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1 Introduction

Over the past two decades, technological advances in information and communication technology

(ICT) have dramatically changed the education landscape. Currently, the educational technology

(edutech or edtech) industry is booming, and most researchers, policymakers and educators agree

on the importance of incorporating these technologies into the learning environment. However,

as Escueta et al. (2017) note, “researchers and educators are far from a consensus on what types

of EdTech are most worth investing in and in which contexts” (p. 3), and Deming et al. (2015) call

for more research to investigate the impact of online technology on education.1 One crucial ICT is

the internet, which is used for educational purposes not only in schools but also at home, comple-

menting classroom education with additional online learning. While home internet can increase

learning productivity and widen access to educational opportunity, it may also lead to unproduc-

tive distraction, making its net effect on student human capital formation ambiguous (Bulman &

Fairlie, 2016).2 Because online learning is likely to remain a key input in the education system,

identifying whether high-speed (broadband) internet impacts student educational outcomes has

important economic and policy implications. Notably, this is crucial in the advent of temporary

shocks, such as the COVID-19 pandemic, during which many countries closed schools for several

months, and as a consequence, home online learning became pivotal to children’s education.

Even though understanding the relationship between high-speed internet and education is

a first-order empirical question, major empirical challenges have limited the scope of previous

research. This is because the estimation of this effect entails several identification issues. First,

observed home internet subscription choices (i.e., connection speed) are nonrandom and likely re-

lated to learning outcomes through unobserved household-level confounding factors. We refer to

this as active selection. An analysis of the relationship between package internet speeds and edu-

cational outcomes would probably suffer from selection bias. An alternative is to use a measure

of local available internet speed, which is determined by the distance between the household and

the telephone local exchange (LE) station providing them with telephone and internet services

(for DSL connections). While it is unlikely that households actively sort in locations on the basis

of potential DSL-speeds, locations at different distances of the LE station may also have different

local neighborhood characteristics that do matter for household sorting. For this reason, simply

comparing households in locations connected to the same LE station can still lead to biased esti-

1Escueta et al. (2017) define edtech as ”any ICT application that aims to improve education”. Some examples are
e-learning platforms, distance learning tools, and massive online open courses (MOOCs). Edtech can also include pro-
vision of software or hardware such as computers.

2The accumulation of human capital, i.e., the stock of skills, traits and knowledge that an individual possesses
(Burgess, 2016), is key for growth, employment and earnings (Schultz, 1961; Becker, 1962; Mincer, 1974; Barro, 2001).
Educational outcomes, such as the cognitive skills that people have learned, have been found to be a reliable proxy of
human capital (Hanushek & Woessmann, 2011, 2012, 2015).
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mates. We call the correlation between local geography and local available internet speed passive

selection. Hence, estimating causal effects requires an identification strategy that overcomes both

types of selection issues.

In this article, we apply a careful identification strategy able to overcome these challenges. We

estimate the causal effect of home high-speed internet on teenagers’ test scores. For this purpose,

we combine rich comprehensive geolocated administrative data from England to exploit a (fuzzy)

spatial regression discontinuity (SRD) design.

In Section 2, we describe the multiple sets of administrative microdata that allow us to meet the

extensive data requirements for implementing our empirical strategy. First, we use administrative

standardized and externally marked test score records for the population of 14-year-old English

students in national Key Stage 3 (KS3) tests over the period 2005–2008, along with rich information

on their background characteristics. This includes a key variable, the student pre-internet score,

which allows us to estimate value-added regressions. A key feature of our data is that we are

able to georeference student residence and school at the most disaggregated spatial scale, i.e., the

postcode level, which roughly corresponds to blocks of approximately 15 households. Second, we

use telecommunication network data including the position of the universe of English LE stations

(approximately 3,900) and their assignments to each of roughly 1.45 million full postcodes. We

complement this with postcode-level internet speed measures for 2012–2014. Third, we employ a

rich vector of georeferenced control variables that allows us to compute residential proximity to

a comprehensive list of local amenities. These data include the universe of property transaction

values (from which we can construct local average house prices).

To overcome active and passive selection, we use a well-known feature of digital subscriber line

(DSL) broadband technology in the design of our estimation strategy: the length of the copper

wire that connects residences to the telephone LE station, which is a key determinant of available

local internet connection speeds. In this context, to deal with active selection, a potential strategy

would be to compare outcomes of students whose residences are located at different distances to

LE stations and who hence enjoy different potential home internet speed quality. However, res-

idential distances to the connected LE stations are not randomly assigned across space because

stations are located in places with particular location characteristics, potentially leading to passive

selection. To address these concerns, we explain in Section 3 that we focus on the invisible bound-

aries generated across LE stations. We note that each LE station has an invisible catchment area

of residential addresses that it serves in its surroundings. The extent and shape of this catchment

area is a byproduct of history: rapid growth in fixed-line telephony during and after World War

II, in combination with capacity constraints at the exchange switchboards, led to invisible and

essentially randomly placed station-level catchment area boundaries. In our strategy, we focus
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on households whose residence is located in the vicinity of these invisible boundaries, exploit-

ing variation in distances to the connected station across small segments, each side connected to

a different LE station. The causal effect of broadband speed on student test scores is identified

by comparing “lucky” households that are supplied with faster broadband access (the side with

shorter distances on average) to otherwise similar counterparts that were “unlucky”, supplied

with slower broadband access (the side with longer distances on average).3 Due to the irregular

geographic shape of the boundaries, some households with short cables (long cables) might live

on the slower side (faster side). Hence, our SRD design is fuzzy, with the sharp SRD design affected

by substantial attenuation bias pushing the estimates towards zero.

Our main finding is that broadband quality has positive effects on national externally marked

test scores. We find that moving 100 meters closer to the LE station increases student test scores

by 0.122 percentile ranks. In Section 4, we present a battery of robustness checks to validate our

identification strategy and support our conclusions. In particular, the results are robust to con-

trolling for school-specific broadband availability features and to including school fixed effects,

which suggest that the findings are not driven by school characteristics.

Although our main estimate may seem relatively small, in Section 5, we show that its effect size

is economically meaningful. To assess the magnitude of the baseline estimates, we employ out-

of-sample-period data to reverse engineer the distance-speed relation present during our study

period. We combine linked postcode-to-exchange station telecom network data with data on local

internet speed measures experienced by households. We find that for each additional 100 meters

closer to the connected LE station, the local average speed increases by 0.089 Mbit/s. This means

that for each increase in the average broadband speed of 1 Mbit/s, test scores increase on average

by 1.37 percentile points. This average effect of one additional Mbit/s is equivalent to approxi-

mately 5% of a standard deviation in the national test score distribution.

The empirical setting of this study is England over the time period 2005–2008, which offers

several advantages. First, home broadband was predominantly delivered via a stable technology

in our study setting: that is, via asymmetric DSL (ADSL) through telephone copper wires.4 In

addition, other non-distance sensitive technologies (cable and fiber) became more widespread in

the UK only after 2008, which also coincides with the last years of availability of the detailed KS3

records. Second, at this time, the broadband market was already developed in England. In 2008,

3We use the words broadband availability and access interchangeably to refer to the possibility of subscribing to
broadband services from one or more providers in a postcode.

4In the empirical context that we study, the transition from dialup connections to ADSL occurred in the early 2000s.
Initially, the usage of broadband subscriptions was low due to prices being high and consumers not considering higher
internet speeds attractive enough to pay a premium. By 2005, the broadband market in England had matured in the
sense that coverage was close to universal (see Nardotto et al., 2015, for a detailed discussion of the English broadband
market). Similar to Amaral Garcia et al. (2019), we therefore use years following 2005 to estimate the effects of faster
broadband. In this period, the ADSL, ADSLmax and ADSL2+ technologies were available, but all are affected by signal
decay with increasing copper cable length.
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84% of students used the internet, and among those, 90% used it for their homework, with an av-

erage connection speed of 4.1 Mbit/s (Livingstone & Bober, 2005; OfCom, 2009a) . Currently, 59%

of the world population is online (Clement, 2020), and for those connected, the average world-

wide connection speed in 2015 was 5.6 Mbit/s (Inc., 2015). We therefore believe that our estimates

based on English student population data in the mid- to late-2000s have high external validity for

other countries today and can inform current policy.

Our paper is related to the large and growing literature on the relationship between ICT and

education outcomes.5 An important strand of the literature analyzes the effects of ICT in school

settings. Most of this previous work uses experimental and quasiexperimental methods, finding

mixed results but typically no consistent impacts on math or reading educational achievement

(Angrist & Lavy, 2002; Rouse & Krueger, 2004; Goolsbee & Guryan, 2006; Machin et al., 2007;

Belo et al., 2014, 2016; Falck et al., 2018). Our study is different because we study the effects of

broadband access at home. A different set of studies has analyzed the impact of providing access

to academic software specially designed for students, with many papers showing positive effects

on math and reading (Banerjee et al., 2007; Barrow et al., 2009; Barrera-Osorio & Linden, 2009;

Muralidharan et al., 2019). In contrast, we study the effects of a policy variable (home broadband)

that is not directly targeted toward education. Another group of papers focuses on the relation-

ship between home computer access and education outcomes, in which some of the earliest papers

identify empirical associations rather than causal estimates (Battle, 1999; Fairlie et al., 2010; Fiorini,

2010). Recently, this literature has used quasiexperimental methods as well as randomized inter-

ventions to identify the causal effect of home computer access on student outcomes (Malamud

& Pop-Eleches, 2011; Fairlie & Robinson, 2013; Vigdor et al., 2014; Beuermann et al., 2015; Cristia

et al., 2017). These articles often report positive effects on outcomes directly related to computer

access but no impact – or only a modest one – on student academic outcomes.

Our paper is most closely related to the narrower and relatively recent literature linking home

broadband technology to student test scores. Malamud et al. (2019) find no significant effects of

home internet access on student achievement. This result is based on a credible randomized con-

trolled trial implemented in several low-achieving primary schools in Peru. Our paper expands

on Malamud et al. (2019) by identifying effects based on a broader population that covers all so-

cioeconomic levels of school-age teenagers. In another key study, Dettling et al. (2018) show that

students with broadband access in their postal codes perform better on the SAT and apply to a

larger set of colleges in the US. We complement Dettling et al. (2018) by analyzing the impact on

5A growing literature on the impact of broadband in socioeconomic outcomes includes papers on its positive effects
on labor productivity and wages (Akerman et al., 2015), economic growth (Czernich et al., 2011), capitalization of
the property market (Ahlfeldt et al., 2017), health choices (C-sections) (Amaral Garcia et al., 2019) and marriage rates
(Bellou, 2015), and negative effects on political participation (Falck et al., 2014; Campante et al., 2018; Gavazza et al.,
2019) and sex crime (Bhuller et al., 2013).
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tests that are low stakes from the student perspective and are specifically designed to test cognitive

ability with no explicit online-training resources.

The contribution of our paper is fourfold. First, we link several sources of administrative mi-

crodata to trace the broadband available to the universe of English students over four years at

the finest geographical level. The richness of the data allows us to exploit discontinuous changes

in broadband quality across neighboring residences to implement an estimation strategy that

causally estimates the impact of broadband quality on student test scores, addressing active and

passive sorting and attenuation bias. Second, while our main estimates are for the impact of broad-

band availability on test scores, our methodological approach allows us to underpin the direct

relationship between broadband speed and student test scores. This second parameter is rele-

vant for assessing the impact of policy interventions aimed at boosting local speeds or subsiding

the takeup of higher-speed packages. Third, a main advantage of our outcome of interest is that

it is a low-stakes exam from the students’ perspective and designed to test student progress in

the English education curriculum with no explicit online-training resources. This means that our

estimates inform us about the impact of the home environment on the learning and knowledge ac-

cumulation that determines human capital formation in a general sense, in contrast to specific ICT

skills or targeted preparation for specific test-taking. Finally, our paper shows the importance of

human capital accumulation in the home environment for outcomes measured at the school level.

We are able to identify the isolated impact of home broadband on student test scores, abstracting

from school mediating (technological) factors that may affect student performance. Therefore, our

findings imply that broadband technology affects the learning nexus of home and school educa-

tion, complementing school learning.

2 Background, Data and Descriptive Statistics

2.1 Broadband Expansion in the UK

The rollout of DSL broadband technology in the UK started in the major urban centers at the

beginning of the 2000s and proceeded rapidly. This process involved technological upgrades of

the infrastructure of telephone LE stations – the same ones that provide telephony services to a

number of connected premises around them – to allow them to offer broadband internet services

through copper cable. By the end of 2004, 80% of the LE stations had been equipped to provide

broadband services, covering 97% of local residences, which could subscribe to receive broadband

services at home. That year, 54% of households had an internet connection, of which 6.2 million

(approximately 25%) were broadband. By the start of our estimation period in 2005, 99% of English

addresses were connected to broadband-enabled telephone LE stations.
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Even if most of the technological upgrades took place between 2000 and 2005, penetration

rates were low in the first years (approximately 10% in 2003) and only started growing in 2004. By

then, infrastructure was completely rolled out across space, and the takeup rate increased steadily.

The broadband internet takeup rate rose from approximately 30% in 2005 to over 60% by 2008

(Eurostat). This increase in takeup was related to decreases in prices and changes in attitudes and

internet content. Due to this, and similarly to existing work (Nardotto et al., 2015), in our analysis,

we focus on the post-2005 period. In this context, we can focus on the impact of broadband speed

for a given state of technology and exploit very local variations in quality.

In 2007, more than half of UK homes had broadband access, with an average connection speed

of 4.6 Mbit/s (OfCom, 2009a). While today that average speed is faster, the coverage and speed

available to households in the UK between 2005 and 2008 is comparable to the infrastructure cur-

rently available in large parts of the world. For comparison, in 2017, only approximately 14% of

the world population had broadband access, with average connection speeds of 7.2 Mbit/s (McK-

eay, 2017). Note that our period of analysis ends in 2008 for two reasons: (i) mobile broadband

and cable/fiber internet technologies became more widespread in the UK after 2009, reducing the

efficacy of our empirical approach, and (ii) the standardized exam that we use to measure the edu-

cational achievement of teenagers in this paper (the KS3 for students at age 14) was discontinued.

The combination of the testing regime and the state of development of the broadband infrastruc-

ture in the UK in the period 2005-2008 offers a unique opportunity to study the effects of home

broadband quality on student performance.

2.2 Data

2.2.1 Administrative Student Records

In the English educational system, student academic performance is assessed in national exams

that are administered through externally marked tests. The English education curriculum is orga-

nized into four key stages (KSs). Compulsory education starts at age 6 and ends at age 16 with the

fourth and final KS4 (the General Certificate of Secondary Education [GCSE] examinations). There

are several reasons why the KS3 exam at age 14 is the most suitable for our analysis. First, the KS3

test is externally marked and thus comparable across students and schools. Second, the test is low

stakes, so there are no incentives for teachers or students that would drive a wedge between test

scores and real achievement. Third, the test is finely graded (mostly zero to 100); therefore, in com-

bination with our sample size, it is possible to detect even small effect sizes. Finally, all students

are tested in the three main compulsory subjects: English, mathematics and science. Students have

very limited options in choosing subjects or specializing according to interest or ability before the

KS3, in stark contrast to the educational period before the KS4 test two years later. This feature of
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the KS3 exam makes it particularly suitable to test for heterogeneity across groups that might later

on (endogenously) specialize in different fields.

We employ administrative data containing information on the universe of students enrolled

in English state schools (approximately 95% of pupils) who took the KS3 test from 2005–2008 in

England. These data are supplied by the Department for Education (DfE). To match the student

information with the telecom network data that we describe below, we first use the restricted-

access version of the National Pupil Database (NPD), from which we extract the full residential

postcode for each registered student in a given year. British postcodes are associated with a small

number of addresses (15 on average) and in denser areas usually correspond to housing blocks.

In the second step, we use the unique student identifiers to link their residential information to

individual test score results, which are also provided as part of the NPD.6

Following the education literature, we transform these scores into percentile ranks for each test

and cohort, i.e., separately by year-subject. These subject percentiles are then added into a total

score, which we percentilize to obtain an average total score ranging from 1 to 100. We conduct

this transformation to make our results comparable to other countries’ national exams as well as

across cohorts/subjects. Transforming raw scores into percentile ranks has the goal of keeping the

ordinal information in the outcome variable and removing the cardinal differences between units

of interest, which might be driven by the setup of any particular exam paper, for instance.

We use additional data from the DfE NPD for each pupil in our KS3 2005–2008 sample and

collect information on their KS1 test scores (taken at age 7). For this sample, this corresponds to

tests taken during 1998–2001, when most of the rollout of broadband internet had not yet taken

place and the level of broadband takeup was essentially zero. In contrast with the KS3, this test

is marked by the schools, is only available for the subjects of mathematics and English, and is

graded on a coarse scale. However, adding this information to our empirical models allows us to

estimate individual-level value-added results, controlling for pupil-specific time-invariant ability

and background characteristics, which in turn improve the precision of the estimates and the

explanatory power of the models. We also obtain information on the location, size and type of

the school that the pupils attend, which we use to construct school-level controls and, for some

specifications, school fixed effects.

In addition to test scores, the administrative data give us access to a series of observable stu-

dent characteristics, such as gender, ethnicity, and student eligibility for a free school meal (FSME),

which is a common proxy for family income. We exploit these data at two scales: to construct

individual-level controls and to calculate postcode-year-specific demographics based on the pop-

6The DfE formerly distinguished between the NPD and the Pupil Level Annual School Census (PLASC), which is
now treated as part of the NPD. Note that no information is available on private schools, which enroll approximately
6–7% of the English student population (Ryan & Sibieta, 2010).
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ulation of pupils of all ages, which we also use as local area control variables in the regressions.

2.2.2 Average House Prices and Area Socioeconomic Characteristics

We use a number of additional datasets to improve precision and to validate our approach. First

and foremost, we use transaction-level data on property sales in England over the estimation pe-

riod. The data are administrative records from the England and Wales Land Registry, covering all

property transactions over this period. We use the reported property address information to link

these property transaction values to individual residential postcodes. The postcode-year averages

are based on several million individual property transactions that occurred in England over the

period 2005–2008. Local house prices capitalize many desirable (and undesirable) local attributes

and are likely to capture a large number of unobserved spatial characteristics of the areas.

Even though our empirical analysis is based on a spatial discontinuity design that compares

only very proximate households, it could still be the case that catchment area boundaries coincide

with physical barriers such as roads or rivers and that either the slower or the faster side of the

boundaries has a higher likelihood of hosting a given type of local amenity, the combination of

which could lead to bias in the boundary effect. Using a GIS with detailed attribute data from

the UK Ordnance Survey, the commercial real estate consultancy CBRE and the DfE, we compute

euclidean distances between each English postcode and the following features: nearest school

(primary or secondary), nearest road (class A, class B and motorways), nearest rail station (which

captures centrality), nearest water body (river, stream, marsh or lake) and nearest supermarket.

One of the major concerns is that passive endogeneity arises because local geography correlates

with the location of the LE stations and of households. Taking these variables into account allows

us to properly test whether observable geographic features are an endogeneity concern in our set-

ting and ultimately control for these variables in our empirical specification to increase statistical

precision.

Finally, we combine data from the Office for National Statistics Postcode Directory (ONSPD)

and the DfE to control for local density by calculating the number of premises in each postcode

(which is fairly stable over time) and the number of students (of all ages) per premise.

2.2.3 Postcode Broadband Speed Data

Note that in Section 5, we use additional data on postcode-level realized internet speed from

Ofcom, the British telecom regulator in the UK, to estimate the distance-to-LE speed relationship.7

The major fixed-line broadband suppliers (ISPs) provide data on individual speed tests to Ofcom,

7These data are available from the Ofcom Infrastructure reports – now called Connected Nations – accessible via the
Ofcom webpage and the National Archives webpages.
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Table 1: Summary Statistics.

All Sample Baseline Sample
within 300 Meters

(1) (2)

A. Outcome Variables

Average Percentile Rank Score (Mean) 50.21 49.76
(28.67) (28.66)

Average Percentile Rank Score in English 50.26 50.21
(28.59) (28.51)

Average Percentile Rank Score in Math 51.60 51.09
(28.03) (28.05)

Average Percentile Rank Score in Science 51.50 50.84
(27.97) (27.98)

B. Discontinuity Variables
Distance to the Segment (Meters) 679.13 156.29

(547.1) (79.1)
Distance to the LE Station (Meters) 1,511.96 1,866.97

(862.7) (878.3)
Share on the “Fast” Side 0.54 0.51

(0.50) (0.50)
Average “jump” (Meters) 763.36 930.29

(659.7) (598.5)

C. Pupils & School Characteristics

Distance to School (Meters) 2,602.5 2,413.35
(3,433.14) (3,008.3)

White 0.838 0.785
(0.37) (0.41)

Male 0.499 0.498
(0.50) (0.50)

Free School Meal 0.141 0.155
(0.35) (0.36)

Pre-KS3 Score 44.45 43.98
(24.61) (24.65)

Number of Schools 2,864 2,610

D. Area Socioeconomic Characteristics

Share of White Pupils 0.825 0.769
(0.29) (0.32)

Share of Free School Meal Pupils 0.151 0.165
(0.24) (0.24)

Share of Community Schools 0.638 0.620
(0.48) (0.48)

Average House Prices (Pounds) 193,092.6 190,596.8
(118,208.4) (110,831.9)

Observations 1,115,594 183,892

Notes: This table shows descriptive statistics for the outcome variables (Panel A), treatment variables (Panel B), pupils
and school characteristics (Panel C), and density and area socioeconomics (Panel D). The first column reports statistics
for the whole sample of pupils and postcodes. The second column shows statistics for our baseline sample, which are
pupils and postcodes located within 300 meters of the invisible LE station boundary segment. Standard deviations are
reported in parentheses.

9



which aggregates the information by area in different years. The data from these suppliers cover

over 80% of the market.8 Data at the finest geographical level, the postcode, have been available

since 2012 and are published yearly. Some quality measures are put in place, and only postcodes

with a sufficient number of tests have usable data points. These are large datasets with close to

one million postcode-level observations per year.

Postcode-level measures (average and median speed) are calculated from information on mil-

lions and millions of active broadband connections provided to the regulator and are based on

modem sync speed, which captures the highest possible speed at which data can be transferred

across the line with the use of a particular DSL technology (OfCom, 2012). The indicator captures

the speed at which the modem in a customer’s home connects to the equipment in the telephone

exchange, and it is directly related to the subscription package headline speed. This way of mea-

suring the line speed contrasts with speed tests obtained using modems at home and performed

by users, who usually report slower speeds, which are affected by the time of the day at which the

data transfer is done, the number of devices connected simultaneously and the quality of home

software and internet equipment. This second type of measure is influenced by household socioe-

conomic variables, which are correlated with our outcome of interest and, in the context of our

study, are less preferable than the measure based on line subscriptions. However, local modem

sync speeds are still a reflection of resident demand for different broadband packages, which in

the raw connection data used by Ofcom include a mix of technologies: primarily ADSL but also

cable or fiber internet. In the results in Section 5, we include the same large set of local varying

and time-invariant characteristics as that used for the main results; we expect these to comprehen-

sively control for local characteristics correlated with speed demand.

A second concern is the deployment of non-distance-affected technologies in Britain from 2008

(cable) and 2010 (fiber). If reliable, rich data on local speed were available for our estimation sam-

ple period (2005–2008), we could use them directly in the estimations. However, small geography

data were only made available from 2012, when superfast technologies were already available in

some areas.9 First, we note that even if in 2012 68% of England already had access to superfast

broadband (yielding speeds over 30 Mbit/s), in this period, approximately 75% of the subscribed

broadband connections used ADSL technology. In this sense, local averages for 2012 are the re-

sult for a majority of ADSL connections and are sensitive to distance to the LE. Furthermore, we

use information on the potential available speeds that are realistic for the period 2005–2008, when

most packages offered 8–10 Mbit/s headline speeds (OfCom, 2009a). With this in mind, when us-

ing data from after 2012, we restrict our sample to postcodes with average (download) speeds that

8The suppliers include BT, Virgin Media, Everything Everywhere, O2, KCom, TalkTalk and Sky.
9In previous years, the data were aggregated at a higher geographic scale (local districts), or studies on average

speeds by region were based on smaller samples of tests.
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are realistic for our sample period, e.g., up to 10 Mbit/s.10

2.3 Summary Statistics

Table 1 provides the descriptive statistics of key variables in the whole and our baseline estimation

sample, with mean values and standard deviations. In the full sample, our data cover slightly

more than 1.1 million students living in over 400,000 postcodes and attending more than 2,860

schools in England over the period 2005–2008.11 Our estimation sample is constructed by focusing

on households within 300 meters of an LE catchment area boundary segment. This procedure is

explained in detail in the coming section.

Panel A provides the descriptive statistics of our outcome variables for the subject-specific

tests and the mean of the three. Panel C reports the pupil-level characteristics and shows that the

vast majority of the pupils are white, approximately 14% are entitled to free school meals, and

students live on average 2.5 kilometers from their schools. Panel D displays the postcode-level

characteristics, which show similar values in the proportion of white and FSME students at the

local level, a majority of community-type schools and an average house price of approximately

£190,000. The table shows that the composition of pupils and area characteristics for the whole

sample are highly similar to those of the estimation sample.

3 Empirical Strategy

3.1 Sorting Issues and Identifying Variation

To estimate the effects of home broadband on education outcomes, a major identification chal-

lenge has to be addressed: household-level observed broadband speed – i.e., package choices – is

likely related to learning outcomes through confounding factors that are difficult to directly con-

trol for. We refer to this as active sorting; e.g., better-off households invest in better connections

to boost outcomes. As a result of this type of sorting, using data on observed broadband speeds

is problematic. The approach used by the existing literature is therefore to focus on variation in

available broadband speeds, which depends on location choices but not on broadband subscription

choices.

In this context, we exploit a feature of the DSL-broadband technology: a salient feature of the

technology is that once a home is connected to a broadband-enabled LE station, the available con-

10The rollout of ADSL2+, which allows speeds of up to 24 Mbit/s, did not start until 2008.
11The raw data include approximately 500,000 pupil observations per year. To prepare the sample for our empirical

strategy, we exclude observations that (i) have implausible or inconsistent values, (ii) are assigned to segments that only
have observations on one side, thus making it impossible to perform within-segment-year comparisons, (iii) cannot be
linked to school or local area characteristics, or (iv) are located in postcodes that had broadband services enabled for
less than six months.
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nection speed depends on the length of the copper wire connection between the residence and the

LE station.12 Falck et al. (2014) are the first to exploit this feature, estimating the effects of infor-

mation disseminated over the internet on voting behavior in Germany, where during their sample

period entire (small) locations happened to be located too far away from an exchange station to

access broadband. In particular, towns farther than five kilometers from an exchange could not

obtain any broadband internet without costly further technological upgrades. This characteristic

allows the authors to exploit differences in outcomes between places that were connected to the

DSL network and those that were not. However, this approach is not directly applicable to the

British context because of a much denser network of LE stations, related to the smaller size of the

country, with all places connected to the network, and the relatively quick rollout of the broadband

infrastructure.

We use a modification of Falck et al. (2014)’s approach by exploiting “jumps” in distance to the

LE across catchment area boundaries.

In the UK, the location of LE stations was determined during the deployment of the English

landline telephony network, which mainly occurred before and during World War II. Importantly,

distance to the LE station did not affect the quality of traditional telephone services, so the setup

of the network was designed to maximize the number of connections from the minimum num-

ber of stations (with the goal of achieving cost-effectiveness). However, while we believe that it

is unlikely that households in the past or present actively sort on the basis of distance to the con-

nected exchange station, there are several reasons to believe that LE station location is far from

random and is potentially correlated with other local neighborhood characteristics that do matter

for household sorting. One can argue that most households are not likely to be aware that the

quality of their broadband connection is related to their location choices, and even if they are,

they might not precisely know where LE stations are located. Households might not be located at

different distances from the LE because they know and care about the speed-distance relationship

(abstracting from active sorting). However, they might sort with respect to other geographical fea-

tures also correlated with station location. For example, LE stations appear to have been placed at

central locations (local town centers) that were also close to major road junctions for hosting the

exchange switchboard infrastructure. We refer to this as passive sorting. As local geography corre-

lates with both the location of LE stations and the location of households across space, comparing

households located within an LE would lead to biased estimates.
12Distance to the LE is not the only driver of the variation across DSL subscriptions, as other factors can also affect

observed speed, such as the quality of the hardware and software used, the number of simultaneous users in the
household, the day of the week and time of day, the size and upkeep of the LE station and other technical factors such
as varying quality of in-house wiring, unconnected microfilters, or varying performance by the ISP. See OfCom (2009a)
and OfCom (2009b) for more details. See Ahlfeldt et al. (2017) for estimates of the determinants of household observed
broadband speed.
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Figure 1: Graphical Illustration of Empirical Strategy.

(a) Overview of LE catchment areas and boundary segments

(b) Postcode sample boundary A–D segment – Sharp

(c) Postcode sample boundary A–B segment – Fuzzy

Notes: The light gray dots represent the precise location of the postcode centroids for a selection of LE catchment areas
at the 1 meter-resolution precision. The blue lines represent the invisible LE station boundaries. The building symbols
display the exact locations of LE stations. Subfigure (a) shows an overview of LE station areas with underlying postcode
area polygons and centroids. One letter is allocated to each LE. Note the irregular shapes and the fact that LE stations
are not always located in the center of the LE area. Subfigures (b) and (c) zoom in on the boundary segments of two
particular LE catchment areas, AD (b) and AB (c). The red dots mark the postcodes located within 300 meters of the red
boundary segments.
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To overcome identification issues related to passive sorting, instead of comparing different lo-

cations within LEs (e.g., households connected to the same LE but at different distances from the

station), we use a strategy that compares variation in DSL-cable length across neighboring loca-

tions. We compare households located very close to each other and thus with similar geographical

features but with connections to different LEs and hence with different broadband availabilities.

These boundaries give rise to substantial cross-sectional variation in the quality of the available

DSL-broadband speed due to discontinuous jumps in the length of the copper wire that connects

residences on either side of the invisible boundary to their assigned LE stations. The different

shapes and sizes of the LE catchment areas give rise to discontinuous changes in average dis-

tances to the LE on each side of small boundary segments (which we call “jumps”).

Note that in this paper, we do not compare outcomes between DSL-connected and uncon-

nected places but exploit differences in broadband quality across locations.13 The period for which

we could compare locations with internet dialup connections to those already connected to a

broadband-enabled LE is that encompassing the rollout of the DSL infrastructure, e.g., mostly

2000–2004. The technological upgrade between these two technologies would have allowed us

to exploit a 10x increase in expected internet speeds; however, the takeup rate of broadband ser-

vices before 2005 was negligible, reducing the probabilities of finding an identifiable treatment.

Instead, we use data for the years 2005–2008, when broadband infrastructure was almost univer-

sally enabled and when takeup rates were already substantial and growing. We argue and provide

evidence below that using the variation in available broadband speed across local boundaries ad-

dresses the discussed endogeneity concerns. This variation has to be exploited at very small scales

to avoid spatial confounders correlated with location and outcomes. To leverage the richness of

the data, it is essential to use very disaggregated information, in terms of both geographical scale

and sample size; thus, the available geolocated administrative data are key for the application of a

robust empirical strategy. Next, we explain how we take this setting to our data and our estimation

approach.

3.2 Construction of the Discontinuity and Treatment Variables

The core of our empirical strategy is the construction of the boundaries of LE catchment areas.

The first thing to note is that these boundaries do not coincide with any other administrative

boundaries, in particular school district boundaries, and are in practice difficult for households to

know.

To set up the empirical strategy, we use information on the precise geolocation of the universe

13Other technological and regulatory changes also took place during our period of analysis; however, by comparing
within-year cross-boundary segments, we focus solely on cross-sectional variation to obtain our estimates.
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of English LE stations (approximately 3,900). In particular, we use the assignment of each of the

English postcodes to the LE that provides telephone and internet services to its premises. There

are approximately 1.45 million full postcodes in England. Each postcode contains approximately

15 households on average, and the postcode areas are often as small as a single building, especially

in denser areas. This georeferenced dataset allows us to construct precise LE station-level catch-

ment areas, which are usually unobserved, and from them infer the exact boundaries between

different LE areas. We construct the catchment areas by aggregating the polygons of all the post-

codes connected to the same LE station.14 It is important to use the correct LE-postcode pairing, as

due to constrained capacities and natural accidents, not all the postcodes are served by the clos-

est station. Figure A.1 depicts all LE catchment areas in England. We construct detailed polygons

for each catchment area, which are then transformed to create boundaries (lines) identified by a

pair of LEs, one on each side. Then, the boundaries are divided into smaller segments (henceforth

called boundary segments), which are on average 3.2 kilometers long (S.D. of 1 kilometer). The

details of the underlying data can be appreciated in Figure 1, where we can observe how some

postcodes correspond to portions of streets. Next, we assign all postcodes in England to partic-

ular boundary segments based on their proximity, conditional on which LE they are connected

to.15 This determines which side of the boundary the postcodes belong to. We exclude boundaries

on the outline of the country to ensure that we can pair coastal postcodes with segments with

neighbors on the other side.

The following step is the construction of the treatment and SRD variables. For each postcode

in England, we calculate the euclidean distance to the connected LE station; this approximates the

connecting copper cable length, which is a measure of internet quality (speed).16 Our goal is to

compare households that live close to each other but on different sides of the invisible LE catch-

ment area boundary segment. We therefore also calculate the distance between postcode centroids

and the closest boundary segment. This distinction is important and worth reiterating: there are

two different types of distances: The first is the distance to the connected LE station, which is an

important determinant of the available broadband speed. This distance increases as we approach

the boundary segment and changes discontinuously when we cross an LE boundary segment.

This is the distance measure that gives rise to the variation in broadband quality across boundary

segments. The second measure is the distance to the LE boundary segment. This distance is used

14Instead of approximating postcodes with centroids, we use Ordnance Survey CodePoint with Polygons data, which
provide very detailed polygons for each postcode in the UK.

15We know the precise geolocation of the postcode centroids using the British National Grid Eastings and Northings
to the 1 meter precision from the National Statistics Postcode Directory.

16A shortcoming of our approach (common to other, similar papers) is that we can only calculate crow-fly distances
between the centroids of the postcodes of the location of pupils’ homes and the LE station to which they are connected;
in urban areas, there can be a substantial gap between this and the actual length of the connection cable (OfCom, 2009a).
Nevertheless, given the very small scale of our geographical units of observation, we can approximate this in a more
precise way than other studies that use data for larger geographical units.
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to identify close neighbors, i.e., to select which locations we use as comparisons within a short

segment, and it is our SRD running variable. Panel B of Table 1 provides summary statistics on

these two distances for both the full and estimation samples.

To make this geographical setting operational, one important step is necessary: to define who

is on the fast and who is on the slow sides of each boundary segment. Initially, there are over

40,000 boundary segments (some of them very small) and over 1.45 million (active) postcodes in

England. Figure 1(a) provides an illustration of the geographical details of the data. As we show

below, households located inside of the LE are different from households located at the edge of

it, but they are similar to households on the other side of the boundary. We therefore first restrict

the postcode sample that we use to postcodes located close to the nearest boundary segment.

For our main analysis, we use the sample of postcodes within 1 kilometer of the boundaries. For

this sample, we then construct the segment-specific variables to implement the (fuzzy) SRD (ap-

proximately 65% of the total sample). Using all the postcodes assigned to a particular boundary-

segment side, we calculate the average distance to the connected LE of the postcodes on that

boundary-segment side. The side that has shorter average distances is defined as the fast side, and

the other side is defined as the slow side.17 The difference in the average distances between the

two sides measures the jump in average cable length when we cross the boundary segment; from

this jump, we identify the impact of quality broadband. Sometimes the jump between the two

sides is small, so the variation in average distances is relatively low. For this reason, we exclude

segments in which the jump is below 100 meters, and for our main results, we focus on segments

with jumps of at least 300 meters. We extensively discuss the robustness of this choice in Section

4.4.

Finally, we match the postcode-segment-side and distance (to LE and to segment) data to the

KS3 pupil information based on the home address postcode. For each boundary segment and

year, we observe the universe of 14-year-old pupils who live in households located at different

distances from the segment and at different distances from the LE station. In essence, we group all

pupils (postcodes) closest to the same boundary segment into a local-segment neighborhood. The

invisible boundary cuts through each of these neighborhoods, splitting them into the fast and slow

sides. Within each neighborhood, the invisible boundary line thus produces variation in distance

to the connected LE station. To compare households with similar geographical surroundings, we

use postcodes within 300 meters of the boundary segment in our preferred estimation sample.

Given the large size of the underlying dataset, even this narrow definition still provides a sample

size over 180,000 pupil observations (living in over 60,000 postcodes).18 As becomes apparent from

the nonparametric estimation results of the boundary discontinuity effect, none of the presented

17Using a 500 meter sample around the segments to construct these variables provides very similar results.
18For the 1 kilometer sample, this corresponds to 580,000 observations in almost 300,000 postcodes.
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findings are sensitive to increasing or decreasing this sample threshold.19 Robustness checks on

the sensitivity of our findings to the baseline sample selection are discussed extensively in Section

4.4.

Figure 1 provides a graphical illustration of our empirical setup and our strategy. Figure 1(a)

shows the population of postcodes (gray dots) in several telephone exchange areas (e.g., A, B or

C), where the location of the LE station is indicated with a building symbol. All the postcodes

inside a given area are connected to the LE station, and telephone and broadband service are

provided from the copper cable connecting the LE station and the premises. The boundaries of

the catchment areas of each LE are shown in blue. Each boundary has one LE station on each side,

allowing the identification of boundaries from a combination of two LE stations (e.g., AD, AB,

EC or CB). Boundaries are split in smaller segments. In Figures 1(b) and 1(c), specific boundary

segments are shown as thicker red lines. We expect – and show in Section 5 – that households in

postcodes closer to the station have faster internet connection speeds.

Because of the topology and different sizes of the LE catchment areas, there might be higher

or lower differences in the average distance to the LE station between both sides of the segment,

which gives rise to a higher or lower “treatment” change when we compare pupils across the

segments. This is illustrated in Figure 1(b): side A of the segment is on average 1.5 kilometer from

the LE station, while side D is 850 meters from the station.20 Postcodes located within 300 meters

of the two highlighted boundary segments are marked in red. In this particular case, it is clear that

all households within 300 meters of segment AD on the fast side have shorter individual distances

to the LE than all households on the slower side, as the difference in the average distances is 650

meters. In this case, when we compare pupils from both sides of the segment in a given year, the

SRD is sharp and the treatment (distance to the LE station) changes discretely for all households

when we cross from the slow to the fast sides.

However, it could be the case that two addresses located on different sides of the segment are

not necessarily different in the way that we would expect. Due to the irregular geographic shape

of several invisible boundaries, some households with short cables (long cables) might live on the

slower side (faster side). Hence, our SRD design is fuzzy, and sharp RD estimates would suffer

from attenuation bias.21 This is illustrated in Figure 1(c). For segment AB, the average distance to

the connected LE is quite similar on both sides, approximately 1.6–1.7 kilometers. The shape of the

19For completeness, we also report estimation results for a wider distance band around the boundaries covering more
than 97% of the student population in England.

20To calculate the discontinuity variables, we use the population of postcodes within 1 kilometer of the boundaries.
The aim is to obtain more representative boundary-segment variables that are independent of the choice of pupil sam-
ple. We drop extreme outliers (located further than 3.25 kilometers from a segment or 5.5 kilometers from an LE station
(less than 10,000 postcodes)). After excluding postcodes assigned to the segments with observations on one side only,
we are left with 824,000 postcodes in England and 17,000 operational segments.

21For the sharp SRD estimates, see Table A.2.
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segment is irregular and slightly diagonal, tilted to the west. Two sets of postcodes are selected to

explain this situation. The triangular-shaped ones are both around 3 kilometers away from the LE

station, but the shorter of the two (3,043 meters) is located on the slow side, and the longer segment

in the pair (3,049 meters) on the fast side.22 If the jump in distances between sides is attenuated

because some households are “assigned to the wrong side”, we would not have enough variation

to estimate the coefficients with precision. We resolve this situation by using an IV strategy, which

we explain in detail in the next subsection.

3.3 Specification and IV Strategy

Our goal is to estimate the causal effect of broadband internet speed on test scores for 14-year-

old students. The basic framework of our analysis capturing the relationship of interest is the

following:

TestScoreipnlst = βDistLEpl + g(Dpn) + X′i Λ + Z′isΘ + A′ptΦ + L′pΨ + δnt + εipnlst (1)

where TestScoreipnlst is the percentile rank in the KS3 test of pupil i living in postcode p in

boundary-segment neighborhood n associated with LE station l and attending school s at time

t; DistLEpl is the distance to connected LE station l from postcode p; X′i is a vector of student

background characteristics, such as preinternet student performance on the KS1 test, gender and

free school-meal eligibility status; Z′is is a vector of characteristics of the school attended by pupil

i, such as school type and distance between home and school; A′pt is a vector of postcode-year-

specific characteristics, such as local average housing prices, share of students eligible for free

school meals, and white (population) pupils; L′p is a vector of time-invariant postcode attributes

such as density (e.g., number of delivery points) and distance to different amenities (e.g., nearest

rail station or road); δnt is boundary segment-by-year fixed effects, which guarantee that we are

comparing students within the same segment-year of the LE boundary; and ε ipnlst is the error

term. To ease interpretation of the estimates, we measure DistLEpl as “negative distance”, e.g.,

proximity to the LE station. Thus, beta captures the changes in test scores when we come closer

to the LE by one meter and broadband quality improves. We cluster the standard errors at the

segment-by-year level.23

To apply the empirical model to the data, we need to specify two additional pieces of infor-

mation. First, the definition of g(Dpn) captures the relationship of the postcode distance to the

boundary segment. This deterministic function has the spirit of the running variable in a nonspa-

22The pentagon-shaped postcodes display the inverse situation: the one with longer distance, 2,467 meters, is located
on the fast side, while that with the shorter distance (2,402 meters) is on the side with longer distances on average.

23Table A.5 shows that different clustering choices for our preferred specification do not change our conclusions.
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tial regression discontinuity design. In our setting, we are interested in controlling for distance to

the boundary segment because of passive sorting, as explained in Section 3.1 above. As we have

a large sample of pupils, even when we restrict observations to postcodes within 300 meters of

the border, we can carefully control for distance to the boundary segment, where each side is

connected to a different LE station. This means that we can effectively compare the test scores of

students with differences in home broadband access living very close to each other.

Our preferred control function for the relation with the running variable is the following:

g(Dpn) =
Bs

∑
b=1

(
γslow

b Slowpn ∗ I
(

DistSegmentpn = b
)
∗ DistSegment

)
+

B f

∑
b=1

(
γ

f ast
b Fastpn ∗ I

(
DistSegmentpn = b

)
∗ DistSegmentpn

)
(2)

where we control for the distance to the LE invisible boundary segment by using distance bin

dummies of 100 meters (b) interacted with the distance to the boundary segment on both sides

of the cutoff. In terms of the notation, Slowpn ∗ I
(

DistSegmentpn = b
)

is an indicator variable for

postcode p on the slow side of boundary segment n that equals one if the distance of postcode

p to segment n is within bin b. Fastpn ∗ I
(

DistSegmentp = b
)

is defined analogously for all post-

codes on the fast side of the boundary segment n. This semiparametric approach allows for more

flexibility in controlling for distance to the segment. Instead of imposing a certain functional form

on the polynomial, we estimate the coefficients γslow
b and γ

f ast
b for each small distance bin for the

segments (i.e., 0–100, 100–200, and 200–300), thereby capturing the shape of the polynomial in a

flexible way on each side of the boundary segment. This approach is flexible and avoids either

oversimplifying the underlying relationship (as would be the case if, for example, we used a lin-

ear polynomial) or overfitting by using high-order polynomials (Gelman & Imbens, 2014). The

results are robust to alternative definitions of distance bins, to the use of distance as a continuous

variable, and for a more flexible approach of higher-order polynomials.24

One final step is required for estimation. Using the information on which side of each bound-

ary segment has a lower average distance to the LE, we construct segment-side-specific Fast dum-

mies that we use as instruments for the actual postcode-level distance to the LE. The first-stage

equation is:

DistLEpl = πFastpn + g(Dpn) + X′i Λ + Z′isΘ + A′ptΦ + L′pΨ + δnt + ε ipnlst (3)

where Fastpn is a dummy variable equal to one if student i living in postcode p is located on

the fast side of invisible LE station boundary segment n and zero otherwise. As above, DistLEpl is

24These results are available upon request.
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measured as proximity to the connected LE station. The coefficient π captures how much closer

postcodes are to their connected LE stations on the fast side relative to the average distance on the

slow side.

Since the invisible telephone LE station boundaries are historically given and under the as-

sumption that households do not sort on each side of the boundary within the boundary seg-

ment, we can focus on households whose residences are located in the vicinity of the invisible LE

boundary segment, considering those on the fast side very similar to those on the Slow side. The

broadband speed assigned to these households can be considered “locally” randomly assigned

within segment-by-year. Assuming that in the absence of the treatment, the outcome variable is

a smooth function of distance to the LE boundary, the causal effect of broadband internet speed

is identified by comparing outcomes for pupils who live close on the fast side of an LE station

boundary (treatment group) with those who are near but live on the slow side (control group). This

effect is captured by the IV estimate of β in specification 1. This strategy estimates a local average

treatment effect (LATE) of quality to high-speed internet on student performance by comparing

“lucky” households that are supplied with faster broadband access to otherwise similar counter-

parts that were “unlucky” in terms of being supplied with slower broadband access. A specific

feature of this strategy is that it generates variation over multiple thousand telephone LE station

boundary segments, which vary in distance to the LE station and in the jump in distance across

the invisible boundaries.

3.4 Estimating the Impact of Broadband Speed on Test Scores

In a simple framework, faster broadband internet could affect teenagers’ school performance in

different ways. High internet speed allows students to access more online content per unit of time.

If test scores are determined in a learning production function, we can think of speed impacting

learning productivity. For each hour of study, students can access more information, shifting the

learning production function upwards if, for example, they can access more learning resources

such as Wikipedia or online interactive materials. However, broadband could affect learning in-

vestment by reducing study hours if students divert time to nonlearning online activities, such as

gaming or using social media. This second channel could be more or less relevant depending on

whether online distractions replace offline distractions. The first channel would have a positive

effect on human capital formation, while the second would have a negative effect. Coefficient β

captures the net impact of these channels, and our aim is to identify an unbiased estimate of this

coefficient.25

25This model can become more complex if, for example, we take into account the changing nature of web content
over time or the interaction of school and home ICT use, but discussing this is beyond the scope of this paper.
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Henceforth, the causal estimation of coefficient β in equation 1 informs us about the impact of

available broadband speed on test scores. It captures how much test scores change as we approach

an LE station via the relationship between copper cable length and potential speeds. We estimate a

LATE impact by using a proxy of broadband speed that changes over space. While the estimation

of this parameter is desirable from an identification point of view, it also provides a measure of

the intention-to-treat (ITT) impact, which is a relevant policy variable. By investing in network

improvements and expansions, public policy can influence the availability of fast broadband in

different locations, while afterwards, particular households might sort into different broadband

packages for reasons that might correlate with the outcomes of interest.

However, we are also interested in the impact that broadband speed changes have on stu-

dent performance. For the reasons explained above and due to the lack of data appropriate to

the time period and geographical scale of our analysis, we cannot directly estimate this impact in

the data. Our approach is to employ out-of-sample-period data to reverse engineer the distance-

speed relation present during our study period, combining linked postcode-to-exchange station

telecom network data with data on the local average internet speed experienced by households.

We compute the Wald estimate dividing our LATE coefficient (effect of distance to LE station on

test scores) by this parameter (distance to LE station on average speed) to obtain a measure of the

impact of changes in speed on test scores and calculate the standard error using the Delta method.

A last step is to scale our Wald estimate by the relevant population of interest to approximate

the treatment-on-treated (TOT) effect. We do this using additional survey data to obtain informa-

tion on the appropriate broadband takeup rates during the period of analysis (those of families

with teenagers during 2005–2008 in England) and on the proportion of pupils using the internet

for school work. This allows us to discuss the economic relevance of our results and to contex-

tualize the size of our estimates. We extensively discuss our quantification estimates in Section

5.

4 Results

4.1 Internal Validity of the Empirical Strategy

The internal validity of the fuzzy SRD requires that there is no endogenous sorting on either

side of the LE boundary segment. In the case of this study, there are two key features that make

manipulation at the LE station boundary segment highly unlikely. First, LE catchment areas are

either invisible or unlikely to be known by households. Second, LE boundaries do not coincide
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with administrative boundaries of any kind, such as school district boundaries.26

Figure 2: Distribution of Pupil Distance from Residential Distance to Exchange Segment.
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Notes: The figure shows the density of pupils in our preferred estimation sample at the invisible LE boundary segment.
The black dashed vertical line presents the invisible LE station boundary segment. The red dashed vertical lines show
the boundaries of the donut strategy. Each bar contains bins of 20 meters’ distance.

Figure 2 presents a histogram representation of pupil density at the LE station boundary seg-

ment for our preferred estimation sample. It allows for visual inspection of whether bunching

takes place. It reveals no evidence of systematic manipulation of residential distance to the LE

boundary segment around the thresholds. However, we observe that density drops within 20

meters of the LE boundary segment (indicated by the red vertical dashed lines). This drop is a

byproduct of the data construction: postcode distances to the boundary segment are measured

from the centroids, and there are very few oddly shaped postcodes where the centroid falls within

20 meters of the boundary segment. The fact that the drop is of the same magnitude on both sides

of the discontinuity is a positive indicator that it is unlikely that this feature has a differential ef-

fect on one particular side of the LE boundary segment. We also perform more in-depth analyses

and formal tests of bunching, as reported in Section A.2. We formally test for bunching follow-

ing McCrary (2008) and Cattaneo et al. (2018). The McCrary (2008) test fails to reject the null of

no significant jump at the LE boundaries.27 Cattaneo et al. (2018) propose a test that is robust to

bandwidth selection issues. We fail to reject the null hypothesis of no discontinuous jump at the

LE boundary segment.

Since the density drop within 20 meters is a byproduct of the geographical resolution of the

data, we use the so-called donut strategy, which excludes observations within 20 meters of the

26In the data construction, we removed boundary segments that intersect with natural boundaries (rivers). While it
is now possible to determine (rough) boundary locations online, this was not possible during the period studied.

27We also test for various alternative residential distances to the LE boundaries. The results are robust to different
specifications. See Table A.1.
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discontinuity in our main specifications, following Angrist et al. (2019) and Leuven & Løkken

(2020), among others. Discarding these observations improves the precision of our estimates since

we eliminate potentially rare postcodes and spillovers across LE boundaries.28

Another direct check of a violation of instrument exogeneity is to test whether pupil, school

and area/postcode baseline characteristics are “locally” balanced on either side of the LE bound-

ary segment. If these variables are unbalanced on either side of the boundary segment, it would

indicate selection problems around the discontinuities. Table 2 tests the balance of a battery of

background characteristics. The first column of Table 2 regresses the main outcome on the prede-

termined background characteristics. The regressions further control for distance bins and include

segment-by-year fixed effects. The results of this column show that the background characteristics

are economically and statistically important in explaining the variation in the outcome variable.

We strongly reject the null hypothesis that these variables are jointly equal to zero. The third col-

umn of Table 2 displays the results of local linear regressions for each of the predetermined pupil,

school, density, area socioeconomic, housing price and amenity characteristics. We show that most

of the regressors are not significantly different from zero, and the coefficients are very small. In

particular, important determinants of our outcome variable, such as individual preinternet scores,

free school meal eligibility and housing prices, are statistically indistinguishable from zero. How-

ever, we find that postcodes on the fast side of the LE boundary segment are more likely to be

closer to a school and a rail station and less likely to be white. However, the magnitude of the

differences in these characteristics with those on the slow side of the LE boundary segment is very

small (0.6%, 0.3% and 1.8% with respect to the baseline mean, respectively). Given the number of

variables tested, it is not surprising to find some small imbalances in individual variables. In line

with this, we fail to reject the joint test in which all the coefficients are equal to zero at conventional

levels of statistical significance. This means that we do not find evidence that third factors, some

of which are extremely important in explaining later test scores, change discontinuously across

our invisible boundary segment.

28At the boundary segment, very local spillovers might exist where households on the slow side could connect to
the WiFi routers of neighbors on the fast side. The fraction of pupils who are discarded represents less than 1% of our
estimation sample.
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Table 2: Balance of Baseline Student, School and Area/Postcode Characteristics.

Outcome Instrument
Average Percentile Slow Side Fast Side

Rank Score Baseline Mean Nonparametric Estimate
(1) (2) (3)

A. Student Characteristics

White -0.592** 0.78 -0.014*
(0.244) (0.007)

Male -2.430*** 0.5 0.005
(0.133) (0.010)

Free School Meal -13.749*** 0.16 0.003
(0.206) (0.008)

Pre-KS3 Score 0.819*** 43.89 -0.153
(0.002) (0.508)

B. School Characteristics

Log Distance Home to School 3.699*** 7.39 0.012
(0.112) (0.017)

Log School Size 1.305*** 6.88 0.007
(0.140) (0.013)

Community School -9.951*** 0.62 0.003
(0.214) (0.009)

C. Density & Area Socioeconomics

Log Number of Delivery Points -0.944*** 3.34 0.013
(0.132) (0.015)

Log Number of Pupils per Premise -1.754*** -1.76 0.016
(0.121) (0.016)

Share of White Pupils 1.416*** 0.77 -0.008
(0.389) (0.005)

Share of Free School Meal Pupils -22.724*** 0.17 -0.001
(0.354) (0.006)

D. Housing Prices

Log Average Housing Price 13.310*** 12.04 0.014
(0.270) (0.009)

E. Amenities

Log Distance to Closest Road 0.045 5.44 -0.013
(0.103) (0.022)

Log Distance to Closest School 1.416*** 5.83 0.033**
(0.134) (0.016)

Log Distance to Closest Supermarket 1.156*** 6.56 0.013
(0.191) (0.012)

Log Distance to Closest Rail Station 0.118 7.22 0.020**
(0.259) (0.009)

Log Distance to Closest Water Body -0.144 6.5 -0.002
(0.136) (0.017)

Joint F-test 10,381 1.23
Joint P-value 0 0.23
No Segm-years 7,096 7,096
No Observations 183,892 183,892

Notes: Column (1) regresses the main outcome on the predetermined background characteristics. Column (2) shows
the baseline mean on the slow side for the predetermined background characteristics. Column (3) performs local linear
regressions for each of the background characteristics. Each regression controls for distance bins and segment-by-year
fixed effects. F-tests (and corresponding p-values) are for the joint significance of the variables reported in each column.
Standard errors clustered at the segment-by-year level are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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4.2 Discontinuities in Distance to the LE Station

We now investigate the discontinuities across the boundary segment in the distances to the con-

nected LE stations. Figure 3 plots the distance to the connected LE station as a function of house-

hold distance to the LE boundary segment. The left side shows the average “stacked” distances to

connected exchange stations of all boundary segments on the slow side. As we move closer to the

boundary segment, the distance to the exchange increases. Then, there is a clear discontinuity. On

the fast side, the average distance to the (different) connected exchange in turn decreases as we

move farther away from the boundary segment.

Figure 3: Distance from the Connected LE Station Jumps across the Boundary Segment.

Notes: The dots represent the average distance to the LE station per 25-meter interval of residential distance to the invis-
ible LE boundary-segment boundaries. The solid lines are fitted values from a third-order polynomial approximation,
which is estimated separately on both sides of the cutoffs. “Residential Distance to Exchange Segment (Meters)” refers to
the residential distance to the invisible LE boundary-segment boundaries. The black vertical line is the stacked invisible
LE station boundaries.

In Panel A of Table 3, we estimate the magnitude of this jump, which is the first stage in

our fuzzy SRD setup. The results confirm that being on the fast side of the invisible threshold is a

strong and statistically highly significant predictor of the distance to the connected LE station. Our

preferred specification coefficient, shown in the fifth column of Table 3, estimates that households

just on the fast side are 816.6 meters closer to their LE stations (relative to those on the slow side).

This coefficient and the corresponding estimates from the various other specifications, which are

discussed in more detail below, are statistically significant at the 1% level.

4.3 Impact on Student Test Scores

Panel B of Table 3 shows the fuzzy SRD nonparametric estimates on the average student percentile

rank score. Each column presents estimates from increasingly saturated specifications. Column 1

includes student test scores from a prebroadband period in England (KS1 test scores from age 6/7)
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as well as the distance bins and segment-by-year fixed effects. Adding this predetermined control

variable effectively changes the empirical strategy to a fuzzy SRD value-added design. Using this

specification, moving one meter closer to the LE station increases the national KS3 exam perfor-

mance at age 14 by 0.00123 percentile ranks. The results are statistically significant at the 5% level.

In column 2, we add further individual controls (e.g., ethnicity, free school meal eligibility, and

gender), which on their own have explanatory power, as documented in Table 2. To increase pre-

cision, we include interactions between the different combinations of student individual controls.

The main effect increases slightly further to 0.00131 per meter, which is statistically significant at

the 1% level. Columns 3 and 4 introduce the additional time-variant and time-invariant area and

amenity controls from Table 2. This hardly affects the estimates. Finally, the last column includes

additional school-level controls. In column 5, we control for school type, size and distance from

home. This does little to the estimates.

Because of the stability of the estimates across columns, we choose the estimate from column

5 as our preferred specification, for which we discuss more results below.29 The baseline estimate

is statistically significant at the 5% level (p-value=0.01). As explained above, due to the irregular

geographic shape of several invisible boundaries, it is critical to use a fuzzy SRD design since

sharp RD estimates would suffer from attenuation bias. Table A.2 illustrates the attenuation bias,

showing its substantial magnitude. Although many of the estimates are statistically significant

at conventional levels, the sharp SRD estimates are approximately five times lower than the pre-

ferred fuzzy SRD estimates.

At face value, this estimated effect of about 0.0012 percentile ranks per meter seems very small

and in fact is only detectable due to the combination of our empirical approach with formidable

student census data that includes national test scores (and previous test scores) at a very high

geographical resolution. In Section 5, we provide direct estimates that allow us to quantify this

positive effect in terms of broadband speed and usage to show that the effect size is economically

meaningful.

Our headline estimate, an effect of 5% of a standard deviation, is not small in the context of

the education literature. For instance, teachers have been identified as one of the most important

factors in test performance, with a one standard deviation increase in teaching quality improving

test scores by 0.1–0.2 standard deviations (Rivkin et al., 2005; Slater et al., 2012; Chetty et al., 2014a).

Peer effects are smaller at between 0.01 and 0.08 standard deviations (e.g., in the English context

Lavy et al., 2012; Gibbons & Telhaj, 2016), and various dimensions of neighborhood quality have

even smaller effects on test scores (e.g., Jacob, 2004; Sanbonmatsu et al., 2006; Gibbons et al., 2013,

29The results are robust to the use of a triangular kernel. The point estimates are larger in magnitude (0.00147), but we
cannot reject the null hypothesis that the estimates are different from the baseline estimates. These results are available
upon request.
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2017). Therefore, in the context of the education literature, our estimates represent medium-sized

effects.

Table 3: Fuzzy SRD Estimates: Impact of Exchange Distance on Student Performance.

(1) (2) (3) (4) (5)

A. Avg. jump in distance to connected exchange when crossing boundary to the fast side (in m)
Nonparametric -814.3*** -813.8*** -813.3*** -816.4*** * -816.6***
Estimates (16.00) (15.99) (15.99) (15.93) (15.93)

B. Effect of exchange distance on national KS3 exam scores at age 14 (in percentile ranks)
Nonparametric 0.00123** 0.00131*** 0.00120** 0.00120** 0.00122**
Estimates (0.00049) (0.00048) (0.00048) (0.00048) (0.00047)

Student Preinternet Score KS1 Yes Yes Yes Yes Yes
Student Controls No Yes Yes Yes Yes
Time-Variant Area & Amenities No No Yes Yes Yes
Time-Invariant Area & Amenities No No No Yes Yes
School Controls No No No No Yes

Observations 183,892 183,892 183,892 183,892 183,892

Notes: The table shows the fuzzy SRD nonparametric estimates for the average distance to the LE station (Panel A)
and test scores on the KS3 (Panel B). Columns report different specifications. Each coefficient comes from a separate
regression, where the running variable is the residential distance to the LE station invisible boundary. The window size
for the residential distance to the LE station invisible boundary is ± 300 meters. We only include boundaries where the
distance jumps by at least 300 meters. Standard errors clustered at the segment-by-year level are reported in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

4.4 Robustness Checks

4.4.1 Sensitivity to Sampling Choices

All results discussed so far are estimated using the sample of postcodes that fall within 300 meters

of the invisible boundary segment and where the distance jump to the connected exchange across

the boundary segment is at least 300 meters. To clarify that these choices do not affect our con-

clusions, in Table A.3, we estimate our preferred specification with different samples, using only

observations falling within 100 meters of the boundary segment up to those falling within 1 kilo-

meter on either side. The effect sizes are slightly larger in samples closer to the boundary segment

(0.00157 in the 100 meter sample) but not significantly different from each other at conventional

levels.30

In Table A.4, we use our main sample of postcodes within 300 meters of the invisible boundary

segment but restrict our attention to boundaries based on the magnitude of the distance jump

in crossing to the fast side. In the sample that includes all boundaries except those where the

distance jumps by less than 100 meters, the average change in distance from crossing to the fast

30Note that the results are unchanged when we remove the area and amenities controls in comparing observations
very close to the boundary segment, such as those at 100 or 150 meters.
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side is 664 meters (see column 1, Panel A). In contrast, when we exclude all boundaries with

jumps of less than 500 meters, the average treatment effect intensifies up to almost one kilometer

(column 5). The estimates of the per-meter effect of distance are smaller in the samples that include

more boundaries that contribute little to the variation, i.e., in columns 1 and 2. In contrast, the

per-meter effect is reasonably constant in all samples that exclude (almost irrelevant) boundaries

with jumps of 300 meters or higher. The resulting tradeoff between sample size and the exclusion

of boundaries that offer little variation motivates the choice to use the 300 meter threshold as

the baseline. Moreover, including many boundaries with small variation “on average” introduces

more misclassification of local postcodes into the fast and slow categories.

4.4.2 Sensitivity to School ICT

Table 4: Fuzzy SRD Estimates: Impact of Exchange Distance on Student Performance with School
ICT Controls.

Dependent variable: National KS3 exam scores at age 14 (in percentile ranks)
(1) (2) (3) (4) (5)

Nonparametric 0.00122** 0.00124*** 0.00124*** 0.00103** 0.00092**
Estimates (0.00047) (0.00047) (0.00047) (0.00047) (0.00046)

School Proximity to LE Station 0.00047*** 0.00047*** 0.00058***
(0.00010) (0.00010) (0.00013)

Months since ADSL School Upgrade 0.00666 0.00728
(0.00652) (0.03590)

School ADSL Upgrade Year Dummies No No Yes No No
School LE Station Fixed Effect No No No Yes No
School Fixed Effect No No No No Yes

Observations 183,892 183,712 183,712 183,638 183,598

Notes: The table shows the fuzzy SRD nonparametric estimates for average test scores on the KS3. Columns report dif-
ferent specifications. Each coefficient comes from a separate regression, where the running variable is the residential
distance to the LE station invisible boundary. The window size for the residential distance to the LE station invisible
boundary is ± 300 meters. We only include boundaries where the distance jumps by at least 300 meters. Standard errors
clustered at the segment-by-year level are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 4 estimates the effects on test scores, including several important school technological

controls. The positive effect of home broadband on student performance may be partially driven

by other technological factors that might be correlated with home broadband. For instance, if

the effects are mediated by the fact that the school has high-speed internet, not controlling for

this variable would bias our baseline estimate upward. Table 4 compares our baseline estimates

(column 1) with four different specifications. We find that student test scores are higher if the

school is closer to an LE station and as the number of months since the ADSL upgrade increases

(column 2). Although this is not a causal estimate based on an SRD, it is still prone to passive

sorting. However, our main result is robust to the inclusion of this school-level control. In column
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3, we add information on the exact year when the LE that the school is located in upgraded to

ADSL technology. Again, the main coefficient does not move. In column 4, we include secondary

school LE station fixed effects to absorb any variation that is common to the school LE station. In

this specification, the point estimate is lower than the previous ones, but it is significant at the 5%

level, and moreover, we cannot reject the hypothesis that it is identical to the baseline estimates

at conventional levels of statistical significance. Finally, we add secondary school fixed effects

(column 5). Note that this is possible in the English context only because secondary schools do

not operate on the basis of residential catchment areas. As a result, there exist a sufficient number

of students on both sides of each boundary segment attending different secondary schools. This

highly saturated specification nevertheless places high demands on computing power. From this

specification, we estimate an effect of crossing the invisible boundary of 0.00092 per meter. The

point estimate is slightly lower than the previous ones, but we cannot reject the hypothesis that

they are identical at conventional levels of statistical significance. The coefficient also remains

significantly different from zero at the 5% level. Moreover, the school fixed effects might absorb

possible interactions between home- and school-level technology. In conclusion, we cannot reject

the null hypothesis that our baseline estimates are different from any of those obtained with the

inclusion of these control variables. Hence, the results indicate that our baseline estimates are not

biased by other mediating school technological factors but represent estimates of the causal effect

of home broadband.

4.5 Heterogeneous Effects

4.5.1 By Subject

We next explore heterogeneity in the impact of broadband on student test scores. First, we analyze

separate regressions for each subject (i.e., English, mathematics and science). This is motivated by

the fact that subject differences are often found in the literature on education interventions.31 Table

5 shows the fuzzy SRD nonparametric estimates on the average student percentile rank score by

subject. Column 1 of Table 5 is equivalent to the estimate shown in column 5 of Panel B in Table 3,

based on our preferred specification. Splitting the results up by subject, it becomes evident that the

effect is the strongest for English, at 0.00141 percentiles per meter. In contrast, the effect is 0.00075

per meter for mathematics and 0.117 per meter for science. However, the confidence intervals of

these coefficients overlap, and we cannot reject the hypothesis of equality at conventional levels.

31See, for instance, Vigdor et al. (2014) or Falck et al. (2018), who find differential effects between math and reading
and math and science, respectively. Other empirical evidence, such as that in Malamud et al. (2019) or Cristia et al.
(2017), cannot reject the hypothesis that effects on math and reading are significantly different at conventional levels,
but the estimates in both papers have different statistical precision. Machin et al. (2007) find a similar pattern across
subjects in their study of the payoff of ICT technology in English primary schools.
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Table 5: Fuzzy SRD Estimates: Impact of Exchange Distance on Student Performance by Subject.

Dependent variable: National KS3 exam scores at age 14 (in percentile ranks)

Average Score English Mathematics Science
(1) (2) (3) (4)

Nonparametric 0.00122** 0.00141*** 0.00075 0.00117**
Estimates (0.00047) (0.00051) (0.00048) (0.00050)

Observations 183,892 183,892 183,892 183,892

Notes: The table shows the fuzzy SRD nonparametric estimates for average test scores
on the KS3 by subject. Each coefficient comes from a separate regression, where the
running variable is the residential distance to the invisible LE station boundary seg-
ment. The window size for the residential distance to the invisible LE station boundary
segment is ± 300 meters, and only boundaries where the exchange distance jumps by
at least 300 meters are included. Standard errors clustered at the segment-by-year level
are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

4.5.2 By Student Background Characteristics

We analyze heterogeneity along the following student predetermined characteristics: student gen-

der, prebroadband test scores, ethnicity and free school meal eligibility. Some interesting patterns

emerge. First, the effect is not driven by only one gender. The effect per meter of distance is both

more positive and more significant for girls than for boys (0.00125 vs. 0.00098, respectively). How-

ever, both estimates are positive. Second, the positive effects are strongest for high achievers based

on a median split of the prebroadband KS1 test scores. The effect for high achievers is 0.00156 per-

centiles per exchange distance meter (column 4) and 0.00096 for low achievers (column 5). Third,

nonwhite pupils have a larger estimate (0.00211 per meter, column 7), but this effect is also less

precisely estimated than that for white pupils (0,00114, column 6). Last but not least, only students

who are ineligible for free school meals benefit significantly, with an estimated effect of 0.00132

percentiles per meter in comparison to 0.00073 per meter (approximately half the size) for students

with free school meal eligibility.

These resulting coefficients are not distinct from each other at conventional levels of statistical

significance. However, the overall pattern is of interest, with the most positive effects for girls, high

achievers and students who are not eligible for free school meals. This result is consistent with that

of Dettling et al. (2018), who find that the impact of high-speed internet on college applications is

concentrated among white students with more educated parents and mainly located in urban and

high-income areas. Moreover, Malamud et al. (2019) find no significant effects of home internet

access on student achievement for students enrolled in low-achieving primary schools in Peru.

Potentially, the smaller effect on the below-median prebroadband KS1 test score and free school

meal-eligible groups may partly reflect the trouble that struggling students have in developing

effective study strategies for learning (Angrist & Lavy, 2009; Fryer Jr, 2011, e.g.,), in our case in a
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home online environment. While none of the groups have negative effect estimates, these results

still speak to the hypothesis that home broadband access might exaggerate existing educational

inequality by achievement and family affluence.

Table 6: Fuzzy SRD Estimates: Impact of Exchange Distance on Student Performance by Student
Characteristics.

Dependent variable: National exam scores at age 14 (KS3)

Student Gender KS1 Test Score Ethnicity Free School Meal Eligibility
Boys Girls High Low White Nonwhite Eligible Ineligible

(2) (3) (4) (5) (6) (7) (8) (9)

Nonparametric 0.00098 0.00125* 0.00156** 0.00096 0.00114** 0.00211 0.00073 0.00132***
Estimates (0.00067) (0.00068) (0.00068) (0.00066) (0.00051) (0.00133) (0.00149) (0.00050)

Observations 91,106 91,856 89,229 93,763 144,194 38,443 27,496 155,252

Notes: The table shows the fuzzy SRD nonparametric estimates for average test scores on the KS3 for different subgroups
of students. Each coefficient comes from a separate regression, where the running variable is the residential distance
to the invisible LE station boundary segment. The window size for the residential distance to the invisible LE station
boundary segment is ± 300 meters, and only boundaries where the exchange distance jumps by at least 300 meters are
included. Standard errors clustered at the segment-by-year level are reported in parentheses. * p < 0.10, ** p < 0.05, ***
p < 0.01.

5 Broadband Internet Speed and Student Test Scores: Assessing the

Magnitude of the Baseline Estimates

Up until this point, we have focused on using the fuzzy SRD to obtain a causal estimate of the

effect of distance from the LE station on test scores, that is, β from equation (1). This is an LATE.

However, we are ultimately interested in the relation between broadband speed and test scores.

Unfortunately, postcode-level speed data for our study period do not exist. We use out-of-sample-

period data to reverse engineer the distance-speed relation present during our study period.

To investigate this relation, we combine the linked postcode-to-exchange station telecom net-

work data with data from the UK’s telecommunication regulator (Ofcom) on the average internet

speed experienced by households in 2012 and 2013. These data are explained in Section 2.2.3. The

Ofcom dataset is based on the speeds of broadband connections operated by the main operators.32

To replicate average internet broadband speeds that are plausible for our period of analysis (2005–

2008), we use only postcodes with average measure speeds of up to 10 Mbit/s per second, thus

excluding superfast broadband connections, which were not available before 2008.

The average internet speed in our resulting dataset is 5.5 Mbit/s and not far from UK con-

sumers’ actual average download speeds of 4.1 Mbit/s in 2008 (OfCom, 2009a).33 The dataset

32This dataset includes over 13 million connections in 2012 and over 19 million connections in 2013. Annex 1 of the
respective Ofcom infrastructure reports provides detailed descriptions (OfCom, 2012; OfCom, 2013).

33OfCom (2009a) reports that consumers living in urban areas received average download speeds of 4.3 Mbit/s in
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provides us with the average speed (modem sync speeds) recorded in speed tests across individ-

ual households, which we can geolocate at the level of their full residential postcode. We use this

information to link the speed microdata to the telecom network database discussed above to esti-

mate the relationship between residential exchange distances and available internet speed using

the fuzzy SRD design.34

Table 7: Fuzzy SRD Estimates: Impact of Exchange Distance on Average Broadband Speed.

Dependent variable: Average internet speed (Mbit/s)
(1) (2) (3)

Nonparametric Estimates 0.00083*** 0.00080*** 0.00089***
(0.00015) (0.00016) (0.00018)

Months since ADSL Upgrade 0.0002
(0.004)

Log Number of Premises 0.167*
(0.085)

Log Area Square Meters -0.190**
(0.087)

Distance Bins Yes Yes Yes
Area & Amenities Controls No Yes Yes

Observations 20,274 20,274 20,274

Notes: The table shows the fuzzy SRD nonparametric estimates for the effect of ex-
change distance on average internet speed (Mbit/s). The variable “Months since ADSL
Upgrade” refers to the number of months since an ADSL upgrade occurred in the LE
station catchment area. The variable “Log Number of Premises” refers to the logarithm
of the number of premises in the LE station catchment area. The variable “Log Area
Square Meters” refers to the logarithm of the square meters of the LE station catchment
area. Each coefficient is from a separate regression, where the running variable is the
residential distance to the invisible LE station boundary segment. The window size for
the residential distance to the invisible LE station boundary is ± 300 meters. Standard
errors clustered at the segment-by-year level are reported in parentheses. * p < 0.10, **
p < 0.05, *** p < 0.01.

Table 7 shows the fuzzy SRD estimates of the effect of exchange distance on postcode average

(download) speed. These estimates are based on an identical empirical strategy as the one used

to derive the effects of distance on test scores, as discussed in Section 3.3. Various specifications

that include different sets of technological controls result in very similar estimates based on the

boundary jumps: for each additional 100 meters in distance to the connected exchange, speed

comparison with 3.3 Mbit/s among those living in rural areas. Average internet speed varies greatly from country to
country. The highest averages can be observed in Asian countries (e.g., South Korea, Hong Kong, Singapore, and Japan)
and Scandinavian countries (e.g., Norway, Sweden, Finland, and Denmark). See Inc. (2015).

34After 2008, the broadband internet infrastructure in the UK was updated to significantly less distance-sensitive
technologies, such as coaxial cables or fibers. Due to this feature of our dataset, we regard our estimates of the effect of
crossing the invisible catchment area boundary from the slow to the fast side on the available internet connection speed
as a lower bound (for the test score estimation period). However, in 2012, 75% of broadband subscriptions were still for
ADSL technologies, which is sensitive to spatial decay.
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decreases by 0.089 Mbit/s. 35 36 This coefficient is statistically significant at the 1% level. This

provides a causal estimate of the impact of proximity to the LE station on average speed, which

we label βSpeed. By combining the estimate of the impact of proximity to the LE on test scores from

equation (1), β̂ with ̂βSpeed, we can compute a Wald estimate for the effect of available speed on

test scores, ω:

ω =
β

βSpeed
(4)

Applying equation (4) to compute ω yields an effect of ω̂ = 1.37. This implies that for each in-

crease in broadband speed of one Mbit/s, test scores increase on average by 1.37 percentile points.

This average effect of one additional Mbit/s is equivalent to approximately 5% of a standard de-

viation in the national test score distribution. The standard error of ω̂ is obtained using the Delta

method and estimated with high precision (i.e., the p-value is < 0.01).37 Even ω, which is the

policy-relevant parameter, can still be interpreted as a reduced-form effect, as it reflects the effect

of broadband availability – and not usage – on test scores.

Finally, to assess the magnitude of the effect of broadband usage on test scores, we comple-

ment this Wald estimate with survey data evidence on broadband usage for our study period and

information about the extent to which students used the internet for school work. Using data from

Oxford Internet Surveys (OxIS), we compute broadband takeup for our study period for the group

of interest. We exploit this database because it allows us to be precise in the definition of the rel-

evant population under study: English households with home broadband that had children aged

between 14 and 17 years old.38 We find that the weighted average of broadband usage among

these families between 2005 and 2009 is 69.5%. These figures square with the finding reported by

Livingstone & Bober (2005) that the vast majority of children used the internet at home, and most

of them devoted the use time to do work for school or college. These authors’ figures show that

in the UK, 84% of 9- to 19-year-olds used the internet daily or weekly in 2005. Among those, 90%

35One of the channels through which we can surmise that broadband quality affects test scores is via broadband
subscriptions takeup, which increased steadily during our period of analysis. This hypothesis is difficult to test due
to the lack of appropriate data, a limitation shared by other papers studying the impact of broadband speed in the
UK in this period. Using Ofcom postcode-level data for 2013 – the first year for which the data are available – and
limiting the sample to postcodes with speeds below 10 Mbit/s, we test whether the postcode-level takeup rate (either
the number of active broadband lines or this number divided by the number of premises) changes across LE boundary
segments or if it was affected by the distance to the exchange. In 2013, 70% of active broadband connections were
still using ADSL technology. We use the same strategy as that used for the main results in the paper (SRD), and we
find precisely estimated zeroes. Even though this test has limitations, the results suggest that the impact of quality on
student performance was mainly driven by speed changes rather than by different takeup rates on the fast/slow sides
of the LE boundary segments.

36Note that local averages can be skewed towards extreme values. If the number of observations in the postcode is
relatively small and some of the connections are fast or slow, the postcode median (download) speed might be a better
measure. We find that the effect of exchange distance on postcode median (download) speed is 0.00126 (p-value < 0.01).
Hence, the relevance of the results is unchanged when we use the median instead of the average (download) speed.

37See Appendix Section A.4 for more details.
38More aggregated datasets used in other studies, such as Eurostat or Ofcom data, lead to similar results. The draw-

back of using these databases is that they, unlike the OxIS database, do not allow us to refine our results to the specific
population of interest.
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declared that they used the internet to do work for school or college.

Using our OxIS calculations, which refer to the exact age group that we study, scaling our Wald

estimate by broadband takeup shows that for each increase in broadband speed of one Mbit/s, test

scores increase on average by 1.97 percentile points. This increase is equivalent to approximately

7% of a standard deviation in the national test score distribution.

6 Conclusion

This paper uses a fuzzy spatial regression discontinuity approach to present estimates of the causal

effect of available broadband speed on the test scores of 14-year-old pupils in England. We esti-

mate that an increase in available home broadband speed of 1 Mbit/s leads to an increase in

student test scores of approximately 5% of a standard deviation, increasing to 7% when we scale

the effects for the population of interest. We find that the effects are not driven by school charac-

teristics and not biased by other mediating technological factors.

The effects that we estimate are important. An effect of 5% of a standard deviation in test

scores is economically meaningful. Effects on wages and GDP are difficult to quantify, and this

is certainly not possible in our setting. To gauge the potential economic importance, we note that

Chetty et al. (2014a) and Chetty et al. (2014b) estimate that one standard deviation higher teaching

quality increases student earnings by approximately 1.3%. Taking these effects of teachers on test

scores as a reference, our headline estimate may translate into approximately $16,250 more in

lifetime earnings per individual.39

A limitation of our paper is that we cannot precisely pin down the mechanisms driving the

positive relationship between broadband speed and test performance. The net effect stems from

the potential positive impact of increasing learning productivity and widening access to educa-

tional opportunity, less the potential negative effect of unproductive distraction. Our positive es-

timate could be the result of an impact on both the extensive margin – if higher speed encourages

students to go online more often – and the intensive margin – once online, they spend more time

connected. The data requirements to provide causal estimates on these underlying channels are

extremely demanding, and available survey data is not rich enough to design a credible identifi-

cation strategy.40

Ultimately, we can only suggest plausible adjustment channels. Higher internet speed in-

creases the amount of information obtainable from the web or shared via the network per unit of

39This is based on combining estimates from Chetty et al. (2014b) that a one standard deviation improvement in
teacher quality increases earnings at age 28 by 1.3%, equivalent to $39,000 if this effect remains constant over the life
cycle, with the standardized effect of teachers on test scores from Chetty et al. (2014a), which they estimate at 0.10 and
0.14 for English and math. Averaging over subjects, we get 39, 000× (0.05/(0.10 + 0.14/2)) = $16.250.

40Moreover, another limitation of survey data is that it generally provides answers with few categorical options,
which are difficult to quantify.

34



time.41 During our study period, multiple online resources offering educational support became

available to teenagers. For instance, YouTube was launched in 2005, and soon after, educational

institutions and individuals began uploading educational content, with keen interest from the

platform to help educators.42 The number of articles in encyclopedia-type sites, such as Wikipedia,

also increased exponentially since 2004. In addition, students also could make use of early social

media tools (such as Microsoft Messenger) to share information and study together, or visit sites

such as Sparknotes to download essay-writing content. The existence of all these online resources

coupled with the amount of time spent online at home for students in our age bracket indicates

that the sign and magnitude of our results is relevant and credible.43

Our results provide new insights to inform policy decisions related to investments in high-

speed broadband networks. Governments have used the argument that investing public funds

into broadband infrastructure can boost firm performance and employment, while such argu-

ments are hardly ever deployed for education-related policies (SQW, 2014). This is particularly

salient in the UK with its recent ultrafast fiber broadband rollout, where there exist major polit-

ical concerns about rural areas being left behind and missing growth opportunities due to the

lack of private ICT investment incentives (see, for example, DCMS, 2011; DDCMS, 2018). More-

over, the vast majority of the programs focused on providing broadband for educational purposes

have been targeted at schools.44 However, this paper finds that the effects of home broadband on

human capital formation are not trivial. Our results show that home broadband speed matters

for student performance to an extent comparable to many more direct inputs of educational pro-

duction. Broadband technology therefore increases the importance of the home environment for

learning.45

The findings of this paper are even more pertinent in the context of the recent COVID-19 pan-

demic, in which many countries closed schools for several months. Hence, home online learn-

ing became a major substitute for in-classroom teaching. The pandemic brought to the spotlight

41The theoretical time taken to perform various online activities changes dramatically with the internet connection
speed. For instance, downloading a 250 Kbit/s web-page takes 1 and 0.3 second with a provider of 2 Mbit/s and 8
Mbit/s, respectively. Besides, this difference grows exponentially with the online activity provided. Downloading a
DVD quality film (4GB) takes 4hours and 48 minutes, and 1 hour and 11 minutes with a provider of 2 Mbit/s and 8
Mbit/s, respectively. See Figure 4.1 of OfCom (2010).

42Multiple popular education-oriented channels existed in this period. The founder of the Khan Academy started
posting videos in 2006, and created the academy channel in 2008. His videos became very popular, attracting tens
of thousands of viewers every month. Smarter Every Day started its educational videos in 2007, and TED Talks began
sharing talks in 2006. The demand of educational videos led to the creation of YouTube EDU in 2009, as a repository for
its educational content.

43According to OfCom (2008), the internet consumption for children aged 12-15 at home doubled between 2005 and
2007, from 7.1 to 13.8 average weekly hours. Access and consumption change remarkably by socio-economic category.

44For example, the Department for Education committed in 2019 to get gigabit (100 Mbit/s) capable speed broadband
connections to over 100 rural primary schools.

45Interestingly, positive effects on educational outcomes have also been documented from the roll-out of TV
(Gentzkow & Shapiro, 2008), suggesting that the take-up of new inputs into education production at home might
have positive effects independent of the precise technology newly introduced.
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the consequences of unequal access to technology, as some families with lower resources could

not provide their children with the appropriate infrastructure to engage in digital school work

(Bacher-Hicks et al., 2020). Overall, our results highlight the value added of broadband invest-

ments and the importance of ensuring universal access to mitigate increases in inequalities in

educational opportunity.
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Appendix Figures and Tables

A.1 Telephone Local Exchange Areas in England

Figure A.1: Telephone Local Exchange Areas in England

Notes: There are 3,978 local exchange areas in England (of which 3,925 are completely contained in England). The average
area is of 34 square kilometres, and serves an average of 5,830 premises (with 93% of them residential).
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A.2 Validity of the Research Design

Table A.1: McCrary (2008) and Cattaneo et al. (2018) Test for Manipulation of the Forcing
Variable for the Different Treatment subamples.

A. McCrary Test

Distance (meters) Log Difference Z-stat Bandwidth Bin
in frequency bins size

250 meters .267 1.29 40.14 .556
(0.206)

300 meters -.024 .347 44.92 .604
(0.068)

350 meters -.043 .88 50.22 .65
(0.048)

400 meters -.038 .936 54.5 .69
(0.04)

450 meters -.038 1.07 59.69 .73
(0.035)

500 meters -.041 1.33 66.7 .77
(0.031)

B. Cattaneo et al. (2018): RD Manipulation Test using local polynomial density estimation:

Bias-corrected Density Estimate .00035
to the left of the cutoff (0.000017)

Bias-corrected Density Estimate .00033
to the right of the cutoff (0.000018)

T-test for bias-corrected -0.7886
density test

P-value for bias-corrected 0.4303
density test

Notes: This table show the McCrary (2008) (Panel A) and Cattaneo et al. (2018) test for manipulation of the forcing
variable. The McCrary (2008) test is performed separately for each treatment sample. The table columns of Panel A show
the estimated discontinuity in the density function of the assignment variable at the threshold, its standard error (in
parentheses), the associated z-statistic, the estimated optimal bandwidth, bin size and the number of observations. The
optimal bandwidth and bin size are obtained using the selection procedure proposed by McCrary (2008). The table rows
of Panel B present the bias corrected density estimate to the left and right of the invisible LE boundaries, the t-test for the
bias-corrected density test and the p-value of the test.
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Table A.2: Sharp-SRD Estimates: The Impact Exchange Distance on Student Performance

(1) (2) (3) (4) (5)

Effect of exchange distance on national age-14 KS3 exam scores (in meters)
Non-Parametric 0.00043*** 0.00034** 0.00027** 0.00025* 0.00024*
Estimates (0.00014) (0.00014) (0.00013) (0.00013) (0.00013)

Student Pre-Internet Score KS1 Yes Yes Yes Yes Yes
Student Controls No Yes Yes Yes Yes
Time-Variant Area & Amenities No No Yes Yes Yes
Time-Invariant Area & Amenities No No No Yes Yes
School Controls No No No No Yes

Observations 183,892 183,892 183,892 183,892 183,892

Notes: The table shows the sharp SRD non-parametric estimates for test scores in KS3. Columns report different specifi-
cations. Each coefficient comes from a separate regression, where the running variable is the residential distance to the
LE station invisible boundary. The window size for the residential distance to the LE station invisible boundary is ± 300
meters. We only include boundaries where the distance jumps by at least 300 meters. Standard errors clustered at the
segment-by-year level are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Figure A.2: Students Characteristics.

(a) Fraction of White Pupils (0-1) (b) Fraction of Male Pupils (0-1)

(c) Fraction of Free-School Meal Pupils (0-1) (d) Pre-KS3 score (0-100)

Notes: The dots represent the fraction of white pupils, the fraction of male pupils, the fraction of free-school meal pupils
and the pre-internet score per interval of residential distance to the exchange segment invisible boundaries. The solid
lines are fitted values from a third order polynomial approximation, which is estimated separately on both sides of the
cutoffs. “Residential Distance to Exchange Segment (meters)” refers to the residential distance to the exchange segment
invisible boundaries. Black vertical lines identify the LE station invisible boundaries.
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Figure A.3: Density & Area Socio-Economics.

(a) Share of White Pupils (0-1) (b) Share of Free-School Meal Pupils (0-1)

(c) Share of Male Pupils (0-1)

Notes: The dots represent the share of white pupils, share of free-school meal and share of male pupils per interval of
residential distance to the exchange segment invisible boundaries.. The solid lines are fitted values from a third order
polynomial approximation, which is estimated separately on both sides of the cutoffs. “Residential Distance to Exchange
Segment (meters)” refers to the residential distance to the exchange segment invisible boundaries. Black vertical lines
identify the LE station invisible boundaries
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Figure A.4: Amenities.

(a) Log Distance to Closest Road (b) Log Distance to Closest School

(c) Log Distance to Closest Supermarket (d) Log Distance to Closest Water Deposit

(e) Log Distance to Closest Rail Station

Notes: The dots represent the logarithm distance to closest road, school, supermarket, water deposit and rail station per
interval of residential distance to the exchange segment invisible boundaries. The solid lines are fitted values from a
third order polynomial approximation, which is estimated separately on both sides of the cutoffs. “Residential Distance
to Exchange Segment (meters)” refers to the residential distance to the exchange segment invisible boundaries. Black
vertical lines identify the LE station invisible boundaries.
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A.3 Robustness of Baseline Estimates

Table A.3: Sample Choice Based on Distance to Invisible Segment-Boundary

Distance (meters)
100 150 200 300 500 750 1000
(1) (2) (3) (4) (5) (6) (7)

A. Avg. jump in distance to connected exchange when crossing boundary to the Fast side (in m)

Non-Parametric -779.4*** -794.1*** -805.9*** -816.6*** -820.3*** -828.5*** -832.9***
Estimates (19.7) (18.4) (16.7) (15.9) (15.4) (15.3) (15.3)

B. Effect of exchange distance on national age-14 KS3 exam scores (in percentile ranks)
Non-Parametric 0.00157** 0.00154** 0.00134*** 0.00122** 0.00092** 0.00101** 0.00100**
Estimates (0.00066) (0.00060) (0.00051) (0.00047) (0.00045) (0.00043) (0.00043)

Observations 49,303 85,182 119,55 183,892 305,404 431,709 530,773

Notes: The table shows the fuzzy SRD non-parametric estimates for the average distance to LE station (Panel A) and
test scores in KS3 (Panel B) with different samples based on the distance to invisible segment-boundary. Columns report
different specifications. Each coefficient comes from a separate regression, where the running variable is the residential
distance to the LE station invisible boundary. We only include boundaries where the distance jumps by at least 300
meters. Standard errors clustered at the segment-by-year level are reported in parentheses. * p < 0.10, ** p < 0.05, ***
p < 0.01.

Table A.4: Sample Choice Based on Magnitude of Jump across Invisible Segment-Boundary

Minimum Boundary Jump (in meters)
100 200 250 300 400 500
(1) (2) (3) (4) (5) (6)

A. Avg. jump in distance to connected exchange when crossing boundary to the Fast side (in m)
Non-Parametric -653.788*** -731.578*** -775.172*** -816.649*** -915.704*** -999.089***
Estimates (13.477) (14.451) (15.254) (15.927) (17.194) (18.996)

B. Effect of exchange distance on national age-14 KS3 exam scores (in percentile ranks)
Non-Parametric 0.00064 0.00080* 0.00116** 0.00122** 0.00131*** 0.00135***
Estimates (0.00051) (0.00049) (0.00048) (0.00047) (0.00045) (0.00046)

Observations 671,601 601,366 561,921 530,773 463,692 396,354

Notes: The table shows the fuzzy SRD non-parametric estimates for the average distance to LE station (Panel A) and
test scores in KS3 (Panel B) with different samples based on the minimum boundary jump across the invisible segment-
boundary. Columns report different specifications. Each coefficient comes from a separate regression, where the running
variable is the residential distance to the LE station invisible boundary. The window size for the residential distance to
the LE station invisible boundary is ± 300 meters. Standard errors clustered at the segment-by-year level are reported in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

46



Table A.5: Fuzzy-SRD Estimates: The Impact of Crossing the Invisible Broadband Boundary on
Student Performance by Clustering choices for standard errors.

(1) (2) (3) (4) (5)
Non-Parametric 0.00122** 0.00122** 0.00122** 0.00122*** 0.00122**
Estimates (0.00047) (0.00032) (0.00052) (0.00047) (0.00051)

Segment-Year Level Yes No No No No
Segment and Year Level No Yes No No No
Segment Level No No Yes No No
Boudary-Year Level No No No Yes No
Boundary Level No No No No Yes

Observations 183,892 183,892 183,892 183,892 183,892

Notes: The table shows the fuzzy SRD non-parametric estimates for test scores in KS3 by different clustering
choice for standard errors. Columns report different specifications. Each coefficient comes from a separate
regression, where the running variable is the residential distance to the LE station invisible boundary. The
window size for the residential distance to the LE station invisible boundary is ± 300 meters. We only
include boundaries where the distance jumps by at least 300 meters. Standard errors are reported in paren-
theses. * p < 0.10, ** p < 0.05, *** p < 0.01.

47



A.4 Delta Method Calculations

We use the test statistics:
β̂̂βSpeed

SD( β̂̂βSpeed
)
∼ N(0, 1) (A.1)

Assuming that our estimates are independent, we can compute:

VAR(
β̂̂βSpeed

) =
1

( ̂βSpeed)2
∗ (VAR(β̂) + (

β̂̂βSpeed
)2 ∗VAR( ̂βSpeed)) (A.2)
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