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1. Introduction

The fight against climate change is arguably at an unprecedented critical phase. On the one

hand, experts concur that we now have enough capital, technology, policy instruments and

scientific knowledge to cut by half carbon emissions by 2030. On the other hand, should

inaction, or insufficient action, prevail, irreversible transformations in the ecosystem could

trigger a calamitous domino effect for both the environment and for society (Haines and Patz,

2004; McMichael et al., 2006). To be sure, countries and regions worldwide are actively

exploring avenues to deal with the opportunities and challenges of shifting to a low-carbon

regime. Such an endeavour requires policies that promote a wide spectrum of innovations,

including low-carbon technologies as well as sustainable production and consumption

practices (Stern, 2007). According to Ayres and van den Bergh (2005, p. 116) these policies

would enact “economic growth […] accompanied by structural change, which implies

continuous introduction of new products and new production technologies, and changes in

[energy] efficiency and dematerialisation”.

Against this backdrop, the present paper provides an overview of green technological

development in European (EU) regions. Such an endeavour is timely in view of the radical

commitments stipulated in the recent EU Green Deal to achieve climate neutrality by 2050.

Accordingly, our goal is threefold. First, we explore the geographical distribution of

innovative activities and profile EU regions in terms of technological capabilities. Second, we

elaborate a metric to capture the shape of the local knowledge space and, consequently, to

identify regions’ green innovation potential. Third, we check whether possessing comparative

advantage in specific technological domains is associated with a region’s capacity to develop

green technologies.

To frame these goals in the current scholarly and policy debates, we call attention to two

characteristics of the transition to low-carbon societies. First, geography matters. The

European Commission (2015) along with other international bodies emphasises that regions

and cities are responsible for implementing as much as 70% of green action plans. Of course,

not all territories are equally proactive or capable in that, some will have higher innovation

potential than others. This is due to differences in availability of natural resources,

infrastructures and competences and, last but not least, of institutions. However, regions also

differ in terms of exposure to environmental impacts. As a result, local innovation capacity

may not match the demand for environmentally-friendly solutions. Put otherwise, green
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technologies may well emerge in more developed areas while the urgency of deploying those

technologies is stronger in poorer regions (Mendelsohn et al., 2006; Bathiany et al., 2018).

This calls for an analytical framework rooted in economic geography that accounts for spatial

differences in the transition towards sustainable economies. Territorial differences provide a

clear rationale for regional and local governance of environmental transitions, so that

spatially differentiated transformation trajectories reflect local needs and potentials (Truffer

and Coenen, 2012). Thereby, the spatial dimension is pivotal in at least two ways. The first is

that it reaffirms the centrality of institutions for restructuring production and consumption,

and the inherently context-specific nature of both designing and implementing environmental

policies (York and Rosa, 2003; Gibbs, 2006). The second is the, perhaps most obvious,

importance of co-location and territorial proximity for creating and consolidating synergies

for sustainable creation and use of natural resources (Chertow, 2008). Building on these

insights, Truffer and Coenen’s (2012) call for cross-fertilisation between regional studies and

sustainability transition studies recently paved the way to a strand of empirical work (Barbieri

et al., 2020a; Corradini, 2019; Montresor and Quatraro, 2019; Perruchas et al., 2020). The

present study draws on and contributes to this nascent area of research.

Yet another relevant issue is that achieving zero GreenHouse Gases (GHG) emissions

requires, as per recent pronouncements by the European Commission, radical “economic and

societal transformations [...], engaging all sectors of the economy and society” [European

Commission, 2018, p. 5]. Put otherwise, the implementation of the Green Deal will require

structural change which, inevitably, will open up opportunities but also raise challenges.

Given the difficulty in separating local and global environmental aspects of climate-related

hazards, benefits to some will no doubt come at a cost to others. To illustrate, decarbonizing

harmful production activities might cause job losses and worker displacement. This calls for

analytical instruments that are consistent with the uncertainty of a scenario that features

feedback loops, multiple trade-offs and emergent behaviours.

In view of this, we turn to the interdisciplinary field of complexity economics, and in

particular to a set of tools that are designed to account for the increasingly dynamic and

interconnected nature of the socio-economic transformations that are needed to meet new

criteria of environmental sustainability. In the complexity framework, economic systems are

understood as adaptive and dynamic by virtue of collective properties that arise from the

interactions among their micro-components, rather than from their individual properties

(Arthur, 1999; Blume and Durlauf, 2001; Cilliers, 2001). Our goal is to extend the Economic
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Complexity (EC) approach (Hidalgo and Hausmann, 2009; Tacchella et al., 2012) to the

analysis of the environmental competitiveness of European regions. EC methods capture the

underlying competences of productive systems in different domains of human activities, i.e.

industrial, technological and scientific production, while also providing tools to analyse the

interaction across these dimensions. Different measures of economic complexity have been

adopted by international institutions, such as the European Commission, the World Bank, and

the OECD, and by local and national governments.

EC methods have proven effective in quantifying information on technological capabilities at

various levels of aggregation, recently also in relation to environmental technologies and

products (Mealy and Teytelboym, 2020; Napolitano et al., 2020; Sbardella et al., 2018). A

key ingredient for the success of EC in characterizing the structure of regional capabilities on

a large scale is a broad-encompassing approach to account for variety in regional output

rather than a narrow focus on specific areas of regional specialization. In particular, mapping

the innovative capabilities of a large set of regions across multiple countries, knowing in

which technologies a region is competitive, is more relevant than knowing how much it

produces in any specific subset. Since the sustainable transition will entail large-scale

industrial, infrastructural and spatial transformations, we envisage that an economic

complexity approach holds the promise of shedding new light on the green potential of

individual technological competences.

Our empirical analysis is organised in two steps. First, we connect green and non-green

capabilities in developing complex technologies by assessing whether and to what extent the

latter are conducive to green technological advances. Green technologies have been observed

to recombine different bits of knowledge from different sources (Barbieri et al., 2020b) and

the exploration of the nature of these sources is fundamental from a policy perspective.

Various scholars argue that green and non-green technical knowledge exhibit

complementarity, so that the development of non-green technologies generates positive

externalities for the generation of green knowledge (Markard and Hoffmann, 2016; Sinsel et

al., 2020), and vice versa (Noailly and Shestalova, 2016). Accordingly, the first step of the

present paper is to profile European regions based on their green innovation capacity

calculated using the Economic Fitness and Complexity (EFC) approach (Tacchella et al.,

2012) to geo-localized green and non-green patent data. EFC is an empirical recursive

algorithm that is able to extract information on the capabilities of a region’s knowledge base

from the technologies in which it displays a competitive advantage in terms of green or
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non-green patenting activity. The input to the algorithm is a binary bipartite network in which

a region and a technology are linked if the former has a sufficiently high Revealed

Comparative Advantage (RCA; see Balassa, 1965) in patents involving the latter. The

resulting indicator of regional technological fitness captures the composition of regional

(green or non-green) competences as proxied by the region’s portfolio of (green or

non-green) technologies. Accordingly, higher fitness scores signal both that a region has a

more diversified portfolio of technologies that includes more complex technologies. Notice

also that, within the EFC framework, a technology has high complexity if it does not appear

in the portfolio of low-fitness regions. As a consequence, higher fitness scores indicate that a

region possesses more advanced technological capabilities. This approach allows the

identification not only of the regions that are most proactive in green technologies but, also,

each region’s standing in terms of the breadth of the competencies relative to other European

regions.

In the second step of our analysis, we define a measure of green potential of the non-green

regional knowledge space by drawing from recent contributions on the green product or

knowledge space (see e.g. Fankhauser et al., 2013; Hamwey et al., 2013; Mealy and

Teytelboym, 2020; Boschma et al., 2013; Rigby, 2015). The indicator builds on the bipartite

network of regional competitive advantages in technological fields and captures the strength

of the association between high regional RCA in non-green technologies at time and the𝑡
1

subsequent development of high RCA in green technologies within the same regions at time

. This allows us to identify non-green technological classes whose presence𝑡
2

= 𝑡
1 

+  ∆𝑡

in a regional portfolio is an early signal of the emergence of competitiveness in green

technologies within the same region; the number of non-green technologies of this kind

within a regional technological portfolio is indicative of the green potential of the region. In

the context at hand, we map the ecosystem of regional technological competences and

identify empirically the combinations of non-green know-how that are most likely to favour a

region’s entry in the domain of green technology. Such an exercise yields evidence on the

strengths and weaknesses of green regional specialisation and is therefore relevant for the

design of both climate and regional development European policy. In doing so, the paper

relies on studies that explore the role of spatial knowledge spillovers in the transition towards

sustainable economies (Barbieri et al., 2020a; Cheng and Jin, 2020; Nomaler and Verspagen,

2021). Therein, the distribution of patents across technological fields also captures the shape
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of the regional knowledge base (Castaldi et al., 2015; Rigby and Balland, 2017) and allows to

assess where green technologies are more likely to emerge.

Two main findings arise from the empirical analysis. First, we provide novel insights into the

connection between green and non-green technological capabilities. This highlights that

regional know-how in the non-green technological realm can be exploited in the green

domain – and vice versa. Second, the shape of the regional technology space matters when it

comes to dealing with complex capabilities. Regional technology spaces that exhibit higher

propensity to develop technologies connected with green technological fields (i.e. higher

green potential) specialise in a wide range of green technological domains that span the

spectrum from the less to the most diffused ones.

The reminder of the paper is organised as follows. Section 2 describes the data, measures and

methods employed in the empirical analysis. Section 3 shows the geographical distribution of

green innovative activities and potential in European regions. Section 4 presents the main

findings of the analysis. Finally, Section 5 concludes.

2. Data and Methods

2.1 Data - Measuring Regional Patenting Activity

To analyse innovative activities of different European NUTS2 regions we employ patent data

from PATSTAT 2020a (European Patent Office, 2020), a database containing information

about more than 100 million patents collected from most patent offices worldwide. Although

patents are widely used to measure innovative activities, they carry well-known limitations.

Indeed, the commercial value of patents may differ substantially across inventions, and not

all inventions are patented. In addition, some technical knowledge cannot be patented.

Finally, there is a high heterogeneity across sectors and countries (Archibugi and Pianta,

1996; Griliches, 1991). However, the wealth of information contained in patents is a useful

data source in innovation studies. That is, patents are the only available measure that can be

accessed at reasonable costs that enables to discern between green and non-green

technological fields at a very fine spatial level (Popp, 2005).

The information available in PATSTAT is particularly rich. Crucial to our purposes, it allows

retrieving the Cooperative Patent Classification1 (CPC) codes used by patent offices to

1 https://www.cooperativepatentclassification.org/index
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associate the claims contained in patent applications filed worldwide with specific areas of

technology in which the applications make an innovative contribution. As we detail below,

CPC codes are proxies of embedded technological competences. Furthermore, PATSTAT

records the address of the majority of patent inventors and patent applicants; these can be

used to map the applications and the associated codes to geographical regions. In this paper

we focus the analysis on patents filed between 1997 and 2017 by Europe-based inventors.

The goal of capturing regional innovative activities through patents requires some

preliminary steps.

We start by geolocalizing patent applications. To this end, we assign patents to their

inventors' NUTS3 2013 regions of residence by exploiting, when possible, two sources of

information: PATSTAT and the patent geolocalization exercise performed by de Rassenfosse

et al. (2019) – which we henceforth refer to as Geocoding. Whenever the information differs

between the two sources (a rare event), we weigh each inventor’s location. For example, if

PATSTAT has two inventors localized in regions X and Y, and Geocoding has the two

inventors localized in regions X and Z for the same patent, we consider the contribution of

region X to the invention to be twice as big as that of regions Y and Z. Notice that Geocoding

gives longitude and latitude information for inventor addresses, and not NUTS information.

We move from punctual information to NUTS3 by using GIS data from Eurostat2 and then

aggregate NUTS3 2013 information at the NUTS2 2016 level.3 This allows us to attribute

patent applications to around 300 European NUTS2 regions across 33 countries.4

As a second step in the data preparation procedure, we associate patents to technological

fields through the CPC codes of the patents in our sample. The CPC has five hierarchical

levels spanning from nine sections to more than two hundred thousand subgroups. There are

two types of codes. Codes starting with letters A to H are similar to the codes used in the

International Patents Classification (IPC), and represent a traditional classification of

technological fields. Codes starting with Y are meant to tag cross-sectional technologies

spanning over several sections of the IPC classification. In particular, the Y02 class

(Technologies or Applications for Mitigation or Adaptation against Climate Change)

4 The list of countries include not only EU27 members but also neighboring countries (e.g. Norway,
Switzerland) for which a regional classification equivalent to the NUTS is defined.

3 If we would have started from NUTS2 2013 information it would not have been possible to move to the 2016

classification.

2 EUROSTAT NUTS - GISCO,
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts
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includes patents related to climate change adaptation and mitigation technologies covering a

wide range of technologies related to sustainability objectives, such as energy efficiency in

buildings, energy generation from renewable sources, sustainable mobility etc.

Finally, we group patents in INPADOC patent families (our main unit of analysis), each of

which represents a collection of patent documents covering a technology. Among those we

select only those families that include at least one patent application to two patent offices, one

of which belonging to the IP5 forum. The IP5 forum groups together the five largest

intellectual property offices in the world – i.e. the European Patent Office (EPO), the Japan

Patent Office (JPO), the Korean Intellectual Property Office (KIPO), the National Intellectual

Property Administration of the People’s Republic of China (CNIPA), and the United States

Patent and Trademark Office (USPTO). This preliminary activity leads to a data-set of around

6 million patent families out of 63 million families in PATSTAT. In addition, it allows us both

to avoid country biases and to select relevant innovations for which information is readily

present. Selecting patent families in this way enables us to geolocalise more than 90% of

inventors and to gather CPC classification codes for at least one patent in each geolocalised

family.

We employ a fractional count to assign the innovative contribution of each geolocalised

patent family into the corresponding fields of technology and geographical regions. For each

family, we take the number R of NUTS2 regions of residence of the inventors, the number C

of NGTs (i.e. codes belonging to sections A-H of the CPC classification), and the number of

Cy of GTs (i.e. Y02 codes; this number is zero if a family has no associated GTs). We then

assign a share of 1/(R*C) to all combinations of NGT and NUTS2 region, and a share of

1/(R*Cy) for all combinations of GT and NUTS2 region.

2.2 Measures

2.2.1 (Green) Technological Fitness

The Economic Fitness and Complexity framework allows studying the geographical

distribution of technological capabilities across European regions (NUTS2-level) by means of

a Technological Fitness index that quantifies the complexity and competitiveness of the

regional knowledge base. From this measure of fitness based on the whole technology

spectrum we are then able to define a Green Technological Fitness (GTF) and a Non-Green

Technological Fitness (NGTF) index. To this aim, we rely on previous measures of local
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complexity (Balland and Rigby, 2017; Sbardella et al., 2017; Operti et al., 2018). In

particular, we draw from the technological fitness of European regions introduced by

Pugliese and Tübke (2019) and the GTF at the country-level defined by Napolitano et al.

(2020).

[FIGURE 1 ABOUT HERE]

As outlined in Figure 1(a), the EFC algorithm is based on a binary bipartite network that

connects each region to the technologies in which it displays a comparative advantage. The

adjacency matrix of the network M is digitised using RCA. For each region i and technology

j the element of the matrix is defined as follows:𝑀
𝑗𝑖

(1)

and is the sum of the shares of patents in technology class t that can be traced back to𝑋
𝑖𝑗

region i.
The binary matrix is then fed to the EFC algorithm that yields a measure of fitness for each

region ( ) and of complexity for each technology ( ). In formulae, for region i and𝐹
𝑖

𝑄
𝑗

technology j, the recursive algorithm is defined as follows:

(2)
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where denotes the arithmetic mean with respect to the possible values assumed by the< · >
𝑥

variable dependent on x, and the initial condition is . The fixed point of the𝑄
𝑗
(0) = 1 ∀ 𝑗

algorithm in Equation 2 defines the non-monetary metric that quantifies , the fitness of𝐹
𝑖

region i, and , the complexity of technology j.𝑄
𝑗

Depending on the structure of the input matrix, the EFC algorithm is known to possibly

converge to zero fitness and zero complexity for a subset of geographical areas and

technologies respectively (Pugliese et al., 2016). However, this is not an issue because it is

always possible to define a consistent ranking along both dimensions, that is why we base our

analysis on the fitness ranking rather than scores.

The rationale of the algorithm is that the fitness of the analysed regions and the complexity of

the technologies in which they innovate can be determined recursively by taking advantage of

the information contained in the composition of the technological portfolio of the former. In

particular, a region with a more advanced set of capabilities will have a diversified portfolio

of technologies, spanning from the most to the least complex ones, and will have higher

fitness. In turn, complex technologies are rare and appear almost exclusively in the portfolio

of high-fitness regions. Consequently, a region with low fitness has a smaller endowment of

capabilities and thus operates exclusively in less complex (green and non-green)

technological domains. Figure 1(b) illustrates this point. It displays matrix M whose rows and

columns are ordered by, respectively, the technological fitness of the regions and the

complexity of technologies. The black dots identify the technologies in which regions have

RCA greater than 1; fitness decreases from top the top to the bottom row; complexity

increases from the leftmost to rightmost column; the vertical green stripes correspond to

green technologies. This particular ordering of M brings out a peculiar nested structure

wherein regions with lower fitness are competitive in a subset of activities in which higher

fitness regions are competitive. Nested structures typically emerge from the implementation

of the EFC algorithm to matrices like M constructed from a variety of data sources, e.g.

patents, international trade, scientific publications (Cimini et al., 2014; Napolitano et al.,

2020; Tacchella et al., 2012). Nestedness, in turn, points to a key feature of the EFC

framework, namely the possibility to capture the capability structure of a country or region in

a given domain of human activity not based on how much competitiveness it displays in any

subset of activities but, rather, in which activities it is competitive.
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Once the complexity of technologies is determined, it is possible to derive the GFT index

employing the Sector Fitness approach: we take into consideration the full spectrum of CPC

codes, and compute the GTF of each NUTS2 as the sum of the complexities of the Y02 codes

in which the region has a comparative advantage. Similarly, the fitness in non-green

technologies is the sum of the complexities over the set of technologies that are not

considered green according to the CPC classification, i.e. all codes belonging to sections

A-H.5

2.2.2 Green Potential of the regional knowledge space

To assess whether a region’s non-green knowledge base and existing capabilities are

significantly correlated with its capacity to patent in environment-related technology fields,

we introduce a measure of regional green potential that enables us to identify which

technological fields have been historically statistically significant forerunners of the

development of high RCA in green technologies in the NUTS2 regions included in our

sample. To this aim, we draw both from recent works on the green product space (Fankhauser

et al., 2013; Hamwey et al., 2013; Mealy and Teytelboym, 2020), and the technology space

(Nesta and Saviotti, 2005; Boschma et al., 2013; Rigby, 2015). We also build on Pugliese et

al. (2019) who defined a multilayer network analysis to study the knowledge spillovers from

the patenting activity and scientific production of countries to their exported goods, as well as

on Pugliese and Tübke (2019) who applied a range of economic complexity techniques to

profile the technological competitiveness of European regions. To define our indicator of

regional green technological potential we adopt a three-step strategy: definition of the

technology space, selection of statistically significant links in the network, projection of the

technology space onto NUTS2 regional patent portfolios. Therefore, we first construct a

“time-augmented” technology space that links green technologies (GTs) and non-green

technologies (NGTs), i.e. a multilayer network in which a link between a NGT and a GT

exists if there is a significantly higher than random probability that regions with high RCA in

the NGT at time also have high RCA in the GT after a fixed number of years .𝑡
1 

∆𝑡

[FIGURE 2 ABOUT HERE]

5 Further details of the GTF technique can be found in Napolitano et al. (2020).
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In practice, as shown in Figure 2(a), we start with two binary networks that connect

respectively NUTS2 regions to NGTs at time t1; and NUTS2 regions to GTs at time

. The adjacency matrices of the two networks and are𝑡
2

= 𝑡
1 

+  ∆𝑡 𝑀1(𝑡
1
) 𝑀2(𝑡

2
)

normalised with the same procedure displayed in Equation 1: in both networks, a link is

established when a region shows a revealed comparative advantage greater than 1 in a

technological class. The columns of reflect the 656 CPC 4-digit codes comprising sections𝑀1

A-H, while the columns of reflect the 44 “green” 8-digit codes under CPC class Y02. The𝑀2

reason for employing different aggregations to characterize GTs and NGTs for this exercise is

that there are too few 4-digit CPC codes under Y02 for a meaningful analysis, and this would

get in the way of the statistical validation of links in the GT-NGT technology space.

By contracting the two binary networks over the geographical dimension as in Figure 2(b),

we obtain a network that identifies the probability of observing time-lagged𝑁𝐺𝑇 − 𝐺𝑇

empirical co-occurrences within the regions in our dataset of comparative advantages in

NGTs at time t1 and comparative advantages in GTs at time t2. To avoid ‘‘size effects’’, we

normalise each co-occurrence by , the ubiquity of across𝑢
𝑁𝐺𝑇

(𝑡
1
) =  Σ

𝑖 
𝑀

𝑖, 𝑁𝐺𝑇
1 (𝑡

1
) 𝑁𝐺𝑇

regions, and by , the green technological diversification of region𝑑
𝑖
(𝑡

2
) =  Σ

𝐺𝑇 
𝑀

𝑖, 𝐺𝑇
2 (𝑡

2
) 𝑖

in which the co-occurrence is observed. This way, we measure the probability that having a

comparative advantage in the precedes having a comparative advantage also in the .𝑁𝐺𝑇 𝐺𝑇

These probabilities are contained in the “assist” matrix (Pugliese et al., 2019), the𝐵 (𝑡
1
, 𝑡

2
)

generic element of which corresponds to the normalised co-occurrences across𝑁𝐺𝑇 − 𝐺𝑇

all regions and is defined as follows:

𝐵
𝑁𝐺𝑇,𝐺𝑇

(𝑡
1
, 𝑡

2
) = 𝑃𝑟(𝐺𝑇, 𝑡

2
| 𝑁𝐺𝑇, 𝑡

1
) =  Σ

𝑖 
𝑃𝑟(𝐺𝑇, 𝑡

2
| 𝑖) 𝑃𝑟(𝑖 | 𝑁𝐺𝑇, 𝑡

1
)  

                         = Σ
𝑖 

   𝑀
𝑖, 𝐺𝑇
2 (𝑡

2
)

𝑑
𝑖
(𝑡

2
)

𝑀
𝑖, 𝑁𝐺𝑇
1 (𝑡

1
) 

𝑢
𝑁𝐺𝑇

(𝑡
1
)

(3)

However, a co-occurrence may not be informative per se. A high observed probability of

co-occurrence may in fact be driven by the ubiquity of technological fields or regional

diversification. Therefore, to rule out spurious links we assess the statistical significance of
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each link in the network with a null-model called the Bipartite Configuration Model (BiCM,

see Saracco et al., 2015, 2017; Straka et al., 2017), a maximum entropy algorithm designed to

randomise bipartite networks. The null hypothesis of the BiCM is that NGT-NT

co-occurrences are random and their probability is determined only by the ubiquity of the

NGT and by the diversification of the region that shows a comparative advantage in the GT.

Once we have filtered the links with our null model, we interpret the statistically significant

co-occurrence of the non-green and green technology fields as a signal of an overlap between

the capabilities required to achieve proficient levels in both. Intuitively, patent codes that

share similar inputs will be situated close to each other in the technology space, and

proximity in the statistically validated NGT-GT network is positively related to the

probability that acquiring a competitive advantage in the NGT is predictive of a competitive

advantage in a connected GT.

We leverage the information stored in the network to build our index of regional𝑁𝐺𝑇 − 𝐺𝑇

green potential. For each non-green technology we define as the𝑁𝐺𝑇 𝑁
𝑁𝐺𝑇→𝐺𝑇𝑠

(𝑡
1
, 𝑡

2
)

number of significant time-lagged co-occurrences between s and green technologies. We𝑁𝐺𝑇

interpret this as a proxy for the strength of the association between non-green technologies

and the green knowledge base. Finally, we project this value onto regional patent portfolios

by weighing the average of against the patent stock of region i:𝑁
𝑁𝐺𝑇→𝐺𝑇𝑠

) (4) 𝐺𝑃
𝑖

𝑡
1
, 𝑡

2( ) = Σ
𝑁𝐺𝑇 

𝑀
𝑖, 𝑁𝐺𝑇
1 (𝑡

1
𝑁

𝑁𝐺𝑇→𝐺𝑇𝑠
(𝑡

1
, 𝑡

2
).

It is worth noting that in the context under analysis, i.e. complexity exercises aimed at

capturing regional technological capabilities, patenting is a proxy of research activities in a

technological field. We look at how many patents are produced by a region in each field only

to determine the technological activities in which the region is specialized. This implies that

the total number of patents is inconsequential to our analysis. In this context, many of the

common issues with the analysis of patent data are not problematic for our specific analyses.

For example, the fact that a country tends to patent more than another in every field because

of different regulations, does not affect our analysis because we are looking only at the share

of patents in each field. Moreover, the fact that the propensity to patent is higher in some

fields does not affect our analysis either, because we are looking only at the relative share of a

field in different countries.
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2.3 - Econometric model

To provide empirical evidence on the relationship between green and non-green regional

fitness and investigate the role of a region’s green potential we estimate the following

econometric models:

𝐺𝑇𝐹
𝑖,𝑡

 =  α + β
1
𝑁𝐺𝑇𝐹

𝑖,𝑡 
+ β

2
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𝑖
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where is the regional fitness calculated on green technologies developed in region i at𝐺𝑇𝐹

time t. is the regional fitness measured using non-green technologies. GP is the green𝑁𝐺𝑇𝐹

potential of the knowledge space of region i as defined in Equation 4. is a set of𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠

variables that control for the size of the patenting activity performed in the region, population

and Gross Domestic Product. Moreover, regional fixed effects ( ) control for unobservableσ

heterogeneity, that is constant over time and varies across European regions. Regional fixed

effects enable us to control for idiosyncratic features that characterise European regions (e.g.

geographical characteristics, etc.), whereas time fixed effects ( ) control for unobservableτ

variation that is common to all regions but varies over time (e.g. changes in practices at the

European Patent Office, etc.). Finally, we include region-specific time trends ( ) that accountϕ

for unobservable heterogeneity that varies linearly over time in each EU region (Barbieri et

al., 2020a; Charlot et al., 2015). This enables us to capture and control for different aspects

that affect regional complexity that we are not able to control due to data availability (e.g.

environmental policy implementation, skills endowment, etc.).

3. Exploratory data analysis

In this section we profile European regions based on their green potential (Section 3.1), green

and non-green technological fitness rankings (Section 3.2 and 3.3), and the green

technological domain in which they strive to innovate (Section 3.4).

3.1 Green potential

Figure 3 shows for each 3-digit A-H CPC class , the strength of its𝑁
𝑁𝐺𝑇→𝐺𝑇𝑠

(𝑡
1
, 𝑡

2 
)

association with green technologies, i.e. the share of 99% statistically significant
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links over the total possible links in the technology space, where𝑁𝐺𝑇 (𝑡
1
) – 𝐺𝑇 (𝑡

2
)

and . For ease of visualization, each color indicates a 1-digit CPC𝑡
1

= 2012 𝑡
2

= 2017

section. First, for 3-digit CPC codes the 85% of non-green technologies has at least a

significant link to a green technology, and the average link share in the plot is 0.017. At the

chosen statistical significance, shares lower than 0.01 are compatible with the null hypothesis

of random association. Hence, bars that are lower than the dotted horizontal line represent

technologies that, according to the data, are not significant precursors of green technologies.

However, 59% of non-green technologies display shares higher than that threshold,

confirming that eco-innovative fields are inextricably interconnected with other types of

technologies, and that they are embedded to different production contexts.

[FIGURE 3 ABOUT HERE]

In particular, in the time-frame under analysis green technologies appear linked mostly to

pre-existing patents about production, transformation or working of different types of

materials, engines and pumps, and technologies used in construction. More in detail, we

observe the highest shares in the field B-Performing Operations; Transporting section, that

populates the 40% of the top ten shares with the CPC codes B32 (Layered products, i.e.

products built-up of strata of flat or non-flat, e.g. cellular or honeycomb form), B26 (Hand

Cutting Tools; Cutting; Severing), B24 (Grinding; Polish), and B29 (Working of plastics).

Also two technologies from the C-Chemistry section can be found in the top ten, i.e., C04

(Cements; concrete; artificial stone; ceramics; refractories) and C07 (Organic chemistry).

While the predominant section is F-Mechanical Engineering; Lighting; Heating; Weapons, in

particular the classes F05 (Indexing schemes relating to engines or pumps), F02 (Combustion

engines; hot-gas or combustion-product engine plants), F04 (Displacement machines for

liquids; pumps for liquids or elastic fluids), F25 (Refrigeration or cooling; combined heating

and refrigeration systems; heat pump systems; manufacture or storage of ice; liquefaction

solidification of gases), as well as E05 (Locks; keys; window or door fittings; safes) from the

section E-Fixed constructions.

[FIGURE 4 ABOUT HERE]
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Figure 4 displays the green potential of each NUTS2 region i; in Figure 4 (a)𝐺𝑃
𝑖

𝑡
1
, 𝑡

2( )
and , while in Figure 4 (b) and . projects on𝑡

1
= 1998 𝑡

2
= 2002 𝑡

1
= 2012 𝑡

2
= 2017 𝐺𝑃

𝑖

the geographical dimension the information observed in Figure 3. Comparing the map for

2002 with the map for 2017 we observe several differences in the color patterns. On the one

hand, this is due to the fact that the direction in which efforts to innovate in every region are

directed change over time. On the other hand, the technological space is rewired by the

technological efforts of each region that give way to new connections between non-green

technologies and green technologies. In a way, the green potential index captures to what

extent the non-green part of the regional technology portfolios incorporates the pathways that

characterized the network at a given point in time.

We notice that the regions in the highest quintiles of green potential are not necessarily those

with the highest green fitness, or with the highest technological fitness in general. This

suggests that the green potential index provides a different information than that of

technological fitness, which instead is an indication of the complexity of the regional

technological knowledge base. Indeed, regions that are highly diversified and competitive in

many technologies do not necessarily also have the highest green potential. As shown in

Section 4.2, green potential has a non-trivial relation with green technological fitness. In

Figure 4(c) and (d), NUTS2 regions are colored to reflect the A-H CPC technology fields

with the strongest association to the green patents that are present in their technological

portfolios in 2002 and 2017 respectively. For the sake of readability, the colormap associates

each region to a 1-digit CPC technology. It is interesting to notice that the relationship

between these maps and the bar plot of Figure 3 is also not trivial. In fact, by looking at

Figure 3 one might expect that CPC sections B and F would be overwhelmingly more

represented in Figures 4(c) and (d). However, projecting on the actual technological portfolio

owned by the regions, the effect of the composition of the portfolio prevails. For this reason,

we find e.g. in 2017 that A (Human Necessities) contributes to regional green potential more

often than B or F.

3.2 Non-green Technologies

We consider here non-green technologies, i.e. all CPC classes outside of the Y02 class. The

EFC algorithm applied to these CPC classes provides for each region and each year a
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ranking, where the first positions are occupied by regions that patent several “uncommon”

technologies, i.e. domains in which not many other regions patent.

[FIGURE 5 ABOUT HERE]

Figure 5 shows the evolution of the ranking of the non-green technological fitness of

European NUTS2 regions over time. We split the fitness ranking computed at three different

points in time into four equal parts, each of which is represented by a node. Hence, we have

three sets of nodes and the regions belonging to the same slice of the ranking in a given year

are grouped the same node. The best ranked regions in each time period are represented by

the dark green node at the top of each column, followed by progressively lighter shades of

green. The yellow node contains the bottom fourth of the ranking. Nodes are labelled to

reflect the countries whose regions mostly lie in the corresponding part of the ranking. Label

colors indicate the node to which each country is assigned in the first period to help trace the

dynamics of the regions within the ranking. The links connecting the nodes represent the flow

of regions within the ranking from one period to the next. The color of the link reflects the

source node, while link thickness is proportional to the number of regions included in the

flow. For instance, the majority of top-ranked regions in terms of non-green technological

fitness in 2005 remain at the top in 2010. In general, Figure 5 indicates relatively stable

rankings over time, with only a minority of regions switching between differently colored

nodes at any point in time.

[TABLE 1 ABOUT HERE]

Focusing on the most complex regions in non-green technologies, we calculated the average

ranking position for two time periods, 1998-2006 and 2007-2017 as shown in Table 1. The

stability observed in Figure 5 is confirmed. Moreover, we notice that six regions out of ten

are German in both time periods, which suggests the predominance of certain countries.

Table 2 indicates the bottom ten European regions in the non-green technological fitness

ranking. It is worth noting that not all regions have enough patents to allow the computation
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of the economic fitness index. This is why the ranking in the first period is shorter than in the

second.

[TABLE 2 ABOUT HERE]

3.3 Green Technologies

As mentioned, green technologies contribute to mitigate greenhouse emissions as well as

adapt to climate change and are classified in the CPC Y02 class (Technologies or

Applications for Mitigation or Adaptation against Climate Change), which comprises eight

groups; in contrast NGTs comprise a much larger set of CPC codes (over a hundred classes).

Green technologies can be more complex, radical, pervasive and impactful than most

non-green technologies (Barbieri et al., 2020b) and therefore require a wide range of

competences that (at times) are far from established know-how (De Marchi, 2012).

Accordingly, we do not expect the regions that have the highest technological fitness in NGTs

to necessarily top the fitness ranking in GTs; we also expect the latter ranking to display a

more turbulent evolution over time.

[FIGURE 6 ABOUT HERE]

Figure 6 summarizes the evolution of the green technological fitness of NUTS2 European

regions over time. Contrary to the non-green fitness ranking, we observe a relatively

turbulent evolution over time. For instance, though a relative majority of regions tends to stay

in the same part of the ranking from one period to the next, the fraction of regions that move

between nodes is noticeably larger. Indeed, some regions drop all the way from the top of the

ranking to the bottom (and vice versa) in the space of just a few years. The greater turbulence

in the green fitness ranking is also reflected in the country labels, whose colors are quite

mixed by 2015. This implies that multiple regions within the same country can quickly rise

(e.g. Lithuania) or fall (e.g. Italy) according to the metric.

[FIGURE 7 ABOUT HERE]
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The maps in Figure 7 depict the green fitness of NUTS2 regions at the beginning and the end

of the period under analysis. The regions with lower green fitness are colored in yellow,

which turns into progressively darker shades of green as green fitness increases. To improve

readability, the fitness scores in both maps are rescaled to the [0, 1] range. The green fitness

landscape is quite heterogeneous across countries and relatively stable over time. In

particular, we observe a persistent divide between Central and Eastern European regions. A

striking element is the substantial lack of coverage in several countries, which signals no

patenting activity in fields related to green technology. By 2017 the gap is almost completely

closed in terms of the existence of green patents in every European region. Furthermore, the

green area is far less concentrated at the end of the period than at the beginning, suggesting

that in less than 20 years entire countries started innovating in green technologies, and some

regions have also caught up with the leaders.

[FIGURE 8 ABOUT HERE]

Figure 8 shows two snapshots of the ratio within each region of the green fitness ranking

relative to the non-green technological fitness ranking. The regions in yellow are those that

rank lowest in green fitness relative to their non-green fitness, while regions in darker green

ranked higher in green fitness. The left panel shows that in 2002, at the beginning of the

period under analysis, most underachievers in green technology are regions with the lowest

green fitness (see Figure 7). This suggests that green technology did not offer a “safe

harbour” for less technologically advanced regions in this early time window. The right panel

shows a more nuanced picture for 2017. Perhaps the most striking element is that several

regions in Germany and France are now among the green underachievers, even though they

still perform relatively well in terms of both green and non-green technological fitness. This

suggests that the evolution of the areas of green technology has possibly created an avenue

for the development of technological capabilities also for regions that started late in the race

and are still in the process of catching up.

[TABLE 3 ABOUT HERE]
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Among the top ten regions in term of complexity in green technologies in Table 3, diversity is

higher than in the non-green technologies (eight countries represented instead of four) and the

evolution is more turbulent (only five regions remain in the top ten between the two time

periods while there are seven in the case of non-green technologies). Four regions are in the

top ten during the whole time period in both non-green and green technologies fitness

rankings: Oberbayern (DE21), Helsinki-Uusimaa (FI1B), Ile-de-France (FR10) and

Noord-Brabant (NL41). This could indicate that the high quality knowledge and skills

available in these regions to develop non-green technologies could be also used for green

technologies.

[TABLE 4 ABOUT HERE]

Table 4 shows the least complex European regions in terms of green technology

development. The shorter fitness ranking in green technologies (last position around 259

during 1998-2006 while it is around 305 for the non-green ones) indicates that less regions

have capacity to patent in climate change adaptation and mitigation technologies. While, in

the case of non-green technologies, Turkish and Greek regions were almost the only ones at

the bottom of the ranking, we see here more diversity due to the presence of regions from

Poland, Bulgaria, Spain and Norway, with only one region (Nord-Norge - NO07) present in

both time periods.

These metrics seem to be in line with other studies about regional technological development

in Europe. Among the top thirteen regions present in the non-green fitness ranking in both

periods, eleven are classified as “Innovation leaders” (highest level) and two as “Strong

innovators” (second highest level) in the Regional Innovation Scoreboard 2021 (European

Commission, 2021). On the green technology side, despite the lack of comparative study of

European Regions’ performances, some examples can be confirmed by the existing literature.

The rise of Stockholm (SE11) in the green fitness ranking (Table 3) is observed in a technical

report about the development of green technologies in Sweden (DTU Management

Engineering, 2019), as well as the good position of the region of Noord-Brabant (NL41),

located around Eindhoven (Balland et al., 2019). Finally, the presence of only two regions

from the South (Lombardia - ITC4, Emilia-Romagna - ITH5) seems to be associated with an
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important development of supportive policies (greenER, 2018; Eco-Innovation Observatory,

2015).

3.4 Performance of regions by green technology

Green technologies are not a homogeneous body, they require a different recombination of

unrelated and related knowledge (Barbieri et al., 2020a; Perruchas et al., 2020). Following

Barbieri et al. (2020a) and Perruchas et al. (2020) patent data may be employed to measure

the maturity of green technology. The authors exploit the intensity and the geographical

diffusion of patenting activities in green technological domains to define the technology life

cycle stages.6 Some technologies are more mature than others (e.g. photovoltaic panels versus

CO2 capture, sequestration and storage), hence not all the regions have a knowledge and skill

base adapted to the development of all the technologies. Therefore, for each region and green

technology (CPC 4 digit in the Y02 class) we calculate the fractional count of patent families.

[TABLE 5 AND TABLE 6 ABOUT HERE]

Table 5 and Table 6 represent the top five European regions for each green technology for

the time periods 1998-2006 and 2007-2017 respectively. The reader will recall that even if

there is a correlation between the green fitness ranking and the number of green patents, these

two indicators do not capture the same phenomenon. The former measure indicates a region’s

capacity to develop several technologies not commonly developed by other regions, while the

latter provides information on how a region performs in a specific group of technologies.

Consequently, we expect to observe in the following tables regions already in the top ten

ranking of the green fitness but also regions that were not previously identified.

In the first time period, Ile-de-France (FR10) is in the top five of all the green technologies

except for Climate Change Mitigation Technologies (CCMTs) in Information and

Communication Technologies. Oberbayern (DE21) is also predominant, lacking only two

GTs: CCMTs related to Capture, Sequestration and Storage of GhG (Y02C) and CCMTs

6 Green technologies that diffuse in few countries and are characterised by low level of patenting
activities are classified as ‘emerging’. Technologies that diffuse across space with overall low
patenting are in the ‘diffusion’ phase. Vice versa when patenting intensity is high and diffusion is low,
they are in the ‘development’ phase. Finally, high patenting intensity and high geographical diffusion
indicate that technology has reached a ‘mature’ stage.
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related to wastewater treatment or waste management (Y02W). Finally, another German

region (Köln, DEA2) is also active in four GTs while the remaining regions perform well in

only one or two GT domains. Once again, German areas are predominant, with at least one

region in every group and four in two groups (Y02P and Y02T). France is present in all

groups owing to the highly concentrated patenting activities of Ile-de-France (FR10). Thus,

four technology groups – CCMTs related to energy (Y02E), production of goods (Y02P),

transportation (Y02T) and waste (Y02W) –, mainly emerging technologies (Barbieri et al.,

2020a; Perruchas et al., 2020), are dominated exclusively by German and one or two French

regions, while the remaining groups have a more balanced portfolio. Finland is only present

in CCMTs in Information and Communication Technologies with two regions, indicating a

dominance in this sector, although Helsinki-Uusimaa (FI1B) is the most complex region on

average in the time period. Only Hamburg (DE60) and Zentralschweiz (CH06) have a high

green fitness without being present in any of the top five, illustrating the differences between

the two indicators.

In the second time period (2007-2017) we find a concentration of green patenting activities in

fewer regions (sixteen different regions instead of the nineteen in the previous period) and

countries (all the countries remain except the United Kingdom). Interestingly, even if German

regions are still prevalent, their average number per group is lower (2,75 to 2,5). Oberbayern

(DE21) is now present in all technology groups while Ile-de-France (FR10) is in the top five

regions for six groups. Rhône-Alpes (FRK2) and Stuttgart (DE11) improved their green

patenting capacities, and are now in the top regions in five different green technologies.

Comparing both time periods, on average more than half (2,86) regions maintain their

leadership over the entire time period. However, the number of regions in both time periods is

lower in emerging technologies (e.g. two regions, Ile-de-France (FR10) and

Rheinhessen-Pfalz (DEB3) in Y02C - CCS or Disposal of Greenhouse Gases) than in mature

technologies (e.g. four regions in Y02A - Adaptation to climate change or in Y02B - CCMTs

related to buildings). This may be indicative of the fact that it is more difficult for a region to

keep up with all the different designs appearing at the initial phase of the technology life

cycle, whilst it is easier to remain predominant in the latter phase, when the designs are

mainly standardized and the knowledge associated with them is stable (Vona and Consoli,

2015).

Moreover, only half of the regions in the top ten of the green fitness ranking are among the

top green inventors, thus reiterating the difference between the two indicators. To conclude

21



this exploratory analysis, complex regions in the development of green technologies are

mainly located in central and western Europe, in particular in Germany. Even if there is a

correlation between the fitness ranking and the patenting activity, these indicators capture

different aspects of green innovation. Few regions are capable of patenting at the highest

level in all the green technologies, which indicates that local capabilities are important to

fostering or hampering their development.

4. Results

In this section we present and comment on the empirical exercises based on green fitness at

regional level in Europe. As discussed in Section 2, the NUTS2 level offers a compromise

between data availability and the dimension of the unit of observation. Indeed, the regional

unit has been adopted in various empirical works that explore the geography of green

innovative activities (see e.g. Ghisetti and Quatraro, 2013; Santoalha and Boschma, 2020).

Since the goal of the study is to explore regional capacity to develop green technologies, viz.

green technological fitness and the green potential of the non-green knowledge space, the

analysis is organised in two steps. Firstly, we explore the relationship between regional

fitness calculated on green and non-green patenting activities. This enables us to check

whether there is a relationship between the capabilities to develop these two instantiations of

innovation (Section 4.1). Secondly, we delve into the relationship between green and

non-green technological capabilities by observing whether our measure of regional green

potential is correlated with better green fitness performance (Section 4.2).

4.1. The relationship between green and non-green technological fitness of European regions

The first empirical exercise consists in exploring the association between green and

non-green technological fitness at the regional level. In doing so we aim to capture the extent

to which innovative capabilities in non-green technologies are conducive to the development

of green, complex technologies. Indeed, regional technological fitness provides a picture of

the “rareness” of technological capabilities that characterise the regional knowledge space.

[FIGURE 9 ABOUT HERE]
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Figure 9 shows the relationship between green and non-green technological fitness of EU

regions. The scatter plot, weighted by the intensity of the patenting activity in the region,

highlights a strong correlation between the two measures. This suggests that green

technologies, usually more complex, novel and impactful than other technologies (Barbieri et

al., 2020b), require capabilities that are unevenly diffused across regions. Regions that are

already dealing with such a complexity in the non-green realm may have a comparative

advantage for developing more complex green technologies. In other words, developing

non-green technologies requires know-how, skills, resources (human, financial,

technological, etc.) that can be also useful for green technologies – and vice versa.

Figure 9 provides a descriptive indication of the relationship between green and non-green

regional fitness, which we further investigate by estimating the econometric model in Section

2.3.

[TABLE 7 ABOUT HERE]

Table 7 reports the result of the model estimation. Column (1) shows the results of the OLS

model. The other columns include both regional and time fixed effects. Finally, in Columns

(4) to (6), our preferred specifications, we include regional specific time trends. Results

confirm the strong correlation between non-green and green regional fitness: a one percent

increase in non-green regional fitness is associated with a 0.8-0.9 percentage increase in

green regional fitness – depending on the specification. These insights emphasise that

although green and non-green technologies may compete especially when financial resources

are constrained, they show patterns of complementarity in terms of knowledge capabilities.

4.2. The green potential of the regional knowledge space

In prior empirical exercises we find a correlation between regional green and non-green

technologies fitness. Here we investigate whether green regional fitness is associated with

specific shapes of the regional knowledge space. In doing so, we delve into the characteristics

of the regional knowledge base with a view to identify connections with higher levels of

green fitness.

[FIGURE 10 ABOUT HERE]
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To capture the connection between green and non-green knowledge we develop and employ

the indicator introduced in Section 2.2.2 to measure the green potential of the non-green

knowledge base and investigate whether this measure is correlated with the non-green and

green technological fitness of EU regions. Figure 10 shows the relationship between green

regional fitness and quintiles of the green potential indicator. We observe that the fitness

rankings are similar between green technologies (blue bars) and non-green technologies (red

bars). This first descriptive insight emerges from the strong, positive relationship between

green and non-green regional fitness as highlighted in the previous empirical exercise. In

addition, it is worth noting that when the green potential of the regional knowledge space is

low, on average regions have lower ranks in both green and non-green fitness. However,

when we move from the bottom to the top quintiles of green potential, we can find regions

that are characterised by higher levels of green and non-green fitness (lower values in the

ranking). Figure 10(b) shows this relationship adopting a dynamic perspective. Therein,

regions in the bottom and top quintile lose positions in the ranking of green regional fitness,

whereas regions in the middle of the green potential distribution gain positions on average.

[TABLE 8 ABOUT HERE]

The relationship between the green potential of the technology space and both green and

non-green fitness is further investigated in Table 8. We estimate a similar model adopted in

the previous exercise in which the key explanatory variable is the green potential of

non-green technologies. We observe that in Column (1) the relationship between the green

potential and green technological fitness is negative and significant. However, this result is

mainly driven by the fact that the pooled OLS is not able to capture the idiosyncratic features

that may explain an important part of the variation in green fitness. In fact, when we include

regional and time fixed effects the coefficient of GreenPotential is positive and significant.

Moreover, by adding regional specific time trends (Columns 3 and 4) the coefficient is still

significantly different from zero – holding other variables constant. Finally, when we look at

non-green regional fitness the coefficient is positive and non-significant.

These results suggest that there is a connection between the regional knowledge space and the

green fitness measure. In particular, such a connection relies on the potential of green and
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non-green technological advances to generate positive spillovers in terms of capabilities to

deal with more complex green technologies.

5. Conclusions

The Green Deal stipulates Europe’s commitment to be climate neutral by 2050. Such an

ambitious target requires significant efforts on all parts: policy-makers, firms and consumers.

Given the scale and the complexity of the environmental transition, a top-down approach

would not go very far because action plans need to be implemented from the bottom-up, in

regions and cities. Of course, not all territories are equally proactive, nor are they equally

capable to adapt to new criteria of environmental sustainability that entail a radical

reconfiguration of production and consumption activities.

Against this backdrop, we propose a novel methodology to help inform policy with respect to

regional capabilities related to green innovation. To task we explore the geographical

distribution of innovative activities and profile EU regions in terms of technological

capabilities to identify regions’ green innovation potential. Finally, we check the association

between comparative advantage in specific technological domains and green technology

capacity to validate the relevance of the metric in informing policy action.

The results indicate that regions with advanced capabilities in the development of green

technologies are mainly in central and western Europe, especially in Germany. On the whole,

we find that only few regions have capacity to patent at the highest level in all green

technologies, which indicates that local capabilities are important to fostering or hampering

their development. Further, we find a strong correlation between non-green and green

regional fitness. This implies that although green and non-green technologies may compete,

for example for financial or human capital resources, the underlying knowledge capabilities

exhibit interesting complementarities. The methodology proposed is therefore able to capture

the potential for green technologies for regions without a present focus on green technologies.

Let us conclude by offering some policy implications stemming from these findings. The

Green Deal is a necessary economic policy for its environmental effects, and it can also

represent an economic opportunity. While the environmental effects will have global impact

driven by cooperation, the economic impact will be decided on a region by region basis,

depending on their preexisting local technological capabilities. The Green deal may

potentially exacerbate the center-periphery tensions and polarization between EU economies
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(Lucchese and Pianta, 2020). Timely assessment of green specific regional capabilities is

therefore relevant both to inform industrial policy and to project possible winners and losers

with an eye towards cohesion policies. Capabilities are however field-specific and

product-specific: measures focusing on how much absorptive capacity a region has can

distract policy makers from looking at what a region is able to do. The analysis of this paper

tried to fix this gap, identifying which regions show potential in green technology by looking

at the present focus of their innovation efforts.

The analysis and metrics discussed in this work can form the basis for an organic

measurement effort of regional capabilities with respect to the development of green

technologies, akin to similar efforts to capture country and regional innovation capabilities in

general – like the European Innovation Scoreboard (Hollanders, 2009) and the Regional

Innovation Scoreboard (Markelbach et al., 2019). This could inform regional industrial policy

while defining long term objectives for the region. It is indeed important to notice that the

need for a quantitative approach connecting sustainable development with local

characteristics was already in the mind of policy makers. The European Commission Joint

Research Centre is moving to include Green policies into its regional cohesion policy, the

Smart Specialisation Strategies — S3 (Mccann and Soete, 2020). This holistic way of looking

at regional and sustainability policies at the same time, named Smart Specialisation Strategies

for Sustainability — S4, is based on the same theoretical foundational idea behind this paper:

the relevance of local characteristics. This shift will require both novel scientific results and

novel metrics to inform policies and strategies. In this paper, we tried to do that.

The research can be extended over different directions. First, we have pointed out that patents

capture only a portion of innovative activities. Corroborating our results with ad hoc

innovation surveys or other data sources would be important to support the evidence that

emerge from this study. Second, our explorative study aims at shedding light on the

co-evolution between green and non-green knowledge bases. We hope that this initial effort

will pave the way to future research on empirical designs that strives for the identification of

causal, robust effects.

Bibliographic references

Archibugi, D., and Pianta, M. (1996). “Measuring technological change through patents

and innovation surveys”. Technovation, 16(9), 451-519.

26



Arthur, W.B. (1999). “Complexity and the economy”. Science 284 (5411), 107–109.

Ayres, R.U., and van den Bergh, J.C. (2005). “A theory of economic growth with material/

energy resources and dematerialization: interaction of three growth mechanisms”.

Ecological Economics 55 (1): 96–118.

Balassa, B. (1965). “Trade liberalisation and revealed comparative advantage”. The

Manchester School 33(2), 99–123.

Balland, P. A., and Rigby, D. (2017). “The geography of complex knowledge”. Economic

Geography, 93(1), 1-23.

Balland, P. A., Boschma, R., Crespo, J. and Rigby, D. (2019) “Smart specialization policy

in the European Union: relatedness, knowledge complexity and regional

diversification”. Regional Studies, 53:9, 1252-1268.

Barbieri, N., Perruchas, F., and Consoli, D. (2020a). “Specialization, diversification and

environmental technology life-cycle”. Economic Geography 96(2): 161-186.

Barbieri, N., Marzucchi, A., and Rizzo, U. (2020b). "Knowledge sources and impacts on

subsequent inventions: Do green technologies differ from non-green ones?." Research

Policy, 49.2: 103901.

Bathiany, S., Dakos, V., Scheffer, M., and Lenton, T.M. (2018). “Climate models predict

in- creasing temperature variability in poor countries”. Science Advances, 4(5):

eaar5809.

Blume, L. and S. N. Durlauf (2001). “The interactions-based approach to socioeconomic

behavior”. Social Dynamics, 15.

Boschma, R., A. Minondo, and M. Navarro (2013). “The emergence of new industries at

the regional level in Spain: A proximity approach based on product relatedness”.

Economic Geography 89 (1), 29–51.

Breschi, S., F. Lissoni, and F. Malerba (2003). “Knowledge-relatedness in firm

technological diversification”. Research Policy 32 (1), 69–87.

Castaldi, C., Frenken, K., and Los, B. (2015). “Related variety, unrelated variety and

technological breakthroughs: an analysis of US state-level patenting”. Regional

Studies, 49(5), 767-781.

27



Charlot, S., Crescenzi, R., and Musolesi, A. (2015). “Econometric modelling of the

regional knowledge production function in Europe”. Journal of Economic Geography

15 (6): 1227–59. doi:10.1093/jeg/ lbu035.

Cheng, Z., and Jin, W. (2020). “Agglomeration Economy and the Growth of Green

Total-Factor Productivity in Chinese Industry”. Socio-Economic Planning Sciences,

101003.

Chertow, M.R. (2008). “The eco-industrial park model reconsidered”. Journal of Industrial

Ecology, 3: 8-10.

Cilliers, P. (2001). “Boundaries, hierarchies and networks in complex systems”.

International Journal of Innovation Management, 5 (02), 135–147.

Cimini, G., A. Gabrielli, and F. S. Labini (2014). “The scientific competitiveness

of nations”. PloS one, 9(12), e113470.

Corradini, C. (2019). “Location determinants of green technological entry: evidence from

European regions”. Small Business Economics, 52(4): 845-858.

De Marchi, V. (2012). "Environmental innovation and RandD cooperation: Empirical

evidence from Spanish manufacturing firms." Research Policy, 41(3): 614-623.

de Rassenfosse, G., Kozak, J., and Seliger, F. (2019). “Geocoding of worldwide patent

data”. Scientific Data, 6(1), 1-15.

Driscoll, J. C., and Kraay, A. C. (1998). “Consistent covariance matrix estimation with

spatially dependent panel data”. Review of Economics and Statistics, 80(4): 549–60.

doi:10.1162/003465398557825.

DTU Management Engineering. (2019, January). “Regional Distribution of Green Growth

Patents in four Nordic Countries: Denmark, Finland, Norway and Sweden”.

https://www.gonst.lu.se/sites/gonst.lu.se/files/gonst_wp3_report_distribution_of_green

_patents_2019.pdf.

Eco-Innovation Observatory (2015). “Eco-innovation in Italy”. EIO Country Profile;

2014-2015.

https://ec.europa.eu/environment/ecoap/sites/default/files/field/field-country-files/italy_

eco-innovation_2015.pdf

28

https://ec.europa.eu/environment/ecoap/sites/default/files/field/field-country-files/italy_eco-innovation_2015.pdf
https://ec.europa.eu/environment/ecoap/sites/default/files/field/field-country-files/italy_eco-innovation_2015.pdf


European Commission (2015). “Local and Regional Partners Contributing to Europe

2020”. European Commission, Directorate-General for Regional and Urban Policy.

European Commission (2018). “A clean planet for all: a European strategic long-term

vision for a prosperous, modern, competitive and climate neutral economy”.

Communication from the Commission to the EU Parliament, the EU Council, the EU

Economic and Social Committee, the Committee of the Regions and the EU Investment

Bank (com(2018) 773 final).

European Commission (2021). “Regional Innovation Scoreboard 2021”. European

Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and

SMEs.

European Patent Office (2020). Data Catalog PATSTAT Global 2020, Spring Edition.

European Patent Office.

Fankhauser, S., Bowen, A., Calel, R., Dechezleprêtre, A., Grover, D., Rydge, J. and Sato,

M. (2013). “Who will win the green race? In search of environmental competitiveness

and innovation”. Global Environmental Change 23 (5), 902–913.

Gibbs, D. (2006). “Prospects for an environmental economic geography: linking

ecological modernization and regulationist approaches”. Economic Geography, 82(2):

193-215.

Ghisetti, C., and Quatraro, F. (2013). “Beyond inducement in climate change: Does

environmental performance spur environmental technologies? A regional analysis of

cross-sectoral differences”. Ecological Economics, 96, 99-113.

greenER Osservatorio (2018). “La Green Economy in Emilia-Romagna”. greenER

Osservatorio.

http://www.osservatoriogreener.it/wp-content/uploads/2019/03/Ervet_Volume_Green_E

conomy_WEB.pdf

Griliches, Z., Hall, B. H., and Pakes, A. (1991). “RandD, patents, and market value

revisited: Is there a second (technological opportunity) factor?”. Economics of

Innovation and New Technology, 1(3), 183–201.

Haines, A., Patz, J.A. (2004). “Health effects of climate change”. Journal of American

Medical Association, 291 (1): 99-103.

29



Hamwey, R., H. Pacini, and L. Assunção (2013). “Mapping green product spaces of

nations”. The Journal of Environment and Development, 22 (2), 155–168.

Hidalgo, C. A. and R. Hausmann (2009). “The building blocks of economic complexity”.

Proceedings of the National Academy of Sciences of the United States of America

106(26), 10570–10575.

Hollanders, H. (2009) "Measuring innovation: The European innovation scoreboard.

Measuring creativity”. European Commission Joint Research Centre Luxembourg,

27-40.

Lucchese, M. and Pianta, M. (2020) “Europe’s alternative: a Green Industrial Policy for

sustainability and convergence”.

Markard, J., and Hoffmann, V. H. (2016). “Analysis of complementarities: Framework and

examples from the energy transition”. Technological Forecasting and Social Change,

111, 63-75.

Mccann, P. and Soete, L. (2020). “Place-based innovation for sustainability, Publications

Office of the European Union”. Luxembourg, ISBN 978-92-76-20392-6 (online),

doi:10.2760/250023 (online), JRC121271.

McMichael, A.J., Woodruff, R.E., Hales, S. (2006). “Climate change and human health:

present and future risks”. Lancet 367 (9513): 859–869.

Mealy, P., and Teytelboym, A. (2020). “Economic complexity and the green economy”.

Research Policy, 103948.

Mendelsohn, R., Dinar, A., and Williams, L. (2006). “The distributional impact of climate

change on rich and poor countries”. Environment and Development Economics,

159-178.

Merkelbach, I., Hollanders H., and Es-Sadki, N. (2019) “European innovation scoreboard

2019”. European Commission.

Montresor, S., and Quatraro, F. (2019). “Green technologies and Smart Specialisation

Strategies: a European patent-based analysis of the intertwining of technological

relatedness and key enabling technologies”. Regional Studies 54(10): 1354-1365.

Napolitano, L., A. Sbardella, D. Consoli, N. Barbieri, and F. Perruchas (2019). “Green

innovation and income inequality: A complex system analysis”. SPRU WPS 2020-11

https://www.sussex.ac.uk/spru/documents/2020-11-swps-napolitano-et-al1.pdf

30

https://www.sussex.ac.uk/spru/documents/2020-11-swps-napolitano-et-al1.pdf
https://www.sussex.ac.uk/spru/documents/2020-11-swps-napolitano-et-al1.pdf


Nesta, L. and Saviotti, P. P. (2005). “Coherence of the knowledge base and the firm’s

innovative performance: evidence from the US pharmaceutical industry”. The Journal

of Industrial Economics, 53 (1), 123–142.

Noailly, J., and Shestalova, V. (2017). “Knowledge spillovers from renewable energy

technologies: Lessons from patent citations”. Environmental Innovation and Societal

Transitions, 22, 1-14.

Nomaler, Ö., and Verspagen, B. (2021). “Patent landscaping using 'green' technological

trajectories”. United Nations University-Maastricht Economic and Social Research

Institute on Innovation and Technology (MERIT), No. 2021-005.

Operti, F. G., Pugliese, E., Andrade Jr, J. S., Pietronero, L., and Gabrielli, A. (2018).

“Dynamics in the fitness-income plane: Brazilian states vs world countries”. PloS one

13 (6), e0197616.

Perruchas, F., Consoli, D., and Barbieri, N. (2020). “Specialisation, Diversification and the

Ladder of Green Technology Development”. Research Policy 49(3): 103922.

Popp, D. (2005), “Lessons from Patents: Using Patents to Measure Technological Change

in Environmental Models”. Ecological Economics, 54, (2-3), 209-226.

Pugliese, E., Cimini, G., Patelli, A., Zaccaria, A., Pietronero, L., and Gabrielli, A. (2019).

“Unfolding the innovation system for the development of countries: coevolution of

Science, Technology and Production”. Scientific Reports, 9(1), 1-12.

Pugliese, E. and A. Tübke (2019). “Economic complexity to address current challenges in

innovation systems: a novel empirical strategy for regional development”. Industrial

RandI – JRC Policy Insights.

Rigby, D. L. (2015). “Technological relatedness and knowledge space: entry and exit of

US cities from patent classes”. Regional Studies, 49 (11), 1922–1937.

Santoalha, A., and Boschma, R. (2020). “Diversifying in green technologies in European

regions: does political support matter?”. Regional Studies, 1-14.

Saracco, F., Di Clemente, R., Gabrielli, A., and Squartini, T. (2015). “Randomizing

bipartite networks: the case of the World Trade Web”. Scientific Reports 5, 10595.

31



Saracco, F., Straka, M. J., Di Clemente, R., Gabrielli, A., Caldarelli, G., and Squartini, T.

(2017). “Inferring monopartite projections of bipartite networks: an entropy-based

approach”. New Journal of Physics, 19(5), 053022.

Sbardella, A., Perruchas, F. , Napolitano, L., Barbieri, N., and Consoli, D. (2018). “Green

technology fitness”. Entropy 20(10), 776.

Sbardella, A., Pugliese, E., and Pietronero, L. (2017). “Economic development and wage

inequality: A complex system analysis”. PloS one, 12(9):e0182774.

Sinsel, S. R., Markard, J., and Hoffmann, V. H. (2020). “How deployment policies affect

innovation in complementary technologies—evidence from the German energy

transition”. Technological Forecasting and Social Change, 161, 120274.

Stern, N. (2007). “The Economics of Climate Change: The Stern Review”. Cambridge

University Press.

Straka, M. J., G. Caldarelli, and F. Saracco (2017). “Grand canonical validation of the

bipartite international trade network”. Physical Review E 96(2), 022306.

Tacchella, A., M. Cristelli, G. Caldarelli, A. Gabrielli, and L. Pietronero (2012). “A new

metrics for countries’ fitness and products’ complexity”. Scientific Reports, 2(723).

Truffer, B., and Coenen, L. (2012). “Environmental innovation and sustainability

transitions in regional studies”. Regional Studies, 46(1): 1-21.

Vona, F., and Consoli, D. (2015). “Innovation and skill dynamics: a life-cycle approach”.

Industrial and Corporate Change, 24(6), 1393-1415.

York, R., and Rosa, E. (2003). “Key Challenges to Ecological Modernization Theory”.

Organization and Environment, 16(3) 273-88.

Zeppini, P., and van den Bergh, J. (2011). “Competing Recombinant Technologies for

Environmental Innovation: Extending Arthur's Model of Lock-In”. Industry and

Innovation, 18(3), 317-334.

32



Tables and Figures

33



Figure 1. The binary network that connects European NUTS2 regions to the CPC
classes in which they have a comparative advantage, graphical representation in (a) and
adjacency matrix in (b).

(a)                                                                       (b)
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Figure 2. The binary network that connects A-H CPC non-green technologies at 4-digit
aggregation level at time to Y02 green technologies at 8-digit aggregation level at time𝑡

1
. Each network link represents the correlation between having a comparative𝑡

2
advantage in a NGT and a subsequent comparative advantage in a GT.

Figure 3. Share of 99% statistically significant links in the non-green – green technology
space of each A-H CPC non-green technology at 4-digit aggregation level (considered at
time ) to all Y02 green technologies at 8-digit aggregation level (considered at𝑡

1
= 2012

time ).𝑡
2

= 2017
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Figure 4. The Green Potential of NUTS2 regions’ knowledge base in 2002 and 2017

respectively in (a) and (b), and the highest contributions to the Green Potential in terms

of A-H CPC non-green technology at 4-digit aggregation level (colored according to the

color-scheme in Figure 3) in 2002 and 2017 respectively in (c) and (d).

(a)                                                                  (b)

(c)                                                                 (d)
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Figure 5. Evolution of the Non-green Technological Fitness ranking of EU NUTS2

regions.
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Figure 6. Evolution of the Green Technological Fitness ranking of EU NUTS2 regions.
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Figure 7. Green Technological Fitness of NUTS2 regions in 2002 and 2017 respectively

in (a) and (b).

(a)                                                                  (b)

Figure 8. Green Technological Fitness ranking relative to the overall technological
ranking in 2002 and 2017 respectively in (a) and (b).

(a)                                                                  (b)

39



Figure 9. Relationship between Green and Non-Green Technological Fitness in NUTS2

EU regions. Each point corresponds to NUTS2. Low values of the axes are associated

with higher ranks. Each variable is weighted by total patenting activity (size of the

circle).

Figure 10. Regional Technological Fitness and the Green Potential of NUTS2 EU

regions.
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Table 1. Top 10 EU NUTS2 regions in the Non-Green Technological Fitness ranking.

1998-2006 2007-2017

NUTS

code
Region name

Average

Fitness

Ranking

NUTS

code
Region name

Average

Fitness

Ranking

DE21 Oberbayern 1,2 DE21 Oberbayern 1,4

DE11 Stuttgart 2,1 FR10 Ile-de-France 2,1

FR10 Ile-de-France 2,7 DE11 Stuttgart 2,7

DEA1 Düsseldorf 4,8 DEA1 Düsseldorf 4,6

NL41 Noord-Brabant 5,6 SE11 Stockholm 5,6

DE71 Darmstadt 6,2 DE14 Tübingen 7,6

DEA2 Köln 6,9 DE71 Darmstadt 8,1

DE12 Karlsruhe 8,1 FI1B Helsinki-Uusimaa 8,7

FI1B Helsinki-Uusimaa 10,0 NL41 Noord-Brabant 8,8

ITC4 Lombardia 10,6 DE25 Mittelfranken 9,0

Table 2. Bottom 10 EU NUTS2 regions in the Non-Green Technological Fitness ranking.

1998-2006 2007-2017

NUTS

code
Region name

Average

Fitness

Ranking

NUTS

code
Region name

Average

Fitness

Ranking

TR32 Aydin, Denizli, Mugla 294,4 TR63
Hatay, Kahramanmaras,

Osmaniye
302,7

TR72 Kayseri, Sivas, Yozgat 294,7 TR22 Balikesir, Çanakkale 304,4

EL53 Δυτική Μακεδονία 294,8 TR82 Kastamonu, Çankiri, Sinop 305,4

RO31 Sud - Muntenia 295,9 TR83
Samsun, Tokat, Çorum,

Amasya
305,5

TR83
Samsun, Tokat,

Çorum, Amasya
296,3 EL41 Βόρειο Αιγαίο 306,5
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EL41 Βόρειο Αιγαίο 300,7 TRB1
Malatya, Elazig, Bingöl,

Tunceli
307,3

EL62 Ιόνια Νησιά 303,0 TRC2 Sanliurfa, Diyarbakir 308,8

RO42 Vest 304,0 TR71
Kirikkale, Aksaray, Nigde,

Nevsehir, Kirsehir
311,3

TRC3
Mardin, Batman,

Sirnak, Siirt
304,0 TR81 Zonguldak, Karabük, Bartin 314,4

TR63

Hatay,

Kahramanmaras,

Osmaniye

305,0 TR90 Trabzon 314,8
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Table 3. Top 10 EU NUTS2 regions in the Green Technological Fitness ranking.

1998-2006 2007-2017

NUTS

code
Region name

Average

Fitness

Ranking

NUTS

code
Region name

Average

Fitness

Ranking

FI1B Helsinki-Uusimaa 5,4 SE11 Stockholm 4,1

DE25 Mittelfranken 10,8 DE12 Karlsruhe 14,7

SE11 Stockholm 15,0 NL41 Noord-Brabant 15,0

DE21 Oberbayern 16,7 FR10 Ile-de-France 18,3

FR10 Ile-de-France 17,1 FI1B Helsinki-Uusimaa 19,1

DE60 Hamburg 17,7 UKK1
Gloucestershire, Wiltshire and

Bristol/Bath area
22,7

CH06 Zentralschweiz 18,8 DE21 Oberbayern 23,6

ITC4 Lombardia 24,0 ITH5 Emilia-Romagna 26,3

NL41 Noord-Brabant 24,0 UKI3 Inner London - West 27,8

UKJ3 Hampshire and Isle of Wight 24,4 DE26 Unterfranken 31,3
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Table 4. Bottom 10 EU regions in the Green Technological Fitness ranking.

1998-2006 2007-2017

NUTS

code
Region name

Average

Fitness

Ranking

NUTS

code
Region name

Average

Fitness

Ranking

PL42 Zachodniopomorskie 250,5 BG33 Североизточен 276,7

ES13 Cantabria 250,7 RO31 Sud - Muntenia 276,8

PL61 Kujawsko-pomorskie 251,0 EL65 Πελοπόννησος 278,9

PL41 Wielkopolskie 252,0 EL62 Ιόνια Νησιά 280,6

TR21
Tekirdag, Edirne,

Kirklareli
252,5 EL53 Δυτική Μακεδονία 284,2

NO07 Nord-Norge 254,9 NO07 Nord-Norge 285,2

EL61 Θεσσαλία 255,8 BG31 Северозападен 285,2

TR32 Aydin, Denizli, Mugla 256,0 TR22 Balikesir, Çanakkale 287,4

EL42 Νότιο Αιγαίο 259,0 TRA1 Erzurum, Erzincan, Bayburt 288,4

RO42 Vest 266,0 TR82 Kastamonu, Çankiri, Sinop 288,8
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Table 5. Top 5 EU NUTS2 regions for each group of green technologies (1998-2006).

Technology
NUTS

code
Region name

Frac.

count of

patent

families

Y02A - Technologies For Adaptation To Climate

Change

FR10 Ile-de-France 107,1

DE11 Stuttgart 62,7

DE21 Oberbayern 48,7

DEA2 Köln 35,4

DK01 Hovedstaden 32,1

Y02B - CCMTs Related To Buildings NL41 Noord-Brabant 106,9

DE21 Oberbayern 85,8

FR10 Ile-de-France 36,4

DE11 Stuttgart 33,3

ITC4 Lombardia 26,9

Y02C - Capture, Storage, Sequestration or

Disposal of Greenhouse Gases [GhG]

FR10 Ile-de-France 30,3

NL32 Noord-Holland 6,7

UKK1
Gloucestershire, Wiltshire

and Bristol/Bath area
5,7

DE12 Karlsruhe 5,2

DEB3 Rheinhessen-Pfalz 5,2

Y02D - CCMTs In Information and

Communication Technologies [ICT]

NL41 Noord-Brabant 42,8

DE21 Oberbayern 30,8

FI1B Helsinki-Uusimaa 29,6

SE11 Stockholm 28,1

FI19 Länsi-Suomi 23,7

Y02E - Reduction of Greenhouse Gas [GhG]

Emissions, Related to Energy Generation,

Transmission or Distribution

FR10 Ile-de-France 106,1

DE21 Oberbayern 74,8

DE25 Mittelfranken 74,7

FRK2 Rhône-Alpes 72,5
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DEA2 Köln 58,9

Y02P - CCMTs in the Production or Processing of

Goods

DE71 Darmstadt 113,6

FR10 Ile-de-France 105,7

DEB3 Rheinhessen-Pfalz 93,3

DE21 Oberbayern 85,3

DE12 Karlsruhe 75,6

Y02T - CCMTs Related to Transportation DE11 Stuttgart 552,8

FR10 Ile-de-France 502,1

DE21 Oberbayern 166,0

DE12 Karlsruhe 129,5

DEA2 Köln 90,6

Y02W - CCMTs Related to Wastewater Treatment

or Waste Management

FR10 Ile-de-France 45,6

DE14 Tübingen 29,6

DEA1 Düsseldorf 29,1

FRK2 Rhône-Alpes 27,8

DEA2 Köln 21,7
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Table 6. Top 5 EU NUTS2 regions for each group of green technologies (2007-2017).

Technology
NUTS

code
Region name

Frac. Count

of patent

families

Y02A - Technologies For Adaptation To Climate

Change

FR10 Ile-de-France 91,4

DE11 Stuttgart 63,0

DEA2 Köln 62,1

DE21 Oberbayern 48,8

SE11 Stockholm 47,7

Y02B - CCMTs Related To Buildings NL41 Noord-Brabant 169,7

DE11 Stuttgart 120,3

DE21 Oberbayern 120,0

ITC4 Lombardia 108,5

FRK2 Rhône-Alpes 81,0

Y02C - Capture, Storage, Sequestration or

Disposal of Greenhouse Gases [GhG]

FR10 Ile-de-France 35,8

DE71 Darmstadt 17,4

FRK2 Rhône-Alpes 15,9

DE21 Oberbayern 15,8

DEB3 Rheinhessen-Pfalz 15,5

Y02D - CCMTs In Information and

Communication Technologies [ICT]

SE11 Stockholm 143,3

SE22 Sydsverige 80,1

FI1B Helsinki-Uusimaa 64,2

DE21 Oberbayern 64,1

FR10 Ile-de-France 52,3

Y02E - Reduction of Greenhouse Gas [GhG]

Emissions, Related to Energy Generation,

Transmission or Distribution

DK04 Midtjylland 411,2

DE21 Oberbayern 346,7

DE11 Stuttgart 242,6

FRK2 Rhône-Alpes 236,7

FR10 Ile-de-France 212,3
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Y02P - CCMTs in the Production or Processing of

Goods

DE21 Oberbayern 153,0

FRK2 Rhône-Alpes 136,1

DE71 Darmstadt 133,2

DE11 Stuttgart 118,2

NL32 Noord-Holland 117,0

Y02T - CCMTs Related to Transportation FR10 Ile-de-France 715,0

DE11 Stuttgart 699,9

DE21 Oberbayern 463,7

DE14 Tübingen 178,8

DEA2 Köln 167,7

Y02W - CCMTs Related to Wastewater Treatment

or Waste Management

FRK2 Rhône-Alpes 49,2

FR10 Ile-de-France 39,4

DE21 Oberbayern 32,7

ITC4 Lombardia 29,7

DE12 Karlsruhe 27,2
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Table 7. Econometric results on the estimation of the relationship between Green and

Non-Green Technological Fitness.

Dep Variable: GTF

(1) (2) (3) (4) (5) (6)

NGTF 0.932**
*

0.813*** 0.776*** 0.776*** 0.776***

(0.009) (0.055) (0.083) (0.083) (0.055)

TotalTech
Fitness 0.771***

(0.081)

Controls Y Y Y Y Y Y

Fixed
Effects N Y Y Y Y Y

Time
Dummies N Y Y Y Y Y

Regional
Time
Trends

N N Y Y Y Y

N 2,920 2,920 2,920 2,920 2,920 2,919

R2 0.818 0.824 0.873 0.873 0.873 0.873

Notes: The dependent variable is the (log) regional green technological fitness.

Control variables include the total patenting activity in the region, population

and GDP (in logs). In Columns (4) and (5) we control for: green patenting,

non-green patenting, population and GDP (in logs). Column (1) shows the

results of the pooled OLS, whereas Columns (2)-(6) report the OLS estimation

of the fixed effect model. Robust standard errors in parentheses except for

Column (5), which employs Driscoll and Kraay (1998) standard errors, robust to

heteroskedasticity and serial and spatial correlation, in parentheses. *** p< 0.01.
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Table 8. Estimation of the relationship between Green Potential and Green and

Non-Green Technological Fitness.

Dep Variable: GTF Dep Variable: NGTF

(1) (2) (3) (4) (5)

GreenPotential -2.798** 2.274*** 1.351* 1.351*** 0.278

(1.091) (0.664) (0.714) (0.419) (1.228)

Controls Y Y Y Y Y

Regional FE N Y Y Y Y

Time Dummies N Y Y Y Y

Regional Time Trends N N Y Y Y

Observations 3,381 3,381 3,381 3,381 3,617

R-squared 0.023 0.754 0.833 0.833 0.936

Notes: The dependent variable is the (log) regional green technological fitness in

Column (1)-(4) and regional non-green technological fitness in Column (5).

Control variables include the total patenting activity in the region, population

and GDP (in logs). Column (1) shows the results of the pooled OLS whereas

Columns (2)-(5) report the OLS estimation of the fixed effect model. Robust

standard errors in parentheses, except for Column (4) which employs Driscoll

and Kraay (1998) standard errors, robust to heteroskedasticity and serial and

spatial correlation, in parentheses. * p< 0.1 ** p< 0.05 *** p< 0.01.
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