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Abstract

We construct a quantitative model of an economy hit by an epidemic. People differ 
by age and skill, and choose occupations and whether to commute to work or work 
from home, to maximize their income and minimize their fear of infection. Occupations 
differ by wage, infection risk, and the productivity loss when working from home. By 
setting the model parameters to replicate the progression of COVID-19 in South Korea 
and the United Kingdom, we obtain three key results. First, government-imposed 
lock-downs may not present a clear trade-off between GDP and public health, as 
commonly believed, even though its immediate effect is to reduce GDP and infections 
by forcing people to work from home. A premature lifting of the lock-down raises 
GDP temporarily, but infections rise over the next months to a level at which many 
people choose to work from home, where they are less productive, driven by the fear of 
infection. A longer lock-down eventually mitigates the GDP loss as well as flattens the 
infection curve. Second, if the UK had adopted South Korean policies, its GDP loss 
and infections would have been substantially smaller both in the short and the long 
run. This is not because Korea implemented policies sooner, but because aggressive 
testing and tracking more effectively reduce infections and disrupt the economy less 
than a blanket lock-down. Finally, low-skill workers and self-employed lose the most 
from the epidemic and also from the government policies. However, the policy of issu-
ing “visas” to those who have antibodies will disproportionately benefit the low-skilled, 
by relieving them of the fear of infection and also by allowing them to get back to work.
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1 Introduction

As the COVID-19 pandemic went under way, with no known vaccine or cure, most
governments turned to quarantine policies to “flatten the curve.” Some of the policies
are selective and targeted, based on testing and tracing, while others were more blunt,
indiscriminately imposing social distancing and lock-downs. The urgency of the situa-
tion and the lack of real-time data have not allowed a thorough analysis of the economic
and epidemiological impact of such policies. Which policy is more effective in arresting
the epidemic? How big are the economic costs of the quarantine policies that disrupt
most economic activities? How are the impacts of the epidemic and the governments’
countermeasures distributed across people of different socioeconomic standings? These
questions remain largely unanswered. In the midst of the intense debates on whether to
open up to save the economy or to stay locked down till the epidemic further subsides,
addressing these questions is of paramount importance.

To answer the questions, we develop a quantitative economic-epidemiological model,
in which the progression of the epidemic affects people’s economic decisions and vice
versa. The model has several novel features that make it unique in the nascent but
fast growing literature of epidemic economics. First, to evaluate how the impact of the
epidemic and the policies are distributed, the model incorporates rich heterogeneity:
People differ by skill and age, and there are multiple sectors and occupations. Second,
people choose their occupations and whether to commute to work or work from home,
to maximize income and minimize the fear of infection. Occupations are different
in terms of earnings, infection risks, and the productivity loss when working from
home. Working from home entails lower earnings but curtails the risk of infection.
Third, true health states are not observable, and people have to be tested to find out
their current infection status (or past status, if antibody tests are available) subject
to false negatives. Finally, governments have access to three policy tools: testing,
tracing/tracking (targeted quarantine), and broad lock-downs. The intensive margins
of these tools are adjustable, and so is their timing.

Our model provides a framework for quantitative analysis and can be used to eval-
uate and predict the aggregate and distributive effects of real-world policies in various
economic settings. The quantitative nature of our analysis sets it apart from most
other works in the literature, which tend to be either empirical or theoretical. In this
paper, we choose the model parameters to replicate the progression of COVID-19 in
South Korea and the United Kingdom (henceforth SK and UK, respectively). These
two make an interesting and informative contrast. SK responded early with aggressive
testing and tracking, and largely contained the epidemic. The UK on the other hand
belatedly imposed a blanket lock-down, and its containment efforts have not been as
successful.

Based on our quantitative analysis of the two countries, we obtain three key results.
First, contrary to the common view, there may not be a clear trade-off between

GDP and public health after all. It is true that, since a lock-down prevents people
from working normally, it can slow down the rise in infection at the expense of lower
economic output. It is also true that a premature lifting of the lock-down increases
GDP initially at the expense of rising infections. However, if the lock-down is lifted too
soon, infections can rise to a level at which most people voluntarily work from home
out of fear of infection, and this would happen in a matter of months. The government
may try to impose another round of lock-downs, but all the countermeasures lose their
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potency once infections reach a certain threshold. For the UK, an extended lock-down
will lead to 150,000 fewer infections and 5-percent higher GDP by November than the
current policy. In other words, a stricter and longer lock-down can deliver both higher
GDP and better public health outcomes.

Second, if the UK had adopted the SK policies, its GDP loss would have been
smaller by two-thirds both in the short and the long run, and the cumulative infections
through November would have been smaller by 70 percent. This is not merely because
SK implemented policies sooner: The model shows that an earlier implementation of
the lock-down in the UK has minor effects on GDP and infection. Rather, it is because
aggressive testing and tracking can more effectively isolate the infected and hence
reduce their chance of infecting other people, without forcing everyone, including the
large majority that is not infected, to work from home where they are less productive.

Third, the epidemic or the policies implemented to counter it do not affect people
equally. Low-skill jobs tend to be more contact-intensive (e.g., restaurants and retail),
which means that (i) low-skill individuals face higher infection risks and hence suffer
more from the fear of infection, and (ii) it is hard to do their work from home and
hence their earnings loss when working from home is larger. For these reasons, low-
skill workers and self-employed are disproportionately affected by the epidemic and
the government’s countermeasures that make them work from home (be it through
testing, tracking and/or lock-down), and some low-skill workers in particular switch
jobs in response. One exception is the potential policy of issuing “virus visas” to those
who have antibodies: This policy will disproportionately benefit the low-skill workers
and self-employed, by relieving them of the fear of infection and also by allowing them
to get back to work. A visa policy can raise UK’s GDP by 10 percent compared to its
baseline lock-down policy in our model, entirely driven by a 20-percent higher output
in low-wage sectors. This result suggests that antibody tests should prioritize the low-
skilled, not only to help those most in need, but also to have a maximal positive effect
on aggregate GDP.

Related literature Our paper belongs to the new strand of literature that in-
corporates the SIR epidemiology model by Kermack et al. (1927) or its variants into
economic environments. Our innovation on the epidemiology side is to consider asymp-
totic carriers, which is crucial in the evaluation of testing policies, and heterogeneous
infection rates by worker type, which can alter the spread of the virus depending on
which people are quarantined. For the production structure, we use a simplified ver-
sion of our existing work on sector/occupational heterogeneity in Lee and Shin (2017),
and refer to Dingel and Neiman (2020) and Hensvik et al. (2020) to guide our choice
of work-from-home productivity differences across sector-occupations, as well as which
jobs are more “essential” in the event of a lock-down.

Insofar as we focus on the quantitative impact of virus containment policies to gauge
the interaction between economic activities and the spread of the virus, our paper is
related to the more theoretical papers such as Alvarez et al. (2020), Eichenbaum et al.
(2020), and Piguillem and Shi (2020) that analyze optimal quarantine policies consid-
ering similar trade-offs. In particular, Piguillem and Shi (2020) is closest to our work
in that theirs is the only other model that is calibrated to actual data moments (Italy),
and highlights the effectiveness of testing policy under the possibility of asymptotic car-
riers. We expand on such papers by considering a more elaborate heterogeneous-agent
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work-from-home
choice by employer

produce, earn
and consume

occupational
choice

virus and other sickness spreads
sick and infected recovers

Testing on a/symptomatic
reveals confirmed cases

Fig. 1: Model Timeline

equilibrium model of production in which people voluntarily choose to self-quarantine
themselves out of fear and are unaware of their own infection status without testing.
We also consider different dimensions of government-enforced quarantines (ordering
people to stay home is different from enforcing that order, e.g. lock-down orders vs.
SK-style digital tracking).

The (potential) importance of voluntary self-quarantine in response to the epidemic
shock is also emphasized in Farboodi et al. (2020) and Chudik et al. (2020). The
latter argues that self-quarantine is unlikely to lower infection rates unless the epidemic
approaches very high levels, so that mandated social distancing could be required to
flatten the epidemic curve, which we find to be true in our calibration. But we focus
on the quantitative impact on GDP and inequality, while Chudik et al. (2020) focus
on the estimation of the epidemiology parameters. Krueger et al. (2020) consider
heterogeneity in individuals’ consumption choices, and show that an endogenous shift
of consumption toward low contact goods from high contact goods can mitigate the
negative impact on the economic activity. In contrast, we focus on the heterogeneity in
individuals’ labor supply choices, and delve deeper into distributional issues in addition
to the aggregate impact of COVID-19.

We explicitly model the fact that high levels of voluntary self-quarantine leads
to GDP losses, as well as how self-quarantine interacts with various policy options,
concluding that the combination of test/trace/tracking is the most effective tool from
both an economic and epidemiology perspective. To our knowledge, this paper is the
first quantitative analysis that explicitly fits both country level data on GDP and
employment in conjunction with COVID infection/death counts, as well as inequality
in both economic and epidemiological outcomes.

2 Model

Time is discrete, and one model period is one day. At t = 0, there is an influx of
infected agents into the economy, but nobody is aware of it until the government starts
testing at some later date τ > 0. We allow for asymptomatic carriers and also for
similar symptoms not caused by the coronavirus: People could show no symptom
when infected with the coronavirus, and could exhibit similar symptoms without the
coronavirus (e.g., sick with the flu). People start the day with a health status and
in the job they chose last night (either the same job as yesterday or a new job), and
in the morning, decide whether to commute or work from home. Then they work
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and consume, and prices are determined to clear markets. Over the course of the
day, the virus spreads, and some of the infected people recover. Their health status
(symptomatic/asymptomatic) also gets updated. In the evening, if t ≥ τ , people may
get tested. Given the test results and their updated health status, they decide whether
to stay in their job or switch to a new job. The whole cycle repeats itself the next day.

Below, we describe the model details without a time-subscript: all choices are made
between morning and night. The model’s daily timeline is shown in Figure 1.

2.1 Individual States

Immutable states People are either young or old, and given the focus on the
short-term dynamics, we ignore aging. People do die with or without COVID-19 and
exit from the model. The old are all retired and do not work. We will also assume that
all of the old are in self-quarantine in the presence of COVID-19. These assumptions
imply that the model treats the old as a single block, although their epidemiological
states to be defined below will differ from one another and change over time.

On the other hand, the young are either high-skilled or low-skilled, indexed by x ∈
{l, h}, which is a permanent characteristic. In every period, they choose occupations
and, unlike the old, may or may not be in quarantine. Like the old, their epidemiological
states are heterogeneous and change over time.

In summary, one’s age (young or old) and skill (only for the young) are held per-
manently constant.

True epidemiological states The true epidemiological side of the model extends
the SIR model, and we have four states: susceptible (S), infected (I), recovered (R)
and dead (D). Needless to say, death is an absorbing state. We assume that those
recovered will not be infected again, although this is not a foregone conclusion in the
medical literature.

One important distinction we make is that these true epidemiological states, with
the exception of death, are not observable to the people or the government in the
model. As a result, they will make decisions based on observed epidemiological states
defined below.

Observed epidemiological states People are either healthy (asymptomatic, a)
or sick (symptomatic, s), both with and without the SARS-CoV-2 (“the virus” here-
after). By now it is well known that some people with the virus exhibit no symptom.
In addition, in the model it is possible that someone without the virus can be sick with
symptoms (for example, because of the flu) similar to those of COVID-19. In terms
of testing for the virus, people fall into three categories: untested or tested negative
(superscript 0), tested positive (superscript c), and confirmed remission (superscript
r). False negative is a possibility, but false positive is not. As a result, we have seven
observed epidemiological states: two symptom categories by three test categories, plus
death: {a0, s0, ac, sc, ar, sr, d = D}. The true and observed epidemiological states co-
incide perfectly only at death. The two diverge because not everyone is tested and also
false negative is possible.
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2.2 The Economic Model

Preferences and Technology For utility out of consumption, we assume that

u(c) = log(1 + c),

which is somewhat unconventional but it is equivalent to Stone-Geary log-preferences
with one unit of “free consumption.” This is to allow for zero earnings. We will also
introduce additively-separable disutility terms coming from the epidemiological side.

There are three sectors of production. Two of them produce intermediate inputs
and are labeled “high-skill” and “low-skill” in reference to the skill levels of the people
who work in them. The other is the final good sector, combining the output of the
high- and the low-skill sectors with a constant-return-to-scale production function:

Y =

[
θ

1
σ Y

σ−1
σ

l + (1− θ)
1
σ Y

σ−1
σ

h

] σ
σ−1

(1)

where σ > 0 is the elasticity of substitution and 0 < θ < 1 is the share parameter. The
production is done by a perfectly-competitive, representative firm, and the final good
price p is normalized to one.

For the high-skill and the low-skill sectors, indexed by x = h, l, there are two modes
of production. First, a self-employed person produces zx,1 units of the skill-x good
without hiring any additional labor, where the subscript 1 denotes self-employment.
Second, a manager whose skill is x can hire workers of the same skill and operate a
span-of-control production function:

yx = zαxx,2l
1−αx
x,3 , (2)

where zx,2 is the efficiency unit as a manager (subscript 2) of skill x and lx,3 is the
efficiency units of the workers (subscript 3) of the same skill x hired. The parameter
1 − αx is the span of control. The skill-x output produced by the two modes are
perfectly substitutable. The price of the high- and the low-skill goods are denoted by
ph and pl respectively, and all producers are price takers.

2.2.1 Individual Choices

In the model, the old are retired and always in self-quarantine, and hence have no
decision to make. The young will choose their occupation and quarantine status based
on their skill and observed epidemiological states.

Work-from-home decision Our timing convention is such that the young choose
an occupation at the end of each period. There are three occupations for each of
the two skill levels: self-employment (non-employer), manager, and worker, which we
index by j = 1, 2, 3. Having entered the current period with a given occupation, the
self-employed decide whether to work from home (self-quarantine) or work normally
(not in quarantine), and the managers decide whether they and/or their workers will
work from home or not. Workers do not have such a decision—they are told by their
managers to either work normally or work from home.

Working from home makes people less productive, and their efficiency units are
multiplied by a factor ψx,j that is less than one, which varies by the two-by-three
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skill-occupation groups. We assume that low-skill occupations’ ψx,j is smaller than
high-skill occupations’, consistent with observed patterns of telecommuting.

Sick people are less productive whether they work normally or from home, so the
efficiency units are multiplied by a factor φ that is less than one if and only if sick
(symptomatic, e ∈ {s0, sc, sr}), regardless of whether or not they have the virus. In
addition, working normally (not in quarantine) while sick causes disutility κ. This
productivity loss and the disutility from working while sick are the same for all skill-
occupation groups.

The wage per efficiency unit of high-skill labor is wh and that of low-skill labor is
wl. For tractability, we assume that when making the work-from-home decision, the
self-employed and managers use adaptive expectations and base their decisions on the
equilibrium prices from the previous period.

The self-employed (subscript 1) with skill x and observable epidemiological state e
choose to work normally (n) or work from home (q):

Vx,1(e;p) = max
ι∈{n,q}

{
V n
x,1(e;p) + εn, V

q
x,1(e;p) + εq

}
, (3)

where ει for ι = n, q is i.i.d. extreme value preference shocks. The work location choice
is made after the realization of the preference shocks. The aggregate state p is the
vector of market-clearing prices and wages from the previous period. The two values
of working normally and from home are

V n
x,1(e;p) = u [φ(e) · pxzx,1]− κ(e)− χx,1 (I, e)

V q
x,1(e;p) = u [ψx,1φ(e) · pxzx,1]− χq (I, e) . (4)

The self-employed with skill x produce zx,1 units of output without using any input,
and the output price is px. The parameter ψx,1 < 1 discounts their productivity when
working from home, which differs by skill x. The reduced productivity for being sick
φ(e) is less than one for e ∈ {s0, sc, sr} and equal to one otherwise. The pecuniary
utility from hand-to-mouth consumption is the first term. Individuals also dislike
working normally while sick and would rather work from home, as measured by κ(e).1

The last term χ (I, e) is the disutility from the fear of infection, which differs depending
on whether or not an individual chooses to stay at home (effectively quarantining
oneself).2 Fear depends on the entire distribution of the masses of the infected across
all groups (the vector notation I, whose i-th element is the mass of those infected in
group i). However, if e ∈ {ar, sr}, the individual knows that he is immune and no
longer has this fear. For this reason, testing is an important policy not only because it
enables us to quarantine those tested positive (e ∈ {ac, sc}), but also because it directly
reduces people’s fear from infection.3

1This is distinct from a general disutility from being sick, which we ignore as it does not alter choices.
2Our reduced form specification can capture a direct disutility from high infections, but also the expected

loss in future earnings from becoming infected tomorrow.
3People do not know whether they themselves are infected/recovered without testing, and the government

does not know who is infected either. However, they still know the total number of infected by skill,
occupation, and observed health status, as long as they know the deterministic epidemiological laws of
motion in Section 2.3 and the history of confirmed cases. This is why I is an admissible argument of
individual preferences.
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Similarly, the values of managers of skill x (subscript x, 2) working normally (n) or
from home (q) are:

V n
x,2(e;p) = u [φ(e) · πxzx,2]− κ(e)− χx,2 (I, e)

V q
x,2(e;p) = u [ψx,2φ(e) · πxzx,2]− χq (I, e) . (5)

The main difference from the self-employed is the return to their skill πx:

πx = αxpx ·
[

(1− αx)px
wx

] 1−αx
αx

,

which is the maximized profit per efficiency unit of managerial skill. The managers’
productivity discount when working from home, ψx,2, and their fear from infection,
χx,2(I, e), differ by skill x and also from those of the self-employed or the worker
(hence subscript 2).

In addition, managers decide whether their workers will work normally or work from
home. For this decision, managers act like a “paternalistic planner” and maximize a
modified version of the workers’ objective function. Specifically, a manager’s problem
regarding a worker with skill x and observed health status ex,3 is:

max
ι∈{n,q}

{ u [φ(e) · wxzx,3] + εn, u [ψx,3φ(e) · wxzx,3] + εq } , (6)

where the first term for each choice captures the worker’s utility from consuming his
labor income, which is the product of the wage wx and his labor efficiency units zx,3,
discounted by φ for being sick and/or ψx,3 for working from home. For each worker,
the manager draws i.i.d. extreme value preference shocks ει and make the worker’s
work location decision.

We compare this objective function of the “paternalistic” manager with the actual
values of a worker with skill x and observed epidemiological state e for the period:

V n
x,3(e;p) = u [φ(e) · wxzx,3]− κ(e)− χx,3 (I, e)

V q
x,3(e;p) = u [ψx,3φ(e) · wxzx,3]− χq (I, e) . (7)

We see that the paternalistic managers completely ignore the disutility from working
normally while sick κ as well as their fear when making the work-from-home decision.

Due to the extreme value assumptions on the preference shocks for work location,
the fraction of the self-employed, managers and workers working from home, Prqx,j(e,p)
for j = 1, 2, 3, can be easily calculated from the values in equations (4), (5) and (6)
as conditional choice probabilities (CCP). Because the workers do not make the work
location decision themselves, the values in (6) are used, not those in (7). To be specific,
for j = 1, 2,

Prqx,j(e,p) =
1

1 + exp
[
V n
x,j(e;p)− V q

x,j(e;p)
] . (8)

In the even of a lock-down, the government force people to work from home. Let
ρx,j(e) denote the fraction of people of skill-occupation x-j with epidemiological state
e prevented from commuting to work. Then the actual fraction of people who stay
home is

Pr
q
x,j(e,p) = max

{
ρx,j(e),Prqx,j(e,p)

}
. (9)
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Occupational choice At the end of each period, after production takes place and
everyone’s true and observable epidemiological states are updated, the young choose
occupations for the next period subject to an important friction: Only a fraction
ν < 1 of those who want to switch occupations can do so. This assumption prevents
unrealistically high volumes of occupation changes at a high frequency. (A period in
the model is a day.)

The occupation choice is myopic: People will choose the occupation that maximizes
the current period profit/wage minus the disutility of working while sick and the disu-
tility from the fear of getting infected. This is a static choice but the last term captures
a notion of continuation value. When making the decision, they have updated infor-
mation about their status ē, which they know from testing, and also about realized
market clearing prices of today.4 The values also include i.i.d. extreme value preference
shocks εj for each occupation, and people are aware that tomorrow’s work-from-home
decision will be subject to the same i.i.d. extreme value preference shock ει. To be
specific, the occupation choice is

max
j=1,2,3

{
Pr

q
x,j(ē, p̄) · V q

x,j(ē, p̄) +
[
1− Pr

q
x,j(ē, p̄)

]
· V n

x,j(ē, p̄) + εj

}
.

The values of working normally or from home (ι = n, q) for a skill-occupation combi-
nation x-j, V ι

x,j are defined in equations (4), (5) and (7). The probability of working
from home for each occupation is in equations (8) and (9).

We reiterate that only a fraction ν < 1 of those who want to switch occupations
are given the opportunity to do so.

2.2.2 Equilibrium

Once the work location choices are made as in equations (4)–(6), the wages and the
output prices are determined to clear labor and goods markets. The wage per efficiency
unit of skill x is

wx = (1− αx)px ·
(

Λx,2
Λx,3

)αx
where Λx,j is the total efficiency units of skill x and occupation j supplied, taking
into account the occupation-specific productivity zx,j , the fraction of sick individuals
and sickness discount φ, and the fraction of those working from home and the home
discounts ψx,j .

Since the two intermediate goods indexed by skill x are combined by a CES function
to produce the final good, the intermediate good market clearing condition is

ph
pl

=

[
(1− θ)yl
θyh

] 1
σ

,

where yx is the total output of the self-employed and managers of skill x, or occupations
(x, 1) and (x, 2), taking into account the skill-occupation-specific productivity zx,j , the
fraction of sick individuals and sickness discount φ, and the fraction of those working

4This is a form of “adapted expectations” since the occupation choice is for the next period and hence the
resulting market clearing wages and profits will be different from the current values on which the decision is
based on.
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from home and the home discounts ψx,j . The final good is the numeraire and its price,
p, satisfies the following.

1 = p =


[
θpl

1−σ + (1− θ)ph1−σ] 1
1−σ if σ 6= 1(pl

θ

)θ ( ph
1−θ

)1−θ
if σ = 1

2.3 The Epidemiological Model

The epidemiological side of our model is a heterogeneous-agent version of the SIR
model. To be specific, there are eight distinct groups to keep track of: six skill-
occupation groups working normally, all the young people working from home (or in
quarantine), and the old. For the economic side of the model, we need to keep track
of who works normally or at home for each skill-occupation group. However, the
epidemiological law of motion applies equally to all the young working from home,
regardless of their skill or occupation. As a result we have seven groups for the young
rather than twelve (six skill-occupations by two work locations). The old are also in
quarantine, but subject to a different epidemiological law of motion.

2.3.1 True Epidemiological States

For each of the eight group indexed by i, there are four true epidemiological states and
their respective mass is denoted by Si (susceptible), Ii (infected), Ri (recovered), and
Di (dead). Let I ≡ (Ii) be the vector of the masses of the infected across all eight
groups. We use bars on the masses to denote the masses at the end of the period. The
true epidemiological states for each group i evolve as follows.

S̄i
1− δi

= [1− vi(I)]Si

Īi
1− δi

= vi(I)Si + (1− γi)(1−mi)Ii

R̄i
1− δi

= γi(1−mi)Ii +Ri

D̄i = Di + δi(Si + Ii +Ri) + (1− δi)miIi

The baseline death rate is δi and the group-specific infection rate as a function of the
masses of the infected across the eight groups is vi(I). The recovery rate is γi and the
added mortality from the virus is mi. In essence, we have eight separate SIR models
for the eight groups, linked by the dependence of the infection rates on all groups’
infected masses. Note that we assume complete immunity once a patient recovers.

Each period, a fraction of the susceptible dies or becomes infected, and the infection
rates depend on the distribution of infected masses across the eight groups. The
dependence itself varies across the eight groups (hence vi(I)). These assumptions allow
us to capture the facts that people can get infected more easily by their coworkers
(including managers) than by the general public and that sectors may differ in how
often their workers may infect their customers. They can also capture the obvious fact
that people in quarantine are both less likely to get infected and infect others (those
in quarantine are one of the eight groups). Moreover, the function can also capture
the effectiveness of tracking or lock-down policies: That is, the government has some
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control over how much it can socially isolate people in quarantine, as we explain in the
next section when we specify functional forms for vi(I).

While some of the infected die (baseline death rate δi plus the additional mortality
from the virus mi), a fraction γi recovers.

2.3.2 Observed Epidemiological States

The true epidemiological states are not observed (with the exception of death), and
hence people do not know whether they are susceptible, infected or recovered without
testing. Even then, we allow for false negatives. Infected people may not show any
symptoms, and the susceptible and even the recovered may show symptoms.

We now explain how we keep track of the observed epidemiological states. We
define the mass of the infected that are unconfirmed after infection and recovery take
place but before testing is done at the end of the period:

Îi = Īi − (1− δi)(1−mi)(1− γi)ci,

where ci is the mass of the confirmed infected at the beginning of the period. Similarly,
we define the mass of the recovered that are unconfirmed after infection and recovery
take place but before tests are done at the end of the period:

R̂i = R̄i − (1− δi) [γi(1−mi)ci + ri] ,

where rj is the mass of the confirmed recovered at the beginning of the period. A
person is confirmed recovered either if he tests negative after having tested positive or
if his recovery is confirmed by an antibody test.

Then at the end of a period, after tests are administered, the mass of the uncon-
firmed without symptoms ā0

i and the mass of the unconfirmed with symptoms s̄0
i for

each group indexed by i are

ā0
i = (1− fi)S̄i + (1− ωτa)(1− ηi)Îi + (1− IABωτa)(1− fi)R̂i, (10a)

s̄0
i = fiS̄i + (1− ωτ s)ηiÎi + (1− IABωτ s)fiR̂i, (10b)

where fi is the probability of getting sick (symptomatic) when susceptible or recov-
ered and ηi is the probability of getting sick when infected. Fractions τa and τ s of
the asymptomatic unconfirmed and the symptomatic unconfirmed are tested, respec-
tively, and ω is the probability that the test correctly detects the virus. The indicator
function IAB is one if anti-body tests are available and zero if not. The mass of the
asymptomatic unconfirmed ā0

i consists of (i) the susceptible who are not sick, (ii) the
asymptomatic unconfirmed infected who get either untested or get a false negative re-
sult, and (iii) the asymptomatic unconfirmed recovered who get either untested or get
a false negative result for antibody, if antibody tests are available. Similarly, the mass
of the symptomatic unconfirmed s̄0

i is the sum of (i) the sick susceptible, (ii) the symp-
tomatic unconfirmed infected who are untested or given false positive, and (iii) the
symptomatic unconfirmed recovered untested or tested false negative for antibodies.

The masses of the confirmed infected c̄i and the confirmed recovered r̄i after testing
at the end of the period are

c̄i = (1− δi)(1−mi)(1− γi)ci + ω [τa(1− ηi) + τ sηi] Îi, (11a)
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r̄i = (1− δi) [ri + γi(1−mi)ci] + IAB · ω [τa(1− ηi) + τ sηi] R̂i. (11b)

The mass of the confirmed infected is the previous period’s mass net of death
and recovery, plus the newly confirmed of the unconfirmed infected. The mass of
the confirmed recovered is the previous period’s mass net of death, plus those of the
confirmed infected who recover this period and, when antibody tests are available, the
newly confirmed of the unconfirmed recovered. Obviously, cj and rj are zero from t = 0
to t = τ , assuming that the virus hits at time 0 and testing begins at time τ .

2.3.3 Infection Rates

Let I (with no subscript) denote the total mass of infected in the population, i.e.,
I ≡

∑
i Ii for all Ii ∈ I. We denote by Q the effectiveness of quarantine policies and

assume that the mass of the infected who actually spread the disease is

I∗ = I −QIq, 0 ≤ Q ≤ 1, (12)

where Iq is the mass of the infected in the quarantine group, i = q. In this setup, Q is a
policy variable that controls the intensive margin of quarantine policies.5 For example,
the government can regularly check if people in quarantine are actually staying home
by means of digital tracking, such as in SK, or by police-enforced lock-downs, as in most
other countries. This is different from the extensive margin of quarantines, which bars
people from commuting to work but not checking whether they actually stay home.
For example if Q = 1, all the young people working from home (Iq) are staying home
and not infecting anyone. On the other hand, if Q = 0, all the people working from
home actually go around socializing and infecting others.

We now specify the infection rates vi(I) for the eight groups indexed by i. First, for
the old, those in quarantine, and the self-employed (i ∈ {o, q, (l, 1), (h, 1)}), we assume:

vi(I) = v̄i ·
I∗

N
,

where N is the population size. So their infection rates depend only on the total mass
of the infected, net of those effectively quarantined.

For managers and workers working normally, i ∈ {(l, 2), (l, 3), (h, 2), (h, 3)}:

vi(I) = v̄i ·
[
βii ·

Ii
Ni

+ βki ·
Ik
Nk

+ (1− βii − βki ) · I
∗

N

]
,

where k = (x, 3) if i = (x, 2) and k = (x, 2) if i = (x, 3), and Ni is the mass of
individuals in occupation i (that is, those working normally and those working from
home combined). This captures the idea that the infection rates can be more sensitive
to the mass of infected coworkers (managers and workers) than the mass of the infected
general public.

5The government cannot observe anyone’s true epidemiological state either. The enforcement applies
equally to everyone in quarantine (group i = q).
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2.4 Government Policies

We consider three types of government policies in the model: testing, tracking, and
lock-down.

1. Testing. Equations (10)-(11) introduced τa and τ s, the fractions of asymp-
tomatic and symptomatic people who are tested, after the spread of the virus
within a period. Testing the asymptomatic can be viewed as “tracing,” a policy
testing all the people who have come into contact with a positively confirmed
person even if they are asymptomatic.

2. Tracking. Tracking means an effective enforcement of quarantine, as measured
by the variable Q in (12). An effective tracking ensures that those who should be
home are indeed staying home and not infecting others.

3. Lock-down. A lock-down forces people to work from home, as operationalized
by ρx,j in equation (9). People in our model decide whether to work normally or
from home, so if a large enough a share of people are already voluntarily working
from home, this policy is not binding. Furthermore, a lock-down mandates that
certain people work from home but does not automatically ensure that they do
not go out socializing and infecting others. In our language, tracking ensures that
those in quarantine do indeed stay home.

The three policies are distinct and enter the model via separate sets of variables. A
government can choose to implement any combination of them. In our benchmark
calibration, we assume that SK adopts testing and tracking, while the UK adopts
minimal testing and tracking accompanied by a lock-down.

3 Quantitative Analysis: SK vs UK

SK’s response to COVID-19 has been lauded for its successful test and tracking policies.
Thus, our benchmark calibration will be targeted to SK data on infections, recoveries
and GDP losses. But precisely because its suppression of COVID was so successful, we
will find that the fear factor (as measured by the parameter χ in our model) plays no
role in explaining SK data unless it becomes so important that individuals no longer
care about their earnings. Thus, we calibrate the fear factor along with an additional
set of parameters for the UK, including its lock-down policy.

We then check the importance of the fear factor and the benefits of each country’s
policy by simulating the following counterfactual scenarios:

1. No intervention, SK and UK

2. SK’s policy (high test and tracking) on UK

3. UK’s policy (lock-down) on SK

4. Early or extended lock-down for UK

5. UK lock-down followed by virus “visas” on June 20th

Scenario 1 will illustrate how far-reaching the epidemic would have been absent any
intervention. The remaining scenarios will show that, at least in our model, tracking
is better than lock-downs, with a minimal effect on GDP. The last scenario will show
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that virus visas based on antibody tests are disproportionately beneficial for the low-
skilled. This calls for redistributive antibody testing aimed at the low-skilled rather
than random testing, as is called for in Germany.

3.1 Calibration

Economic parameters All the economic parameters are calibrated to SK. We fix
the mass of the young population (ages 25-64) at 1 at time 0, and the old (age 65+) at
0.26, according to the population data from the Korean Statistical Information Service.
Employment shares are computed from the Korea Labor Force Survey (KLFS), a
monthly employment survey equivalent to the Current Population Survey in the United
States. As shown in Table 1, the survey records whether an individual is self-employed
with no workers (non-employers or single-worker firms) or an employer. We can also
identify employees in a managerial position using their occupation code. Only the
August includes a wage supplement and March is the most recently available iteration.

August 2019 Self-employed Employer Manager Worker

Low-wage industries 3,522 1,152
159 11,068

(2.46) (1.66)

High-wage industries 605 382
205 9,127

(2.86) (2.04)

February 2020 Self-employed Employer Manager Worker

Low-wage industries 3,398 1,109 148 10,942

High-wage industries 626 351 192 9,110

March 2020 Self-employed Employer Manager Worker

Low-wage industries 3,510 1,072 150 10,719

High-wage industries 629 325 198 8,989

Table 1: Employment in SK (in thousands)
Self-employment: single employer-employee; Employer: self-employed with non-zero employees; Manager:
employees in a managerial position. Monthly wage information (in parentheses, million KRW) is only
included in the August supplement. Both employment counts and wages are inferred by using sample
weights on 35,000 observations. Source: Korea Labor Force Survey.

Low- and high-skill workers in our model are differentiated by effective productivity
(z), as well as their productivity when working from home. Since the latter largely
varies by industry (Dingel and Neiman, 2020; Hensvik et al., 2020), we broadly clas-
sify industries into low- and high-wage industries as follows so that low-skill workers’
employment share is approximately 60 percent:

1. Low-skill (l): Transportation & warehouses, Construction, Retail & wholesale,
Real estate, Support, Personal services, Health & social assistance, Arts, sports
& Entertainment, Agriculture, Foods and accommodations
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Parameter Value Description

Ly 1 Mass of young
Lo 0.2562 Mass of old

L0
l,j [0.1343, 0.0500, 0.4221] Initial employment share

L0
h,j [0.0231, 0.0224, 0.3481] by industry/occupation

ψ0
l,j [ 0.10, 0.10, 0.07 ] Home productivity discounts

ψ0
h,j [ 0.70, 0.70, 0.49 ] by industry/occupation

φ 0.7 Sick productivity discount

zl,j [0.9167, 1.0, 1.0] Effective productivities
zh,j [1.3594, 1.3, 1.3] by industry/occupation
κ 0.1115 Sickness disutility
αl, αh [0.1493, 0.0827] Manager income share by industry
θ 0.4540 Low-skilled share in final good production

µq, σ [0.4667,0.3333]
Extreme value distribution

for home-work choice
µl,j [0,-0.9832,1.2349] Extreme value distribution
µh,j [0,-0.0145,2.8562] for occupation choice

Table 2: Economic Parameters

2. High-skill (h): Utilities, Finance, Professional, Information, Manufacturing, Min-
ing, Public, Education

High-skill industries generally require less social interaction at the workplace. How-
ever, since we also let home-productivity vary by occupation, we will discount high-skill
workers’ productivity more than the high-skill self-employed and managers.

As shown in the table, employment shares remained roughly constant in SK, despite
its early COVID-19 outbreak in February (compared to the UK) and the drop in
industrial production of approximately 3.5 percent in February 2020 (month-to-month,
seasonally adjusted). Thus, we consider the August employment and wage statistics
to constitute an initial steady state.

We use KLFS August to calibrate a subset of the economic parameters as follows.
First, we initialize employment shares, L0

x,j by skill and by assuming the self-employed
(j = 1) and workers (j = 2) in the model respectively correspond to self-employed
and to non-manager employees in the KLFS, and managers (j = 3) in the model to
employers and employees in managerial positions in the KLFS. Employment shares are
shown in the second panel of Table 2.

We then set, for now, the home and sick productivity discounts arbitrarily, making
sure that low-skill jobs and workers suffer heavier discounts, as shown in the third
panel. Given these parameters, we calibrate zx,j , κ, αx and θ as follows. Suppose that
there is no epidemic, so the fear factor is irrelevant. Also suppose that there is no
preference shock, neither for working from home decisions nor occupation choices.

1. We normalize manager-worker productivities to be equal and set high-skill work-
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ers to be 30 percent more productive than low-skill workers.6 We then choose
the self-employed productivity, zx,1, so that they are indifferent between staying
self-employed or becoming a manager.

2. We choose κ so that high-skilled are indifferent between working from home or
not when sick. This ensures that low-skilled would never work from home, before
realization of the i.i.d. preference shock to stay home.

3. We assume that only high-skill self-employed and managers work from home when
sick. Then we can compute the manager share parameter αx to match manager
income shares from the KLFS. We can also set θ to match the low-skill income
share in the KLFS, assuming that self-employed and employer mean wages are
equal to managers’.

Given these parameter values, we then simulate the economy with no epidemic. We
assume that the i.i.d. preference shocks for the work-from-home choice are drawn from
extreme value distributions with location parameters (µn, µq) and scale parameter σ,
with the normalization µn = 0. For the preference shocks when making occupation
choices, we normalize the scale parameter to one and the self-employment location
parameter to µx,1 = 0. We calibrate these location and scale parameters as follows:

1. Choose µq, the location parameter of the home preference shock, so that approx-
imately 15 percent of high-skill self-employed and managers work from home.
Then choose the scale parameter, σ, so that approximately 10 percent of low-skill
self-employed and managers work from home (Eurostat, 2020; Hensvik et al.,
2020).

2. Choose µx,2, µx,3, the location parameters for becoming a manager or worker, to
match initial employment shares L0

x,j .

The resulting parameters are shown in the bottom panel of Table 2.

Epidemiology and policy parameters Figure 2 shows the path of SK’s con-
firmed infections, recoveries and deaths from COVID-19 from January 21 to April 21.
We show the same data for the UK for comparison.

Since policies affect the path of the virus, for the model to match the paths observed
in Figure 2, the infection, recovery and mortality rates must be jointly calibrated with
the policy parameters. Several of the SIR parameters are fixed loosely based on what
is known up to now about SARS-CoV-2.

1. Assume a natural death rate of 0 for the young, and a 2 percent annual death
rate for the old, based on SK mortality rates.

2. Uniformly set a recovery rate of γ = 1/14 for the young, so that the infected
remain infectious for two weeks. We then assume that it takes twice as long for
the old to recover, or γo = 1/28.

3. Assume that the old experience a 10 times higher mortality rate, conditional on
contracting the coronavirus (Center for Disease Control and Prevention, 2020).

6These normalizations are innocuous, since in our model, the productivity parameters are not separately
identified from the manager share α and low-skill share θ.
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Fig. 2: Infections, Recoveries and Deaths, Cumulative: SK vs. UK
Confirmed and released in log-10 scale (left), death counts on the right axis. Source: Korea Center for
Disease Control and Prevention, UK Department of Health and Social Care

4. Fix the infection rate of low-skill equal to the old. Fix the high-skill infection
rate to 90 percent of the old, and those in quarantine to 1/7 of the old. This
assumes that a person in quarantine makes one day worth of social contact per
week compared to a low-skill worker who does not work from home. High-skill
jobs face lower infection rates to capture the fact that they are in better health
in general and have better healthcare (Case and Deaton, 2020), and also require
less social interaction at the workplace (Dingel and Neiman, 2020; Hensvik et al.,
2020).

5. Suppose that workers and managers socialize more amongst themselves, and more
so for high-skilled. This is to capture the fact that high-skill industries are more
hierarchical.

Once these assumptions are made, there are four remaining parameters that de-
termine the progression of the virus absent any policy intervention: the COVID-19
mortality rate of the young, the COVID-19 infection rate of the old, the initial date
the coronavirus is introduced, and the initial mass of the infected on that day (I0).
Since the latter two are not separately identified (we can always choose an earlier date
assuming a lower mass of initially infected, and or the other way around), we arbitrarily
set the initial date to December 22, 2019, which is exactly one month before SK starts
publishing infection counts. Thus, confirmed cases start appearing on τ = 30.

We find that we cannot match the UK data using the same baseline infection and
mortality rates (vo,mo) as SK, even taking into account different policies.7 So while
we let these two parameters differ between SK and UK, to more easily compare the
effect of policies, we keep all other epidemiology parameters equal between them.8 Of
course, to the extent that UK employment shares and earnings are different from SK’s,

7Thus, if the low infection and death counts in SK are due to policies, they are beyond something we can
capture with our test/trace/tracking policies. Of course, at least some of the differences are due to different
demographics, social interaction patterns, medical systems, etc., which are reflected on the baseline infection
and mortality rate differences between the two countries.

8While the model is quantified to match each country, one can also view SK as a low infection/mortality
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Parameter Value Description

δy 0 Young daily natural death rate
δo 5.48e-05 Old annual natural death rate of 2 percent

γy 1/14 Young recover in 2 weeks
γo γy/2 Old recover in 4 weeks

vo (0.1555,0.1964) Old infection rate to match R0 = (2.18, 2.75) in SK,UK
vl,j =vo Low-skill infection rate equal to old
vh,j =vo · 0.9 High-skill infection rate 90% of low-skill
vq =vo/7 Reduce social contact to 1 day a week in quarantine

[β2
l,2, β

3
l,2] [0.4,0.2] Low skill manager interaction with managers and workers

[β2
l,3, β

3
l,3] [0.2,0.4] Low skill worker interaction with managers and workers

[β2
h,2, β

3
h,2] [0.5,0.1] High skill manager interaction with managers and workers

[β2
h,3, β

3
h,3] [0.1,0.5] High skill worker interaction with managers and workers

mo (0.0110,0.1096) Old COVID mortality to match observed death counts in SK,UK
my =mo/10 Young mortality from COVID one-tenth of the old

I0 1.27e-05
500 people infected in SK on Dec 22nd (t = 0)

(assume same fraction of population for UK)

Table 3: Epidemiology Parameters

some of the results should be viewed with caution. However, the comparative dynamics
would not vary much with the initial distribution of jobs and wages, as long as they
are qualitatively similar.

Then we make the following assumptions on the testing technology, as well as the
fraction of individuals who fall sick with or without the virus:

1. A fraction 1− ω = 0.2 of test results are false-negative (Yang et al., 2020).

2. Rather optimistically assume that antibody testing becomes universal on June
19, 2020, or 180 days after the emergence of the virus.

3. Assume that 40 and 60 percent of the young- and old-infected are symptomatic,
respectively (Mizumoto and Chowell, 2020).

4. Arbitrarily assume that 10 and 20 percent of the young and old are sick when
uninfected, respectively.

Moreover, policy variables do not remain constant but change over time according
to observed reactions of the SK and UK governments. All dates are number of days
since Dec 22.

Jan 21 First confirmed case in SK. Thus, we set τ = 30 for SK.

Jan 31 First confirmed case(s) in UK. Two people test positive. Thus, we set τ = 40
for UK.

Feb 10 UK health secretary announces strengthened quarantine policies (t = 50).

Feb 19 Shincheonji outbreak in SK, number of confirmed cases surge and country
intensifies testing and tracking (t = 59).

economy, and UK as a high infection/mortality economy.
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Parameter Value Description

χ̄ 10500 Fear factor: 20 percent GDP drop in UK at peak infection

ω 0.8 20 percent false negatives
tAB 180 Antibody test becomes universal

(fy, fo) (0.10,0.20) Old and young uninfected but sick
(ηy, ηo) (0.40,0.60) Young and old infected with symptoms

ρl,j [0.5,0.7,0.5] Fraction low-skill locked-down
ρh,j [0.9,0.9,0.9] Fraction high-skill locked-down

λ0 0.66 20 percent GDP drop upon lock-down
λ1 0.01 1 percent decay in lock-down

(τa, τs) [timeline below] Test rates for a/symptomatic
Q = Q̄ [timeline below] Tracking policy

Country Date Event Testing Tracking

SK
Dec 22, t = 0 No detection (τa, τs) = 0 Q = 0
Jan 21, t = 30 = τ First detection (τa, τs) = 0.001 Q = 0.6
Feb 19, t = 59 Shincheonji outbreak (τa, τs) = 1 Q = 1

UK

Dec 22, t = 0 No detection (τa, τs) = 0 Q = 0
Jan 31, t = 40 = τ First detection (τa, τs) = (0, 0.0005) Q = 0
Feb 10, t = 50 First quarantine (τa, τs) = (0, 0.005) Q = 0.005
Mar 15, t = 84 = tλ Effective lock-down (τa, τs) = (0, 1) Q = 0.005

Jun 20, t = 180 = tAB Hypothetical virus-visas (τa, τs) = (1, 1) Q = 0.005

Table 4: Fear Factor and Policy Parameters

Mar 15-23 UK announces the possibility of, then implements, a lock-down (t = 84)

We assume that the date of the first confirmed case is the date testing commences
in the model, from which time onward all untested symptomatic and confirmed are
quarantined. The test probabilities (τa, τs), as well as quarantine enforcement Q,
change values at each node of each country’s timeline, but remain constant until another
action is taken. The values of the parameters in each time interval are chosen to match
the observed path of confirmed infections in each country in each time interval.

To capture the effect of testing, tracking, lock-downs, and virus visas, we specify the
function ρx,j(e), the intensity at which the government prevents people from working
in equation (9), as

ρx,j(e) =

max
{

ρ̄x,j(e)
1+exp(λ0+λ1(t−tλ)) , Q̄

}
if e ∈ {s0, ac, sc}

ρ̄x,j
1+exp(λ0+λ1(t−tλ)) otherwise.

(13)

where tλ is the date a lock-down commences.

1. Tracking: Absent a lock-down, ρ̄x,j(e) = 0 for all (x, j, e). Thus, the government
can only quarantine the untested and confirmed with intensity Q̄. Since Q̄ is also
a measure of testing and tracking policies, we simply set Q̄ = Q.
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2. Lock-down: Implemented at time t = tλ, a fraction ρ̄x,j(e) individuals of skill x
in occupation j are told to stay home, regardless of their symptoms. The function
varies by skill and occupation, but not by observed epidemiological status. If more
people in a certain state are voluntarily staying home, this policy is not binding.
However, the intensity at which this is enforceable decays over time, where λ0

measures the intensity of the policy upon impact and λ1 the duration.9

3. Virus visas: The government sets ρ̄x,j(e) to 0 for e ∈ {ar, sr}, while maintaining
the same intensity as a lock-down for everyone else.

We set ρx,j = 0.5 for low-skill self-employed and workers, 0.7 for low-skill managers, and
0.9 for all high-skill. While somewhat arbitrary, this captures the fact that the “essen-
tial workers” during the COVID-19 crisis are concentrated among low-skill industries
and sectors, such as grocery workers, deliverers and security staff.

Finally, the fear factor itself plays a similar role as policy: If people fear the infection
enough, they will voluntarily stay home, and more so when infection rates are higher.
This would reduce the spread of the virus, but also drag productivity down. For
simplicity, we assume that

χi(I, e) =

{
0 if e ∈ {ar, sr}
χ̄ · vi(I) otherwise.

(14)

Thus the constant χ̄ measures the fear factor. The fear factor and the lock-down
parameter λ0 jointly determine the initial drop in GDP upon implementation of the
lock-down. Since the exact magnitude is yet unknown, we target a 20-percent drop
in GDP both upon implementation of the lock-down and at the peak of infection,
which is about the average of the IMF and UK Office for Budget Responsibility’s GDP
forecasts for the UK of 6.5% and 35%, respectively.10 The duration parameter λ1 is
set arbitrarily at 0.01, so that the effectiveness of the lock-down decays by 1% daily on
the date of implementation.

The resulting epidemiology, policy and fear factor parameters are summarized in
Tables 3 and 4. While the test rates are chosen to match the observed infection counts,
the mass of people tested should not be taken literally. As a policy, it measures how
available testing procedures are. In SK, for example, testing costs approximately $40,
which is reimbursed if tested positive, so the actual cost is low. This made testing
available to the general public regardless of symptoms, but at the same time, the
government traced all individuals who came into contact with a confirmed person.
Thus we set testing rates to τa = τs = 1 in SK from February 19 onward. The fact that
Q = 1 in SK captures its digital tracking system, which maybe infeasible if infections
grew larger but near perfect for its current level.

In contrast, tracing was never done in the UK, and strict self-quarantines are still
more or less voluntary even in the midst of the lock-down. So we maintain Q at its
low level, even as more people are told to go home following the lock-down. Moreover,
testing is still symptoms-based (τa = 0) and not readily available even for many people
with symptoms even now. Thus while τs = 1 during the lock-down is an optimistic

9Thus, λ1 not only measures how strongly the government implements a lock-down, but also how willingly
people follow the rules.

10Because SK effectively contains the virus early on, the fear factor never becomes quantitatively opera-
tional. Thus we cannot use SK moments to discipline χ̄.
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Fig. 3: SK SIR Model vs. Data
“Observed” corresponds to confirmed cases in the model. Counts are cumulative and in log-10 scale. Data
source: Korea Center for Disease Control.

representation of its policy, we maintain its high level both to match the data but also
to give a lock-down policy a chance.11 In any case, we find that both a high τa (testing
of asymptomatic) and high Q were necessary for SK’s successful containment of the
virus.

The results of our calibration are shown in Figure 3 and 4, for SK and UK, respec-
tively.12 There are several points to note. First, the kinks in the model infection curves
represent a change in policy in each country, which do not perfectly align with the data
but track its general path. Second, for a fair comparison, we have chosen parameters
so that our model slightly overshoots SK and undershoots UK, especially given that
the latter has higher infection and mortality rates. Third, there are discrepancies in
UK’s data reporting, for both recoveries and deaths. It is quite clear that recoveries
are not being reported daily, and also that information on deaths were not released
until later. Finally, the model captures that both SK’s test/trace/tracking policy and
UK’s lock-down have effectively “flattened the curve,” at least for now.

3.2 GDP and Inequality

Given that the model matches infection and death counts for each country, how much
did the containment policies matter for economic outcomes? First, in Figure 5, we
plot together low-skill, high-skill and aggregate GDP (not in per capita, to capture the
deaths from the virus), for both countries.

SK’s GDP loss from January to March grows from 2.7 percent to 5.2 percent, which
is very close to the actual industrial production drop of 3.5 percent in the data. Since

11We are still able to match UK’s infection path with slightly lower levels of τs, but that would lead to
higher calibrated values for UK’s infection probability parameters.

12The model is in masses, while data is in integer counts. We blow up the mass for SK by 39,314,000, its
age 25+ population in 2018. For the UK, we blow up this number further by 29.32 percent, according to
the population size from the Office of National Statistics.
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Fig. 4: UK SIR Model vs. Data
“Observed” corresponds to confirmed cases in the model. Counts are cumulative and in log-10 scale. Data
source: UK Department of Health and Social Care.

this drop was not a targeted moment, it is a success of our model. In contrast, the 20
percent drop in UK’s GDP was a target moment. But notice that GDP already drops
quite substantially even before the lock-down on March 15, which is partly due to the
(weak) quarantine policies put in place before the lock-down but mostly due to the
fear factor. Since the lock-down weakens after impact, there is a small recovery until
April, but then as the virus further progresses, GDP falls again due to the fear factor
(calibrated to reach a trough of 20%).

The fear factor is also why GDP falls between January and February in SK. How-
ever, the fact that GDP remains constant afterward implies that SK’s policy success-
fully contained the virus, so that the fear factor is no longer binding for most people
(and therefore there is no subsequent drop in GDP).

Perhaps more important, the drop in low-skill GDP is much larger than high-skill
for both countries. This is because the low-skill are less productive from home. The
relative drop is even larger when it is due to the fear factor. Even as high-skill GDP
recovers in the UK, low-skill GDP continues to drop because low-skill workers face
higher risks of infection at work and are thus more sensitive to the fear at very high
infection rates. In fact, high-skill GDP recovers entirely by the time antibody tests
become available on June 20, so the only reason total GDP remains low afterward
is because low-skill GDP continues to drop to more than 40 percent below its initial
value.

Earnings vary by occupation as well. In Figures 6 and 7, we plot together the
earnings and employment shares of each skill-occupation group for SK and UK, re-
spectively.

Employment shares in SK are close to constant, consistent with SK data in Table
1.13 Again, this implies that the fear factor is barely operational for individuals to

13Moreover, despite the small magnitude both in the data and the model, the model-predicted employment
share changes by skill-occupation are qualitatively in line with the January to March changes (from the first
confirmed case to peak in SK) in the KLFS as well.
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Fig. 5: GDP Losses: SK vs UK
Model implied GDP by skill, and total. GDP is in log-point changes and not normalized per capita, so
includes GDP losses from COVID-19 deaths (the working-young has a zero natural death rate).

switch jobs (from the steady state shares at t = 0). However, earnings losses still vary
considerably by occupation. The self-employed stand to lose the most both because of
a higher fear factor (so they stay home more) and the tracking policy (as more of them
are infected, more are enforced to stay home). But the policy is strong enough so that
the fear factor wears off over time. In contrast, low-skill workers’ earnings drop little
upon policy impact, and drop only modestly over time. Workers are forced to work
by their managers, so earnings drop by less no matter the rate of infection. But since
they face higher rates of infection, more of them get sick and experience a productivity
discount.

The changes in the UK are more dramatic, but it is still the low-skill self-employed
who lose the most. Despite the large loss in earnings, their employment share goes
up: This is due to low-skill workers switching their jobs to self-employment at high
rates of infection. At very high rates of infection, workers value the option to stay
home more than their earnings, so switch toward self-employment, as shown in Figure
7(b). And because so many workers switch to other jobs, their relative wages go up in
equilibrium.

Thus, the rise in workers’ earnings in Figure 7(a) must be viewed with caution.
At high infection rates, workers would rather stay at home but are not given the
choice. And in our model, the only way for workers to avoid infection is to switch
jobs. Although we do not explicitly model unemployment, workers’ switch toward
self-employment would show up exactly as unemployment in the data. Workers in our
model who switch their jobs to self-employment experience a drop in earnings of more
than 90 percent. The low earnings they make in self-employment can be viewed as
unemployment benefits or other government subsidies that are issued universally.

3.3 Counterfactual Policy Analysis

How effective were each country’s policies? While SK’s policy is deemed successful,
would it work for other countries as well? And could an early lock-down have contained

22



Jan 21 Mar 21 May 20 Jul 19 Sep 17 Nov 16
-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01
- SE, -- Mgr, : Wkr

Low-Skill
High-Skill

(a) Earnings

Jan 21 Mar 21 May 20 Jul 19 Sep 17 Nov 16
-3

-2

-1

0

1

2

3

4
10 -3 - SE, -- Mgr, : Wkr

Low-Skill
High-Skill

(b) Employment Shares

Fig. 6: SK Dynamics by Skill-Occupation Group
SE: Self-employed, Mgr: Managers, Wkr: Workers. Earnings are in log-point changes in per worker
earnings, and employment shares in percentage point changes.
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Fig. 7: UK Dynamics by Skill-Occupation Group
SE: Self-employed, Mgr: Managers, Wkr: Workers. Earnings are in log-point changes in per worker earnings,
and employment shares in percentage point changes.
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Fig. 8: SK Counterfactual Policies
“Model” is SK’s baseline test/trace/tracking policy. “No policy” is doing nothing, and “Lockdow” is if SK
had followed UK’s policy exactly, including its lock-down date. Infection counts are cumulative and in log-10
scale. GDP is in log-point changes and not normalized per capita, so includes GDP losses from COVID-19
deaths (the working-young has a zero natural death rate).

the outbreak better (or worse)? We address these questions by simulating the path of
infections and GDP if each country had implemented no policies, and then applying
the UK’s policies on SK and vice versa.

In Figure 8, we compare SK’s baseline policy against the hypothetical outcome
had it had not done anything, and had it instead implemented UK’s lock-down policy,
including the exact dates of implementation. Without any intervention, the virus would
have spread twice as much (note that the y-axis is in log-10 scale), although the peak
infection in SK would still have been low enough so that GDP loss due to the fear
factor (2 percent) would have been smaller than its current policy (5 percent). More
interesting, a UK style lock-down backfires: Not only does it result in larger GDP
losses upon impact, it in fact promotes the spread of the virus in the long-run, leading
to larger GDP losses in the long-run as well.

While somewhat paradoxical, this is due to two effects unique to our model. First,
with little testing, quarantines are sending too many of the untested symptomatic
home, most of whom are uninfected. But in our model, since infection rates depend
on the infected at one’s workplace, these people have less chance of getting infected
at work than at home (as long as a smaller share of their coworkers infected than the
aggregate).14 Note that this is despite the fact that the infection constant v̄ is only
one-seventh when in quarantine. Similarly, in the event of a lock-down, more high-skill
than low-skill are sent home, but high-skill also have lower infection rates. So the
lock-down policy is sending the wrong people home (those who would have faced lower
infection rates at work).

Fortunately, this is not the case for the UK. In Figure 9, we compare UK’s base-
line policy against the hypothetical outcome had it had not done anything, and had
it instead implemented SK’s test/trace/tracking policy, including the exact dates of

14For example, this captures the fact that leisure activities may spread the virus more than work activities.
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Fig. 9: UK Counterfactual Policies
“Model” is UK’s baseline lock-down policy. “No policy” is doing nothing, and “Tracking” is if UK had
followed SK’s policy exactly, including its timing. “Early” is if UK had implemented the same lock-down,
but at the time of SK’s Shincheonji outbreak. Counts are cumulative and in log-10 scale. GDP is in log-point
changes and not normalized per capita, so includes GDP losses from COVID-19 deaths (the working-young
has a zero natural death rate).

implementation. Without any intervention, the virus would have spread twice as much
(note the lock-down in the UK reduces peak infection compared to doing nothing, pre-
venting the impending 30 percent drop in GDP that would have been caused by large
masses of people staying home at peak infection (in August). Nonetheless, if the UK
had implemented SK’s testing policy, the virus would have been contained at an early
stage, resulting in much less infections in the long-run, with only a modest drop in
GDP (7 percent) compared to the 20 percent drop due to the lock-down. Thus, this
shows that SK’s policy is more effective regardless of the cross-country difference in
infection and mortality rates.

But is it the policy itself, or the early reaction (in February rather than March)
that leads to successful containment? To find out, we additionally simulate a path
in which the lock-down is implemented at the same time as when SK intensified its
testing policies. While an early lock-down is effective in preventing the spread of the
virus upon impact, its efficacy wears off over time, and is not enough to avoid high
infections in the long-run. Consequently, infections eventually reach almost the level
of the later lock-down (“Model”), as well as similar losses in GDP by September.

Of course, the reason an early lock-down is perhaps not as effective as expected is
due to the decay of its effectiveness, which we build into the model in Equation 13.
While some of the decay can be due to civil disobedience, it may also be due to weak
enforcement. Thus, in Figure 10, we additionally simulate the paths of infections and
GDP if the decay parameter, λ1, were equal to 0.001 rather than 0.01 (0.1 percent
decay per day).

An extended lock-down reduces the cumulative infection count by more than
100,000, thus dramatically reducing peak infection. Consequently, the extension of
the lock-down is able to avoid the fear factor taking over the lock-down, and GDP
continues to rise as the lock-down wears off, albeit slowly. To be specific, the extended
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Fig. 10: UK Counterfactual Policies: Extended Lock-Down and Virus Visas
“Model” is UK’s baseline lock-down policy. “Long” is an extension of the lock-down, which we simulate by
reducing the decay of its effectiveness. “Visa” is if UK starts issuing antibody test-based virus visas once
testing becomes available on June 20, 2020. Counts are cumulative and in log-10 scale. GDP is in log-point
changes and not normalized per capita, so includes GDP losses from COVID-19 deaths (the working-young
has a zero natural death rate).

lock-down results in 150,000 fewer infections and 5-percent higher GDP by November
than the current policy. In other words, a stricter and longer lock-down can deliver
both higher GDP and better public health outcomes.

An alternative policy to an extended lock-down is a “selective lifting” of the lock-
down through the issuance of virus visas. For example, Germany is considering random
testing (testing also the asymptomatic) as well as antibody tests. For comparison, we
simulate the infection and GDP paths of the UK under a hypothetical scenario in which
it starts issuing virus visas once antibody tests become universally available.

We assume that UK’s baseline lock-down policy continues until June 20, at which
point virus visas begin to be issued for all who have recovered from the virus. On this
date, we also assume that both asymptomatic and symptomatic people are universally
tested (meaning that antibody testing becomes available to all). As shown in Figure
10, widespread testing is as effective as an extended lock-down in reducing the spread of
the virus. And by allowing all recovered to work, in addition to averting the GDP loss
from the fear factor, long-run GDP is 10 percent higher than baseline by November.15

The fact that virus visas depend on antibody testing is crucial: Since more than half
of eventually infected are already recovered by June 20, without it, the visa policy that
can only vouch for the confirmed recovered has barely any effect.

3.4 Virus Visas and Inequality

GDP and earnings drops are always larger for the low-skill, regardless of whether it
is due to policies or the fear factor. Since virus visas are effective in reducing both

15Since the policy successfully contains the virus, although belatedly, we find that additional SK-style
tracking (Q = 1) does little to affect both the infection path and GDP.
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Fig. 11: UK Inequality using Hypothetical Virus-Visas
SE: Self-employed, Mgr: Managers, Wkr: Workers. GDP is in log-point changes and not normalized per
capita, so includes GDP losses from COVID-19 deaths (the working-young has a zero natural death rate).
Utilities are in per worker level changes. Earnings are in log-point changes in per worker earnings, and
employment shares in percentage point changes.
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infections and GDP losses, we now compare the benefits of the policy across different
skill and occupation groups in the UK.

Figure 11 shows the resulting changes in GDP by skill, utility, earnings, and em-
ployment changes by skill and occupation. Figure 11(a) is to be compared with Figure
5(b), and Figures 11(c) and 11(d) with Figure 7. Before June 20, the paths are exactly
same as in the baseline, since up to then agents are subject to the same lock-down
policy and individuals are not forward looking.

Just as the persistent drop in GDP was entirely driven by the low-skill in Figure
5(b), Figure11(a) shows that the recovery from the virus visa is also entirely driven by
the low-skill. The reason for this is two-fold. On the one hand, low-skill self-employed
earnings recover dramatically, as those who find out they have already had the virus
and recovered return to work, as shown in Figure 11(c). On the other hand, low-skill
workers, who experience the smallest change in earnings due to being forced to work
during the lock-down, no longer switch to self-employment to avoid infection (where
they have the choice to self-quarantine themselves), and even those who previously
switched return to being a worker, as shown in Figure 11(d). As discussed in Section
3.2, workers who switch to self-employment to avoid the virus in our model can be
viewed as becoming unemployed. Thus, workers’ recovery captures furloughed or laid-
off workers returning to work once the fear of infection is gone.

This latter effect is more obvious in Figure 11(b), which shows the utilities of each
skill-occupation group. There, it is clear that despite the low drop in earnings, it is the
workers—and especially low-skill workers—who experience the largest drop in utility
from being more exposed to the virus than other groups, as they do not have the
choice of staying home even at high infection rates. The rise in their utility following
virus visas cannot be due to earnings, which remain flat for the duration of the lock-
down. Thus, their rise in utility is entirely due to the removal of the fear factor, as
we assumed in (14). And as their utility begins to rise, they no longer switch jobs (or
become unemployed) and some of those who had left their jobs in the past, despite the
low earnings in self-employment (which can be viewed as low income in unemployment),
return.

In summary, to the extent that (i) low-skill workers and self-employed lose the
most in all scenarios, and (ii) the high-skill benefit less from virus visas, because by
now their earnings and employment have more or less recovered, our counterfactual
visa policy results call for redistributive antibody testing should it become available—
disproportionately intense testing for the low-skill. This not only helps those most in
need, but also has the largest effect in recovering aggregate GDP.

4 Conclusion

We presented a quantitative economic-epidemiological model of the COVID-19 epi-
demic to investigate how different containment policies affect inequality, as well as
aggregate outcomes. Individuals choose whether to work from home or not, and when
infection rates are high, voluntarily choose to stay home out of fear of infection despite
lower earnings. We show that, contrary to common beliefs, that containment policies
mitigate not only infections but also long-run GDP losses, because losses would become
even higher if the virus is not contained early and people start to self-quarantine them-
selves en masse. We also show that South Korea’s testing and tracking policies are
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quantitatively much more effective at containing both the spread and GDP losses than
a lock-down, regardless of the timing. Finally, we show that low-wage self-employed
and workers suffer the most from the epidemic and the government countermeasures to
it, and stand most to gain from virus visas based antibody tests, raising the possibility
that redistributive testing is not only economically equitable but also efficient, in the
sense that it would have a larger impact on raising aggregate GDP than randomly
testing the same number of people.

Several of our parameters are chosen ad hoc and only loosely calibrated. However,
as more data becomes available and allows us to use more informative numbers for
calibration, our model of heterogeneous skills and occupations with observable and
unobservable health status can serve as an ideal laboratory to guide our sense of how
different policies have affected and will affect economic and (COVID-related) health
inequality as we continue to battle the epidemic.
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