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Abstract 
Anthropometric historical analysis depends on the assumption that human characteristics—
such as height—are normally distributed. I propose and evaluate a metric entropy, based on 
nonparametrically estimated densities, as a statistic for a consistent test of normality. My first 
test applies to full distributions for which other tests already exist and performs similarly. A 
modified version applies to truncated samples for which no test has been previously devised. 
This second test exhibits correct size and high power against standard alternatives. In contrast 
to the distributional prior of Floud et al. (1990), the test rejects normality in large parts of their 
sample; the remaining data reveal a downward trend in height, not upward as 
they argue. 
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1 Introduction

Anthropometric history mines archival data on individuals’ physical character-
istics such as their height in order to assess the evolution of living standards
in various contexts (Steckel, 1995). As long recognized by many scholars (Fo-
gel et al., 1983, Floud et al., 1990, Komlos, 1994), such anthropometric indica-
tors have the potential to supplement conventional economic indicators in dis-
puted issues—for instance, the optimists versus pessimists debate on workers’
fortunes at the early stages of and during the Industrial Revolution (Lindert
and Williamson, 1983, Mokyr, 1988, Komlos, 1998, Nicholas and Steckel, 1991).
Anthropometric data may even replace standard indicators when they are either
lacking (Cameron, 2003) or unreliable.

As a distinctive feature, this approach has inherited a fundamental prior:
within any given homogeneous population, the studied characteristic of human
organisms ought to be normally distributed (Tanner et al., 1966).

It follows that all the statistical methods devised to extract information from
the available samples—such as maximum-likelihood estimation—rely precisely
on the normality assumption (Wachter and Trussell, 1982, Komlos and Kim,
1990, A’Hearn, 2004). But this comes at a cost. If normality is not verified
in the analysed sample, then inference from that sample using these methods
becomes invalid.

The usual antidote consists of starting the analysis by applying a battery of
tests of normality to the sample. Unfortunately, this safe strategy is generally
not an option in historical anthropometrics. The reason lies in the nature of the
samples commonly available in the field. Coming from military institutions that
imposed a minimum height, these samples are left-truncated—so-called deficient
samples—because only heights of recruits above the minimum height require-
ment were recorded.1 The risk of invalid inference therefore remains acute since,
as Komlos (2004) reminds “statistical tests of normality have not been devised
for distributions with height requirements”.

Consider then the path-breaking contribution in historical anthropometrics
by Floud et al. (1990), along with countless subsequent studies, that have drawn
conclusions about the secular trend of individuals heights from deficient samples.
It appears that they have engaged in standard, yet unsafe, statistical practice
whose results are shaded by possible invalid inference.

This paper introduces and evaluates two new tests of normality for full and
deficient samples—i.e., a challenger to the existing tests and the first test of
its kind for normality in truncated distributions. Both belong to a class of tests
based on a metric entropy computed from nonparametrically estimated densities
(Granger et al., 2004, Li and Racine, 2007, Racine, 2012). It is shown that their
performance is outstanding in simulated data.

In Section 5 below, I re-analyse the Floud et al. (1990) samples in the light of
the test developed here. I show that normality can be rejected in large parts of
their sample, in particular for those of the youngest recruits. The consequence

1In some circumstances, however, the truncation might not have been perfect and some
shorter soldiers were allowed to enter.
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of these tests is quite dramatic. The upward secular trend sketched by the Floud
et al. (1990) estimates turns into a downward secular trend if one restricts cal-
culations to validly inferred estimated heights.

The implication of this result should be seen in the light of the aforemen-
tioned controversy on the salutary versus detrimental early effects of the Indus-
trial Revolution on the working classes. As both sides of the debate have built
on various indicators, Floud et al. (1990) has certainly served as the main an-
thropometrical caution of the optimistic side. One that this paper reveals as
highly misleading.

Section 2 briefly outlines the pivotal importance of tests of normality in an-
thropometrics and Section 3 provides details of the tests developed here. Sec-
tion 4 presents the results of the simulations I have run to evaluate the size
and the power of the tests. Section 5 re-analyses the Floud et al. (1990) data.
Section 6 offers concluding remarks.

2 Testing for normality in anthropometrics

The issue of distinguishing normal samples from non-normal ones is not new in
anthropometrics. Galton (1875), who refers to the “law of frequency of error”,
matches the empirical distribution of heights to the corresponding percentiles of
the normal distribution and judges the normality assumption “fairly applicable”
for his sample. (Pearson, 1895) develops a test based on the moments of a dis-
tribution and compare them with their counterpart of the normal distribution.
His examined samples include height distributions. Over time, this issue has
received a considerable amount of attention in the broader context of tests of
normality (Pearson et al., 1977, Shapiro et al., 1968, Jarque and Bera, 1987, to
cite only a few).

There seems to exist even a general contentment with the available tools—as
attested by the following subtle reversal of the chain of implications.2 Normal-
ity of population height implies normality of randomly selected height samples.
Hence, some authors (e.g., Nicholas and Steckel, 1991) read failure to reject nor-
mality of their sample as evidence of its “cleanliness” and therefore dismiss any
possible source of bias such as sample selection or truncation. These authors
seem to be confusing necessity and sufficiency: normality of the sample is neces-
sary for it to be randomly drawn from the population, but it is not sufficient to
prove it.

Notice, however, that the usual tests of normality are typically inconsistent
(Bierens, 1982). A test is called consistent if Prob(Reject H0 | H0 is false) →
1 as n→∞. Since the power of a test is defined as Prob(Reject H0 | H0 is false),
a consistent test has therefore asymptotic power equal to one. The importance
of this property is better assessed once contrasted with the traditional tests.
The power of these latter depends on the set of alternatives H1 chosen. In
short, the “inconsistency” of those tests arises because the set of H1’s is not a
complement of H0. This means that they may show good power against some

2A similar argument about the interpretation of the non-rejection of normality can be found
in Bodenhorn et al. (2012).
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alternatives but lack thereof against an undetermined set of others (see Yazici
and Yolacan, 2007, Noughabi and Arghami, 2011, for a few simulations exhibit-
ing insufficient power). Bodenhorn et al. (2012) have precisely suggested that
among these undetectable departures one can count some that are extremely
relevant for the anthropometric literature, namely samples plagued by sample
selection problems (see also Mokyr and Ó Gráda, 1996). Their conclusion, based
on simulations, calls for caution. If samples were selected in the way they con-
jecture, i.e. one that results in a non-normal distribution of the heights due to
the sampling process, then the available tests would not be able to distinguish
them from normally distributed samples.

In contrast, the first test proposed here is a consistent test of normality.
It makes no assumption on the underlying distribution of the analysed sample
and its unknown univariate density is first estimated nonparametrically by a
kernel method thanks to a recent implementation in R (Li and Racine, 2007,
Racine, 2012, R Core Team, 2012). The test then computes a metric entropy—
normalized Hellinger distance of Granger et al. (2004)—for testing the null hy-
pothesis of equality of the estimated density and a normal density with identical
first two moments.

I first show that, even in small samples, the test exhibits correct size—around
5% of the truly normal samples are rejected by the 5% nominal test. Then, for
a set of usual alternatives—e.g., various t-distributions, uniform distribution,
etc.—I find that its power is comparable to the power of the common paramet-
ric tests used in the literature (Jarque-Bera, Shapiro-Wilk, d’Agostino). The
same applies for polluted distributions such as mixes of normals. For the “quite
intractable”3 cases of sample selection, the results depend on the form of mod-
elling the selection process. In the simple form of sample selection analysed
here, the performance of this test is again in line with its competitors’ perfor-
mance. Therefore, I argue that this new test deserves a privileged place in the
researcher’s statistical toolbox.

The second test proposed here is a modified version of the previous one. As
mentioned above, it is prompted by the nature of most historical samples anal-
ysed in the heights literature—i.e., military height measurements. Institutions
that provided this type of data typically imposed a minimum height restriction
for their recruits, de facto eliminating the lower part of the height distribution.
This practice represents a serious hurdle for statistical analysis and has, conse-
quently, spurred contributions to resolve the estimation problem. Later, I dis-
cuss the problem of empirically estimating truncation points. For now, I confine
the discussion to the statistical problem of valid inference. 4

Note first that the standard approach in the height literature depends yet
3Komlos (2004, footnote 44).
4Restricting to methods dealing with univariate distributions, a fair list—shared with Jacobs

et al. (2008)—of the most important ones includes: the reduced-sample/truncated maximum
likelihood estimator and the quantile bend estimator (Wachter and Trussell, 1982), the Komlos-
Kim method (Komlos and Kim, 1990) and the restricted maximum likelihood estimator (A’Hearn,
2004). Notice that deciding between them is a difficult and probably case specific choice. But it
is certainly not an innocent one as reminded by fierce controversies (Komlos, 1993, Floud et al.,
1993).
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more strongly on the the normal distribution prior. With deficient samples,
the validity of that assumption is no longer tested, as it is for the available
full distributions. Instead, statistical inference is conducted by imposing the
normality assumption on the estimators. Again, this constitutes a potentially
problematic departure from sound statistical practice and therefore casts serious
doubt on the results obtained with these tools (see Jacobs et al., 2008, for a
unique example of the extent of the problem). The approach can be justified,
though, on the basis that there is no normality test which applies to a part of a
distribution only.

The procedure of the previous test can be adapted to provide a feasible test
for deficient samples. The density of the sample truncated at value ξ—typically,
the minimum height requirement—is again estimated nonparametrically. The
test then computes a metric entropy—normalized Hellinger of Granger et al.
(2004)— for testing the null hypothesis of equality of the estimated density and
the density of a normal distribution truncated at ξ and with appropriately cho-
sen first two moments. I assume ξ has been correctly identified,5 even though
this is not always easily granted in practice (Komlos, 2004); more on his later.

The size of the test is evaluated for different values of ξ. Overall, the test
presents correct size even for relatively small samples. Power experiments are
also run for a set of alternatives—t(5), Γ(5, 1), etc.—and different ξ’s. Simula-
tions show good results with almost unit power often reached for samples of 500
observations only. Being alone in its class, this test should prove to be useful for
statistical analysis, particularly in the heights literature.

3 An entropy-based test of normality

3.1 The entropy measure

The essence of the test considered here is to evaluate the “similarity” between
the densities of two continuous, univariate random variables. Formally, the test
is based on the metric entropy—normalized Hellinger of Granger et al. (2004)—
given by

Sρ =
1

2

∫ (
f1/2 − g1/2

)2
dx, (1)

where f and g are the corresponding marginal densities of the two random vari-
ables. H0 is equality of the two densities. Hence, it will be rejected whenever the
two densities are too “distant” from each other—in an entropy sense.

A few words on the merits of this measure and its relation to the entropy di-
vergence measures are the following (see Maasoumi, 1993, Ullah, 1996, Granger
et al., 2004). Consider the generalized β-class of entropy measures proposed by
Havrda and Charvát (1967)

Hβ(f) =

{ 1
β−1(1− Efβ−1) for β 6= 1, β > 0,

−E log f for β = 1,
(2)

5Or above the true minimum height requirement.
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whereE indicates the expectation with respect to the distribution f . Notice that
for the special case β = 1, this measure reduces to the well-known Shannon’s
entropy.

Based on these entropy measures, one can define, for any two density func-
tions f and g, the β-class entropy divergence of g from f given by

Hβ(f, g) =
1

β − 1

∫
f

[(
f

g

)β−1
− 1

]
dx, β 6= 1. (3)

Hβ(f, g) is not a symmetric measure.6 To overcome the symmetry obstacle, one
can combine the two asymmetric divergence measures to obtain a symmetric
β-class measure. The following option has been proposed to achieve it:

Iβ(f, g) = Hβ(f, g) +Hβ(g, f). (4)

Notice again that, for the special case β = 1, this class yields a familiar concept—
i.e., the Jeffreys-Kullback-Leibler divergence. As will become clear, however, the
interesting value for the current purpose is β = 1/2. Indeed, for that value, the
measure presented here satisfies the triangular distance inequality—hence it is a
proper metric. To see this, write

I1/2(f, g) = 4

[
1−

∫
(fg)1/2dx

]
= 2

[∫
(f1/2 − g1/2)1/2dx

]
= 2d(2)(f

1/2, g1/2). (5)

where d(2)(·) is the L2-norm distance between f1/2 and g1/2 satisfying the tri-
angular inequality. Expression (5) also involves two special distance measures—
M(·), known as Matusita or order-1 Hellinger distance given by

M(f, g) =

∫
(f1/2 − g1/2)1/2dx, (6)

and B(·) = 1− ρ?, with

0 ≤ ρ? =

∫
(fg)1/2dx ≤ 1, (7)

where ρ? is the Battacharyya coefficient that can be interpreted as a measure of
“affinity” between f and g.

To make more explicit the key characteristic of the measure suggested in
this paper—i.e., that it is an entropy metric—I redundantly write the following
relationships between the measures above

Sρ = 1− ρ? = B =
1

2
M =

1

2
d(2) =

1

4
I1/2. (8)

It must be emphasized that, because of the triangle inequality property,M(·)
and B(·) are unique in their class of measures of divergence—this, in turn, trans-
lates into many advantages for M(·) and B(·) over these latter, notably when
applied to non-nested models. For further properties of the entropy measure Sρ,
see Granger et al. (2004) and the references therein.

6Obviously, neither is Hβ(g, f).
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3.2 Two special cases for testing normality

The entropy metric described above can generally serve to test the null of equal-
ity of any two unknown density functions f and g. The simple step promoted
here consists in fixing one of the two densities to a desired reference density. The
test then evaluates whether or not the distance—in an entropy sense—between
the still unknown density, f(x) ≡ p.d.f.(X), and the reference density, g(x), is so
small that the former can be judged equal to the latter. In the present context,
I shall use two reference densities giving rise to two tests informally summarized
by the two H0’s

H0 : p.d.f.(X) ≡ f(x) = g(x, µ, σ) ≡ 1
σϕ
(x−µ

σ

)
for full samples, (9)

H0 : p.d.f.(X) ≡ f(x) = g(x, µ, σ, ξ) ≡
1
σϕ(x−µσ )

1− Φ( ξ−µσ )
for deficient samples.

(10)

where ϕ(·) and Φ(·) are the usual notations for the normal p.d.f. and c.d.f.,
respectively.

Under the null hypothesis and since the normal distribution is fully char-
acterized by its first two moments, p.d.f.(X) and g(x, µ, σ) must have identical
parameters. For the full samples case, I set µ and σ in g(x, µ, σ) to be equal
to the sample mean and standard deviation of X, respectively. For the defi-
cient samples case, I assume ξ is known. Hence, under the null, µ and σ can be
estimated by maximum likelihood. It could also be estimated by the quantile
bend estimator—a method proposed in the heights’ literature by Wachter and
Trussell (1982).7

3.3 Nonparametric kernel implementation

The tests introduced above involve one unknown density that remains to be
estimated—i.e., f(x) ≡ p.d.f.(X). For this purpose, I rely on a nonparametric
kernel-based estimator (Rosenblatt, 1956, Parzen, 1962). The kernel used is of
the Gaussian type. This choice is innocuous (Silverman, 1986) and taken purely
for computational convenience.

Unless otherwise specified, the bandwidths are of the plug-in kind computed
by the method of Sheather and Jones (1991) based on pilot estimates of deriva-
tives. Despite its merits,8 this choice might not prove optimal under certain
circumstances (Loader, 1999). It is, however, maintained to the detriment of
potentially more accurate cross-validation methods. This is for three comple-
mentary reasons. First, its risk of over-smoothing is more likely to strike when
the smoothing problem is complex. Those cases are rare in anthropometrics
where full distributions often suffer from milder deficiencies unlikely to affect
smoothing—such as skewness or thin/thick tails. Second, a selected set of simu-
lations was run with cross-validated bandwidths and their results did not differ

7Notice, however, that this method has become less popular after being shown inaccurate—
Heintel (1996), Komlos (2004).

8This is particularly clear when compared to rule-of-thumb references for bandwidth selec-
tion.
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significantly from the adopted ones. Third, cross-validation methods are reput-
edly very computationally demanding. Given the number of simulations pre-
sented in this paper, it would take too much processing time to provide their
equivalent with cross-validated bandwidths. Even with the “fast” plug-in meth-
ods, the computations on which this paper is built ran for 62143 hours in a
multiple-core cluster, and counting.

All the computations were run in R (R Core Team (2012)) thanks to the
“np” package (Hayfield and Racine, 2008, Racine, 2012), which provides an open
platform for nonparametric kernel estimation. Notice, incidentally, that such
techniques are either not available in the common statistical software Stata; or,
for the univariate kernel density estimation, they are implemented in the most
unreliable manner (see StataCorp, 2012, “help kdensity”).

Turning now to the known density g(x), it is worth mentioning the following
points about the way it enters the estimated metric Ŝρ. I used and evaluated
two different approaches: I shall refer to them as the direct and the indirect
approaches. In the direct approach, g(x) is the exact value at X = x of the
functions given in (9) and (10). In the indirect approach, g(x) is the nonpara-
metric kernel estimate. This was obtained in the same manner as above but with
fewer concerns with its validity because of the known nature of the samples on
which it is applied. ĝ(x) is estimated from a randomly generated sample whose
characteristics are defined in (9) and (10).

Two reasons motivate the use of these alternative approaches. First, notice
that, to the extent that ĝ(x) → g(x), the two approaches are asymptotically
equivalent. The second reason originates in the difficulty of obtaining critical
values for Ŝρ. In the indirect way, I opt for a bootstrap procedure with replace-
ment from the pooled empirical distributions (Racine, 2012). Hence the need to
generate an “empirical” distribution for the reference distributions defined in (9)
and (10). For the direct approach, I calculate 1000 values of Ŝρ under the null,
order them and use, e.g., the 950th value as the 5% critical value.

The use of the test in deficient samples raises a further concern. No combina-
tion of kernel type and bandwidth selection method is likely to match the sharp
increase of the density at ξ.9 Hence, there will be a bias in the estimated density
f̂(x). However, in the indirect approach, this bias is analogously to be found in
the estimated ĝ(x). In the direct approach, the bias in f̂(x) will likely increase
the Ŝρ statistic for a sample as much as for the 1000 values of Ŝρ under the null.

4 Size and power investigations

4.1 Simulation specifics

In this section, I use Monte Carlo simulations to evaluate the size and the power
of the proposed tests—the direct Sρ,D and the indirect Sρ,I . To better appreciate
their performance, I calculate and compare, on strictly identical samples, the
results of some popular tests, namely the Jarque-Bera test (Jarque and Bera,
1987, denoted “JB” below), the Shapiro-Wilk test (Shapiro and Wilk, 1965, SW)

9I conjecture this would possibly be achieved by a constrained density estimation.
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and the d’Agostino test (d’Agostino, 1971, dA). Results for further parametric
tests were also calculated and are available upon request. Their performance is
in line with those displayed here. For each alternative population and, for each
of these latter, each sample size, 1000 samples were drawn and used to gauge the
average performance.

Several alternatives are considered. These include three t-distributions (df =
5, 10, 25), the uniform distribution and two bi-modal, lightly “contaminated” dis-
tributions. They also include a 5% left-truncated distribution for which the
problem of truncation is ignored—i.e., the distribution is considered as a full
one. Finally, one of the alternatives (Selection I) reflects a process of sample
selection. Suppose the underlying population is standard normal. However,
observations with higher values have less chance of making it into the sample.
Then this would translate into a bias of the estimated parameters with respect
to their true value in the population (Heckman, 1979). This process of sample
selection can be interpreted in the following way. Changes in the fundamentals
of the economy may increase the returns to an individual’s height—a proxy for
some rewardable feature—in the civilian job market, with respect to its return
in the military job market. Therefore, samples of soldiers will exhibit under-
representation of tall individuals. In the process studied here, the probability
for an observation with normalized value x to be in the sample is 1− Φ(x).

At this stage, no strict attempt is made to group these alternatives into fami-
lies based on common criteria—e.g., support, symmetry, skewness, etc. Instead,
the set of populations analysed suffices to reveal the potential of these new tests.

The sizes of the samples tested here deserve special attention. They range
from 100 to 5000 observations: the list is {100, 200, 300, 400, 500, 1000, 1500,
2000, 3000 and 5000}. This greatly differs from the typically small values chosen
in related studies. 10 This choice builds on the following rationale. Firstly,
samples of hundreds and even thousands of observations are commonplace in
the heights literature (Floud et al., 1990, Nicholas and Steckel, 1991). Also, it
does no harm to a test’s performance to use it in larger samples—unit power in
small samples carries over to larger samples. Moreover, an unsatisfactorily low
power can turn into an appropriate power in larger samples. Finally, it is well
established that nonparametric, kernel density estimators, such as those used in
these news tests, typically require samples that are larger than those providing
asymptotic confidence in parametric settings.11

4.2 Simulation results

10For instance, compare with the sets of the few following studies: {10, 15, 20, 35, 50} in
Shapiro et al. (1968), {20, 50, 100} in Pearson et al. (1977), {20} in Arizono and Ohta (1989) or
{10, 20, 30, 50} in Noughabi and Arghami (2011).

11Notice, however, that such confidence may very well be a deceptive one. Fast convergence
ought barely to be an argument if it leads to the wrong parameter. As noted by Robinson (1988),
parametric estimators are typically “

√
n-inconsistent”.
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Table I: Empirical size estimates for α = 5% tests—Full samples

Popu-
lation

Test Sample size

100 200 300 400 500 1000 1500 2000 3000 5000

N(0, 1)

JB .052 .029 .050 .047 .036 .049 .059 .046 .056 .044
SW .064 .038 .051 .053 .050 .049 .061 .044 .049 .044
dA .068 .039 .052 .059 .041 .053 .064 .044 .062 .042
Sρ,D .052 .039 .054 .053 .050 .052 .053 .030 .049 .057
Sρ,I .007 .006 .007 .005 .004 .009 .014 .020 .018 .015

Notes: – Boldface signals the test of normality with best performance for each pair of alternative
population and sample size—unless all tests provide equal results. The Jarque-Bera test (Jarque
and Bera, 1987) is denoted “JB”, the Shapiro-Wilk test (Shapiro and Wilk, 1965), “SW”, and the
d’Agostino test (d’Agostino, 1971), “dA”. The direct and indirect approaches for my test—Sρ,D
and Sρ,I—are described in subsection 3.3. This applies to the tables below too.
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The results of the simulations described above are given in Tables I, II, III
and IV.12 They give the estimates for the empirical size and power, first for the
full samples and then for the deficient ones. I discuss them in turn. Notice that,
throughout all the tables, the nominal level of the tests is 5%. Table I shows
that the normality test proposed here—calculated in the direct approach—has
extremely precise size. The test obtained in the indirect approach seems a bit
conservative: it rejects a few more samples than expected at 95%. In order to
redress this under-size, the role of the length of the generated twin sample to
which the analysed sample is compared should be investigated.

Table II evaluates the power of the test in comparison to the alternatives
described above. Overall, the power of the direct test is in line with the power of
the parametric tests despite lagging slightly in small samples. Given the sample
sizes analysed here, it appears to reach unit power more or less as early as the
fast, parametric tests. This result represents a valuable attainment on its own.

Turning to the test for deficient samples, in Table III I consider various val-
ues of ξ to evaluate its sizes. Recall that ξ is the truncation point. In the heights
literature, it refers to the minimal height requirement imposed by military insti-
tutions. Roughly speaking, the results are good. The direct test is undersized
for ξ = −3,−2,−1 while the indirect test seems very well calibrated. For ξ = 0
which is the case when half of a normal distribution is cut off, the tests tend to
reject more big samples than expected.

The power investigations for this test, Table IV, include various values of ξ
when the population is from the Student type with 5 degrees of freedom. The
power of the direct test increases rapidly with the sample size and reaches one
in samples of two thousand observations or beyond. Notice that all the tests
on the full distribution of that population attain unit power only for samples of
one thousand observations or more (see Table II). Therefore, the performance
of this test against this particular alternative is good. Unsurprisingly, the power
estimate is negatively linked to ξ: the more amputated the distribution, the
lower the power.

Two complementary comments are the following. First, as alluded to above,
optimal cross-validated bandwidth selection may also be a useful power-enhancing
improvement to these tests. Nevertheless, the evidence gathered so far already
allows us to paint an overall satisfactory picture based on performance as good as
the best parametric competitors and good behaviour in deficient samples. Sec-
ond, I treat heights as a continuous variable. Readers familiar with the present
literature could argue that most of the available samples use rounded data. One
way to overcome this issue consists in adding appropriate uniform shocks to the
reported rounded heights. Exploratory simulations show that the tests keep
their demonstrated properties.

5 Secular trend of British recruits’ average height

Floud et al. (1990) offered a path-breaking contribution to the field of anthropo-

12Notice that the typical time span for a run of simulations ranged from four to ten days,
depending on the number of processes analysed and the availability of the cluster.
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Table II: Empirical power estimates for α = 5% tests—Full samples

Popu-
lation

Test Sample size

100 200 300 400 500 1000 1500 2000 3000 5000

t(5)

JB .637 .860 .949 .978 .995 1.00 1.00 1.00 1.00 1.00
SW .568 .816 .920 .967 .990 1.00 1.00 1.00 1.00 1.00
dA .613 .834 .928 .968 .992 1.00 1.00 1.00 1.00 1.00
Sρ,D .492 .715 .869 .943 .980 1.00 1.00 1.00 1.00 1.00
Sρ,I .281 .567 .707 .851 .914 1.00 1.00 1.00 1.00 1.00

t(10)

JB .275 .474 .590 .644 .746 .941 .990 .997 1.00 1.00
SW .236 .382 .492 .552 .659 .900 .980 .995 .999 1.00
dA .259 .437 .542 .590 .694 .922 .986 .996 .999 1.00
Sρ,D .189 .279 .358 .418 .513 .787 .947 .975 .996 1.00
Sρ,I .048 .111 .145 .223 .238 .554 .770 .883 .982 .999

t(25)

JB .105 .146 .177 .222 .262 .371 .477 .596 .716 .897
SW .079 .121 .137 .152 .203 .303 .396 .460 .620 .814
dA .105 .139 .155 .191 .226 .325 .434 .538 .682 .883
Sρ,D .064 .091 .087 .099 .128 .177 .257 .292 .425 .646
Sρ,I .013 .013 .022 .021 .031 .072 .068 .118 .207 .341

U(0, 1)

JB .564 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SW .993 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
dA .996 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sρ,D .937 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sρ,I .794 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Selec-
tion Ia

JB .061 .095 .130 .158 .179 .338 .475 .612 .784 .946
SW .079 .101 .140 .171 .191 .333 .476 .611 .776 .934
dA .075 .110 .140 .166 .186 .340 .472 .615 .787 .947
Sρ,D .062 .072 .103 .114 .120 .243 .347 .412 .587 .824
Sρ,I .008 .009 .020 .024 .029 .073 .139 .166 .283 .480

N(0, 1)
trunc.
5%

JB .092 .371 .640 .872 .967 1.00 1.00 1.00 1.00 1.00
SW .315 .789 .971 .997 1.00 1.00 1.00 1.00 1.00 1.00
dA .196 .519 .732 .920 .980 1.00 1.00 1.00 1.00 1.00
Sρ,D .170 .582 .911 .989 1.00 1.00 1.00 1.00 1.00 1.00
Sρ,I .045 .221 .552 .849 .959 1.00 1.00 1.00 1.00 1.00

Mix Ib

JB .059 .060 .063 .072 .087 .118 .143 .168 .242 .375
SW .059 .074 .064 .075 .088 .132 .147 .176 .215 .325
dA .068 .080 .069 .075 .092 .119 .144 .169 .240 .374
Sρ,D .057 .055 .063 .068 .071 .090 .099 .098 .122 .206
Sρ,I .015 .034 .047 .029 .033 .031 .037 .042 .054 .138

Mix IIc

JB .226 .440 .624 .744 .850 .985 1.00 1.00 1.00 1.00
SW .252 .480 .636 .775 .854 .984 1.00 1.00 1.00 1.00
dA .244 .452 .628 .749 .848 .984 1.00 1.00 1.00 1.00
Sρ,D .163 .360 .495 .654 .747 .966 .998 1.00 1.00 1.00
Sρ,I .064 .116 .224 .274 .344 .489 .632 .721 .754 .812

a f(x) = 2ϕ(x)(1 − Φ(x)) where ϕ(·) and Φ(·) are the p.d.f. and c.d.f. of the standard normal
distribution, respectively.
b Mix I refers to a population drawn from two normal distributions. With probability p, the
observation come from a N(µ1, σ

2) and the complement in the sample from a N(µ2, σ
2). For this

population, I set p = .90, µ1 = 0, σ2 = 1 and µ2 = µ1 + 1 · σ = 1.
c Same as for Mix I but µ2 = µ1 + 2 · σ = 2.

12



Table III: Empirical size estimates for α = 5% tests—Deficient samples

Popu-
lation

ξ Test Sample size

100 200 300 400 500 1000 1500 2000 3000 5000

N(0, 1)

−3
Sρ,D .003 .000 .007 .002 .003 .002 .002 .002 .005 .006
Sρ,I .070 .074 .064 .053 .049 .055 .044 .061 .053 .056

−2
Sρ,D .000 .000 .001 .003 .001 .003 .005 .011 .003 .011
Sρ,I .065 .061 .043 .063 .057 .061 .063 .057 .070 .051

−1
Sρ,D .006 .007 .021 .019 .019 .031 .036 .039 .039 .029
Sρ,I .065 .051 .044 .054 .036 .044 .034 .053 .058 .048

0
Sρ,D .005 .007 .010 .015 .026 .062 .107 .156 .264 .356
Sρ,I .009 .016 .019 .019 .027 .060 .090 .104 .171 .232

Table IV: Empirical power estimates for α = 5% tests—Deficient samples

Popula-
tion

ξ Test Sample size

100 200 300 400 500 1000 1500 2000 3000 5000

t(5)

−3
Sρ,D .076 .159 .269 .405 .528 .930 .990 1.00 1.00 1.00
Sρ,I .170 .292 .454 .597 .712 .956 .998 1.00 1.00 1.00

−2
Sρ,D .039 .042 .079 .091 .133 .419 .684 .886 .986 .999
Sρ,I .135 .257 .393 .545 .652 .945 .994 1.00 1.00 1.00

−1
Sρ,D .038 .078 .151 .211 .254 .610 .852 .949 .996 1.00
Sρ,I .064 .138 .204 .294 .410 .802 .964 .991 .999 1.00

Γ(9, 2)

1.5
Sρ,D .007 .004 .008 .007 .015 .056 .185 .395 .776 .994
Sρ,I .043 .131 .201 .346 .485 .901 .987 .999 1.00 1.00

3
Sρ,D .006 .008 .011 .024 .019 .053 .087 .145 .211 .419
Sρ,I .006 .006 .007 .013 .020 .038 .112 .207 .384 .612

U(−3, 3)

−2
√

3
Sρ,D .223 .735 .972 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sρ,I .585 .979 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

−
√

3
Sρ,D .640 .993 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sρ,I .809 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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metric history. In a joint project (Fogel et al., 1983) they collected and examined
a formidable data set on the heights—and further covariates such as age—of re-
cruits to both the British Army and the Royal Marines between 1760 and 1889.
A direct implication of their work has been a new assessment of the secular
change in the British stature. They find a significant positive impact of the In-
dustrial Revolution on average heights (although with some regression in the
mid-XIX century); and they find convergence between social classes.

This optimistic conclusion, however, has been fiercely challenged by numer-
ous scholars who find instead a negative impact of the Industrial Revolution
on workers’ living standards (Mokyr, 1988). Using an anthropometric approach
with the same or different data sets, Komlos (1993, 1998), Komlos and Kuechen-
hoff (2012) and Nicholas and Steckel (1991) both find a negative effect of the
Industrial Revolution on heights.

In this section I re-evaluate the validity of the Floud et al. (1990) results
using the tests developed above and the dataset they have collected and kindly
deposited at the UK data archive (Floud, 1986). I shall proceed in the following
way. Floud et al. (1990) derive height estimates for quinquennial samples using
a maximum-likelihood estimator given by

L(xi, µ, σ, ξ) =
n∏
i=1

1
σϕ
(xi−µ

σ

)
1− Φ

(
ξ−µ
σ

) .
Clearly, if a quinquennial sample is not normally distributed, then the esti-

mated µ̂ can be misleading. It violates the assumption that it is randomly drawn
from a normally distributed population. The tests presented above allow me to
check whether or not normality can be rejected in the sample. If the normality
assumption is rejected then I suggest that the estimated mean of the sample is
unreliable and should be discarded. Only valid samples should be used to infer
trends in heights.

5.1 Defining the samples

Various ways exist to draw (sub-)samples from any historical dataset under ex-
amination. Observations are generally grouped into birth cohorts in the height
literature. However, different authors have chosen different criteria for a) the
time span of the samples; and b) the age at recruitment of the individuals to
be included. For instance, Komlos (1993) uses decades for criterion a) while
Floud et al. (1990) chooses five-year periods. If the samples are large enough
then estimates can be obtained for every age at recruitment, to answer criterion
b). But it is common to group individuals according to their age at recruitment
to get larger samples. Floud et al. (1990) provide estimates for each individual
age between 18 and 23 but also group together individuals aged 18-19, 21-23 and
24-29 years (Floud et al., 1990, pp. 136-138). In the present study, and for com-
parison purposes, I adopt the Floud et al. (1990) five-year birth cohorts and the
following age groups: 18-19, 20-22 and 23-24. Comparison with the Floud et al.
(1990) estimates is made possible by averaging the corresponding yearly values
given by their Table 4.1, pp. 140-149. Notice, as well, that the choice of the

14



1740 1760 1780 1800 1820 1840 1860

Birth year

H
ei
gh

t
(i
n
)

60

62

64

66

68

70

Figure 1: Estimated average heights for different truncation points. Age group 18-19
at recruitment.

18-19 and 23-24 age groups obeys another criterion: they are a quinquennium
apart. Although their age at recruitment differs they all have the same birth
year. Thus any difference in average height between these two groups could not
be linked to different social and economic conditions during the growth period
of the individuals. Instead, it would indicate that individuals did not reach their
adult height at the age of 18 or 19.

5.2 Choice of truncation points

The minimum height requirement imposed by many armies would ideally trans-
late into a clear fall (to zero) in the left part of the height distribution. However,
this ideal case is undermined by various factors such as laxity in regulation en-
forcement or changes over time of the minimum height requirements. Overall,
the resulting height distributions show truncation on the left tail but leave some
observations to the left of the truncation point—a problem known as shortfall
(Wachter and Trussell, 1982). This problem has been addressed by Wachter and
Trussell (1982) who proposed the quantile bend estimator.
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Figure 2: Mean height of 18- to 19-year-old recruits.

By contrast, the reduced-sample/truncated maximum likelihood estimator
makes no use of the observations to the left of the truncation point. This, in
turn, adds considerable importance to an appropriate choice of the truncation
point in the sample. To illustrate this idea, I ran the following exercises. For
an initial likely truncation point and nine others to its left—height steps of 1/4
inch and one assuming no truncation of the sample—I calculated the mean of
the truncated samples. A representative result is given by Figure 1. It clearly
shows that the mean of the sample can fluctuate by a large amount depending
the truncation point chosen. For example, in 1855-60 we might infer an average
height of anything between 60 and 66 inches depending on the truncation point
chosen.

Given this sensitivity of the sample mean to the choice of the truncation
point, it is unfortunate that Floud et al. (1990) do not provide explicit informa-
tion about their truncation points. Their discussion of the problem, pp. 132-133,
reveals, however, that it was a very complex task to assign a minimum require-
ment for each observation of their dataset; no clear rule seems to have been
followed.

In the present study I rely on the visualisation of the histograms in order to
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Figure 3: Mean height of 20- to 22-year-old recruits.

assess three likely truncation points. These are given in Appendix A along with
the corresponding histograms. A few important points should be noted. Since
the real values of the truncation point used during the recruitment process are
not known, one has no other choice than try to deduce them from the actual
samples. I chose therefore the most transparent way of doing so.13 Notice, also,
that several alternatives were estimated, of the kind illustrated by Figure 1, but
no significant differences were found in the results obtained.

5.3 New estimates of recruits’ average height

Samples from the Floud et al. (1990)’s dataset were drawn following the crite-
ria given above—five-year birth cohorts and three age-at-recruitment groups—
using the truncation points given in Appendix A. For each sample I calculate
the mean using the reduced-sample/truncated maximum likelihood estimator. I
also use the test proposed above—Sρ,I—in order to evaluate whether or not the
normality assumption can be rejected in the given sample. Importantly, all the

13Notice, incidentally, that Floud et al. (1990) do not provide their estimates of the truncation
points.
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Figure 4: Mean height of 23- to 24-year-old recruits.

samples analysed here are drawn from the infantry—excluding marines.
Results are given in Figures 2, 3 and 4. They show my estimates for the

recruits’ average height between 1740 and 1860 and compare them with the
Floud et al. (1990) estimates. For each year, I give three values, corresponding
to the three truncation points identified in Appendix A. Estimates marked with
a × indicated that normality is rejected in the sample—for the given year and
truncation point. With a ◦ I noted the estimated average height from a sample
where normality is not rejected by the test. Floud et al. (1990) estimates are
marked with a 2.

Lines between points have an indicative purpose only. They connect—over
time—estimates for the smallest, middle and highest truncation point of each
year. In other words, they draw three possible evolutions of average height to be
compared with the line provided by Floud et al. (1990).

Three linear trends are also provided for a) values derived from samples
where normality is not rejected; b) values for all my estimates; and c) values
of Floud et al. (1990). The purpose here is not to best fit the data points. In-
stead, they are meant to give a general idea about the secular trend of soldiers
average height. The following points are worth noting.
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For all age groups, Floud et al. (1990) results show an upward trend of re-
cruits’ height over the period. This serves as a benchmark for their main conclu-
sion, despite the fact that they use further datasets—i.e., more data points—and
a smoothing technique to evaluate the secular trend.14

Secondly, the trends drawn using all of my estimates are qualitatively dif-
ferent from those of Floud et al. (1990). The slope—the red dashed line—for
the 18-19 age group is positive like the one in Floud et al. (1990) but it’s at
odds with this latter in the remaining two groups—though both appear to have
a slope close zero. One could test whether these differences are statistically dif-
ferent or not. Also, further structure in the estimated trend would certainly
reveal further similarities or disparities in the series. I do not proceed with this
comparison since estimates marked with × are not considered here as reliable.

Third, and most importantly, the normality assumption is rejected in a vast
majority of the samples. This implies that the truncated maximum-likelihood
estimates generated by Floud et al. (1990) are potentially misleading. In turn,
this result casts doubt on any view about the secular trend based on these esti-
mates.

A few differences across age groups are also present. Average height increases
with age, suggesting that individuals do not reach their adult height before the
age of 20 or more. This point is relevant for studies using younger people (Kom-
los, 1993, e.g.,). Indeed, the assumption—valid or not—that adult population
height is normally distributed does not necessarily imply normality at all ages
during the growth period. As far as the results presented here can establish, the
assumption of normality in samples of younger people is more easily rejected.

Finally, if one were to restrict the analysis to samples where normality is not
rejected—estimates marked with a ◦—then the view about the secular trend
is even more dramatically different from the one in Floud et al. (1990). The
trend, in that case, is given by the green lines. Since these lines build on the
observations that are not rejected by the test proposed here, I argue that a
downward secular trend in the average recruits’ height cannot be rejected and,
indeed, is more likely.

The implications of these results extend to the main debate where anthro-
pometric indicators—such as Floud et al. (1990)’s—have brought new insights.
Claiming that average heights increased during the late eighteenth and early
nineteenth century, Floud et al. (1990) side with the “optimists" to assert the
beneficial effects on the working classes of the early stages of the Industrial Rev-
olution. Based on the tests presented here, I argue that Floud et al. (1990)’s
results are misleading and of low support for their side of the controversial is-
sue. Put differently, the present results tend to support the “pessimistic” side
defended, for instance, by Komlos (1993) or Komlos and Kuechenhoff (2012).

14Should one look in more detail at this upward linear trend, one would notice the following.
Floud et al. (1990) show a decline in heights after around 1820 but an increase during the key
period of the Industrial Revolution.
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6 Conclusion

The normality assumption is too pervasive in the anthropometrics literature to
be left unchecked in all available samples. In the current practice, however, this
fails to apply with full rigour since “statistical tests of normality have not been
devised for distributions with height requirements” (Komlos, 1994).

This paper adds two useful tools to the researchers’ arsenal of tests aimed
at detecting departures from normality. In contrast to the existing parametric
tests, the tests proposed here are consistent tests building on a metric entropy
based on nonparametrically estimated densities. Importantly, their performance
is quite remarkable in simulated data.

The first test applies to full distributions and is shown to have a performance
in line with the performance of its parametric counterparts. The second test is
alone in its class as it is the first to apply to truncated samples that are com-
monplace in the field. Size and power investigations show again reasonably good
behaviour of the test.

The classic data set of Floud et al. (1990) is re-analysed in the light of these
new tests. It is shown that the normal distributional prior adopted by these au-
thors, and the current literature is an inappropriate description of the recruits’
height distribution in most cases. This is particularily true for the youngest in-
dividuals. The consequence of these tests is quite dramatic. The upward secular
trend drawn by the Floud et al. (1990) estimates turns—if one restricts calcu-
lations to validly inferred estimated average heights—into a downward secular
trend also previously obtained by other scholars like Komlos (1993).
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Appendix A

The following figures give the height distribution for different birth cohorts. All
distributions display the values in the 60-73 in range. For each birth cohort,
three age groups for the age of recruitment are defined: 18-19, 20-22 or 23-24
(from the left to the right. For each age group, three truncations points are
visually identified.
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Figure 5: Birth cohort 1740-44.
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Figure 6: Birth cohort 1745-49.
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Figure 7: Birth cohort 1750-54.
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Figure 8: Birth cohort 1755-59.

25



D
en
si
ty

60 62 64 66 68 70 72

0

.05

.10

.15

.20

.25

.30

ξ ∈ {−∞, 62, 63}
60 62 64 66 68 70 72

ξ ∈ {−∞, 62, 63}
60 62 64 66 68 70 72

ξ ∈ {−∞, 63, 64}

Figure 9: Birth cohort 1760-64.
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Figure 10: Birth cohort 1765-69.
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Figure 11: Birth cohort 1770-74.
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Figure 12: Birth cohort 1775-79.
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Figure 13: Birth cohort 1780-84.
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Figure 14: Birth cohort 1785-89.
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Figure 15: Birth cohort 1790-94.
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Figure 16: Birth cohort 1795-99.
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Figure 17: Birth cohort 1800-04.
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Figure 18: Birth cohort 1805-09.
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Figure 19: Birth cohort 1810-14.
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Figure 20: Birth cohort 1815-19.
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Figure 21: Birth cohort 1820-24.
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Figure 22: Birth cohort 1825-29.
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Figure 23: Birth cohort 1830-34.
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Figure 24: Birth cohort 1835-39.
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Figure 25: Birth cohort 1840-44.
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Figure 26: Birth cohort 1845-49.
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Figure 27: Birth cohort 1850-54.
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Figure 28: Birth cohort 1855-59.
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