~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Sattarhoff, Cristina; Lux, Thomas

Working Paper
Forecasting the Variability of Stock Index Returns with the
Multifractal Random Walk Model for Realized Volatilities

Economics Working Paper, No. 2021-02

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Department of Economics

Suggested Citation: Sattarhoff, Cristina; Lux, Thomas (2021) : Forecasting the Variability of Stock
Index Returns with the Multifractal Random Walk Model for Realized Volatilities, Economics
Working Paper, No. 2021-02, Kiel University, Department of Economics, Kiel

This Version is available at:
https://hdl.handle.net/10419/247272

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/247272
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Christian-Albrechts-Universitat zu Kiel

Department of Economics

Economics Working Paper
No 2021-02

Forecasting the Variability of Stock
Index Returns with the Multifractal
Random Walk Model for Realized

Volatilities

by Cristina Sattarhoff and Thomas Lux

issn 2193-2476



Forecasting the Variability of Stock Index Returns with the
Multifractal Random Walk Model for Realized Volatilities

Cristina Sattarhoff*, Thomas Lux'

October 28, 2021

Abstract

We adapt the multifractal random walk model by Bacry et al. (2001) to realized volatili-
ties (denoted RV-MRW) and take stock of recent theoretical insights on this model in Duchon
et al. (2012) to derive forecasts of financial volatility. Moreover, we propose a new extension
of the binomial Markov-switching multifractal (BMSM) model by Calvet and Fisher (2001)
to the RV framework. We compare the predictive ability of the two against seven classi-
cal and multifractal volatility models. Forecasting performance is evaluated out-of-sample
based on the empirical MSE and MAE as well as using model confidence sets following the
methodology of Hansen et al. (2011). Overall, our empirical study for 14 international stock
market indices has a clear message: The RV-MRW is throughout the best model for all
forecast horizons under the MAE criterium as well as for large forecast horizons h = 50 and
100 days under the MSE criterion. Moreover, the RV-MRW provides most accurate 20-day
ahead forecasts in terms of MSE for the great majority of indices, followed by RV-ARFIMA,
the latter dominating the competition at the 5-day-horizon. These results are very promis-
ing if we consider that this is the first empirical application of the RV-MRW. Moreover,
whereas RV-ARFIMA forecasts are often a time consuming task, the RV-MRW stands out
due to its fast execution and straightforward implementation. The new RV-BMSM appears
to be specialized in short term forecasting, the model providing most accurate one-day ahead
forecasts in terms of MSE for the same number of cases as RV-ARFIMA.
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1 Introduction

There exists a large body of literature demonstrating that volatility models based on realized
volatilities (RV) produce far more accurate volatility forecasts than models using asset returns
only.! This paper confirms this message based on an extensive empirical study covering fourteen
international stock market indices and a collection of nine competing models, including four
models based on RV.

We also consider the two representative models of the relatively new class of multifractal
volatility models: the Markov-switching multifractal model by Calvet and Fisher (2001) and the
multifractal random walk model by Bacry et al. (2001), this being the first study to compare
the two. The multifractal (or multi-scaling) property is a nonlinear behavior of returns over
different time horizons (minute, daily, monthly returns, etc.) which manifests itself in different
degrees of long-term dependence of different absolute power of returns (i.e., different measures
of volatility), a salient empirical regularity that has first been discovered by Ding et al. (1993).
It has been argued that this ubiquitous feature of financial data arises from the interplay of
investors with heterogenous investment horizons (cf. Ghashghaie et al., 1996). The models that
have appeared under the heading ‘multifractal’ in recent literature have all generating principles
that (unlike the classical GARCH-type and stochastic volatility models) intrinsically capture
this new stylized fact.

Notably, we also consider the little-known multifractal random walk model which we adapt
here to realized volatility, short: RV-MRW, the present paper also being the first empirical
application of the approach by Duchon et al. (2012) for the derivation of volatility forecasts for
the MRW model. As it turns out, based on the evaluation of model confidence sets calculated
from mean absolute errors (MAE) of forecasts, RV-MRW proves to be the best model through-
out, i.e., for all fourteen indices used in our study and for all forecast horizons between 1 day
and 100 days. Second, our results using mean squared forecast errors (MSE) show that the RV-
MRW clearly also provides the most accurate forecasts under this criterion for the overwhelming
majority of all indices under scrutiny at large horizons > 20 days, the model also outperform-
ing the more traditional RV-ARFIMA (autoregressive fractionally integrated moving average
specification for RV).

Following the example of Lux et al. (2014) for the application of the lognormal Markov-
switching multifractal model to realised volatility (RV-LMSM), we also extend the binomial

! Just to give a few examples, Koopman et al. (2005) evaluate one-step ahead forecasts from GARCH (gener-
alised autoregressive conditional heteroscedasticity), SV (stochastic volatility), RV-UC (unobserved components
model for RV) and RV-ARFIMA (autoregressive fractionally integrated moving average model for RV). They
report best forecast performance for the RV-ARFIMA, closely followed by RV-UC. Koopman and Scharth (2013)
propose an original SV model which they fit using both RV and returns data. The authors also consider two rela-
tively new models: the heterogeneous autoregressive (HAR) model of Corsi (2009) and the high-frequency-based
volatility (HEAVY) model of Shephard and Sheppard (2010). The RV-SV model delivers most accurate fore-
casting results, with higher performance gains for the longer horizon. Lux et al. (2014) distinguish between the
turbulent period of mid 2007 to 2009 and the rather tranquil period from mid 2005 to mid 2007. Whereas their
multifractal specification for the RV (RV-LMSM) proves superior forecasting performance during the crisis period
over a wide variety of alternative models, overall, RV-ARFIMA clearly dominates the forecasting competition.



Markov-switching multifractal (BMSM) model by Calvet and Fisher (2001) to the RV frame-
work. This new model proves to have superior forecasting capabilities in the short term, com-
peting with the RV-ARFIMA for both one-day and five-day forecasts. As a matter of fact, both
RV-BMSM and RV-ARFIMA provide most accurate forecasts in 50% of the cases in our sample
for one-day forecasts in terms of MSE, respectively.

Overall, the best models based on the evaluation of mean squared forecast errors are RV-
MRW, RV-ARFIMA and RV-BMSM, where we can observe a transition from RV-MRW domi-
nating long term forecasts to RV-ARFIMA dominating medium- and short-term forecasts and
RV-BMSM specialized in one-day forecasts.

The paper is organized as follows: The next section reviews some basic concepts of volatility
modeling and shortly describes the volatility models considered. Section 3 gives a detailed
exposition of the RV-MRW, section 4 of the RV-BMSM. Our empirical study in section 5
encompasses information on the dataset, the estimation results and the forecasting design, and
reports our main findings for the forecast performance of the various models. We conclude in

the sixth section.

2 Volatility models

Volatility models consider risk adjusted (zero mean) financial returns x: = (pr — pe—1) — pt,
with p; = In(P;) the logarithmic asset price at time ¢ and py = Ep—1 [In(pt) — In (pe—1)], the
conditional mean of the return series given the public information available at time ¢ — 1. The
focus is on the modelling of financial volatility o; according to various specifications within the
following general framework:

Tt = OtUg, (1)

where u; is Gaussian white noise u; ~ N(0,1) (Andersen et al., 2006). This construction reflects
the economic ideas behind the efficient market hypothesis: the return fraction u; constitutes the
fair payment expected in ¢, whereas x; is the excess return due to arrival of new information,
which market participants are unable to predict (cf. Fama, 1965).

The seminal GARCH][1,1] (generalised autoregressive conditional heteroscedasticity) model

of Bollerslev (1986) assumes that the volatility dynamics is governed by

02 =w+ ax? | + Bo? |, (2)
where the restrictions on the parameters are w > 0, a, 5 > 0 and a+8 < 1. A well known stylized
fact of financial time series is the so called leverage effect, which describes the negative correlation
between volatility and returns. This is based on the empirical finding that return fluctuations
intensify after negative financial news and are less pronounced after positive financial news
(Black, 1976). To account for this stylized fact we consider the GJR-GARCH model, which was



named after the authors who introduced it (Glosten et al., 1993):

02 =w+ax? |4zt I(xyq < 0)+ Bo? 4, (3)
where Z(e) is the indicator function taking the value of 1 if ;1 < 0 and 0 otherwise.

While the models of the GARCH family conceive the volatility dynamics as a linear pro-
cess, multifractal volatility models, in contrast, are characterized by a multiplicative structure
with a hierarchy of heterogeneous volatility components. The systematic arrangement of these
volatility components provides for a very parsimonious framework with only a small number
of parameters to estimate. In the Markov-switching multifractal (MSM) model, instantaneous
volatility is determined by the product of k volatility components Mt(l), Mt@), ey Mt(k) and a

scale factor o2:

k
UtQ =2 H Mt(z). (4)

=1

Following the basic hierarchical principle of the multifractal approach, each volatility component
Mt(i) will be renewed at time ¢ with a probability v; depending on its rank within the hierarchy
of multipliers, and will remain unchanged with probability 1 — ;. Convergence of the discrete-
time MSM of eq. (4) to a limiting Poisson process in continuous time requires to formalize

transition probabilities as follows (cf. Calvet and Fisher, 2001):

yi=1—(1—y)®, (5)

) to k = 8 and use the pre-specified parameter
values v = 0.5 and b = 2 (cf. Lux, 2008).? Following Calvet and Fisher (2004), the Binomial
MSM (BMSM) is characterized by binomial random draws, each component Mt(z) taking the

In this paper we set the number of multipliers Mt(Z

values mg or 2 —mg (1 < mgy < 2) with equal probability. This configuration guarantees an
expectation of unity for all Mt(i). Due to the finite set of states and the Markov property of the
BMSM, this model can be estimated using exact maximum likelihood (ML).

In the Lognormal MSM (LMSM) model, multipliers are determined by random draws from
the lognormal distribution with parameters A and v, i.e. Mt(i) ~ LN(—\,v?). Normalisation
via E[Mt(i)] = 1 leads to the restriction v = v/2X. The estimation of the LMSM parameters
A and o2 can be accomplished with the generalized method of moments (GMM) estimation
technique based on the pertinent moment conditions for the log differences of absolute returns
&1 =1In|xy| — In|z_p| for various lags T" as outlined in Lux (2008).

Here we evaluate volatility forecasts based on both model specifications. We compute BMSM
forecasts based on the conditional probabilities of the current states of the volatility components
and the transition matrix of the model according to Bayes’ rule. Forecasting of the LMSM model

is performed by means of best linear forecasts (cf. Brockwell and Davis, 1991, chap. 5) together

2An in-depth analysis of this model can be found in Calvet and Fisher (2004) and Lux (2008).



with the generalized Levinson-Durbin algorithm developed by Brockwell and Dahlhaus (2004)
(see Lux, 2008, for further details).

The multifractal random walk (MRW) is a different multifractal specification obtained as
the limit process over a continuum of volatility components in the limit when the sampling
interval reaches zero. Section 3 introduces the MRW in detail.

The above volatility models are estimated on the basis of daily returns z;. It is, however,
also possible to model the volatility o, in (1) directly and fit it using daily realized volatilities

vy calculated from intraday returns:

1/A

ve=Y (plt—1+j-A)—p(t—1+j-A=A))7° (6)
j=1

for a sampling interval 0 < A < 1, 1/A integer (e.g. A = 102~! when using 5 min intervals
and assuming that a trading day has 8.5 hours). In this study we consider both types of
implementations and make the distinction between model types using the prefix RV for the
latter.

We adopt a forecasting method for the MRW based on the history of RV introduced by
Duchon et al. (2012) which is the subject of the next section. Lux et al. (2014) already adapted
the LMSM model to the forecasting of RV using parameter estimates obtained via GMM to-
gether with best linear forecasts.®> Additionally, in this paper we propose a new RV model
extension for the BMSM, described in more detail in section 4.

The MRW, LMSM and RV-LMSM implement the idea of a lognormal-normal mixture dis-
tribution of returns governed by the integrated volatility. This idea goes back to Clark (1973)
and is in accordance with more recent empirical evidence by Andersen et al. (2000, 2001a,b,
2003) and Bandorff-Nielsen and Shephard (2002). According to Andersen et al. (2003) stan-
dardized daily returns 7; = (py — pt—1)/4/v¢ are normally distributed whereas realized standard
deviations /v; are lognormally distributed. Based on these considerations we also employ the
popular ARFIMA (autoregressive fractionally integrated moving average) specification to the

logarithmic RV with mean u:
(1-9¢L) (1~ L) (Inof — p) = (1~ 0L) e (7)

where ¢ and 6 are the first order AR and MA parameters, respectively, d the parameter of
fractional differentiation and 7; white noise.

We estimate the RV-ARFIMA (1,d,1) model above via exact ML and maximize the (concen-
trated) log-likelihood function numerically.? We also looked at alternative model orders. After

prior evaluation of significance of the parameters we chose model order based on information

3The authors employ the corresponding moment conditions for the log differences of volatilities (7 = Ino —
Inoy_7 for various lags T' (Lux et al., 2014).
“This is implemented in the package ‘arfima’ by Veenstra and McLeod (2018) for R (R Core Team, 2020).



criteria and in accordance with the Box-Jenkins methodology.’

Table 1 provides an overview of the models considered:

Models for returns Models for RV
LMSM RV-LMSM
BMSM RV-BMSM
MRW RV-MRW
GARCH]1,1] RV-ARFIMA

GJR-GARCHI[1,1,1]

Table 1: The models.

3 The MRW model

The MRW was first proposed in Bacry et al. (2001). The model was generalized by Muzy
and Bacry (2002) and Bacry and Muzy (2003), who introduced a continuous random cascade
model on the upper half-plane by means of an independently scattered infinitely divisible two-

dimensional random measure:

My(dt) = > . (8)

This cascade model intends to capture the information cascade from long-term to short-term
traders and generates the so called multifractal random measure in the limit of small scales
¢—0t.

At the core of this construction is the magnitude process wy (t) with a similar multiplicative
structure like eq. (4) which is generating the multifractal scaling. Its autocovariances are a
function of the intermittency coefficient A2, 0 < \? < %, measuring the degree of multifractal

scaling and of the correlation length (or integral scale) T

N(L)+1-2), o<h<t
Cov [we(t),we (t+h)] = ¢ NIn (%), (<h<T . (9)
0, h>T

The (log-normal) MRW is obtained by compounding a self-similar stochastic process, here

5Since the distribution of RV can be well approximated by the log-normal distribution, it seems natural to
adopt the ARFIMA framework for the logarithmic RV. However, we also tested the ARFIMA specification for
the levels o2. This proved unsatisfactory due to a large number of significant autocorrelations in the residuals.



Brownian motion, with the multifractal random measure above:

t
X(t)=B [ lim / 2y | . (10)

£—0+
0

An equivalent representation is given by the stochastic integral:

t
X(t) = lim [ e*™dB (u). (11)
{—0+
0
Here dB (u) is Gaussian white noise with mean 0 and variance o2, independent of wy (u), whereas
the multifractal random measure plays the part of a stochastic variance. The MRW increments

over unit time intervals model the risk adjusted returns z; introduced in section 2:6

t
z=X1t)—X({t—1)= lim [ e*WdB (u). (12)
{—0+
t—1
The parameters to estimate are A2, T and the scale factor 0. We estimate this model via
the generalized method of moments (GMM). In the GMM framework the unknown parameter
vector ¢ is obtained by minimizing the distance of empirical moments from their theoretical

counterparts, i.e.

@r = argmin fr(p) Arfr(e), (13)
ped

with ® the parameter space, fr(y) the vector of differences between sample moments and
analytical moments, and Ar a positive definite and possibly random weighting matrix. Under
some regularity conditions the GMM estimator @7 is consistent and asymptotically normally
distributed (cf. Harris and Métyds, 1999).7

Bacry et al. (2008) derived a discretized version of the MRW increments and an approximate
distribution in the limit of small intermittency A\? < 1 given by the rescaled product of a
Gaussian white noise and a log-normal process. This facilitated the formulation of approximate

expressions for the mean and the autocovariance function of the log absolute returns:

7+ In(2)
2

5An in-depth analysis of this model can be found in Bacry and Muzy (2003) and Bacry et al. (2013).

"GMM was implemented with MATLAB (MathWorks, 2018) using a revised and reprogrammed version of
the GMM toolbox by Kyriakoulis (2005). We computed HAC (heteroskedasticity and autocorrelation consistent)
standard errors with the fast algorithm by Heberle and Sattarhoff (2017) mainly based on the fast Fourier
transform.

E[In |z¢|] = In(o) =M (1.5 +In(T)) + 0 (A?), (14)




Mg (h,T)+0(X), 1<h<T-1

Cov [In |z¢|, In |xpyp]] = (15)
o (\?), h>T+1
where 7 is the Euler constant, o (A\?) satisfies )\hrré 0 (A?)/A* =0 and
%
In(T) + 1.5 — 21n(2), h=1,T>2
h,T) = . 16
gk T) (L) - By (14 1) - =Dy (1 Ly 15 2<h<T—1 (16)

The authors estimate the MRW parameters via GMM using various lags of the autocovari-
ance function above together with the variance condition £ [x?] = o2 (Bacry et al., 2008, 2013).
Bacry et al. (2013) show within the framework of a Monte Carlo simulation study that the es-
timation of the intermittency coefficient A? has very small bias and MSE, being also reliable in
finite samples. However, the asymptotic normality of this estimator is compromised even for
fairly large datasets. Instead, the authors recommend computation of confidence intervals using
Monte Carlo simulations.

In this paper, we deviate from Bacry et al. (2008) by fitting the mean explicitly to the sample
average (Sattarhoff, 2011). In contrast, following Bacry et al. (2008, 2013) the mean condition
would enter the estimation only through the computation of the sample autocovariances. Based
on simulations, Sattarhoff (2011) shows that the explicit use of the mean condition is preferable
as it achieves a better convergence to the asymptotic distribution, with normally distributed
estimates for A? and In ¢ starting at approximately 2,000 data points, i.e. about 8 years of daily
financial data.

Out-of-sample h-step ahead forecasting of the MRW model is performed for the zero-mean
quantity z7 by means of best linear forecasts (cf. Brockwell and Davis, 1991) together with the
generalized Levinson-Durbin algorithm developed by Brockwell and Dahlhaus (2004).

One major problem in the applications of the MRW framework is the estimation of the corre-
lation length T'. Previous empirical applications report very large error bars for this parameter,
e.g. Bacry et al. (2008). In a sense, T' is a nuisance parameter that only serves to bring the
multifractal apparatus into a manageable time series format with convenient asymptotic prop-
erties. Empirically, tests for long memory in financial volatility have always found long-range
correlations without any indication of a finite correlation length (cf. Lux and Ausloos, 2002).
One might thus, prefer to rather get rid of this parameter when applying the MRW framework
to practical tasks like volatility forecasting.

Duchon et al. (2012) have developed the pertinent theory of the limit 7' — oco. Among other
results, they establish the following approximate formula for conditional expectations of second

moments:

70 L N
Eloyinlot, 041, .., 00 N] 2 H (s %hr41 (17)



with C ~ 1.33 and

2 -1
Oy = - (Arctan\/i — Arctany | Th) ,

with the vector oy_, being implemented using either absolute returns or realized volatility as a
proxy of past realizations of the standard deviation. With correlation length T" — o0, all past
observations should be used just as in the linear forecasts for a process with long-term memory.

Hence, the product on the right-hand side extends over the entire sample up to time t.
This also renders the estimation of the scale parameter o unnecessary, as it is ‘learned’ in the
out-of-sample forecasting from the previous realizations that appear in the iterative formula of
eq. (17).

Curiously enough, the paper by Duchon et al. (2012) does not include any empirical ap-
plication of their theoretical results, and to the best of our knowledge, it has also never been
applied by other authors since.

Additionally, in the present paper we adapt the GMM framework for the use of realized

volatilities: .

o2 = lim [ Wy, (18)

{—0+
t—1

The parameters A\? and T can be estimated based on the pertinent moment conditions for the

logarithmic volatility provided in Bacry et al. (2013):

E[Ino7] = =23 (InT + 1.5) + 0 (A?) (19)

AN2g(h,T)+0(N), 1<h<T-1
Cov [ln03,1n0§+h] = 1 () (20)
o (\?), h>T+1

Hence, we employ the MRW twice:

e First, we estimate model parameters via GMM on the basis of daily returns x; and calcu-
late forecasts for the quantity xf ', based on the returns history using best linear forecasts

as outlined above.

e Second, we calculate forecasts for the quantity o4 based on the prediction formula by
2

Duchon et al. (2012). For this purpose, we estimate the volatilities o; . using realized
volatilities v; from the in-sample period. This is coupled with the new estimation pro-
cedure based on realized volatilities outlined above. We call this second approach the

RV-MRW model.

The parameter estimates for both model variants are available in an online appendix.



4 The RV-BMSM model

We also adapt the BMSM model by Calvet and Fisher (2004) to the RV framework. This is an
appealing idea since in this new model we can combine optimal forecasts according to Bayes’
rule with the RV measures, which hopefully provides for a better identification of the unobserved
volatility process. Inspired by the proximity of realized standard deviations ,/v; to the lognormal
distribution we use a lognormal random variable 1, ~ LN (¢,£2) for the innovations of the

volatility dynamics which is independent of the volatility components Mt(l)7 Mt@), e ,Mt(k) :

k
Ino? = Zlth(l) +2Inn,. (21)
=1

The other model characteristics remain unchanged: The volatility components are binomi-
ally distributed taking the values mgy or 2 — mg (1 < mg < 2) with equal probability. Each
volatility component Mt(i) will be renewed at time ¢ with probability v = 1 — (1 — 0.5)(2i7k)
depending on its rank within the hierarchy of multipliers, and will remain unchanged with
probability 1 —~;. The model is, therefore, a Markov-switching process with d = 2* states with
the d x d transition matrix A with elements a;; = P (M1 = sj|M; = s;), 1 < i,j < d. Here
M, = (Mt(l), Mt(2), . ,Mt(k)) denotes the vector of volatility components and s;, s; are state
vectors. The number of components k was set again equal to eight.

In contrast to the BMSM model for financial returns, the volatility process o7 of RV-
BMSM follows a lognormal distribution conditional on the volatility state M; = s; with mean
Zle In sg-i) +2¢ and variance 4¢2. This process can again be implemented with realized volatil-
ity v¢. Since BMSM for realized volatility is a new addition to the zoo of multifractal models, we
provide the details of our estimation algorithm for this variant which is based on an iterative for-
malization of the likelihood function. To derive the conditional likelihoods of all observations,

d .
e t|t,...,Ht‘t) with components

we compute the conditional probability vector II;; = <H1 112
Hi’“ = P(M; = sj|Ino?,Ino? ... ,Ino?) for all time points ¢ in the sample recursively based
on the history of volatilities

w (lnatQ) * (Ht—1|t—1A)
[w (lna?) * (Ht_l‘t_lA)] 1

Ht\t = (22)

where w (Ino?) = [flno,? (x| My =51) ..., fino2 (x| My = sd)} contains the conditional density

t
functions of In o? with

2 2
(m—E[lnat \]Mtzsj])

1 _1,
e ? g2 (23)

2621

Jinoz @My = s5) =

for each 1 < j < d. 1, is the column vector of ones 145 = (1,..., 1)—r € R? and * denotes the

10



element-wise product of vectors.
We estimate the parameters mg, ¢ and £ via ML. We start the recursion with my = 1.4
(Lux, 2008). We derive initial values for ¢ and & based on the conditional mean and conditional

variance of the volatility process: We set £2 to a quarter of the sample variance of log RV and
11—
¢:§lnvt—2lnmg—2ln(2—mo). (24)

As a by-product of the estimation, the conditional probabilities of the unobserved volatility
states can be exploited to compute one-step and multi-step optimal forecasts of future volatility

on the basis of the transition matrix of the model according to Bayes’ rule.

5 Empirical study

5.1 Estimation results

Our dataset comprizes daily returns and daily realized volatilities over the sample period
2000/01-2018/10 for a collection of 14 international stock market indices as provided by the
Oxford-Man Institute’s realised library (Heber et al., 2009). As an exception, the data for the
Italian index FTSE MIB is available only starting with 2009/01, for OMX Stockholm — starting
with 2005/10 and in the case of the Japanese Nikkei 225 starting with 2000/02. Table 2 displays
the regional distribution of the markets, including 13 national indices and one regional index
designed to capture the stock markets performance in the Eurozone, the EURO STOXX 50.

An online appendix reports some descriptive statistics of returns, absolute returns and
squared returns. According to the Kolmogorov and Anderson-Darling normality tests (sig-
nificance level of 5%) as well as the high kurtosis values, the distribution of our data deviates
throughout from normality. We could also reject the null hypothesis of no serial correlation
using the Ljung-Box-Pierce statistic (Q statistic) for each data series at very small significance
levels. For absolute and squared returns, the usual result of an even stronger rejection applies
with highly significant positive values observed over long lags of their empirical autocorrelation
functions. However, in the case of raw returns, the autocorrelations, although significant, are
much less pronounced.® This is in accordance with the Lagrange multiplier (LM) test for serial
correlation, which, as opposed to the Ljung-Box-Pierce test, cannot reject the hypothesis of no
serial correlations in the raw returns. The LM test is more adequate for financial data since it
is robust against heteroskedasticity.”

We modeled this overall relatively weak autocorrelation structure present in the raw returns
data using an AR(1) model and extracted the centered returns in (1) from the filtered series.

We estimated the nine volatility models under scrutiny (see Table 1) using as our in-sample

8 As an exception, we failed to reject the null hypothesis of no serial correlation in the case of raw returns for
the indices FTSE MIB, HANG SENG and Nikkei 225 based on the Ljung-Box-Pierce statistic.

9 As an exception, we rejected the null of no serial correlations with the LM test for the raw returns of Shanghai
Composite, S&P BSE Sensex and NIFTY 50 at the 5% significance level.
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country index time span country index time span
DJIA 00/01-18/10 France CAC 40 00/01-18/10
USA
Nasdaq 100 00/01-18/10 Germany DAX 00/01-18/10
S&P 500 00/01-18/10 Italy FTSE MIB 09/01-18/10
Sweden ~ OMX Stockholm  05/10-18/10
China Shanghai Composite 00/01-18/10 UK FTSE 100 00/01-18/10
Hongkong HANG SENG 00/01-18/10  euro area EURO STOXX 50 00/01-18/10
Japan Nikkei 225 00/02-18/10
India NIFTY 50 00/01-18/10

S&P BSE Sensex 00/01-18/10

Table 2: The dataset.

period all observations from the first observation available until the end of 2015/12. The online

appendix contains the estimation results.

5.2 Forecast evaluation

Based on these estimations we calculate volatility forecasts using a rolling window for the out-
of-sample period 2016/01-2018/10. Throughout, we evaluate forecast accuracy against RV as
a proxy for the true volatility.'® We employ daily RV data provided by Heber et al. (2009).'!
We evaluate forecast accuracy based on the values for the relative empirical MSE and MAE
criteria, i.e., we divide the values of the loss functions by the corresponding values when com-
puting forecasts with the historical volatility. We further calculate model confidence sets for
each forecast horizon using the methodology by Hansen et al. (2011). Overall, we find that RV

models show superior performance compared with models based on returns.

ORV-ARFIMA and RV-BMSM produce forecasts of the quantity Ino?. For reasons of comparison with the
alternative models, we transformed these forecasts into forecasts of o2 and evaluated them consistently against
RV v;. Forecasts from package ‘arfima’ by Veenstra and McLeod (2018) come along with estimates of the forecast
variances for each forecast horizon. In the case of RV-BMSM the ML estimate for &2 can be utilized for this
purpose.

"'We use realized kernels (Barndorff-Nielsen et al., 2008). We also evaluated forecasts against alternative
realized measures provided in the Oxford-Man Institute’s realized library (Heber et al., 2009) without significant
changes in our results.
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MSE and MAE values

Whereas RV-MRW is the consistent winner under the MAE criterium for all financial markets,
the forecast results in terms of MSE values vary as a function of the forecast horizon. Table
3 displays the models with the lowest relative MSE values. Throughout, the best models are
RV-ARFIMA, RV-BMSM and RV-MRW with the following differences:

At short horizons of h = 1 and h = 5 days RV-ARFIMA and RV-BMSM perform best most
of the time. Whereas for one-day forecasts these models appear to have similar forecasting
performance, each of them delivering lowest MSE values in the case of nine indices and (even)
identical MSE values in the case of four indices up to three decimals, RV-ARFIMA dominates
in a larger number of cases than RV-BMSM for the five-day forecasts. Interestingly, as an
exception, in the case of FTSE 100 the GJR-GARCH specification performs favorably at h = 5
and 10. The situation is much more definite at longer horizons A > 10 days where RV-MRW
outperforms all models most of the time. h = 10 appears intermediate with RV-MRW and
RV-ARFIMA scoring best in the same number of cases. The detailed results for the relative
MSE and MAE can be found in Appendix A.

forecast horizon forecast horizon

index 1 5 10 20 50 100 index 1 5 10 20 50 100
DIJIA B A A M M M CAC 40 B A/B M M M M
Nasdaq 100 B A A/M M M M DAX A/B M M M M M
S&P 500 B A M M M M FTSE MIB A A A/M M M M

OMX Stockholm A/B  B/M M M M M
Shanghai Composite B B M M M M FTSE 100 A X A/X A M M
HANG SENG A/B  A/B A/M M M M EURO STOXX 50 A A A A M M
Nikkei 225 A A A A A M
NIFTY 50 A B A/BM M M M
BSE Sensex A/B A A M M M

Table 3: The models with the lowest relative MSE for the 14 indices under scrutiny and six
forecast horizons h = 1,5, 10, 20,50, and 100 days (A = RV-ARFIMA, B = RV-BMSM, M =
RV-MRW, X = other model)

Model confidence sets

We compute model confidence sets for the nine models under consideration using the method-

ology proposed by Hansen et al. (2011).'2 Whereas the empirical MSE and MAE values vary

12We employed the MFE Toolbox by Sheppard (2009) using MATLAB (MathWorks, 2018).
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subject to the realized data sample, model confidence sets have the advantage of providing
forecast assessments with a certain confidence level. By analogy with a (1 — «) confidence
interval, the model confidence set (MCS) is a random subset of models containing the most
accurate model with a probability no less than 1 — «. By definition, the 100% MCS is the set
containing all models under scrutiny, i.e., the set of all models contains the best model with
100% probability.

We report MCS p-values in Appendix B. An MCS p-value of « corresponds to the pertinent
model being contained in the (1 — «) x 100 percent confidence set, i.e., the model confidence
set one obtains at the 1 — « level of confidence. Choosing a higher level of confidence (1 — «)
implies a lower error probability when eliminating models. Hence, a higher confidence level
tends to come along with a larger set of accepted models. The p-values then indicate at what
confidence levels (i.e., one minus the p-value) a model is accepted. The results in Appendix B
were computed based on 1,000 stationary bootstrap resamples of the original data based on the
procedure in Politis and Romano (1994).13

By construction, the model with an MCS p-value of 100% is contained in all confidence sets,
i.e., it provides the most accurate forecasts. Table 4 displays the models with MCS p-value of
one based on the MSE as a loss function.

Overall, the MCS p-values confirm the tendencies we have seen in the results for the MSE
and MAE criteria:

e First, in terms of MAE, RV-MRW is the best model throughout. Moreover, RV-MRW is
the only model in the 99% MCS in eleven cases, indicating sizeable precision differences to
the alternative models. For forecasting horizons beyond one day, hardly any other model
is ever assigned a positive probability to be better, and with one exception, also at the
1-day horizon other models at best enter with very small p-values.'* Overall, the results
are quite uniform across the various indices of our study. It is noteworthy to underline how
strongly the MCS test speaks in favor of the dominance of the RV-MRW: The p-values of
mostly zero for the other models indicate that the superior performance of RV-MRW has

been outside the complete bootstrap distribution for all other models.

e Second, in terms of MSE, RV-MRW provides most accurate forecasts for the longer hori-
zons h > 20 days in the majority of cases. The picture is less clear for ten-day forecasts
where both RV-MRW and RV-ARFIMA dominate the competition in about the same
number of cases. One can observe a transition from RV-MRW dominating long term
forecasts to RV-ARFIMA dominating middle- and short-term forecasts and RV-BMSM
specialized in one-day forecasts. As a matter of fact, both RV-BMSM and RV-ARFIMA

13We have also experimented with a higher number of bootstrap replications as well as with the circular block
bootstrap with practically no changes of the p-values.

Tnterestingly, both RV-MRW and RV-ARFIMA provide most accurate 1-day forecasts in the case of S&P
BSE Sensex. This is also the only index where another model other than the RV-MRW provides a positive
although negligible MCS p-value at h = 5 days.
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each provide the best forecasts in 50% of the cases for one-day forecasts, whereas RV-
ARFIMA performs best at h = 5 days.

In the following, we take a closer look at the forecasting results in Appendix B in terms of
MSE.1®

e 50-day and 100-day forecasts: RV-MRW is the only specification remaining in the model
confidence set at a confidence level of 95 percent (remember: this is 1 minus the p-value
of the marginally accepted model) at h = 50 and h = 100 days in the case of ten indices,

suggesting vast forecast precision differences to the rest of the models.

e At the shorter forecasting horizons, other models also start entering the scene as successful
competitors, along with RV-MRW. At the 20-day forecast horizon, the latter is still rep-
resented in any model confidence set in the case of 11 indices, while RV-ARFIMA enters
11 times at the 90 percent confidence level, and RV-BMSM enters 9 times.

e one-day forecasts: Going down in forecast horizons, the results become more and more
balanced between these three until at the 1-day horizon all three models are represented
in all 90 percent confidence sets (at the 80 percent level RV-MRW drops out 3 times and
leaves only RV-ARFIMA and RV-BMSM).

To further scrutinize the performance of RV-BMSM at the one-day-horizon we also apply the
superior predictive ability test by Hansen (2005) to check whether it is significantly outperformed
by any of the alternative models in any of our time series.!® As it turns out, we cannot reject
the null hypothesis of non-inferiority of the RV-BMSM for any of the indices in the sample
(significance level o = 5%).17 As a matter of fact, also in the case of RV-ARFIMA taken
as a benchmark we cannot find any evidence that this model is outperformed by any of its

competitors.'®

Forecast illustrations

The online appendix provides plots of the volatility forecasts and the reference quantity in
the case of the indices DAX, FTSE 100, DJIA and Shanghai Composite. Overall, these plots
illustrate the superiority of models based on RV. In particular, the superiority of RV-MRW is
evident for the 100-day forecasts.

15When we estimated the parameters of RV-MRW with returns rather than RV, the outcome has been virtually
the same with even a few more cases of dominance of this model at intermediate forecast horizons.

'6The SPA test considers the null hypothesis that the benchmark model is not inferior to any of the alternative
models against the alternative hypothesis that there exists a superior alternative model. Rejection of the null
hypothesis at a significance level a would therefore indicate the existence of a better model in terms of the MSE
or MAE criteria.

1"When setting o = 10% we can reject the null for the data on S&P BSE Sensex.

18We also tried to shed further light on the situation for 10-day forecasts. Both in the case of RV-MRW taken
as a benchmark as well as when RV-ARFIMA is the benchmark model we cannot reject the null hypothesis for
the SPA test.
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forecast horizon

forecast horizon

index 1 5 10 20 50 100 index 1 5 10 20 50 100

DJIA B A A M M M CAC 40 B A M M M M

Nasdaq 100 B A M M DAX B M M M M

S&P 500 B A M M M M FTSE MIB A A A M M M
OMX Stockholm B B M M M M

Shanghai Composite B B M M M M FTSE 100 A X A/X A M M

HANG SENG AA M M M M EURO STOXX 50 A A A A M M

Nikkei 225 A A A A A M

NIFTY 50 A B M M M M

BSE Sensex A A A M M M

Table 4: The models with MCS p-value of one based on the MSE loss function for the 14 indices
under scrutiny and six forecast horizons h = 1,5, 10, 20,50, and 100 days (A = RV-ARFIMA,

B = RV-BMSM, M = RV-MRW, X = other model).

In Figure 1 we take a closer look at the one-day forecasting performance of RV models. We
can see that RV-MRW tends to underestimate phases of high volatility whereas providing best
forecasts in phases of low volatility and a better fit of the relaxation of the volatility to its average
level after any high-volatility spike. At the other end, RV-BMSM overestimates volatility during
relatively calm phases, whereas providing better results during turbulent phases. RV-ARFIMA
lies somewhere in between RV-MRW and RV-BMSM during turbulent times and closer to the

behaviour of RV-BMSM during calm times.
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Figure 1 also indicates superior results with the RV-LMSM during turbulent phases, the
RV-LMSM forecasts appearing to replicate most accurately the true volatility dynamics, in
particular the extent of fluctuations. Lux et al. (2014) actually reported superior forecasting
capability for the RV-LMSM model during the turbulent period of the 2008—2009 financial crisis.
Our forecast illustrations confirm these findings and additionally suggest similar performance
for the RV-BMSM. Moreover, they point out the forecasting contribution of RV-MRW during
calmer periods. These differences are the probable source of the better performance of RV-MRW
for long horizons, and RV-BMSM and RV-ARFIMA for shorter ones: in the short run, the good
fit during high-volatility periods will overcompensate the somewhat higher losses in tranquil
periods, while for long horizons it is more valuable to better fit the relaxation of volatility (i.e.
its pattern of mean reversion). For the future it would be therefore interesting to focus on the
MSM and MRW model classes and shed further light on their forecasting performance as a

function of the state of the market.

6 Conclusion

In this article we brought the little-known forecasting procedure by Duchon et al. (2012) into
focus, a model extension of the baseline MRW introduced in Bacry et al. (2001). In spite of
the sophisticated mathematical underpinnings, this forecast model stands out due to a couple
of benefits:

e In the format adopted here it is an (only!) one-parameter forecast model.
e [t exploits the RV dynamics for the calculation of volatility forecasts.

e The forecasting equation is straightforward to implement.

e The execution time for the computation of forecasts is negligible.

Additionally, we proposed a new estimation approach for the MRW based on the fitting
of the volatility dynamics via GMM. To this end, we adopt the pertinent moment conditions
provided in Bacry et al. (2008, 2013). Coupled with the forecasting procedure by Duchon et al.
(2012), this results in the so called RV-MRW model. It is important to note, that the GMM
estimation of A\? comes along with an additional estimate for the correlation length 7', which is
redundant in the case of the RV-MRW. Duchon et al. (2012) also proposed a new estimation
procedure for A2 based on the fitting of a simple linear regression model, which is not used here,
but can help speeding up the estimation.

We considered fourteen international stock market indices and six forecast horizons 1 <
h < 100 days. We evaluated rolling window forecasts of the most recent observations starting
with January 2016 from the RV-MRW and eight alternative models. These include a new
model extension of the BMSM model by Calvet and Fisher (2001) to the RV framework. The

combination of optimal forecasts according to Bayes’ rule and RV dynamics proves successful,
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the RV-BMSM delivering outstanding one-day and five-day ahead forecasts in terms of the MSE
criterium compared with the original BMSM for returns.

We compared predictive ability of all candidate models in terms of the empirical MSE and
MAE as well as using model confidence sets following the methodology in Hansen et al. (2011)
and the test of superior predictive ability by Hansen (2005). According to our findings, RV-
MRW outperforms the alternative models including the popular RV-ARFIMA in a considerable
number of cases: RV-MRW turns out to be throughout the best model for all forecast horizons
using the MAE criterium as well as for long forecast horizons h = 50 and 100 days using the
MSE. Moreover, the RV-MRW provides most accurate 20-day ahead forecasts in terms of MSE
for the majority of indices. h = 10 appears intermediate with RV-MRW and RV-ARFIMA
scoring best in about the same number of cases, whereas the latter dominates the competition
in the short term.

It is worth stressing that RV-ARFIMA is a well-recognized model, the accepted industry
standard of volatility forecasting using RV.!” In view of this, the performance of RV-MRW over
RV-ARFIMA is all the more significant. These results are extremely promising if we consider
that this is the first empirical application of the RV-MRW. Moreover, whereas RV-ARFIMA
forecasts are often a time consuming task, the RV-MRW stands out due to its fast execution
and straightforward implementation.

Our forecast illustrations indicate superior results with the RV-BMSM during turbulent
market phases, whereas the RV-MRW seems to dominate during calmer periods as it provides
the best fit for the mean-reverting dynamics of volatility after episodes with very high volatility.
For the future, it would be therefore interesting to focus on the MSM and MRW model classes

and shed further light on their forecasting performance as a function of the state of the market.

9Numerous studies reported so far the superiority of RV-ARFIMA against various models, e.g., SV (stochastic
volatility) (Koopman et al., 2005; Lux et al., 2014), models of the GARCH class (Koopman et al., 2005; Lux
et al., 2014) or the heterogeneous autoregressive (HAR) model of Corsi (2009) (Hassler and Pohle, 2019).
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Appendix

A Relative empirical MSE and MAE of forecasts

Acronym Model
Standard

M1 LMSM

M2 BMSM

M3 MRW

M4 GARCHJ[1,1]

M5 GJR-GARCH|1,1,1]
Realized

R1 RV-LMSM

R2 RV-BMSM

R3 RV-MRW

R4 RV-ARFIMA

Table Al: The models
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Online Appendix

C Descriptive statistics and ACF plots

CAC 40 DAX
Returns Absolute Squared Returns Absolute Squared
Minimum -8.5224 0 0 -9.1840 0 0
Maximum 10.4387 10.4387 108.9668 12.0269 12.0269 144.6452
Mean -0.0026 0.9919 2.0051 0.0116 1.0168 2.1459
St. dev. 1.4162 1.0107 5.2749 1.4650 1.0546 5.9264
Skewness -0.0912 2.5592 8.2363 -0.0693 2.6551 10.0735
Kurtosis 7.9187 13.7733 102.6995 8.6282 15.4356 164.6713
Kolmogorov 0.0711 0.1630 0.3517 0.0754 0.1673 0.3584
Anderson-Darling 52.8402 Inf Inf 57.7865 Inf Inf
LM(10) 14.0831%*** 231.1299 72.0212 12.7178%** 241.0852 83.8153
LM(20) 24.4982%** 260.4079 107.7548 22.7285%** 282.9052 121.5224
Q(10) 45.0817 3.0387-103 2.4817-103 34.5965 3.0363-103 2.2630-103
Q(20) 68.4696 5.2068-103 4.0622-103 61.7681 5.3797-103 3.9195-103

Table C1: Descriptive statistics. Note: In the case of test statistics we asterisked the cases when we fail to reject
the null hypothesis: *p-value> 0.01, **p-value> 0.05, ***p-value> 0.10.

FTSE MIB OMX Stockholm

Returns Absolute Squared Returns Absolute Squared
Minimum -13.3314 0.0003 0 -9.4641 0 0
Maximum 10.6840 13.3314 177.7273 10.0345 10.0345 100.6904
Mean -0.0017 1.1502 2.4771 0.0223 0.9077 1.7582
St. dev. 1.5742 1.0745 6.1453 1.3260 0.9667 5.1194
Skewness -0.3324 2.3141 13.8337 -0.1236 2.8730 9.3261
Kurtosis 7.1508 14.8484 331.7234 9.4876 16.6958 126.5329
Kolmogorov 0.0553 0.1418 0.3430 0.0826 0.1736 0.3653
Anderson-Darling 14.0467 Inf Inf 48.6564 Inf Inf
LM(10) 11.3520%** 135.9017 80.3553 7.8280%** 178.3371 63.8230
LM(20) 18.4488%** 154.3032 94.0454 17.0726%%* 196.4177 81.5258
Q(10) 21.2855%* 616.4022 280.9847 23.6824 1.9907 -103 1.2056-103
Q(20) 29.6668** 975.2137 385.0340 43.8423 3.4164 -103 2.0468-103

Table C2: Descriptive statistics. Note: In the case of test statistics we asterisked the cases when we fail to reject
the null hypothesis: *p-value> 0.01, **p-value> 0.05, ***p-value> 0.10.
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Minimum
Maximum
Mean

St. dev.
Skewness
Kurtosis
Kolmogorov
Anderson-Darling
LM(10)
LM(20)
Q(10)
Q(20)

FTSE 100

EURO STOXX 50

Returns Absolute Squared Returns Absolute Squared
-8.9263 0 0 -8.7698 0.0003 0

9.4849 9.4849 89.9628 10.5536 10.5536 111.3777
0.0015 0.7940 1.3231 -0.0082 0.9987 2.0640
1.1504 0.8324 3.8476 1.4368 1.0329 5.4002
-0.1655 2.8609 10.4733 -0.0883 2.5106 8.0896
9.4553 17.2889 170.2831 7.8424 13.1764 102.2814
0.0746 0.1699 0.3653 0.0721 0.1667 0.3509
61.7084 Inf Inf 57.8040 Inf Inf
13.5088%** 187.9792 51.9822 16.1015%* 257.7858 84.6218
20.5577H** 218.3115 62.6131 27.5558%%* 296.6760 124.2736
49.9655 3.8500-103 3.2875-103 48.2402 3.1558-103 2.4593-103
71.1369 6.4026-103 5.3733-103 77.9246 5.4984-103 3.9450-103

Table C3: Descriptive statistics. Note: In the case of test statistics we asterisked the cases when we fail to reject

the null hypothesis: *p-value> 0.01, **p-value> 0.05, ***p-value> 0.10.

Minimum
Maximum
Mean

St. dev.
Skewness
Kurtosis
Kolmogorov
Anderson-Darling
LM(10)
LM(20)
Q(10)
Q(20)

Nasdaq 100 S&P 500
Returns Absolute Squared Returns Absolute Squared
-10.2244 0.0004 0 -9.6884 0 0
13.2782 13.2782 176.3111 10.6420 10.6420 113.2527
0.0125 1.0606 2.4772 0.0138 0.7926 1.4264
1.5740 1.1630 7.0445 1.1944 0.8935 4.5776
-0.0385 2.6941 9.4697 -0.2135 3.0792 12.0075
9.0869 14.9721 147.6574 11.3085 19.8087 221.2207
0.0929 0.1808 0.3623 0.0949 0.1873 0.3775
Inf Inf Inf Inf Inf Inf
9.0483*** 325.9599 117.6129 15.5739%** 193.8749 60.8058
21.8339%** 358.8629 154.7066 26.5868*** 205.1128 69.5981
33.4801 5.1603 3.0959 57.0401 4.6532 3.8425
81.8256 9.2174 5.2702 116.6969 8.0912 6.7098

Table C4: Descriptive statistics. Note: In the case of test statistics we asterisked the cases when we fail to reject

the null hypothesis: *p-value> 0.01, **p-value> 0.05, ***p-value> 0.10.

38



Minimum
Maximum
Mean

St. dev.
Skewness
Kurtosis
Kolmogorov
Anderson-Darling
LM(10)
LM(20)
Q(10)

Q(20)

DJIA Nikkei 225

Returns Absolute Squared Returns Absolute Squared
-8.6146 0.0004 0 -12.1110 0.0003 0

10.5321 10.5321 110.9255 13.2346 13.2346 175.1542
0.0173 0.7525 1.2633 0.0039 1.0659 2.2643
1.1240 0.8350 4.0251 1.5049 1.0623 6.5540
-0.1313 3.0711 12.4570 -0.4253 2.8507 12.4866
11.1616 20.0176 245.9869 9.3804 19.2647 236.6990
0.0898 0.1836 0.3766 0.0638 0.1577 0.3646

Inf Inf Inf Inf Inf Inf
14.6274% %% 189.4704 61.8189 5.2452%%* 90.2202 28.5276
27.0501%%%* 206.3352 73.3744 10.4588%** 111.4646 44.7105
54.5787 4.4314-103 3.3496-103 16.5629%** 2.1811 -103 3.0598 -103
106.3169 7.7023-103 5.9201-103 26.8295%** 3.4778 -103 4.3361 -103

Table C5: Descriptive statistics. Note: In the case of test statistics we asterisked the cases when we fail to reject

the null hypothesis: *p-value> 0.01, **p-value> 0.05, ***p-value> 0.10.

Minimum
Maximum
Mean

St. dev.
Skewness
Kurtosis
Kolmogorov
Anderson-Darling
LM(10)
LM(20)
Q(10)
Q(20)

HANG SENG Shanghai Composite
Returns Absolute Squared Returns Absolute Squared
-13.5820 0.0003 0 -9.2114 0 0
13.4068 13.5820 184.4714 9.5055 9.5055 90.3537
0.0089 1.0194 2.1867 0.0146 1.0781 2.4925
1.4789 1.0713 6.9391 1.5789 1.1534 6.5153
-0.0945 3.1033 13.7719 -0.3466 2.4828 6.7846
11.0703 22.1246 281.0459 7.8450 12.2079 64.1061
0.0725 0.1705 0.3761 0.0846 0.1748 0.3508
Inf Inf Inf 68.8514 251.5708 Inf
4.8956*** 136.9238 39.4746 19.1047* 286.8208 120.4308
11.4321 %% 207.2606 80.8078 38.5591 350.9026 154.4136
17.7882%* 3.1426 -103 2.9677 -103 38.9358 1.8402-103 0.9430-103
33.9504* 5.5104 -103 4.5471 -108 69.3472 3.2261-103 1.5305-103

Table C6: Descriptive statistics. Note: In the case of test statistics we asterisked the cases when we fail to reject
the null hypothesis: *p-value> 0.01, **p-value> 0.05, ***p-value> 0.10.

39



S&P BSE Sensex NIFTY 50

Returns Absolute Squared Returns Absolute Squared
Minimum -11.8092 0.0001 0.0000 -13.0539 0 0
Maximum 16.1147 16.1147 259.6823 16.2255 16.2255 263.2681
Mean 0.0401 1.0140 2.1537 0.0404 1.0105 2.1315
St. dev. 1.4672 1.0610 6.7736 1.4596 1.0539 7.0260
Skewness -0.2077 3.0308 17.4062 -0.3275 3.1894 18.8194
Kurtosis 10.9237 21.9720 529.8937 11.9130 25.1130 562.5971
Kolmogorov 0.0781 0.1694 0.3750 0.0769 0.1686 0.3806
Anderson-Darling Inf Inf Inf Inf Inf Inf
LM(10) 20.0483* 234.3613 92.4134 22.4616* 224.9059 85.2925
LM(20) 34.2159%* 269.6858 125.1892 39.3264 261.8864 122.4319
Q(10) 46.8564 3.2505 -103 1.3885 103 50.1953 2.8315 -103 1.1226 -103
Q(20) 74.4427 5.2772 -103 2.0267 103 84.1268 4.4817-103 1.5568-103

Table C7: Descriptive statistics. Note: In the case of test statistics we asterisked the cases when we fail to reject
the null hypothesis: *p-value> 0.01, **p-value> 0.05, ***p-value> 0.10.
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Figure C1: ACF plots
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ACF returns

ACF abs. returns

ACF sq. returns
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Figure C2: ACF plots
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Figure C3: ACF plots

43

ACF

ACF

ACF

0.00 0.10

-0.10

0.4

0.2

0.4

0.2

S&P 500

B T T T T T
20 40 60 80 100
Lag
|01 0 K 7 A AR YA Ao R YAEER HACER ARERR AR
T T T T T
20 40 60 80 100
Lag
JLE8 TR ERTRER EYOARTOEA YRR RTURRRATRITRRD RTUERE OO SRRVRER YRR AVTOL AETRRR ERTURRCETRONIY
T T T T T
20 40 60 80 100
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Figure C4: ACF plots
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ACF abs. returns ACF returns

ACF sq. returns
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D Estimation results
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