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Abstract

We adapt the multifractal random walk model by Bacry et al. (2001) to realized volatili-

ties (denoted RV-MRW) and take stock of recent theoretical insights on this model in Duchon

et al. (2012) to derive forecasts of financial volatility. Moreover, we propose a new extension

of the binomial Markov-switching multifractal (BMSM) model by Calvet and Fisher (2001)

to the RV framework. We compare the predictive ability of the two against seven classi-

cal and multifractal volatility models. Forecasting performance is evaluated out-of-sample

based on the empirical MSE and MAE as well as using model confidence sets following the

methodology of Hansen et al. (2011). Overall, our empirical study for 14 international stock

market indices has a clear message: The RV-MRW is throughout the best model for all

forecast horizons under the MAE criterium as well as for large forecast horizons h = 50 and

100 days under the MSE criterion. Moreover, the RV-MRW provides most accurate 20-day

ahead forecasts in terms of MSE for the great majority of indices, followed by RV-ARFIMA,

the latter dominating the competition at the 5-day-horizon. These results are very promis-

ing if we consider that this is the first empirical application of the RV-MRW. Moreover,

whereas RV-ARFIMA forecasts are often a time consuming task, the RV-MRW stands out

due to its fast execution and straightforward implementation. The new RV-BMSM appears

to be specialized in short term forecasting, the model providing most accurate one-day ahead

forecasts in terms of MSE for the same number of cases as RV-ARFIMA.
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1 Introduction

There exists a large body of literature demonstrating that volatility models based on realized

volatilities (RV) produce far more accurate volatility forecasts than models using asset returns

only.1 This paper confirms this message based on an extensive empirical study covering fourteen

international stock market indices and a collection of nine competing models, including four

models based on RV.

We also consider the two representative models of the relatively new class of multifractal

volatility models: the Markov-switching multifractal model by Calvet and Fisher (2001) and the

multifractal random walk model by Bacry et al. (2001), this being the first study to compare

the two. The multifractal (or multi-scaling) property is a nonlinear behavior of returns over

different time horizons (minute, daily, monthly returns, etc.) which manifests itself in different

degrees of long-term dependence of different absolute power of returns (i.e., different measures

of volatility), a salient empirical regularity that has first been discovered by Ding et al. (1993).

It has been argued that this ubiquitous feature of financial data arises from the interplay of

investors with heterogenous investment horizons (cf. Ghashghaie et al., 1996). The models that

have appeared under the heading ‘multifractal’ in recent literature have all generating principles

that (unlike the classical GARCH-type and stochastic volatility models) intrinsically capture

this new stylized fact.

Notably, we also consider the little-known multifractal random walk model which we adapt

here to realized volatility, short: RV-MRW, the present paper also being the first empirical

application of the approach by Duchon et al. (2012) for the derivation of volatility forecasts for

the MRW model. As it turns out, based on the evaluation of model confidence sets calculated

from mean absolute errors (MAE) of forecasts, RV-MRW proves to be the best model through-

out, i.e., for all fourteen indices used in our study and for all forecast horizons between 1 day

and 100 days. Second, our results using mean squared forecast errors (MSE) show that the RV-

MRW clearly also provides the most accurate forecasts under this criterion for the overwhelming

majority of all indices under scrutiny at large horizons ≥ 20 days, the model also outperform-

ing the more traditional RV-ARFIMA (autoregressive fractionally integrated moving average

specification for RV).

Following the example of Lux et al. (2014) for the application of the lognormal Markov-

switching multifractal model to realised volatility (RV-LMSM), we also extend the binomial

1Just to give a few examples, Koopman et al. (2005) evaluate one-step ahead forecasts from GARCH (gener-
alised autoregressive conditional heteroscedasticity), SV (stochastic volatility), RV-UC (unobserved components
model for RV) and RV-ARFIMA (autoregressive fractionally integrated moving average model for RV). They
report best forecast performance for the RV-ARFIMA, closely followed by RV-UC. Koopman and Scharth (2013)
propose an original SV model which they fit using both RV and returns data. The authors also consider two rela-
tively new models: the heterogeneous autoregressive (HAR) model of Corsi (2009) and the high-frequency-based
volatility (HEAVY) model of Shephard and Sheppard (2010). The RV-SV model delivers most accurate fore-
casting results, with higher performance gains for the longer horizon. Lux et al. (2014) distinguish between the
turbulent period of mid 2007 to 2009 and the rather tranquil period from mid 2005 to mid 2007. Whereas their
multifractal specification for the RV (RV-LMSM) proves superior forecasting performance during the crisis period
over a wide variety of alternative models, overall, RV-ARFIMA clearly dominates the forecasting competition.
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Markov-switching multifractal (BMSM) model by Calvet and Fisher (2001) to the RV frame-

work. This new model proves to have superior forecasting capabilities in the short term, com-

peting with the RV-ARFIMA for both one-day and five-day forecasts. As a matter of fact, both

RV-BMSM and RV-ARFIMA provide most accurate forecasts in 50% of the cases in our sample

for one-day forecasts in terms of MSE, respectively.

Overall, the best models based on the evaluation of mean squared forecast errors are RV-

MRW, RV-ARFIMA and RV-BMSM, where we can observe a transition from RV-MRW domi-

nating long term forecasts to RV-ARFIMA dominating medium- and short-term forecasts and

RV-BMSM specialized in one-day forecasts.

The paper is organized as follows: The next section reviews some basic concepts of volatility

modeling and shortly describes the volatility models considered. Section 3 gives a detailed

exposition of the RV-MRW, section 4 of the RV-BMSM. Our empirical study in section 5

encompasses information on the dataset, the estimation results and the forecasting design, and

reports our main findings for the forecast performance of the various models. We conclude in

the sixth section.

2 Volatility models

Volatility models consider risk adjusted (zero mean) financial returns xt = (pt − pt−1) − µt,

with pt = ln (Pt) the logarithmic asset price at time t and µt = Et−1 [ln (pt)− ln (pt−1)], the

conditional mean of the return series given the public information available at time t− 1. The

focus is on the modelling of financial volatility σt according to various specifications within the

following general framework:

xt = σtut, (1)

where ut is Gaussian white noise ut ∼ N (0, 1) (Andersen et al., 2006). This construction reflects

the economic ideas behind the efficient market hypothesis: the return fraction µt constitutes the

fair payment expected in t, whereas xt is the excess return due to arrival of new information,

which market participants are unable to predict (cf. Fama, 1965).

The seminal GARCH[1,1] (generalised autoregressive conditional heteroscedasticity) model

of Bollerslev (1986) assumes that the volatility dynamics is governed by

σ2
t = ω + αx2t−1 + βσ2

t−1, (2)

where the restrictions on the parameters are ω > 0, α, β ≥ 0 and α+β < 1. A well known stylized

fact of financial time series is the so called leverage effect, which describes the negative correlation

between volatility and returns. This is based on the empirical finding that return fluctuations

intensify after negative financial news and are less pronounced after positive financial news

(Black, 1976). To account for this stylized fact we consider the GJR-GARCH model, which was
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named after the authors who introduced it (Glosten et al., 1993):

σ2
t = ω + αx2t−1 + ςx2t−1I(xt−1 < 0) + βσ2

t−1, (3)

where I(•) is the indicator function taking the value of 1 if xt−1 < 0 and 0 otherwise.

While the models of the GARCH family conceive the volatility dynamics as a linear pro-

cess, multifractal volatility models, in contrast, are characterized by a multiplicative structure

with a hierarchy of heterogeneous volatility components. The systematic arrangement of these

volatility components provides for a very parsimonious framework with only a small number

of parameters to estimate. In the Markov-switching multifractal (MSM) model, instantaneous

volatility is determined by the product of k volatility components M
(1)
t ,M

(2)
t , . . . ,M

(k)
t and a

scale factor σ2:

σ2
t = σ2

k∏

i=1

M
(i)
t . (4)

Following the basic hierarchical principle of the multifractal approach, each volatility component

M
(i)
t will be renewed at time t with a probability γi depending on its rank within the hierarchy

of multipliers, and will remain unchanged with probability 1− γi. Convergence of the discrete-

time MSM of eq. (4) to a limiting Poisson process in continuous time requires to formalize

transition probabilities as follows (cf. Calvet and Fisher, 2001):

γi = 1− (1− γk)
(bi−k). (5)

In this paper we set the number of multipliers M
(i)
t to k = 8 and use the pre-specified parameter

values γk = 0.5 and b = 2 (cf. Lux, 2008).2 Following Calvet and Fisher (2004), the Binomial

MSM (BMSM) is characterized by binomial random draws, each component M
(i)
t taking the

values m0 or 2 − m0 (1 ≤ m0 < 2) with equal probability. This configuration guarantees an

expectation of unity for all M
(i)
t . Due to the finite set of states and the Markov property of the

BMSM, this model can be estimated using exact maximum likelihood (ML).

In the Lognormal MSM (LMSM) model, multipliers are determined by random draws from

the lognormal distribution with parameters λ and ν, i.e. M
(i)
t ∼ LN(−λ, ν2). Normalisation

via E[M
(i)
t ] = 1 leads to the restriction ν =

√
2λ. The estimation of the LMSM parameters

λ and σ2 can be accomplished with the generalized method of moments (GMM) estimation

technique based on the pertinent moment conditions for the log differences of absolute returns

ξt,T = ln |xt| − ln |xt−T | for various lags T as outlined in Lux (2008).

Here we evaluate volatility forecasts based on both model specifications. We compute BMSM

forecasts based on the conditional probabilities of the current states of the volatility components

and the transition matrix of the model according to Bayes’ rule. Forecasting of the LMSMmodel

is performed by means of best linear forecasts (cf. Brockwell and Davis, 1991, chap. 5) together

2An in-depth analysis of this model can be found in Calvet and Fisher (2004) and Lux (2008).
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with the generalized Levinson-Durbin algorithm developed by Brockwell and Dahlhaus (2004)

(see Lux, 2008, for further details).

The multifractal random walk (MRW) is a different multifractal specification obtained as

the limit process over a continuum of volatility components in the limit when the sampling

interval reaches zero. Section 3 introduces the MRW in detail.

The above volatility models are estimated on the basis of daily returns xt. It is, however,

also possible to model the volatility σt in (1) directly and fit it using daily realized volatilities

vt calculated from intraday returns:

vt =

1/∆∑

j=1

(p(t− 1 + j ·∆)− p(t− 1 + j ·∆−∆))2 (6)

for a sampling interval 0 < ∆ < 1, 1/∆ integer (e.g. ∆ = 102−1 when using 5 min intervals

and assuming that a trading day has 8.5 hours). In this study we consider both types of

implementations and make the distinction between model types using the prefix RV for the

latter.

We adopt a forecasting method for the MRW based on the history of RV introduced by

Duchon et al. (2012) which is the subject of the next section. Lux et al. (2014) already adapted

the LMSM model to the forecasting of RV using parameter estimates obtained via GMM to-

gether with best linear forecasts.3 Additionally, in this paper we propose a new RV model

extension for the BMSM, described in more detail in section 4.

The MRW, LMSM and RV-LMSM implement the idea of a lognormal-normal mixture dis-

tribution of returns governed by the integrated volatility. This idea goes back to Clark (1973)

and is in accordance with more recent empirical evidence by Andersen et al. (2000, 2001a,b,

2003) and Bandorff-Nielsen and Shephard (2002). According to Andersen et al. (2003) stan-

dardized daily returns rt = (pt − pt−1)/
√
vt are normally distributed whereas realized standard

deviations
√
vt are lognormally distributed. Based on these considerations we also employ the

popular ARFIMA (autoregressive fractionally integrated moving average) specification to the

logarithmic RV with mean µ:

(1− φL) (1− L)d
(
lnσ2

t − µ
)
= (1− θL) ηt (7)

where φ and θ are the first order AR and MA parameters, respectively, d the parameter of

fractional differentiation and ηt white noise.

We estimate the RV-ARFIMA(1,d,1) model above via exact ML and maximize the (concen-

trated) log-likelihood function numerically.4 We also looked at alternative model orders. After

prior evaluation of significance of the parameters we chose model order based on information

3The authors employ the corresponding moment conditions for the log differences of volatilities ζt,T = lnσt −

lnσt−T for various lags T (Lux et al., 2014).
4This is implemented in the package ‘arfima’ by Veenstra and McLeod (2018) for R (R Core Team, 2020).
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criteria and in accordance with the Box-Jenkins methodology.5

Table 1 provides an overview of the models considered:

Models for returns Models for RV

LMSM RV-LMSM

BMSM RV-BMSM

MRW RV-MRW

GARCH[1,1] RV-ARFIMA

GJR-GARCH[1,1,1]

Table 1: The models.

3 The MRW model

The MRW was first proposed in Bacry et al. (2001). The model was generalized by Muzy

and Bacry (2002) and Bacry and Muzy (2003), who introduced a continuous random cascade

model on the upper half-plane by means of an independently scattered infinitely divisible two-

dimensional random measure:

Mℓ(dt) = e2ωℓ(t)dt. (8)

This cascade model intends to capture the information cascade from long-term to short-term

traders and generates the so called multifractal random measure in the limit of small scales

ℓ → 0+.

At the core of this construction is the magnitude process ωℓ (t) with a similar multiplicative

structure like eq. (4) which is generating the multifractal scaling. Its autocovariances are a

function of the intermittency coefficient λ2, 0 ≤ λ2 < 1
2 , measuring the degree of multifractal

scaling and of the correlation length (or integral scale) T :

Cov [ωℓ(t), ωℓ (t+ h)] =





λ2
(
ln
(
T
ℓ

)
+ 1− h

ℓ

)
, 0 ≤ h < ℓ

λ2 ln
(
T
h

)
, ℓ ≤ h < T

0, h ≥ T

. (9)

The (log-normal) MRW is obtained by compounding a self-similar stochastic process, here

5Since the distribution of RV can be well approximated by the log-normal distribution, it seems natural to
adopt the ARFIMA framework for the logarithmic RV. However, we also tested the ARFIMA specification for
the levels σ2

t . This proved unsatisfactory due to a large number of significant autocorrelations in the residuals.
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Brownian motion, with the multifractal random measure above:

X(t) = B


 lim

ℓ→0+

t∫

0

e2ωℓ(u)du


 . (10)

An equivalent representation is given by the stochastic integral:

X(t) = lim
ℓ→0+

t∫

0

eωℓ(u)dB (u) . (11)

Here dB (u) is Gaussian white noise with mean 0 and variance σ2, independent of ωℓ (u), whereas

the multifractal random measure plays the part of a stochastic variance. The MRW increments

over unit time intervals model the risk adjusted returns xt introduced in section 2:6

xt = X(t)−X(t− 1) = lim
ℓ→0+

t∫

t−1

eωℓ(u)dB (u) . (12)

The parameters to estimate are λ2, T and the scale factor σ2. We estimate this model via

the generalized method of moments (GMM). In the GMM framework the unknown parameter

vector ϕ is obtained by minimizing the distance of empirical moments from their theoretical

counterparts, i.e.

ϕ̂T = argmin
ϕ∈Φ

fT (ϕ)
′AT fT (ϕ), (13)

with Φ the parameter space, fT (ϕ) the vector of differences between sample moments and

analytical moments, and AT a positive definite and possibly random weighting matrix. Under

some regularity conditions the GMM estimator ϕ̂T is consistent and asymptotically normally

distributed (cf. Harris and Mátyás, 1999).7

Bacry et al. (2008) derived a discretized version of the MRW increments and an approximate

distribution in the limit of small intermittency λ2 ≪ 1 given by the rescaled product of a

Gaussian white noise and a log-normal process. This facilitated the formulation of approximate

expressions for the mean and the autocovariance function of the log absolute returns:

E [ln |xt|] = ln(σ)− γ + ln(2)

2
− λ2 (1.5 + ln(T )) + o

(
λ2
)
, (14)

6An in-depth analysis of this model can be found in Bacry and Muzy (2003) and Bacry et al. (2013).
7GMM was implemented with MATLAB (MathWorks, 2018) using a revised and reprogrammed version of

the GMM toolbox by Kyriakoulis (2005). We computed HAC (heteroskedasticity and autocorrelation consistent)
standard errors with the fast algorithm by Heberle and Sattarhoff (2017) mainly based on the fast Fourier
transform.
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Cov [ln |xt| , ln |xt+h|] =





λ2g (h, T ) + o
(
λ2
)
, 1 ≤ h ≤ T − 1

o
(
λ2
)
, h ≥ T + 1

(15)

where γ is the Euler constant, o
(
λ2
)
satisfies lim

λ2→0+
o
(
λ2
)
/λ2 = 0 and

g (h, T ) =





ln(T ) + 1.5− 2 ln(2), h = 1, T ≥ 2

ln
(
T
h

)
− (h+1)2

2 ln
(
1 + 1

h

)
− (h−1)2

2 ln
(
1− 1

h

)
+ 1.5, 2 ≤ h ≤ T − 1

. (16)

The authors estimate the MRW parameters via GMM using various lags of the autocovari-

ance function above together with the variance condition E
[
x2t
]
= σ2 (Bacry et al., 2008, 2013).

Bacry et al. (2013) show within the framework of a Monte Carlo simulation study that the es-

timation of the intermittency coefficient λ2 has very small bias and MSE, being also reliable in

finite samples. However, the asymptotic normality of this estimator is compromised even for

fairly large datasets. Instead, the authors recommend computation of confidence intervals using

Monte Carlo simulations.

In this paper, we deviate from Bacry et al. (2008) by fitting the mean explicitly to the sample

average (Sattarhoff, 2011). In contrast, following Bacry et al. (2008, 2013) the mean condition

would enter the estimation only through the computation of the sample autocovariances. Based

on simulations, Sattarhoff (2011) shows that the explicit use of the mean condition is preferable

as it achieves a better convergence to the asymptotic distribution, with normally distributed

estimates for λ2 and lnσ starting at approximately 2,000 data points, i.e. about 8 years of daily

financial data.

Out-of-sample h-step ahead forecasting of the MRW model is performed for the zero-mean

quantity x2t by means of best linear forecasts (cf. Brockwell and Davis, 1991) together with the

generalized Levinson-Durbin algorithm developed by Brockwell and Dahlhaus (2004).

One major problem in the applications of the MRW framework is the estimation of the corre-

lation length T . Previous empirical applications report very large error bars for this parameter,

e.g. Bacry et al. (2008). In a sense, T is a nuisance parameter that only serves to bring the

multifractal apparatus into a manageable time series format with convenient asymptotic prop-

erties. Empirically, tests for long memory in financial volatility have always found long-range

correlations without any indication of a finite correlation length (cf. Lux and Ausloos, 2002).

One might thus, prefer to rather get rid of this parameter when applying the MRW framework

to practical tasks like volatility forecasting.

Duchon et al. (2012) have developed the pertinent theory of the limit T → ∞. Among other

results, they establish the following approximate formula for conditional expectations of second

moments:

E[σt+h|σt, σt−1, . . . , σt−N ] ≈ e
λ2C
2 h

λ2

2

N∏

τ=0

(σt−τ )
α∗
h,τ+1 (17)

8



with C ≈ 1.33 and

α∗
h,τ =

2

π

(
Arctan

√
τ

h
−Arctan

√
τ − 1

h

)
,

with the vector σt−τ being implemented using either absolute returns or realized volatility as a

proxy of past realizations of the standard deviation. With correlation length T → ∞, all past

observations should be used just as in the linear forecasts for a process with long-term memory.

Hence, the product on the right-hand side extends over the entire sample up to time t.

This also renders the estimation of the scale parameter σ unnecessary, as it is ‘learned’ in the

out-of-sample forecasting from the previous realizations that appear in the iterative formula of

eq. (17).

Curiously enough, the paper by Duchon et al. (2012) does not include any empirical ap-

plication of their theoretical results, and to the best of our knowledge, it has also never been

applied by other authors since.

Additionally, in the present paper we adapt the GMM framework for the use of realized

volatilities:

σ2
t = lim

ℓ→0+

t∫

t−1

e2ωℓ(u)du. (18)

The parameters λ2 and T can be estimated based on the pertinent moment conditions for the

logarithmic volatility provided in Bacry et al. (2013):

E
[
lnσ2

t

]
= −2λ2 (lnT + 1.5) + o

(
λ2
)

(19)

Cov
[
lnσ2

t , lnσ
2
t+h

]
=





4λ2g (h, T ) + o
(
λ2
)
, 1 ≤ h ≤ T − 1

o
(
λ2
)
, h ≥ T + 1

(20)

Hence, we employ the MRW twice:

• First, we estimate model parameters via GMM on the basis of daily returns xt and calcu-

late forecasts for the quantity x2t+h based on the returns history using best linear forecasts

as outlined above.

• Second, we calculate forecasts for the quantity σt+h based on the prediction formula by

Duchon et al. (2012). For this purpose, we estimate the volatilities σ2
t−τ using realized

volatilities vt from the in-sample period. This is coupled with the new estimation pro-

cedure based on realized volatilities outlined above. We call this second approach the

RV-MRW model.

The parameter estimates for both model variants are available in an online appendix.
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4 The RV-BMSM model

We also adapt the BMSM model by Calvet and Fisher (2004) to the RV framework. This is an

appealing idea since in this new model we can combine optimal forecasts according to Bayes’

rule with the RV measures, which hopefully provides for a better identification of the unobserved

volatility process. Inspired by the proximity of realized standard deviations
√
vt to the lognormal

distribution we use a lognormal random variable ηt ∼ LN
(
φ, ξ2

)
for the innovations of the

volatility dynamics which is independent of the volatility components M
(1)
t ,M

(2)
t , . . . ,M

(k)
t :

lnσ2
t =

k∑

i=1

lnM
(i)
t + 2 ln ηt. (21)

The other model characteristics remain unchanged: The volatility components are binomi-

ally distributed taking the values m0 or 2 − m0 (1 ≤ m0 < 2) with equal probability. Each

volatility component M
(i)
t will be renewed at time t with probability γi = 1 − (1 − 0.5)(2

i−k)

depending on its rank within the hierarchy of multipliers, and will remain unchanged with

probability 1− γi. The model is, therefore, a Markov-switching process with d = 2k states with

the d × d transition matrix A with elements aij = P (Mt+1 = sj |Mt = si), 1 ≤ i, j ≤ d. Here

Mt =
(
M

(1)
t ,M

(2)
t , . . . ,M

(k)
t

)
denotes the vector of volatility components and si, sj are state

vectors. The number of components k was set again equal to eight.

In contrast to the BMSM model for financial returns, the volatility process σ2
t of RV-

BMSM follows a lognormal distribution conditional on the volatility state Mt = sj with mean∑k
i=1 ln s

(i)
j +2φ and variance 4ξ2. This process can again be implemented with realized volatil-

ity vt. Since BMSM for realized volatility is a new addition to the zoo of multifractal models, we

provide the details of our estimation algorithm for this variant which is based on an iterative for-

malization of the likelihood function. To derive the conditional likelihoods of all observations,

we compute the conditional probability vector Πt|t =
(
Π1

t|t,Π
2
t|t, . . . ,Π

d
t|t

)
with components

Πj
t|t = P (Mt = sj | lnσ2

t , lnσ
2
t−1 . . . , lnσ

2
1) for all time points t in the sample recursively based

on the history of volatilities

Πt|t =
ω
(
lnσ2

t

)
∗
(
Πt−1|t−1A

)
[
ω
(
lnσ2

t

)
∗
(
Πt−1|t−1A

)]
1k

(22)

where ω
(
lnσ2

t

)
=
[
flnσ2

t
(x|Mt = s1) , . . . , flnσ2

t
(x|Mt = sd)

]
contains the conditional density

functions of lnσ2
t with

flnσ2
t
(x|Mt = sj) =

1

2ξ
√
2π

e
− 1

2
·
(x−E[lnσ2

t |Mt=sj])
2

4ξ2 (23)

for each 1 ≤ j ≤ d. 1d is the column vector of ones 1d = (1, . . . , 1)⊤ ∈ R
d and ∗ denotes the
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element-wise product of vectors.

We estimate the parameters m0, φ and ξ via ML. We start the recursion with m0 = 1.4

(Lux, 2008). We derive initial values for φ and ξ based on the conditional mean and conditional

variance of the volatility process: We set ξ2 to a quarter of the sample variance of log RV and

φ =
1

2
ln vt − 2 lnm0 − 2 ln (2−m0) . (24)

As a by-product of the estimation, the conditional probabilities of the unobserved volatility

states can be exploited to compute one-step and multi-step optimal forecasts of future volatility

on the basis of the transition matrix of the model according to Bayes’ rule.

5 Empirical study

5.1 Estimation results

Our dataset comprizes daily returns and daily realized volatilities over the sample period

2000/01–2018/10 for a collection of 14 international stock market indices as provided by the

Oxford-Man Institute’s realised library (Heber et al., 2009). As an exception, the data for the

Italian index FTSE MIB is available only starting with 2009/01, for OMX Stockholm – starting

with 2005/10 and in the case of the Japanese Nikkei 225 starting with 2000/02. Table 2 displays

the regional distribution of the markets, including 13 national indices and one regional index

designed to capture the stock markets performance in the Eurozone, the EURO STOXX 50.

An online appendix reports some descriptive statistics of returns, absolute returns and

squared returns. According to the Kolmogorov and Anderson-Darling normality tests (sig-

nificance level of 5%) as well as the high kurtosis values, the distribution of our data deviates

throughout from normality. We could also reject the null hypothesis of no serial correlation

using the Ljung-Box-Pierce statistic (Q statistic) for each data series at very small significance

levels. For absolute and squared returns, the usual result of an even stronger rejection applies

with highly significant positive values observed over long lags of their empirical autocorrelation

functions. However, in the case of raw returns, the autocorrelations, although significant, are

much less pronounced.8 This is in accordance with the Lagrange multiplier (LM) test for serial

correlation, which, as opposed to the Ljung-Box-Pierce test, cannot reject the hypothesis of no

serial correlations in the raw returns. The LM test is more adequate for financial data since it

is robust against heteroskedasticity.9

We modeled this overall relatively weak autocorrelation structure present in the raw returns

data using an AR(1) model and extracted the centered returns in (1) from the filtered series.

We estimated the nine volatility models under scrutiny (see Table 1) using as our in-sample

8As an exception, we failed to reject the null hypothesis of no serial correlation in the case of raw returns for
the indices FTSE MIB, HANG SENG and Nikkei 225 based on the Ljung-Box-Pierce statistic.

9As an exception, we rejected the null of no serial correlations with the LM test for the raw returns of Shanghai
Composite, S&P BSE Sensex and NIFTY 50 at the 5% significance level.
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country index time span country index time span

USA
DJIA 00/01–18/10 France CAC 40 00/01–18/10

Nasdaq 100 00/01–18/10 Germany DAX 00/01–18/10

S&P 500 00/01–18/10 Italy FTSE MIB 09/01–18/10

Sweden OMX Stockholm 05/10–18/10

China Shanghai Composite 00/01–18/10 UK FTSE 100 00/01–18/10

Hongkong HANG SENG 00/01–18/10 euro area EURO STOXX 50 00/01–18/10

Japan Nikkei 225 00/02–18/10

India
NIFTY 50 00/01–18/10

S&P BSE Sensex 00/01–18/10

Table 2: The dataset.

period all observations from the first observation available until the end of 2015/12. The online

appendix contains the estimation results.

5.2 Forecast evaluation

Based on these estimations we calculate volatility forecasts using a rolling window for the out-

of-sample period 2016/01–2018/10. Throughout, we evaluate forecast accuracy against RV as

a proxy for the true volatility.10 We employ daily RV data provided by Heber et al. (2009).11

We evaluate forecast accuracy based on the values for the relative empirical MSE and MAE

criteria, i.e., we divide the values of the loss functions by the corresponding values when com-

puting forecasts with the historical volatility. We further calculate model confidence sets for

each forecast horizon using the methodology by Hansen et al. (2011). Overall, we find that RV

models show superior performance compared with models based on returns.

10RV-ARFIMA and RV-BMSM produce forecasts of the quantity lnσ2
t . For reasons of comparison with the

alternative models, we transformed these forecasts into forecasts of σ2
t and evaluated them consistently against

RV vt. Forecasts from package ‘arfima’ by Veenstra and McLeod (2018) come along with estimates of the forecast
variances for each forecast horizon. In the case of RV-BMSM the ML estimate for ξ2 can be utilized for this
purpose.

11We use realized kernels (Barndorff-Nielsen et al., 2008). We also evaluated forecasts against alternative
realized measures provided in the Oxford-Man Institute’s realized library (Heber et al., 2009) without significant
changes in our results.
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MSE and MAE values

Whereas RV-MRW is the consistent winner under the MAE criterium for all financial markets,

the forecast results in terms of MSE values vary as a function of the forecast horizon. Table

3 displays the models with the lowest relative MSE values. Throughout, the best models are

RV-ARFIMA, RV-BMSM and RV-MRW with the following differences:

At short horizons of h = 1 and h = 5 days RV-ARFIMA and RV-BMSM perform best most

of the time. Whereas for one-day forecasts these models appear to have similar forecasting

performance, each of them delivering lowest MSE values in the case of nine indices and (even)

identical MSE values in the case of four indices up to three decimals, RV-ARFIMA dominates

in a larger number of cases than RV-BMSM for the five-day forecasts. Interestingly, as an

exception, in the case of FTSE 100 the GJR-GARCH specification performs favorably at h = 5

and 10. The situation is much more definite at longer horizons h > 10 days where RV-MRW

outperforms all models most of the time. h = 10 appears intermediate with RV-MRW and

RV-ARFIMA scoring best in the same number of cases. The detailed results for the relative

MSE and MAE can be found in Appendix A.

forecast horizon forecast horizon

index 1 5 10 20 50 100 index 1 5 10 20 50 100

DJIA B A A M M M CAC 40 B A/B M M M M

Nasdaq 100 B A A/M M M M DAX A/B M M M M M

S&P 500 B A M M M M FTSE MIB A A A/M M M M

OMX Stockholm A/B B/M M M M M

Shanghai Composite B B M M M M FTSE 100 A X A/X A M M

HANG SENG A/B A/B A/M M M M EURO STOXX 50 A A A A M M

Nikkei 225 A A A A A M

NIFTY 50 A B A/B/M M M M

BSE Sensex A/B A A M M M

Table 3: The models with the lowest relative MSE for the 14 indices under scrutiny and six
forecast horizons h = 1, 5, 10, 20, 50, and 100 days (A = RV-ARFIMA, B = RV-BMSM, M =
RV-MRW, X = other model)

Model confidence sets

We compute model confidence sets for the nine models under consideration using the method-

ology proposed by Hansen et al. (2011).12 Whereas the empirical MSE and MAE values vary

12We employed the MFE Toolbox by Sheppard (2009) using MATLAB (MathWorks, 2018).
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subject to the realized data sample, model confidence sets have the advantage of providing

forecast assessments with a certain confidence level. By analogy with a (1 − α) confidence

interval, the model confidence set (MCS) is a random subset of models containing the most

accurate model with a probability no less than 1 − α. By definition, the 100% MCS is the set

containing all models under scrutiny, i.e., the set of all models contains the best model with

100% probability.

We report MCS p-values in Appendix B. An MCS p-value of α corresponds to the pertinent

model being contained in the (1− α) × 100 percent confidence set, i.e., the model confidence

set one obtains at the 1 − α level of confidence. Choosing a higher level of confidence (1 − α)

implies a lower error probability when eliminating models. Hence, a higher confidence level

tends to come along with a larger set of accepted models. The p-values then indicate at what

confidence levels (i.e., one minus the p-value) a model is accepted. The results in Appendix B

were computed based on 1,000 stationary bootstrap resamples of the original data based on the

procedure in Politis and Romano (1994).13

By construction, the model with an MCS p-value of 100% is contained in all confidence sets,

i.e., it provides the most accurate forecasts. Table 4 displays the models with MCS p-value of

one based on the MSE as a loss function.

Overall, the MCS p-values confirm the tendencies we have seen in the results for the MSE

and MAE criteria:

• First, in terms of MAE, RV-MRW is the best model throughout. Moreover, RV-MRW is

the only model in the 99% MCS in eleven cases, indicating sizeable precision differences to

the alternative models. For forecasting horizons beyond one day, hardly any other model

is ever assigned a positive probability to be better, and with one exception, also at the

1-day horizon other models at best enter with very small p-values.14 Overall, the results

are quite uniform across the various indices of our study. It is noteworthy to underline how

strongly the MCS test speaks in favor of the dominance of the RV-MRW: The p-values of

mostly zero for the other models indicate that the superior performance of RV-MRW has

been outside the complete bootstrap distribution for all other models.

• Second, in terms of MSE, RV-MRW provides most accurate forecasts for the longer hori-

zons h ≥ 20 days in the majority of cases. The picture is less clear for ten-day forecasts

where both RV-MRW and RV-ARFIMA dominate the competition in about the same

number of cases. One can observe a transition from RV-MRW dominating long term

forecasts to RV-ARFIMA dominating middle- and short-term forecasts and RV-BMSM

specialized in one-day forecasts. As a matter of fact, both RV-BMSM and RV-ARFIMA

13We have also experimented with a higher number of bootstrap replications as well as with the circular block
bootstrap with practically no changes of the p-values.

14Interestingly, both RV-MRW and RV-ARFIMA provide most accurate 1-day forecasts in the case of S&P
BSE Sensex. This is also the only index where another model other than the RV-MRW provides a positive
although negligible MCS p-value at h = 5 days.
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each provide the best forecasts in 50% of the cases for one-day forecasts, whereas RV-

ARFIMA performs best at h = 5 days.

In the following, we take a closer look at the forecasting results in Appendix B in terms of

MSE.15

• 50-day and 100-day forecasts: RV-MRW is the only specification remaining in the model

confidence set at a confidence level of 95 percent (remember: this is 1 minus the p-value

of the marginally accepted model) at h = 50 and h = 100 days in the case of ten indices,

suggesting vast forecast precision differences to the rest of the models.

• At the shorter forecasting horizons, other models also start entering the scene as successful

competitors, along with RV-MRW. At the 20-day forecast horizon, the latter is still rep-

resented in any model confidence set in the case of 11 indices, while RV-ARFIMA enters

11 times at the 90 percent confidence level, and RV-BMSM enters 9 times.

• one-day forecasts: Going down in forecast horizons, the results become more and more

balanced between these three until at the 1-day horizon all three models are represented

in all 90 percent confidence sets (at the 80 percent level RV-MRW drops out 3 times and

leaves only RV-ARFIMA and RV-BMSM).

To further scrutinize the performance of RV-BMSM at the one-day-horizon we also apply the

superior predictive ability test by Hansen (2005) to check whether it is significantly outperformed

by any of the alternative models in any of our time series.16 As it turns out, we cannot reject

the null hypothesis of non-inferiority of the RV-BMSM for any of the indices in the sample

(significance level α = 5%).17 As a matter of fact, also in the case of RV-ARFIMA taken

as a benchmark we cannot find any evidence that this model is outperformed by any of its

competitors.18

Forecast illustrations

The online appendix provides plots of the volatility forecasts and the reference quantity in

the case of the indices DAX, FTSE 100, DJIA and Shanghai Composite. Overall, these plots

illustrate the superiority of models based on RV. In particular, the superiority of RV-MRW is

evident for the 100-day forecasts.

15When we estimated the parameters of RV-MRW with returns rather than RV, the outcome has been virtually
the same with even a few more cases of dominance of this model at intermediate forecast horizons.

16The SPA test considers the null hypothesis that the benchmark model is not inferior to any of the alternative
models against the alternative hypothesis that there exists a superior alternative model. Rejection of the null
hypothesis at a significance level α would therefore indicate the existence of a better model in terms of the MSE
or MAE criteria.

17When setting α = 10% we can reject the null for the data on S&P BSE Sensex.
18We also tried to shed further light on the situation for 10-day forecasts. Both in the case of RV-MRW taken

as a benchmark as well as when RV-ARFIMA is the benchmark model we cannot reject the null hypothesis for
the SPA test.
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forecast horizon forecast horizon

index 1 5 10 20 50 100 index 1 5 10 20 50 100

DJIA B A A M M M CAC 40 B A M M M M

Nasdaq 100 B A A M M M DAX B M M M M M

S&P 500 B A M M M M FTSE MIB A A A M M M

OMX Stockholm B B M M M M

Shanghai Composite B B M M M M FTSE 100 A X A/X A M M

HANG SENG A A M M M M EURO STOXX 50 A A A A M M

Nikkei 225 A A A A A M

NIFTY 50 A B M M M M

BSE Sensex A A A M M M

Table 4: The models with MCS p-value of one based on the MSE loss function for the 14 indices
under scrutiny and six forecast horizons h = 1, 5, 10, 20, 50, and 100 days (A = RV-ARFIMA,
B = RV-BMSM, M = RV-MRW, X = other model).

In Figure 1 we take a closer look at the one-day forecasting performance of RV models. We

can see that RV-MRW tends to underestimate phases of high volatility whereas providing best

forecasts in phases of low volatility and a better fit of the relaxation of the volatility to its average

level after any high-volatility spike. At the other end, RV-BMSM overestimates volatility during

relatively calm phases, whereas providing better results during turbulent phases. RV-ARFIMA

lies somewhere in between RV-MRW and RV-BMSM during turbulent times and closer to the

behaviour of RV-BMSM during calm times.
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Figure 1 also indicates superior results with the RV-LMSM during turbulent phases, the

RV-LMSM forecasts appearing to replicate most accurately the true volatility dynamics, in

particular the extent of fluctuations. Lux et al. (2014) actually reported superior forecasting

capability for the RV-LMSM model during the turbulent period of the 2008–2009 financial crisis.

Our forecast illustrations confirm these findings and additionally suggest similar performance

for the RV-BMSM. Moreover, they point out the forecasting contribution of RV-MRW during

calmer periods. These differences are the probable source of the better performance of RV-MRW

for long horizons, and RV-BMSM and RV-ARFIMA for shorter ones: in the short run, the good

fit during high-volatility periods will overcompensate the somewhat higher losses in tranquil

periods, while for long horizons it is more valuable to better fit the relaxation of volatility (i.e.

its pattern of mean reversion). For the future it would be therefore interesting to focus on the

MSM and MRW model classes and shed further light on their forecasting performance as a

function of the state of the market.

6 Conclusion

In this article we brought the little-known forecasting procedure by Duchon et al. (2012) into

focus, a model extension of the baseline MRW introduced in Bacry et al. (2001). In spite of

the sophisticated mathematical underpinnings, this forecast model stands out due to a couple

of benefits:

• In the format adopted here it is an (only!) one-parameter forecast model.

• It exploits the RV dynamics for the calculation of volatility forecasts.

• The forecasting equation is straightforward to implement.

• The execution time for the computation of forecasts is negligible.

Additionally, we proposed a new estimation approach for the MRW based on the fitting

of the volatility dynamics via GMM. To this end, we adopt the pertinent moment conditions

provided in Bacry et al. (2008, 2013). Coupled with the forecasting procedure by Duchon et al.

(2012), this results in the so called RV-MRW model. It is important to note, that the GMM

estimation of λ2 comes along with an additional estimate for the correlation length T , which is

redundant in the case of the RV-MRW. Duchon et al. (2012) also proposed a new estimation

procedure for λ2 based on the fitting of a simple linear regression model, which is not used here,

but can help speeding up the estimation.

We considered fourteen international stock market indices and six forecast horizons 1 ≤
h ≤ 100 days. We evaluated rolling window forecasts of the most recent observations starting

with January 2016 from the RV-MRW and eight alternative models. These include a new

model extension of the BMSM model by Calvet and Fisher (2001) to the RV framework. The

combination of optimal forecasts according to Bayes’ rule and RV dynamics proves successful,
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the RV-BMSM delivering outstanding one-day and five-day ahead forecasts in terms of the MSE

criterium compared with the original BMSM for returns.

We compared predictive ability of all candidate models in terms of the empirical MSE and

MAE as well as using model confidence sets following the methodology in Hansen et al. (2011)

and the test of superior predictive ability by Hansen (2005). According to our findings, RV-

MRW outperforms the alternative models including the popular RV-ARFIMA in a considerable

number of cases: RV-MRW turns out to be throughout the best model for all forecast horizons

using the MAE criterium as well as for long forecast horizons h = 50 and 100 days using the

MSE. Moreover, the RV-MRW provides most accurate 20-day ahead forecasts in terms of MSE

for the majority of indices. h = 10 appears intermediate with RV-MRW and RV-ARFIMA

scoring best in about the same number of cases, whereas the latter dominates the competition

in the short term.

It is worth stressing that RV-ARFIMA is a well-recognized model, the accepted industry

standard of volatility forecasting using RV.19 In view of this, the performance of RV-MRW over

RV-ARFIMA is all the more significant. These results are extremely promising if we consider

that this is the first empirical application of the RV-MRW. Moreover, whereas RV-ARFIMA

forecasts are often a time consuming task, the RV-MRW stands out due to its fast execution

and straightforward implementation.

Our forecast illustrations indicate superior results with the RV-BMSM during turbulent

market phases, whereas the RV-MRW seems to dominate during calmer periods as it provides

the best fit for the mean-reverting dynamics of volatility after episodes with very high volatility.

For the future, it would be therefore interesting to focus on the MSM and MRW model classes

and shed further light on their forecasting performance as a function of the state of the market.

19Numerous studies reported so far the superiority of RV-ARFIMA against various models, e.g., SV (stochastic
volatility) (Koopman et al., 2005; Lux et al., 2014), models of the GARCH class (Koopman et al., 2005; Lux
et al., 2014) or the heterogeneous autoregressive (HAR) model of Corsi (2009) (Hassler and Pohle, 2019).
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Appendix

A Relative empirical MSE and MAE of forecasts

Acronym Model

Standard

M1 LMSM
M2 BMSM
M3 MRW
M4 GARCH[1,1]
M5 GJR-GARCH[1,1,1]

Realized

R1 RV-LMSM
R2 RV-BMSM
R3 RV-MRW
R4 RV-ARFIMA

Table A1: The models
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Online Appendix

C Descriptive statistics and ACF plots

CAC 40 DAX

Returns Absolute Squared Returns Absolute Squared

Minimum -8.5224 0 0 -9.1840 0 0
Maximum 10.4387 10.4387 108.9668 12.0269 12.0269 144.6452
Mean -0.0026 0.9919 2.0051 0.0116 1.0168 2.1459
St. dev. 1.4162 1.0107 5.2749 1.4650 1.0546 5.9264
Skewness -0.0912 2.5592 8.2363 -0.0693 2.6551 10.0735
Kurtosis 7.9187 13.7733 102.6995 8.6282 15.4356 164.6713
Kolmogorov 0.0711 0.1630 0.3517 0.0754 0.1673 0.3584
Anderson-Darling 52.8402 Inf Inf 57.7865 Inf Inf
LM(10) 14.0831*** 231.1299 72.0212 12.7178*** 241.0852 83.8153
LM(20) 24.4982*** 260.4079 107.7548 22.7285*** 282.9052 121.5224
Q(10) 45.0817 3.0387·103 2.4817·103 34.5965 3.0363·103 2.2630·103

Q(20) 68.4696 5.2068·103 4.0622·103 61.7681 5.3797·103 3.9195·103

Table C1: Descriptive statistics. Note: In the case of test statistics we asterisked the cases when we fail to reject
the null hypothesis: ∗p-value> 0.01, ∗∗p-value> 0.05, ∗∗∗p-value> 0.10.

FTSE MIB OMX Stockholm

Returns Absolute Squared Returns Absolute Squared

Minimum -13.3314 0.0003 0 -9.4641 0 0
Maximum 10.6840 13.3314 177.7273 10.0345 10.0345 100.6904
Mean -0.0017 1.1502 2.4771 0.0223 0.9077 1.7582
St. dev. 1.5742 1.0745 6.1453 1.3260 0.9667 5.1194
Skewness -0.3324 2.3141 13.8337 -0.1236 2.8730 9.3261
Kurtosis 7.1508 14.8484 331.7234 9.4876 16.6958 126.5329
Kolmogorov 0.0553 0.1418 0.3430 0.0826 0.1736 0.3653
Anderson-Darling 14.0467 Inf Inf 48.6564 Inf Inf
LM(10) 11.3520*** 135.9017 80.3553 7.8280*** 178.3371 63.8230
LM(20) 18.4488*** 154.3032 94.0454 17.0726*** 196.4177 81.5258
Q(10) 21.2855* 616.4022 280.9847 23.6824 1.9907 ·103 1.2056·103

Q(20) 29.6668** 975.2137 385.0340 43.8423 3.4164 ·103 2.0468·103

Table C2: Descriptive statistics. Note: In the case of test statistics we asterisked the cases when we fail to reject
the null hypothesis: ∗p-value> 0.01, ∗∗p-value> 0.05, ∗∗∗p-value> 0.10.

37



FTSE 100 EURO STOXX 50

Returns Absolute Squared Returns Absolute Squared

Minimum -8.9263 0 0 -8.7698 0.0003 0
Maximum 9.4849 9.4849 89.9628 10.5536 10.5536 111.3777
Mean 0.0015 0.7940 1.3231 -0.0082 0.9987 2.0640
St. dev. 1.1504 0.8324 3.8476 1.4368 1.0329 5.4002
Skewness -0.1655 2.8609 10.4733 -0.0883 2.5106 8.0896
Kurtosis 9.4553 17.2889 170.2831 7.8424 13.1764 102.2814
Kolmogorov 0.0746 0.1699 0.3653 0.0721 0.1667 0.3509
Anderson-Darling 61.7084 Inf Inf 57.8040 Inf Inf
LM(10) 13.5088*** 187.9792 51.9822 16.1015** 257.7858 84.6218
LM(20) 20.5577*** 218.3115 62.6131 27.5558*** 296.6760 124.2736
Q(10) 49.9655 3.8500·103 3.2875·103 48.2402 3.1558·103 2.4593·103

Q(20) 71.1369 6.4026·103 5.3733·103 77.9246 5.4984·103 3.9450·103

Table C3: Descriptive statistics. Note: In the case of test statistics we asterisked the cases when we fail to reject
the null hypothesis: ∗p-value> 0.01, ∗∗p-value> 0.05, ∗∗∗p-value> 0.10.

Nasdaq 100 S&P 500

Returns Absolute Squared Returns Absolute Squared

Minimum -10.2244 0.0004 0 -9.6884 0 0
Maximum 13.2782 13.2782 176.3111 10.6420 10.6420 113.2527
Mean 0.0125 1.0606 2.4772 0.0138 0.7926 1.4264
St. dev. 1.5740 1.1630 7.0445 1.1944 0.8935 4.5776
Skewness -0.0385 2.6941 9.4697 -0.2135 3.0792 12.0075
Kurtosis 9.0869 14.9721 147.6574 11.3085 19.8087 221.2207
Kolmogorov 0.0929 0.1808 0.3623 0.0949 0.1873 0.3775
Anderson-Darling Inf Inf Inf Inf Inf Inf
LM(10) 9.0483*** 325.9599 117.6129 15.5739*** 193.8749 60.8058
LM(20) 21.8339*** 358.8629 154.7066 26.5868*** 205.1128 69.5981
Q(10) 33.4801 5.1603 3.0959 57.0401 4.6532 3.8425
Q(20) 81.8256 9.2174 5.2702 116.6969 8.0912 6.7098

Table C4: Descriptive statistics. Note: In the case of test statistics we asterisked the cases when we fail to reject
the null hypothesis: ∗p-value> 0.01, ∗∗p-value> 0.05, ∗∗∗p-value> 0.10.
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DJIA Nikkei 225

Returns Absolute Squared Returns Absolute Squared

Minimum -8.6146 0.0004 0 -12.1110 0.0003 0
Maximum 10.5321 10.5321 110.9255 13.2346 13.2346 175.1542
Mean 0.0173 0.7525 1.2633 0.0039 1.0659 2.2643
St. dev. 1.1240 0.8350 4.0251 1.5049 1.0623 6.5540
Skewness -0.1313 3.0711 12.4570 -0.4253 2.8507 12.4866
Kurtosis 11.1616 20.0176 245.9869 9.3804 19.2647 236.6990
Kolmogorov 0.0898 0.1836 0.3766 0.0638 0.1577 0.3646
Anderson-Darling Inf Inf Inf Inf Inf Inf
LM(10) 14.6274*** 189.4704 61.8189 5.2452*** 90.2202 28.5276
LM(20) 27.0501*** 206.3352 73.3744 10.4588*** 111.4646 44.7105
Q(10) 54.5787 4.4314·103 3.3496·103 16.5629** 2.1811 ·103 3.0598 ·103

Q(20) 106.3169 7.7023·103 5.9201·103 26.8295*** 3.4778 ·103 4.3361 ·103

Table C5: Descriptive statistics. Note: In the case of test statistics we asterisked the cases when we fail to reject
the null hypothesis: ∗p-value> 0.01, ∗∗p-value> 0.05, ∗∗∗p-value> 0.10.

HANG SENG Shanghai Composite

Returns Absolute Squared Returns Absolute Squared

Minimum -13.5820 0.0003 0 -9.2114 0 0
Maximum 13.4068 13.5820 184.4714 9.5055 9.5055 90.3537
Mean 0.0089 1.0194 2.1867 0.0146 1.0781 2.4925
St. dev. 1.4789 1.0713 6.9391 1.5789 1.1534 6.5153
Skewness -0.0945 3.1033 13.7719 -0.3466 2.4828 6.7846
Kurtosis 11.0703 22.1246 281.0459 7.8450 12.2079 64.1061
Kolmogorov 0.0725 0.1705 0.3761 0.0846 0.1748 0.3508
Anderson-Darling Inf Inf Inf 68.8514 251.5708 Inf
LM(10) 4.8956*** 136.9238 39.4746 19.1047* 286.8208 120.4308
LM(20) 11.4321*** 207.2606 80.8078 38.5591 350.9026 154.4136
Q(10) 17.7882** 3.1426 ·103 2.9677 ·103 38.9358 1.8402·103 0.9430·103

Q(20) 33.9504* 5.5104 ·103 4.5471 ·103 69.3472 3.2261·103 1.5305·103

Table C6: Descriptive statistics. Note: In the case of test statistics we asterisked the cases when we fail to reject
the null hypothesis: ∗p-value> 0.01, ∗∗p-value> 0.05, ∗∗∗p-value> 0.10.
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S&P BSE Sensex NIFTY 50

Returns Absolute Squared Returns Absolute Squared

Minimum -11.8092 0.0001 0.0000 -13.0539 0 0
Maximum 16.1147 16.1147 259.6823 16.2255 16.2255 263.2681
Mean 0.0401 1.0140 2.1537 0.0404 1.0105 2.1315
St. dev. 1.4672 1.0610 6.7736 1.4596 1.0539 7.0260
Skewness -0.2077 3.0308 17.4062 -0.3275 3.1894 18.8194
Kurtosis 10.9237 21.9720 529.8937 11.9130 25.1130 562.5971
Kolmogorov 0.0781 0.1694 0.3750 0.0769 0.1686 0.3806
Anderson-Darling Inf Inf Inf Inf Inf Inf
LM(10) 20.0483* 234.3613 92.4134 22.4616* 224.9059 85.2925
LM(20) 34.2159* 269.6858 125.1892 39.3264 261.8864 122.4319
Q(10) 46.8564 3.2505 ·103 1.3885 ·103 50.1953 2.8315 ·103 1.1226 ·103

Q(20) 74.4427 5.2772 ·103 2.0267 ·103 84.1268 4.4817·103 1.5568·103

Table C7: Descriptive statistics. Note: In the case of test statistics we asterisked the cases when we fail to reject
the null hypothesis: ∗p-value> 0.01, ∗∗p-value> 0.05, ∗∗∗p-value> 0.10.
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Figure C1: ACF plots
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Figure C2: ACF plots
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Figure C3: ACF plots
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Figure C4: ACF plots
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Figure C5: ACF plots
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D Estimation results
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