration.

Figure 8 shows the effects of changing the breadth of the patent system on different
industry outcomes using boxplots of Monte Carlo distributions. To further investigate
statistical significance, Monte Carlo averages and the associated standard errors are also
reported in Table B.1.

First, increasing the extent of patents reduces exploitable technological opportunities
and has a negative impact on innovation within submarkets (innovation type A) and on
firm diversification (innovation type B), as measured by the share of blocked products out
of the total of products introduced. Intuitively, the broader is the area protected, the higher
will be the probability to incur in IPR violations and have your product blocked by the
patent system. In a similar fashion, increasing breadth also grants stronger protection to
incumbents (especially to market leaders) and entails less innovation from entrants (i.e. a
higher share of blocked products for entrants). Interestingly, we find that the reduction in
technological opportunities associated to a larger extent of patents also (mildly) hampers the
discovery of new submarkets (innovation type C), thus, posing obstacles to the emergence
of new drugs for therapeutic needs that are yet unsatisfied. As in our setting total R&D
efforts are correlated with sales, they also decrease following the decline in industry size
(as compared with the baseline scenario). Overall, the fall in innovation rates translates
into less product variety and lower average product quality. Second-order effects of rising
patent breadth are higher industry concentration, aswell asmarkups and prices, ultimately
driving adverse distributional effects for society.25

25Although we do not explicitly model income distribution, this finding is linked to a stream of literature
which has investigated the impacts of IPR on inequality. In fact, a strengthening of the IPR system is found to
lead tomore inequality (Adams, 2008). Moreover, Lazonick andMazzucato (2013) emphasize how such system
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Let us now investigate the role of patent length by progressively increasing the corre-
sponding parameter for different values of patent breadth (i.e. %0C1A = 4 and %0C1A = 10),
in order to explore potential heterogeneous effects. Results are shown in Figure 9 (cf. Table
B.2 for the associated Monte Carlo averages and standard errors). We find that increasing
the duration of patent rights also negatively affects innovation opportunities, as it decreases
the total number of submarkets and products actually explored and developed, and it also
results in higher market concentration and prices. In absolute levels, these effects are more
dramatic when longer duration is coupled with a higher patent breadth (%0C1A = 10).

This first ensemble of experiments shows that stronger patents have a negative im-
pact on innovation rates and new drug discoveries, while increasing prices and market
concentration. However, such negative results do not take into account potential positive
feedback on R&D intensity and information disclosure that may be associated to tighter
IPRs. According to the narrative which finds a straightforward formalization in common
incentive-based, implicitly rational technological expectation, models, patents ought to
provide incentives to firms for increasing their R&D share, while disclosing more infor-
mation and allowing innovation diffusion (see among a whole tradition Fudenberg et al.,
1983; Acemoglu and Akcigit, 2012; Aghion et al., 2019). In the next sections, we study these
hypotheses with new simulation exercises.

3.3.1 Patents and R&D incentives

In our model, R&D decisions are entirely routinized, that is, firms always invest a fixed
shares of their past sales in research. In this setting, stronger IPRs can affect R&D spending
of a successfully innovating firm via larger market demand. Nevertheless, as shown by the
previous simulations, a stronger patent systemmay also stifle the imitation and innovation
rates of laggard competitors, and if this effect prevails, this results in less innovation and
higher prices. Yet, one of the standard arguments used to support the adoption of the patent
system is that it can foster higher R&D intensity (c.f. rising R&D per sales). According
to this view, firms increase the share devoted to research activities in response to the
appropriability incentives provided by patents (Nordhaus, 1969).

Let us then investigate this possibility by jointly varying the breadth of patent (%0C�A)
and the R&D share (B'�). Reliable empirical evidence about the elasticity of R&D invest-
ments with respect to patents is not available and less so with the disaggregation of the
type of R&D (Budish et al., 2016).

does not entail any balance between risks and rewards from innovation basically leading to the prevalence of
value extraction. In that case, innovation-led growth might actually lead to increasing inequality. Relatedly,
Stiglitz (2016) has pointed out that the well-known macroeconomic evidence of increasing wealth-income
ratios is not due to an increase in productive capital but, instead, to a rise in rents and returns on intellectual
property. We leave to future work further investigations in this direction in the context of our model.
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Figure 8: Policy experiments: changing patent breadth
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line represents the baseline scenario. The variables considered are respectively: (i) average Herfindal Index;
(ii) average markup, weighted by market shares; (iii) the number of submarkets discovered; (iv) an indicator
of product quality at the frontier, measured as: 1

�

∑�
9=1 -

9

)
+. 9

)
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(vi) share of products from entrants blocked; (vii) total number of products (non-blocked) discovered; (viii)
the total R&D spending during the simulation.

Figure 9: Policy experiments: changing patent length

Share of innovations 
 blocked by incumbents Shares of entrants blocked Total number of 

 non−blocked products Total R&D

Market concentration (HHI) Markup (average) Number of 
 submarkets discovered Product quality

10 20 30 10 20 30 10 20 30 10 20 30

40
60
80

100
120
140

0

50000

100000

150000

0

20

40

0

1000

2000

3000

4000

0.2

0.4

0.6

0.80
0.85
0.90
0.95
1.00

0.25

0.50

0.75

1.00

0.2

0.4

0.6

0.8

Patent Length

Patent Breadth 4 10

Notes: Monte Carlo distributions for different values of patent length and two levels of patent breadth (i.e. 4
and 10), across selected variables. The dashed line represents the baseline scenario. The variables considered
are those reported in Figure 8.
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Figure 10: Parameter values for policy experiments under different R&D incentive regimes
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Here we design a scenario that is consistent with some preliminary estimates reported
by Budish et al. (2015), who find quite weak R&D incentives associated to an increase in
the strength of patent protection, with an elasticity between 7% and 24%. Indeed, we want
to experiment with this modeling assumption in detail. First, we let the R&D share (B'�)
increase together with %0C�A in order to get a percentage increase in R&D in the foregoing
range. We label this experiment "weak R&D incentives". Moreover, we explore a scenario,
basically in line with conventional theory of incentive-driven search, which we call "strong
R&D incentives" scenario. Avisual representation of both experiments is reported in Figure
10 which shows the combination the %0C�A and B'� used in each setting (for the sake of
comparison, also the baseline case with fixed R&D share is shown).

In Figure 11, we analyze these experiments in terms of different innovation and compe-
tition outcomes, while Table B.3 shows the Monte Carlo averages across scenarios. Indeed,
unlike the foregoing no-incentive opportunity-only driven scenario, total R&D now in-
creases with %0C1A. And, not surprisingly, the surge is much more pronounced in the
"strong R&D incentives" scenario, as firms start from a near-zero share and rise fast their
R&D investment when patent protection is granted. The story in terms of innovative out-
comes is quite different. Still, under weak "R&D incentives" scenario there is a negative
relation between the strength of patents and innovation. Increasing %0C�A results in less
submarkets, lower number of available products as well as in quality losses. Intuitively, the
rise in R&D spurred by the patent system is overcompensated by the associated reduction
in exploitable technological opportunities.

When perceived R&D incentives are strong, we find positive effects associated to in-
creasing patent protection only when moving from %0C1A = 0 to %0C1A = 2. Within this
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Figure 11: Policy experiments under different R&D incentives
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range, the number of (non-blocked) products and submarkets discovered increases while,
after reaching the threshold (%0C�A = 2), we find again detrimental effects on innovation
outcomes. Basically, even under the most extreme (and empirically far-fetched) scenario,
the balance between domains of exploitable opportunities of innovation, and the incentive
to do so, might be profitable for individual firms, but appears to be collectively detrimental
in terms of innovation rates.

Also, the adverse consequences of rising patent breadth on competition and consumer
welfare persist in all the scenarios considered.

3.3.2 Disclosure effects

Another channel through which the patent system may foster scientific and technological
progress is via disclosure effects. When filing patent applications, inventors are obliged
to disclose technical information about their innovations (see e.g. Hall et al., 2014, for a
review of the literature on the trade-off between secrecy and disclosure). The empirical
evidence on these effects provides generally mixed results.26 In the pharmaceutical sector,

26Text-based works have shown that the information disclosed in patent document is often vague and
difficult to read (especially for patents filed by private firms, see e.g. Kong et al., 2020). Analyses based on
survey of researchers generally find that information disclosure from patents is only marginally relevant for
the innovation process (Cohen et al., 2000; Jaffe et al., 2000; Ouellette, 2012). Recent evidence from quasi-
experimental studies is also hardly conclusive. For instance, Furman et al. (2018) finds positive effects on local
patenting associated to the opening of USPTO regional patent libraries. Gross (2019) focuses on the patent
secrecy programs implemented during World War II and documents that protected patents are characterized
by reduced follow-on inventions and restricted commercialization (yet, admittedly by the authors, it is not
possible to fully attribute the long-term effects to secrecy). Baruffaldi and Simeth (2020) study the introduction
of the American Inventors Protection Act and show that earlier disclosure facilitate knowledge flows but only
within existing geographical and technological boundaries. Finally, de Rassenfosse et al. (2020) analyze the
Invention Secrecy Act documenting a negative relation between the enforcement of secrecy orders on patents
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the effectiveness of disclosure ought to allow easier technology transfers among firms and
universities, as well as a more "ordered" path of search avoiding the costly duplication
of efforts (Coriat and Orsenigo, 2014). In our model, information disclosure effects are
captured by parameters �1 and Ψ (in Eq. 10 and 11) which respectively facilitate the
imitation of existing products and the entry in new submarkets after the expiration of
patents. We investigate the role of information disclosure under four scenarios, namely
low disclosure (�1 = 0.5,Ψ = 0.5); baseline (�1 = 1,Ψ = 1); high disclosure (�1 = 2,Ψ = 2);
and a limiting case with "very high disclosure" (�1 = 50,Ψ = 50).

The simulation results are reported in Figure 12 (Monte Carlo averages and standard
errors for each experiments are in Table B.4). Substantial effects emerge only in the limit
case ("very high disclosure") wherein we observe a reduction in the share of blocked
products introduced by incumbents as well as a moderate decrease in average product
quality. Quite intuitively, more disclosure shapes the direction of the innovative process
towards imitating products with expired patents (i.e. the development of generic drugs),
rather than towards quality enhancements. On the one hand, the patterns of search become
relatively more "efficient" since firms are discouraged from developing "me too" drugs (i.e.
these located in proximity of existing ones) while they are incentivized to copy products
only after the expiration of patents. This, in turn, might lead to lower litigation rates and
less blocked products. On the other hand, disclosure favours imitation as compared to
quality-enhancing innovations within submarkets, thus, resulting in a mild decrease in the
average product quality. Nevertheless, neither the number of submarkets discovered nor
total product variety appear to be substantially affected by disclosure parameters.

Finally, we also run simulations combining together the “strong R&D incentives” and
the “very high disclosure” settings in order to build a scenario even more favourable to
patents. We did not find any significant difference with the results of the two experiments
taken alone.27

4 Conclusions

In this work, we have studied how different configurations of the patent system affect
innovation and competition in pharmaceuticals, indeed, one of the industries where IPR
seem to matter most (Cohen et al., 2000; Levin et al., 1987).

To address such research question, we have developed an evolutionary, agent-based
model tailored on the pharmaceutical industry. Firms in the model compete and innovate
in different therapeutic areas according to routinized search rules, while a process ofmarket

and follow-on inventions.
27Simulation results for this experiment are available from the authors upon request.
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Figure 12: Varying patent disclosure effects
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selection determines their demand, market shares and profitability. The patent system has
a dual role: on the one hand, it protects innovations by preventing firms to move into
areas of the product landscape nearby the newly discovered drugs, while, it might favour
information disclosure and easier imitation after the expiration of patent rights.

In a baseline scenario, themodel yields results in linewith observational data and repli-
cates a set of robustly established stylized facts of the pharmaceutical industry, including
a few micro distributional properties and an increasing industry size and concentration
(cf. Section 3.2). We then run policy experiments studying different degrees of tightness
of IPR systems in terms of patent breadth and length. Our results suggest that larger
extent and duration of patent rights have negative consequences not only on competition,
but also on innovation outcomes. In addition to rising prices and market concentration, a
stronger patent regime entails lower product variety and quality, as well as, interestingly,
less breakthrough discoveries. We also implemented different policy scenarios varying the
strength of positive R&D incentives provided by patents and the effectiveness of informa-
tion disclosure. Patents exert positive effects on innovation only when combining a very
large (arguably unrealistic) response of R&D investment under a low patent breadth. In-
troducing stronger information disclosure effects only alter the direction of the innovative
process, fostering imitation and the development of generic drugs.

Our work can be extended in different ways. First, we mean to explicitly model the
role of public funding of basic research and the spillovers to private firms. Second, it is
important to model at greater detail the different phases which lead to drug discovery and
commercialization. Third, as already mentioned, we intend to explore the evolutionary
implications of ecologies of firms characterized by different propensities to innovate and
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imitate. Finally, one can study which policy tools and, more generally, innovation system
(e.g., innovation prizes, public drug discovery, etc.) can boost innovation and the discovery
of new therapeutic areas at the lower cost for the public (see e.g. the policy proposals in
Cimoli et al., 2014).
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Appendix A Benchmark parametrization

Table A.1: Parameters

Description Symbol Value

Montecarlo replications MC 50
Number of time steps T 300
Number of firms N 100
R&D investment share B'� 0.1
Allocation shares to innovation activities (B� , B� , B�) (0.5, 0.3, 0.2)
Upper bound probabilities for innovation activities (?<0G� , ?<0G� , ?<0G�) (0.4, 0.4, 0.02)
Quality of innovation system parameters (�� , �� , ��) (0.1, 0.1, 0.05)
Minimum search area for firms at the frontier :̂ 1
Speed in exhaustion of innovation opportunities �: 0.1
Sensitivity to distance (within-submarket) �0 0.2
Strength of patent disclosure effect (within-submarket) �1 1
Strength of patent disclosure effect (across submarkets) Ψ 1
Patent breadth %0C1A 4
Patent length %0C;4= 20
Maximum markup <<0G 0.9
Minimum markup <<8= 0.05
Maximum markup when entering an existing submarket (type B) <̂ 0.2
Upper threshold for markup adjustment rule � 0.08
Lower threshold for markup adjustment rule � -0.02
Maximum submarket demand �<0G 250
Initial dimension of submarkets (-8=8C, .8=8C) (20, 20)
Speed of demand saturation �� 1
Relative weight for quality (vs. price) in fitness definition I 0.8
Strength of competition and market selection � 1
Market share threshold for exit 5 <8= 0.00001
Lower bound for entry shock � -5
Upper bound for entry shock $ 2
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Appendix B Tables of results

Table B.1: Experiments varying Patent Breadth (%0C1A)

%0C1A = 0 %0C1A = 2 %0C1A = 4 %0C1A = 6 %0C1A = 8 %0C1A = 10

Total R&D 84510.15 76413.48 58239.43 56725.35 53340.56 53808.25
(3740.987) (4098.998) (4091.742) (3933.733) (4145.594) (4407.809)

Total number of products 5092.52 4034.16 1699.98 1042.92 813.14 710.90
(47.135) (88.328) (98.778) (61.767) (52.219) (48.436)

Number of submarkets discovered 35.54 32.78 22.42 21.16 19.20 19.30
(1.382) (1.340) (1.451) (1.398) (1.404) (1.563)

Share of innovations blocked by incumbents 0.010 0.186 0.380 0.466 0.538 0.590
(0.000) (0.003) (0.005) (0.010) (0.010) (0.013)

Share of entrants blocked 0.278 0.700 0.918 0.953 0.957 0.957
(0.008) (0.012) (0.003) (0.002) (0.001) (0.001)

Product quality 70.938 68.891 66.317 61.991 60.891 62.943
(0.903) (0.844) (1.997) (2.064) (1.033) (2.805)

Market Concentration (HHI) 0.134 0.151 0.237 0.254 0.254 0.273
(0.007) (0.009) (0.028) (0.026) (0.023) (0.029)

Markup (average) 0.197 0.191 0.285 0.392 0.407 0.413
(0.008) (0.006) (0.009) (0.011) (0.011) (0.014)

Notes: The table reports Monte-Carlo averages for each experiment and the associated standard errors (in brackets). In each experiment
we use a different value of patent breadth (%0C1A). The baseline is %0C1A = 4. The outcome variables considered are those reported in
Figure 8.

Table B.2: Experiments varying Patent Length (%0C;4=) for different values of Patent
Breadth (%0C1A = 4 and %0C1A = 10)

%01A = 4 %01A = 10

%0C;4= = 10 %0C;4= = 20 %0C;4= = 30 %0C;4= = 10 %0C;4= = 20 %0C;4= = 30

Total R&D 63203.91 58239.43 53329.40 57183.15 53808.25 53272.11
(4645.082) (4091.742) (4106.602) (4370.521) (4407.809) (4212.679)

Total number of products 2457.36 1699.98 1321.08 981.62 710.90 652.40
(126.760) (98.778) (82.889) (60.601) (48.436) (44.254)

Number of submarkets discovered 26.26 22.42 19.42 22.12 19.30 18.60
(1.724) (1.451) (1.481) (1.635) (1.563) (1.460)

Share of innovations blocked by incumbents 0.312 0.380 0.413 0.581 0.590 0.586
(0.007) (0.005) (0.009) (0.007) (0.013) (0.016)

Share of entrants blocked 0.854 0.918 0.942 0.933 0.957 0.968
(0.006) (0.003) (0.002) (0.002) (0.001) (0.001)

Product quality 68.925 66.317 68.826 59.387 62.943 60.180
(2.340) (1.997) (2.622) (1.909) (2.805) (1.202)

Market Concentration (HHI) 0.216 0.237 0.255 0.244 0.273 0.265
(0.028) (0.028) (0.030) (0.026) (0.029) (0.027)

Markup (average) 0.217 0.285 0.319 0.308 0.413 0.505
(0.008) (0.009) (0.012) (0.010) (0.014) (0.012)

Notes: The table reports Monte-Carlo averages for each experiment and the associated standard errors (in brackets). In each experiment we use
different combinations of patent breadth (%0C1A) and length (%0C;4=). The baseline is %0C;4= = 20 and %0C1A = 4. The outcome variables considered
are those reported in Figure 8.
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Table B.4: Experiments varying disclosure parameters

Low disclosure Baseline High disclosure Very High disclosure

Total R&D 58123.93 58239.43 56273.02 60376.44
(4699.322) (4091.742) (4219.197) (4777.782)

Total number of products 1675.76 1699.98 1634.12 1630.82
(107.377) (98.778) (95.411) (96.657)

Number of submarkets discovered 21.88 22.42 22.02 24.64
(1.733) (1.451) (1.479) (1.830)

Share of innovations blocked by incumbents 0.390 0.380 0.379 0.317
(0.006) (0.005) (0.005) (0.004)

Share of entrants blocked 0.916 0.918 0.917 0.912
(0.003) (0.003) (0.004) (0.004)

Product quality 66.075 66.317 65.132 61.052
(1.153) (1.997) (1.785) (1.083)

Market Concentration (HHI) 0.243 0.237 0.242 0.254
(0.029) (0.028) (0.028) (0.027)

Markup (average) 0.272 0.285 0.283 0.296
(0.008) (0.009) (0.008) (0.010)

Notes: The table reports Monte-Carlo averages for each experiment and the associated standard errors (in brackets). In each
experiment we use different combinations of information disclosure parameters (�1, Ψ). We explore the following scenarios: low
(�1 = 0.5,Ψ = 0.5); baseline (�1 = 1,Ψ = 1); high (�1 = 2,Ψ = 2); very high (�1 = 50,Ψ = 50). The outcome variables considered are
those reported in Figure 8.
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